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Abstract. Deep-seated landslides have caused substantial
damage to both human life and infrastructure in the past. De-
veloping an early warning system for this type of disaster is
crucial to reduce its impact on society. This research con-
tributes to developing predictive early warning systems for
deep-seated landslide displacement by employing advanced
computational models for environmental risk management.
The novel framework evaluates machine learning, time series
deep learning, and convolutional neural networks (CNNs),
identifying the most effective models to be enhanced by the
Age of Exploration-Inspired Optimizer (AEIO) algorithm.
Our approach demonstrates exceptional forecasting capabil-
ities by utilizing 8 years of comprehensive data – includ-
ing displacement, groundwater levels, and meteorological
information from the Lushan (mountainous) region in Tai-
wan. The AEIO–MobileNet model precisely predicts immi-
nent deep-seated landslide displacement with a mean abso-
lute percentage error (MAPE) of 2.81 %. These advance-
ments significantly enhance geohazard informatics by pro-
viding reliable and efficient tools for landslide risk assess-
ment and management. They help safeguard road networks,
construction projects, and infrastructure in vulnerable slope
areas.

1 Introduction

Landslides are among the most devastating natural disas-
ters (Huang and Fan, 2013), claiming an average of over
4000 lives annually worldwide between 2004 and 2010 (Pet-

ley, 2012). Landslides represent a global hazard, particularly
in developing countries, where rapid urbanization, popula-
tion growth, and significant land use changes occur (Caleca
et al., 2024). The identification, management, and moni-
toring of landslides are made difficult by the diversity of
their types (shallow slides, deep-seated slides, rockfalls, rock
slides, debris flows) and the complexity of their catego-
rization based on triggers, material composition, movement
speed, and other characteristics (Das et al., 2022; Hungr et
al., 2014). These issues are further exacerbated in countries
with complex geological and climatic conditions.

A deep-seated landslide involves the gradual and persis-
tent displacement of a substantial amount of soil and rock,
which can escalate into a sudden and devastating event (Kil-
burn and Petley, 2003; Geertsema et al., 2006; Chigira,
2009). Unlike shallow landslides, which typically affect sur-
face layers to a few meters deep, deep-seated landslides ex-
tend deeper, often exceeding 10 m, and can involve the move-
ment of underlying bedrock (Lin et al., 2013). Predicting
these events is challenging and costly (Thai Pham et al.,
2019), but extensive efforts have been made to do so through-
out history (Corominas and Moya, 2008; David and Ray-
mond, 1989; Aleotti and Chowdhury, 1999). One method that
has been employed involves thoroughly examining the physi-
cal and geological characteristics of the mountainous areas at
risk of landslides (Cotecchia et al., 2020). Furthermore, the
level of groundwater has been shown by numerous studies
in the past to significantly influence the mechanisms behind
landslide formation (Miao and Wang, 2023; Preisig, 2020;
Iverson and Major, 1987).
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In pursuing a generalized approach to landslide forecast-
ing, researchers have determined that the critical factors asso-
ciated with slope instability exhibit temporal variability, ne-
cessitating the use of time series data (Chae et al., 2017). This
approach combines slope deformation data collected through
sensors drilled deep into the slope bed with data on the nat-
ural conditions of the monitoring area, which are collected
simultaneously. Upon establishing that the data pertinent to
landslide prediction fall within the category of time series
data, a formidable challenge in research related to this type
of disaster is devising a predictive model capable of fore-
casting the likelihood of such catastrophes based on related
factors.

One of the most effective solutions for constructing mod-
els to predict time series data involves applying data-driven
techniques. The advancement of computational capabili-
ties has driven the widespread adoption of data-driven ma-
chine learning models more than physics-based models. This
shift is based on the premise that the data used for slope
monitoring originate from nonlinear systems (Zhou et al.,
2018). However, a significant drawback of traditional ma-
chine learning models, such as random forest and support
vector machines, is the difficulty they have handling spa-
tiotemporal data. These models need help to capture the se-
quential relationships necessary for landslide prediction, re-
sulting in lower performance (T. Zhang et al., 2022; Tehrani
et al., 2022).

An increasing array of novel data-driven solutions are be-
ing developed to overcome the constraints of traditional ma-
chine learning approaches. Among these data-driven solu-
tions, convolutional neural networks (CNNs) have emerged
as one of the most effective methods. These CNN models,
which excel at automated feature extraction, can enhance ef-
ficiency in analyzing complex datasets and improve the ac-
curacy of prediction results (Alzubaidi et al., 2021).

Moreover, there is a noteworthy recent trend in employing
metaheuristic optimization algorithms to fine-tune the hyper-
parameters of artificial intelligence (AI) models, thereby aug-
menting the models’ efficiency. This approach has found ap-
plications in geological and construction studies and other
fields, showcasing substantial effectiveness. Consequently,
the fine-tuning of hyperparameters represents a potent av-
enue for elevating the efficiency of AI models in research
focused on predicting deep-seated landslide displacement.

Leveraging the effective methodologies mentioned above,
this study employs AI models optimized by an innovative
metaheuristic optimization algorithm to predict deep-seated
landslide displacement on the northern slope of Lushan in
Ren’ai Township, Nantou County, Taiwan. The geological
characteristics of this area have been extensively researched
(Wang et al., 2015; Lin et al., 2020). Previous studies have
identified varying depths of the shear plane. Specifically, Lin
et al. (2020) determined that the depth of the shear plane is
85 and 106 m based on inclinometer data. Our research pa-
per is firmly grounded in empirical evidence meticulously

collected over 8 years from extensometers at depths of 70
and 40 m. Our analysis also considers the cumulative impact
of storms and heavy rainfall on groundwater levels, utilizing
data from four stations measuring groundwater levels in the
study area and other weather conditions that potentially trig-
ger landslides. The objectives of our research are as follows:

1. to analyze the application of machine learning and
deep learning methods to time series data to forecast
short-term, deep-seated landslide displacement across
the Lushan area;

2. to identify the optimal model and hyperparameters for
accurately forecasting deep-seated landslide displace-
ment in the study area;

3. to evaluate the role of metaheuristic optimization algo-
rithms in fine-tuning the hyperparameters of AI models.

This study represents the first instance of AI models being
utilized to predict deep-seated landslides on Lushan. Addi-
tionally, it marks the inaugural application of AEIO for fine-
tuning AI models in landslide-related research. Our findings
serve as a valuable resource for civil engineers, contractors,
and inspectors involved in the planning and overseeing of
construction projects in landslide-prone areas. Predicting the
likelihood of landslide events can help minimize property
loss, guide schedule adjustments, improve work safety, and
ensure smooth traffic flow during critical periods. Addition-
ally, understanding internal displacement provides engineers
with precise data to evaluate the resilience of structures and
infrastructure in vulnerable areas, enabling the issuance of
prudent warnings.

2 Literature review

2.1 Groundwater levels and the forecasting of
deep-seated landslide displacement

Landslide triggers can be attributed to loading, slope geome-
try, weather conditions, and hydrological conditions (Perkins
et al., 2024; van Natijne et al., 2023; Millán-Arancibia
and Lavado-Casimiro, 2023; Jones et al., 2023). Among
these, hydrological conditions, especially groundwater lev-
els, have been one of the most critical elements considered
in studies related to landslide prediction. Numerous stud-
ies have substantiated this point. For instance, research by
Take et al. (2015) demonstrated that the distance and velocity
of landslides triggered under high-antecedent-groundwater
conditions are much more significant compared to scenarios
with drier conditions. Another study has shown that water
accumulation at a soil–bedrock contact can develop positive
pore water pressures, causing landslides (Matsushi and Mat-
sukura, 2007) (see Fig. 1). Moreover, studies on past land-
slide events have also demonstrated similar findings. Exam-
ples of this research include the Tessina landslide in north-
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eastern Italy, where groundwater conditions triggered move-
ment (Petley et al., 2005). Additionally, the study by Keqiang
et al. (2015) on water-induced landslides in the Three Gorges
Reservoir project area highlights the significant impact of hy-
drological conditions on the likelihood of such disasters.

Similarly, Preisig (2020) developed a groundwater predic-
tion model for analyzing the stability of a compound slide in
the Jura Mountains. Additionally, Srivastava et al. (2020) ex-
plored machine learning algorithms to forecast rainfall and
established thresholds for landslide probabilities. Although
the research by Srivastava et al. (2020) did not directly rely
on groundwater levels to predict landslides, it is evident that
rainfall, a crucial factor in their study for landslide predic-
tion, also influences hydrological conditions. Therefore, their
research further underscores the importance of considering
groundwater levels in landslide prediction.

The northern slope in the Lushan area of central Tai-
wan, the region investigated in this study, exhibits signif-
icant gravitational slope deformation, making it prone to
landslides during typhoons or heavy-rainfall events. Lin et
al. (2020) conducted in-depth studies on the mechanisms
of landslide occurrence based on the geological conditions
of the area. While successfully providing valuable insights
into the evolution of deep-seated gravitational deformations,
their study focuses exclusively on employing traditional an-
alytical methods in geological research, such as analyzing
data from geotechnical instruments and conducting geologi-
cal borehole analysis.

Our research aims to adopt a novel approach compared
to previous landslide studies at Lushan by utilizing AI mod-
els and metaheuristic optimization algorithms. This research
will utilize temperature, humidity, and groundwater levels as
input data for AI models to predict deep-seated landslide dis-
placement, thus aiding in landslide forecasting in this region.

2.2 Forecasting slope displacements: conventional
methods

Several conventional methods are commonly employed to
predict deep-seated slope displacement. These methods pri-
marily involve simulating factors affecting slope stability
in landslide-prone areas using data collected from ground-
based monitoring devices. An early approach to predicting
deep-seated slope movements is geotechnical mapping. This
technique characterizes rock and soil strength, density, and
porosity.

For instance, Crosta and Agliardi (2003) analyzed the ge-
ology and rock mass behavior using Voight’s semi-empirical
failure criterion, incorporating time-dependent factors to
generate velocity curves that indicate risk levels. Recently,
Xu et al. (2018) utilized real-time remote monitoring systems
to measure internal stress, deep displacement, and surface
strain. These data were used to formulate forecasting models
to assess slope stability, particularly in railway construction.
However, a common challenge with this method is the insta-

bility of and frequent changes in the terrain and geology of
landslide-prone areas. This necessitates constant updates to
the computational model, which can be time-consuming and
labor-intensive.

Moreover, physically based numerical and laboratory
modeling methods are also gaining attention in landslide re-
search. These methods aim to maintain forecasts using var-
ious data types while reducing human workload and ensur-
ing high accuracy. For example, Mufundirwa et al. (2010)
conducted a laboratory study to examine the effectiveness of
the inverse velocity model in predicting rock mass destruc-
tion resulting from landslides at depths of 2 and 4 m along
the sliding plane. This study utilized historically recorded
data from Asamushi, Japan, and the Vajont Reservoir in Italy
(Mufundirwa et al., 2010).

Meanwhile, Wu (2010) employed the numerical discon-
tinuous deformation analysis method to simulate a blocky
assembly’s post-failure behavior, incorporating earthquake
seismic data. Another study follows this trend by Jiang et
al. (2011), who utilized the fluid–solid coupling theory to
simulate displacement and capture the interaction between
fluid and solid materials. However, both numerical models
and laboratory modeling methods require substantial effort
from researchers. These approaches demand deep expertise
and the development of complex models. More importantly,
they rely heavily on assumptions during the simulation pro-
cess and may need to reflect real-world conditions, leading
to significant errors in accuracy.

Stability analysis is another commonly used method re-
lated to physics, which evaluates the forces acting on slope
behavior. Fu and Liao (2010) presented a technique for im-
plementing the nonlinear Hoek–Brown shear strength reduc-
tion, determining the correlation between normal and shear
stress based on the Hoek–Brown criterion. Subsequently, the
micro-units’ (micro-units are microscopic components of the
rock mass) instantaneous friction angle and cohesive strength
under specific stress conditions are calculated.

Although this approach effectively addresses cost and la-
bor issues, it still heavily relies on the researchers’ as-
sumptions and is limited by the ability to utilize only a
small number of data from the research area. Additionally,
there are several other limitations. For instance, Mebrahtu et
al. (2022) indicated that stability analyses become less reli-
able in seismic-load scenarios. Safaei et al. (2011) also noted
that stability analysis necessitates a substantial number of de-
tailed input data obtained from laboratory tests and field mea-
surements, thereby limiting the areas that can be effectively
assessed.

As previously mentioned, using conventional methods
poses significant challenges, as their application requires a
deep understanding of both the physics involved and the
complex behavior of soil. In addition, traditional methods re-
quire specific types of input data, highlighting the rigidity
and lack of flexibility inherent in these approaches (Safaei et
al., 2011). In contrast, AI models can overcome these diffi-

https://doi.org/10.5194/nhess-25-119-2025 Nat. Hazards Earth Syst. Sci., 25, 119–146, 2025



122 J.-S. Chou et al.: Predicting deep-seated landslide displacement on Taiwan’s Lushan

Figure 1. Schematic illustration showing the effects of groundwater on deep-seated slope failure.

culties by automatically learning to identify mapping func-
tions between input and output data, eliminating the need
for users to have specialized knowledge of soil behavior and
physics. Additionally, AI models can be updated to incorpo-
rate new input variables, offering flexibility to leverage avail-
able data based on real-world conditions. Therefore, AI mod-
els will be utilized in this research instead of conventional
methods.

2.3 Forecasting slope displacements: machine learning
and deep learning

In studies employing machine learning and deep learning
models for landslide research, a plethora of research uti-
lizes discrete data to train AI models to predict the prob-
ability of landslides or to construct maps depicting land-
slide susceptibility. For instance, Pradhan and Lee (2010)
used a geographic information system (GIS), remote sens-
ing, and a neural network model to analyze landslide sus-
ceptibility in the Cameron Highlands, Malaysia. Ten factors,
including topographic slope and drainage distance, were pro-
cessed to generate a susceptibility map. The model achieved
83 % accuracy in predicting landslide locations. In a similar
study, Pham et al. (2016) used multiple AI models, including
support vector machines (SVMs), logistic regression (LR),
Fisher’s linear discriminant analysis (FLDA), a Bayesian net-
work (BN), and naïve Bayes (NB), for landslide susceptibil-
ity assessment in a region within the state of Uttarakhand,
India. The SVM model yielded the best prediction results
among the models used.

In addition to discrete data, many landslide studies utilize
time series data. When it comes to technical forecasting us-
ing time series data, machine learning regression prediction
models, such as extreme learning machines (ELMs) (Li et
al., 2018), least-squares support vector machines (LSSVMs)
(Liu et al., 2019), dynamic neural networks (Aggarwal et al.,
2020), random forests (RFs) (Hu et al., 2021), SVMs (Zhang
et al., 2021), and Gaussian process regression (GPR) (Hu et
al., 2019), have proven highly effective at yielding reliable
results. These models also provide scalability and the abil-

ity to handle larger datasets. However, it is essential to note
that machine learning models are sensitive to the white noise
that is typical of time series features. This can pose chal-
lenges in capturing subtle behaviors and complex interrela-
tionships, mainly when data availability is limited (Zhang et
al., 2020). Finally, feature engineering (the process of select-
ing and transforming input variables to enhance the perfor-
mance of the models) is computationally intensive and labor-
intensive, limiting its applicability when rapid forecasting is
required.

Alongside the machine learning models mentioned above,
a range of neural network models, from simpler ones like
artificial neural networks (ANNs) to more advanced ap-
proaches such as deep neural networks (DNNs) and CNN,
are also employed in research related to landslides (Kumar
et al., 2017; Zheng et al., 2022). Notably, CNN models have
become increasingly popular and are widely used in research
related to this disaster type. CNN models often yield superior
predictive results compared to other models in terms of land-
slide susceptibility assessment and displacement prediction
(He et al., 2024).

Moreover, another research trend in landslide forecasting
involves the use of time series deep learning models such
as recurrent neural networks (RNNs), long short-term mem-
ory (LSTM), and gated recurrent units (GRUs), which use
previous information to generate current outputs and provide
state feedback (Yang et al., 2019; Xu et al., 2022; Yang et al.,
2022; W. Zhang et al., 2022). These time series deep learning
models can effectively capture patterns of changes over time,
making them highly suitable for time series data in landslide-
related studies. However, there has yet to be a comprehensive
study that employs a combination of machine learning meth-
ods, time series deep learning, and CNN models to compare
and determine the most suitable model for predicting land-
slide displacement. Therefore, our research aims to address
this gap.

Another noteworthy research trend involves using AI mod-
els to predict landslides based on spatial–temporal data. For
instance, Dahal et al. (2024) utilized spatial–temporal data to
pinpoint where landslides may occur and predict when they
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might happen and the expected landslide area density per
mapping unit. The ensemble neural network employed in this
research yielded promising predictions, demonstrating its po-
tential for forecasting landslides in Nepal’s areas affected by
the Gorkha earthquake. However, our study only managed
to gather temporal data. Consequently, the AI models devel-
oped in our research will be trained to learn and forecast time
series data.

2.4 Hybrid metaheuristic optimization algorithm and
AI models in landslide prediction

In landslide-related research, numerous studies have em-
ployed hybrid models, wherein metaheuristic optimization
algorithms optimize the hyperparameters of AI models. For
example, Balogun et al. (2021) studied landslide suscepti-
bility mapping in western Serbia. This research collected 14
different condition factors to serve as input data for the sup-
port vector regression (SVR) model to predict landslide oc-
currences. The study results indicate that SVR models, with
hyperparameters fine-tuned by optimization algorithms such
as gray wolf optimization (GWO), the bat algorithm (BA),
and the cuckoo optimization algorithm (COA), all yielded
better prediction results compared to using a single model.

Hakim et al. (2022) conducted a study utilizing CNN
models optimized by GWO and the imperialist competitive
algorithm (ICA) for landslide susceptibility mapping from
geo-environmental and topo-hydrological factors in Incheon,
South Korea. This research demonstrates that GWO and ICA
effectively fine-tuned the CNN model, resulting in a highly
accurate landslide susceptibility map.

Jaafari et al. (2022) employed an AI model known as
the group method of data handling (GMDH) for classifica-
tion purposes, optimizing it using the cuckoo search algo-
rithm (CSA) and the whale optimization algorithm (WOA).
In northwest Iran, the authors aimed to predict landslides
based on various factors, including topographical, geomor-
phological, and other environmental factors. After training
and testing, the GMDH–CSA model produced superior pre-
diction results compared to the GMDH–WOA and the stan-
dalone GMDH model.

It is evident from numerous past studies on landslides that
the application of metaheuristic optimization algorithms sig-
nificantly enhances the predictive effectiveness of AI models.
Therefore, this study also incorporates this approach to en-
sure the model’s accuracy in landslide prediction. This study
will employ a recently developed metaheuristic algorithm
that includes a clustering technique, which shows promise
in effectively fine-tuning hyperparameters for AI models.

3 Methodology

3.1 Machine learning

In addition to the aforementioned deep learning models,
as elucidated earlier, machine learning models will be em-
ployed to predict deep-seated landslide displacement in this
research. The machine learning models utilized will en-
compass the following approaches: linear regression (LR)
(Stanton, 2001), ANN (McCulloch and Pitts, 2021), SVR
(Drucker et al., 1996), classification and regression tree
(CART) (Breiman, 1984), radial basis function neural net-
work (RBFNN) (Han et al., 2010), and extreme gradient
boosting (XGBoost) (Chen and Guestrin, 2016). These ma-
chine learning models will be used to make predictions and
will be compared with other deep learning models.

3.2 Deep learning models for time series data

RNN was introduced by Elman in 1990 (Elman, 1990). This
model makes predictions based on sequential data, crucial for
language modeling, document classification, and time series
analysis. The architecture of an RNN model can be found in
Appendix A. In this study, advanced models of RNN, such as
LSTM and GRU models, are also utilized, and their effective-
ness in predicting deep-seated landslides will be compared.

3.3 Convolutional neural networks

In 1998, LeCun introduced a novel type of DNN, known as
CNN, specifically designed for processing data with a grid-
like structure, such as images (Lecun et al., 1998). The com-
plex layered system of CNN facilitates the automated extrac-
tion of features without extensive preprocessing, making it
ideal for object recognition, image classification, and seg-
mentation tasks. The detailed mechanism of the CNN model
can be found in Appendix B.

This study will use various CNN models to predict deep-
seated slope displacement. The CNN models employed in
this research include VGG (Simonyan and Zisserman, 2015),
ResNet (He et al., 2016), Inception (Szegedy et al., 2015),
Xception (Chollet, 2017), MobileNet (Howard et al., 2017),
DenseNet (Huang et al., 2017), and NASNet (Zoph et al.,
2018). To clarify, the term “standard CNN models” will re-
fer to models with structures that can be user-defined, while
“retrained CNN models” will denote those with architectures
that have been researched and developed by other scientists
and have been proven to be highly effective.

CNN models are typically used for image processing
tasks. However, the input data for this study are in numerical
and vector form. Therefore, several transformation steps are
required to convert these numerical and vector data into im-
age data suitable for CNN input. Detailed information about
these transformation steps can be found in the study of Chou
and Nguyen (2023).
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3.4 Data management and performance analysis

3.4.1 Data splitting and evaluation strategy

To obtain reliable (i.e., generalizable) evaluation and vali-
dation results, it is crucial that the data used for testing do
not include the data used for training. Therefore, a dataset
must be divided into training, validation, and testing sub-
sets before training the AI model. Training data are used to
learn patterns, testing data are used to assess model perfor-
mance and identify errors, and validation data are used to
fine-tune the hyperparameters. In the current study, we opted
to refrain from employing cross-validation, which tends to
be time-consuming. Instead, we adopted the holdout ap-
proach to manage our large dataset with well-represented
target variables (Fig. 2). A 90 : 10 ratio is generally used to
split datasets into learning and testing data (Di Nunno et al.,
2023). When implementing the holdout method during hy-
perparameter optimization, 20 % of the learning data are used
for validation, and the remaining 80 % are used for training.

3.4.2 Performance evaluation metrics

This study utilized three widely recognized performance
measures to assess the model’s effectiveness in prediction
accuracy (Chou and Nguyen, 2023). The measures included
mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean square error (RMSE).

MAE represents the mean of absolute errors, calculated as
the average of the absolute differences between actual and
predicted values. Its advantage lies in its simplicity, which
provides a straightforward measure of average prediction er-
ror. However, a drawback of MAE is its insensitivity to more
significant errors, so it may not effectively highlight differ-
ences between models when significant errors are present. It
is defined as

MAE=
1
n

∑n

i=1

∣∣yi − ŷi∣∣ , (1)

where n is the number of predictions, yi is the ith forecasted
value, and ŷi is the corresponding ith actual value.

MAPE quantifies the ratio of the average absolute error to
the actual value derived from the differences between actual
and forecasted values. It provides a clear metric in percent-
age terms, facilitating straightforward interpretation across
various datasets. However, MAPE’s limitation arises from its
sensitivity to zero values in the actual data, which can be-
come undefined or impractical to compute, limiting its utility
in scenarios involving zero or near-zero actual values. The
expression for MAPE is as follows:

MAPE=
1
n

∑n

i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ , (2)

where n is the number of predictions, yi is the ith forecasted
value, and ŷi is the corresponding ith actual value.

RMSE represents the square root of the average squared
error between actual and forecasted values and is widely used
for its ability to indicate the dispersion of errors. This method
captures the magnitude and direction of errors, making it
practical for assessing overall prediction accuracy. However,
RMSE tends to be more sensitive to outliers and significant
errors than MAE due to its squaring of errors during compu-
tation. This sensitivity can disproportionately affect its eval-
uation in datasets with extreme values. The expression for
RMSE is as follows:

RMSE=

√
1
n

∑n

i=1

(
yi − ŷi

)2
, (3)

where n is the number of predictions, yi is the ith forecasted
value, and ŷi is the corresponding ith actual value.

3.5 Age of Exploration-Inspired Optimizer

This study employs a range of AI models to forecast deep-
seated landslide displacement in mountainous regions. To
enhance the prediction accuracy of these AI models, the
study incorporates a novel metaheuristic optimization algo-
rithm known as the Age of Exploration-Inspired Optimizer
(AEIO). Developed by Chou and Nguyen in 2024, this algo-
rithm has demonstrated high effectiveness in fine-tuning the
hyperparameters of AI models. This algorithm treats each
particle in the search domain as an explorer. The move-
ment of particles toward regions with higher fitness val-
ues parallels the exploratory activities of the Age of Explo-
ration, where explorers sought ideal locations for establish-
ing colonies. In this study, each particle represents a set of
hyperparameters, with the ultimate goal of the search pro-
cess being to identify the optimal particle or hyperparameter
set that minimizes prediction error for AI models. Figure 3
illustrates the AEIO algorithm.

The strength of the AEIO algorithm lies in its ability to
develop specific strategies for particles based on their posi-
tions, enabling faster convergence to the optimal point and
using density-based spatial clustering of applications with
noise (DBSCAN) for particle clustering. DBSCAN is an un-
supervised clustering method that organizes data points by
their spatial closeness in high-dimensional spaces (Ester et
al., 1996). This algorithm is particularly effective at detect-
ing clusters of different shapes and densities. It relies on two
primary parameters: ε (the radius of the neighborhood) and
MinPt’s (the minimum number of points required to form
a dense area). Clusters are created by locating neighboring
points with enough surrounding points, while those that do
not belong to any cluster are classified as noise or outliers.

Using the DBSCAN algorithm, the AEIO determines
whether particles are in favorable or unfavorable positions,
reminiscent of explorers during the Age of Exploration. The
proximity (within clusters) allows explorers to gather infor-
mation and move toward optimal locations, thereby enhanc-
ing their ability to establish new colonies. In contrast, ex-
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Figure 2. Data are split under the proposed holdout scheme.

Figure 3. Illustration of the Age of Exploration-Inspired Optimizer.

plorers far apart (outside clusters) adopt different strategies,
relying on limited peer guidance or general trends in their
quest for new territories.

In each iteration, explorers forecast their next move. If it
promises a better position, they relocate. Otherwise, if the
new spot is less favorable for colony establishment, they stay
put and await the next iteration. The algorithm employs spe-
cific mathematical formulas to calculate the movement step
of explorers or particles in the AEIO. The exploratory steps
of an explorer in the AEIO algorithm will be continuously
iterated until the stop condition is satisfied.

3.5.1 Explorers follow general trends

The explorer choosing this movement type will calculate the
distance from their location xi,d(t) to the center of all other
explorers (Meanvld (t)) and then attempt to move toward that
central point in the hope of finding a better location with the
potential to establish a new colony. The following formulas
determine the explorer’s position after the movement:

xi,d(t + 1)= xi,d(t)+α ·
(
Meanvld (t)− xi,d (t)

)
× rand(0,1)×R , (4)

Meanvld (t)=
x1,d (t)+ x2,d (t)+ . . .+ xnPop,d (t)

nPop
, (5)
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where d = 1,2, . . ., D, with D being the number of dimen-
sions; i = 1,2, . . ., nPop; nPop is the total number of explor-
ers; t = 1,2, . . .,MaxIt; MaxIt is the maximum value of iter-
ations; α is a parameter for adjusting the particle’s movement
toward the centroid position (usually equal to 3); Meanvld (t)
is the centroid of all particles in dimension d; rand(0, 1) is the
random number in the range [0, 1]; R is a number that equals
1 or 2 depending on the value of rand(0, 1) per the equation
R = round(1+ rand(0,1)); xi,d(t) is the location of particle
i in iteration t ; and xi,d(t + 1) is the location of particle i in
iteration (t + 1).

3.5.2 Explorers follow three other peers

Explorers employing this movement method will calculate
the average position of three other randomly selected explor-
ers

(
x1,d (t)+x2,d (t)+x3,d (t)

3

)
and then move toward this newly

calculated average position. The explorer’s new position is
computed using the following formula:

xi,d(t + 1)=

xi,d(t)+

(
x1,d(t)+ x2,d(t)+ x3,d(t)

3
− xi,d(t)

)
× rand(0,1)×R, (6)

where x1,d (t), x2,d(t), and x3,d(t) are three random explor-
ers in dimension d at iteration t , with d = 1,2, . . ., D and D
being the number of dimensions; i = 1,2, . . ., nPop; nPop is
the total number of explorers; t = 1,2, . . .,MaxIt; and MaxIt
is the maximum value of iteration.

3.5.3 Explorers follow the best one

According to this strategy, the explorer (xi,d(t)) will move
closer to the position of another explorer currently holding
the best position (Bestd(t)), as determined by the following
formula:

xi,d(t + 1)= xi,d(t)+
(
Bestd(t)− xi,d(t)

)
× rand(0,1)×R, (7)

where Bestd(t) represents the position of the particle with
the best fitness in dimension d at iteration t ; the parameters
d and t hold the same meaning as defined in Eq. (6).

3.5.4 Explorers follow guidance from another explorer

Explorers in favorable positions with access to information
can execute this movement strategy. In this scenario, explor-
ers (xi,d(t))will consult with another explorer. The consulted
explorer will compare their direction and distance to the best
individual who holds the most favorable position (Bestd(t))
and guide the inquirer. This algorithm assumes that the in-
quirer can be any explorer, i.e., a random explorer (x1,d (t)).
The following formula describes how to calculate the new

position of the explorer following this strategy:

xi,d(t + 1)= xi,d(t)+
(
Bestd(t)− x1,d(t)

)
× rand(0,1)×R, (8)

where x1,d (t) is a random explorer in dimension d at itera-
tion t . The parameters d and t hold the same significance as
defined in Eq. (6).

3.5.5 Crowd control mechanism

To enhance the efficiency of AEIO in transitioning between
exploration and exploitation, a mechanism is employed to ad-
just the parameters of DBSCAN throughout each cycle, ac-
cording to the following formulas:

εd =

(
0.1+

t

MaxIt

)
× (Meanvld (t)−Bestd(t)) , (9)

MinPt’s= round
(

1+
t

MaxIt
× 10

)
. (10)

The exploratory steps in the AEIO algorithm begin by classi-
fying positions using the DBSCAN algorithm. Subsequently,
the explorers update the crowd control mechanism according
to Eqs. (9) and (10), and move according to various strategies
defined by Eqs. (4), (6), (7), and (8). This process is con-
ducted iteratively until the maximum number of iterations is
reached.

To fine-tune the hyperparameters of AI models, the AEIO
algorithm treats each hyperparameter as a variable. Further-
more, the objective function of the AEIO algorithm seeks to
minimize the prediction error of AI models, which is quan-
tified by an evaluation metric (MAPE). Figure 4 presents a
flowchart illustrating the process by which the AEIO algo-
rithm aids in fine-tuning hyperparameters for AI models.

4 Lushan hot springs: geography and geology

4.1 Research area

The current study focuses on the northern slope of the Lushan
hot springs in Ren’ai Township, Nantou County, Taiwan
(Fig. 5), with Nenggao Mountain to the east, the Hehuan
Peaks to the north, Zhuoshe Mountain to the south, and the
Puli Basins to the west. The terrain features rugged mountain
ranges, incipient valleys, and notable river erosion (Lee and
Chi, 2011). The Lushan hot springs are located below the
hill, and the main access roads for nearby settlements and
hot-spring sites include Provincial Highway 14 and County
Highway 87.

In an early study of deep landslides in this area, Lin et
al. (2020) reported that the Lushan slope exhibits large-scale
deep-seated gravitational slope deformation, characterized
by a steep scarp, a gently inclined head, and a curving river at
its base. Figure 5 shows the distribution of four survey bore-
holes (G18, G20, G21, and G25) along the slope, and Fig. 6
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Figure 4. Flowchart of the fine-tuning process of AI models by the AEIO algorithm.
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illustrates the geological details of the research area in these
boreholes. Regolith, slate, and meta-sandstone are three dis-
tinct lithological units revealed through drilling. Addition-
ally, the study of Lin et al. (2020) identified the depths of
failure planes in these survey boreholes. Specifically, bore-
holes G18 and G25 did not record any failure planes, while
boreholes G20 and G21 recorded failure planes at depths of
85 and 106 m, respectively. These failure planes were identi-
fied based on inclinometer data from the corresponding study
(Lin et al., 2020).

Initially, the topmost regolith layer’s thickness was less
than 10 m. Secondly, slate predominated, exhibiting a notable
presence with sporadic evidence of weathering that resulted
in brecciated patterns. This composition frequently broke
into breccia and gouges, particularly along cleavage planes
and thin shear zones, indicating its susceptibility to collapse.
This geological layer is identified as the area’s primary cause
of landslide risk. Finally, meta-sandstone appeared intermit-
tently compared to the more prevalent lithological units and
was characterized by its fragility and fractures; it occurred
less frequently in the drilled samples.

Previous research has detected signs of brittle deformation
in the area. These indications include chevron folds within
fractures, visible cracks, and intricate jigsaw-puzzle-like pat-
terns at the head of the rock formations. Overturned and flex-
ural toppling fractures are prevalent toward the toe of the
slope. Additionally, kink bands are observable on fractures
recently undergoing flexural folding along the eastern bound-
ary. Notably, horizontal fractures near the toe region also ex-
hibit inter-fracture gouges. Further details on this geological
information can be found in the study by Lin et al. (2020).
These instances highlight the potential for significant geo-
logical changes and landslide risk in this region.

4.2 Data collection

In this study, hourly data of deep-seated landslide displace-
ment and the groundwater level were collected by the De-
partment of Civil Engineering, College of Science and Tech-
nology, at the National Chi Nan University research group
over 8 years from July 2009 to June 2017, yielding 68 317
data points. The installation time points and locations are pre-
sented in Table 1 and Fig. 5, respectively.

The data used in this study were collected using an in-
hole telescopic gauge (E-2), a multidirectional shape accel-
eration array sensor (SAA) with an underground displace-
ment gauge, and four groundwater-level gauges (A-17, A-
18-2, A-20, and A-24). The transmission, storage, and pro-
cessing of data are described in detail in the research of Lau
et al. (2023).

The operation of the in-hole extensometer entailed the in-
stallation of a borehole through the sliding surface. One end
of a steel cable was anchored at the bottom, and a displace-
ment gauge was placed at the free end to measure deforma-
tions automatically. The fixed stops for E-2 and SAA were

situated at depths of 70 and 40 m below the surface, respec-
tively. In addition to groundwater-level data, information re-
garding significant rainfall events in this area was also mea-
sured and is presented in Table 2.

Based on the collected data, analyses have examined
the correlation between groundwater levels and deep-seated
landslide displacement at Lushan. To observe this correla-
tion, graphs illustrating the precipitation of recorded heavy
rainfall (Fig. 7a), variations in displacement (Fig. 7b and c),
and groundwater levels (Fig. 7d) over time have been plotted.

Figure 7 shows that the displacement values at both
stations often exhibit significant increases coinciding with
periods of pronounced fluctuations in groundwater levels.
Specifically, in June 2012, there was a notable surge in
groundwater levels attributed to heavy rainfall from 8 to
17 June 2012, totaling 1029 mm over 219 h (as indicated in
Table 2 and Fig. 7a). The abnormal rise in groundwater levels
led to increased pore water pressure, which triggered deep-
seated landslide displacement at both stations, namely E-2
and SAA, as evidenced in Fig. 7b and c.

Similar events occurred in November 2017. Heavy rainfall
totaling 638.5 mm over 178 h during this period also caused
a sudden alteration in groundwater levels, resulting in sig-
nificant deep-seated landslide displacement. Through com-
parison, it is apparent that there were up to 13 instances
of anomalous heavy rainfall during the study period. How-
ever, not every example of heavy rain resulted in significant
fluctuations in groundwater levels leading to substantial dis-
placement. Hence, data regarding groundwater-level eleva-
tion rather than rainfall data will be used to predict deep-
seated landslides.

In addition to groundwater-level data, weather factors such
as temperature and humidity are also utilized as input data for
the prediction model. This study includes temperature as an
input variable for AI models to predict deep-seated landslide
displacement due to its impact on soil structure. Elevated
temperatures can cause thermal expansion of soil particles,
which can increase pore water pressure and reduce effective
frictional resistance forces (Pinyol et al., 2018). Additionally,
previous research has shown a relationship between tempera-
ture and the likelihood of landslides in clay-rich soils, which
are also present in the geological composition of Lushan
(Shibasaki et al., 2017; Loche and Scaringi, 2023).

This study collected groundwater-level and displacement
data on-site using sensors. Furthermore, temperature and hu-
midity data were obtained from the following website: https:
//power.larc.nasa.gov (last access: 8 January 2024). This
dataset is part of the Prediction of Worldwide Energy Re-
sources (POWER) project, developed by the National Aero-
nautics and Space Administration (NASA) of the United
States. The POWER solar data are derived from satellite ob-
servations, which are used to infer surface insolation values.
Meteorological parameters are sourced from the Modern-Era
Retrospective analysis for Research and Applications, Ver-
sion 2 (MERRA-2), assimilation model. The primary solar
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Figure 5. Locations of measurement devices (sources: imagery © 2022 CNES/Airbus, Maxar Technologies; map data © 2022 Google).

Figure 6. Illustration of geological drilling surveys.
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Table 1. Device installation time points. A dash (–) denotes no data.

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Groundwater- A-17 A-17 A-17 A-17 A-17 A-17 A-17 A-17 A-17 A-17
level gauge – – – – – – A-18-2 A-18-2 A-18-2 A-18-2

– A-20 A-20 A-20 A-20 A-20 A-20 A-20 A-20 A-20
– A-24 A-24 A-24 A-24 A-24 A-24 A-24 A-24 A-24

Extensometer – E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2
– – – SAA SAA SAA SAA SAA SAA SAA

Table 2. Heavy-rainfall events in the study area.

No. Rain onset Rain end time Rainfall Rainfall Event
(local time) (local time) accumulation duration

(mm) (h)

1 17 Jul 2008, 14:00 19 Jul 2008, 21:00 418 55 Typhoon Kalmaegi
2 11 Sep 2008, 16:00 15 Sep 2008, 12:00 943.5 92 Typhoon Sinlaku
3 28 Sep 2008, 01:00 30 Sep 2008, 10:00 523.5 57 Typhoon Jangmi
4 4 Aug 2009, 03:00 12 Aug 2009, 20:00 931 209 Typhoon Morakot
5 8 Jun 2012, 13:00 17 Jun 2012, 16:00 1029 219 Torrential rain
6 30 Jul 2012, 07:00 3 Aug 2012, 11:00 370 100 Typhoon Saola
7 10 May 2013, 16:00 25 May 2013, 01:00 597 345 Torrential rain
8 12 Jul 2013, 19:00 15 Jul 2013, 23:00 330 76 Typhoon Soulik
9 20 Sep 2013, 22:00 23 Sep 2013, 18:00 347 68 Typhoon Usagi
10 9 May 2014, 05:00 22 May 2014, 03:00 326.5 310 Torrential rain
11 22 Jul 2014, 14:00 24 Jul 2014, 00:00 321.5 34 Typhoon Matmo
12 1 Jun 2017, 11:00 4 Jun 2017, 21:00 897 82 Torrential rain
13 11 Jun 2017, 17:00 19 Jun 2017, 03:00 638.5 178 Torrential rain

data are available with a global resolution of 1°× 1° lati-
tude× longitude, while the meteorological data are provided
at a finer resolution of 1

2 °× 5
8 ° latitude× longitude. Users

can download the data hourly, daily, or monthly through the
abovementioned website.

Table 3 displays the input and output variables for AI mod-
els to predict deep-seated landslide displacement at Lushan.
Two datasets will be generated: one for predicting displace-
ment at the E-2 station and another for indicating displace-
ment at the SAA station. Table 4 outlines the number of data
points for each dataset and illustrates how the data are di-
vided into training and testing sets.

4.3 Data preprocessing

Firstly, the data in this study will undergo a normalization
process to scale all features to a consistent range (typically
between 0 and 1). This step is essential to ensure that the
model considers the importance of each feature, thereby en-
hancing overall prediction accuracy (Han et al., 2006).

In the current study, the sliding-window technique is im-
plemented after data normalization to organize data accord-
ing to a specific time frame. This involves using historical
data from previous steps to predict the output for subsequent

steps (Chou and Ngo, 2016). The forecasting horizon refers
to the length of time into the future for which output forecasts
are made.

The basic process of the sliding-window technique is il-
lustrated in Fig. 8. To train AI models, this study opts for
a window size of 1 week (equivalent to 168 h). This fixed
window size is utilized exclusively for individual AI models.
Subsequently, the hybrid model’s AEIO algorithm and other
hyperparameters will fine-tune the window size to determine
the most suitable settings.

This study focuses on predicting deep displacement values
at two distinct time intervals: 1 d ahead (+24 h) and 7 d ahead
(+168 h). These forecast horizons are strategically chosen
to provide timely information, enabling management depart-
ments to make accurate decisions regarding evacuating peo-
ple and assets from areas prone to landslides.

Specifically, for valuable assets and machinery that require
time for relocation from landslide-prone areas, having ad-
vance knowledge of the landslide event 1 week ahead of relo-
cation is crucial. Furthermore, for humans, animals, or other
assets that can be evacuated more swiftly, predicting the land-
slide 1 d in advance is sufficient to ensure safety.

The predicted outputs are quantified in mm d−1, facili-
tating decision-making for administrators according to the
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Figure 7. Unified timeline visualization of data in this study: (a) precipitation of heavy rainfall recorded in the studied area; (b) measured
displacements from the SAA extensometer; (c) measured displacements from the E-2 extensometer; and (d) groundwater levels at stations A-
17, A-18-2, A-20, and A-24.

TGS-SLOPEM106 standard (Ruitang et al., 2017). Table 5
outlines suggested actions corresponding to different degrees
of deep displacement as per the TGS-SLOPEM106 standard
issued by the Taiwan government.

5 Model development and analysis results

5.1 Model development

Predicting deep-seated landslide displacement at Lushan is
undoubtedly highly challenging, given that such landslides
depend on numerous factors. Therefore, multiple methods
will be employed simultaneously to identify the optimal AI
model for prediction. These methods include single-machine
learning, time series deep learning, CNN, and hybrid models.
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Table 3. Input and output variables of a model predicting deep-seated landslide displacement.

Attribute Attributes Variable Dataset Dataset
group ID of E-2 of SAA

station station

Output Deep-seated Displacement extensometer Y1 X –
variables landslide at station E-2 (mm)

Displacement Displacement extensometer Y2 – X
measures at station SAA (mm)

Input Groundwater- Groundwater level at X1 X X
variables level data station A-17 (m)

Groundwater level at X2 X X
station A-18-2 (m)

Groundwater level at X3 X X
station A-20 (m)

Groundwater level at X4 X X
station A-24 (m)

Weather data Temperature at 2 m (°C) X5 X X

Specific humidity at 2 m (g kg−1) X6 X X

Table 4. Number of data points.

Quantity of data points Dataset of E-2 station Dataset of SAA station

Total data samples 68 312 51 679

Count of training samples 61 477 46 523
(90 % of the total sample) (15 Jul 2009–7 Sep 2016) (13 Jul 2011–16 Nov 2016)

Count of testing samples 6835 5156
(10 % of the total sample) (7 Sep 2016–20 Jun 2017) (16 Nov 2016–20 Jun 2017)

This study will conduct a testing process to systematically
identify the optimal model capable of accurately predicting
deep-seated landslides. An illustration of this process can be
found in Fig. 9. Initially, the study will sequentially employ
various single numerical AI models, such as machine learn-
ing models (LR, ANN, SVR, CART, RBFNN, XGBoost) and
time series deep learning models (RNN, bidirectional recur-
rent neural networks (Bi-RNNs), LSTM, bidirectional long
short-term memory (Bi-LSTM), GRU, bidirectional gated re-
current units (Bi-GRUs)), to forecast displacement.

Subsequently, the model with the highest prediction accu-
racy will be selected for integration with the AEIO algorithm,
forming a hybrid model. In this hybrid model, the hyperpa-
rameters of the best numerical AI model will be fine-tuned
by the AEIO algorithm to enhance prediction accuracy.

In addition to the numerical AI models, this study employs
individual CNN models for predicting deep-seated landslide
displacement. Subsequently, similarly to the approach above,
the best CNN model with the highest displacement prediction
capability will be fine-tuned by the AEIO algorithm within

a hybrid model. In the final step, a comparison process be-
tween the two hybrid models – one comprising the best nu-
merical model and the other involving the best CNN model
fine-tuned by AEIO – will be conducted to select the optimal
model for this study.

5.2 Analysis results

This section will present the experimental results of the steps
outlined in Fig. 9, along with relevant metrics and analysis.

5.2.1 Numerical models

(a) Machine learning models

Initially, single-machine learning models will predict deep-
seated landslide displacement. In this phase, machine learn-
ing models will utilize default hyperparameters, as detailed
in the research of Chou and Nguyen (2023). The prediction
results of these models at both E-2 and SAA stations are
displayed in Table 6. These results show that most machine
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Figure 8. Sliding-window technique.

Table 5. Recommendations taken from TGS-SLOPEM106 for addressing displacement values in the early stages of deep sliding.

Classification of Attention value Warning value Action value
the displacement
value

Corresponding 2 mm per month 0.5 mm d−1 10 mm d−1

displacement value

Condition of The slope starts to slip or The hill is undergoing The rate of slope
slopes slowly move. constant-velocity descent. movement is

increasing, elevating
the risk of collapse.

Recommendations – Inspect the monitoring – Enhance the frequency – Implement a
on monitoring system for any of the automated rigorous monitoring
activities irregularities, and consider monitoring system. system frequency.

increasing the frequency
of visual inspections.

Countermeasures – Conduct a slope stability – Execute emergency – Evacuate people
investigation and slope reinforcement. and vehicles from the
assessment. – Develop an emergency landslide area.
– Develop a reinforcement response plan for
and improvement plan to individuals and vehicles
enhance slope stability. within the landslide area.

learning models demonstrate a relatively good predictive ca-
pability for displacement, particularly the XGBoost model,
which exhibits MAPE values ranging from 8.14 % to 9.58 %.
Following closely, CART also produces favorable prediction
results, with MAPE ranging from 8.53 % to 9.76 %. Regard-
ing prediction accuracy, XGBoost and CART models outper-
form LR, ANN, SVR, and RBFNN models.

Moreover, the results in Table 6 also indicate that there
is not a significant difference in the prediction errors of the

machine learning models at both E-2 and SAA stations, as
the error values for both stations are nearly equal across all
machine learning models. Regarding the running time, the
LR model demonstrates the shortest duration, ranging from
0.0001 to 0.01 s for all runs. However, the prediction accu-
racy of this model could be higher, as mentioned earlier.
In this case, the machine learning model with the longest
running time is SVR, ranging from 136.01 to 346.3 s. This,
combined with the low MAPE score, indicates that the SVR
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Figure 9. Diagram illustrating the steps for selecting the optimal AI model to predict deep-seated landslide displacement.

Table 6. Performance results of machine learning models for predicting deep-seated landslide displacement.

Model MAPE (%) MAE (mm) RMSE (mm) Time (s)

1 d 7 d 1 d 7 d 1 d 7 d 1 d 7 d
ahead ahead ahead ahead ahead ahead ahead ahead

E-2 station

LR 10.70 11.22 22.61 21.32 28.17 31.96 0.0001 0.003
ANN 12.31 13.31 22.19 24.92 26.56 32.54 129.80 212.83
SVR 12.46 12.47 21.98 22.56 26.27 28.05 162.55 174.44
CART 8.53 8.67 15.67 16.87 25.16 27.81 1.50 2.57
RBFNN 15.13 15.19 23.81 22.56 28.42 31.96 2.32 4.10
XGBoost 8.14 8.36 14.80 14.68 23.07 23.92 1.58 3.28

SAA station

LR 11.18 12.11 11.51 11.64 17.26 16.07 0.01 0.01
ANN 10.91 10.93 9.43 10.45 16.55 15.92 116.78 190.69
SVR 10.55 10.94 10.87 9.18 15.64 13.42 136.01 346.30
CART 10.57 10.76 7.11 7.30 13.51 10.63 0.91 1.59
RBFNN 14.51 14.95 11.38 12.68 17.13 19.06 4.20 8.76
XGBoost 9.17 9.58 8.43 7.83 16.36 16.97 1.12 2.29
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model operates inefficiently with the dataset in this study.
After reviewing the results of the machine learning models
in this section, it is observed that XGBoost is the most suit-
able machine learning model for predicting deep-seated land-
slides, exhibiting both high prediction accuracy and a short
running time.

(b) Time series deep learning models

Similar to the machine learning models, in this section, the
time series deep learning models will also be trained with de-
fault hyperparameters, as found in the research of Chou and
Nguyen (2023). The performance results of these models are
shown in Table 7. Overall, akin to the machine learning mod-
els, the time series deep learning models also demonstrate
fairly good prediction accuracy, especially the best model
– the Bi-GRU model, with MAPE ranging from 7.90 % to
9.13 %.

The performance of the Bi-GRU model surpasses that of
the GRU model because the Bi-GRU model learns patterns
from time series data in both the forward and the backward
directions on the timeline, thereby capturing more patterns.
Furthermore, the Bi-GRU model produces significantly bet-
ter prediction results with a more complex learning mech-
anism than other time series deep learning models. How-
ever, due to its complex operational mechanism, the Bi-GRU
model also requires more processing time than other time se-
ries deep learning models. From the results of Table 7, it is
observed that the operating time of the Bi-GRU model ranges
from 79.81 to 212.75 s.

From the conducted analyses, Bi-GRU has been identified
as the best time series deep learning model, owing to its ex-
cellent prediction performance. Compared to the best ma-
chine learning model, XGBoost (with MAPE ranging from
8.14 % to 9.58 %), the Bi-GRU model (with MAPE ranging
from 7.90 % to 9.13 %) demonstrates higher prediction accu-
racy. Therefore, the Bi-GRU model will be chosen as the best
numerical AI model.

5.2.2 Best numerical model fine-tuned by the AEIO
algorithm

This section will focus on fine-tuning the hyperparameters of
the numerical model to enhance its performance in predict-
ing deep-seated landslide displacement. The AEIO algorithm
will fine-tune the hyperparameters of the study’s best nu-
merical AI model, the Bi-GRU model. Details regarding the
names and search ranges of the hyperparameters are outlined
in Table 8. The objective function of the AEIO algorithm dur-
ing the fine-tuning process is to minimize the MAPE value of
the Bi-GRU model.

Table 9 illustrates the results of the fine-tuning process.
From this table, it is observed that the AEIO algorithm has
successfully identified the optimal hyperparameters of the
Bi-GRU model, significantly improving the prediction accu-

racy of this model. For instance, the MAPE in predicting 1 d
ahead displacement of the Bi-GRU model before fine-tuning
was 7.9 %, but this number decreased to only 3.03 % after
fine-tuning.

Fine-tuning the Bi-GRU model using AEIO will maximize
its potential, minimizing the prediction error to the lowest
possible level. Therefore, the results obtained in this section
reflect the actual quality of the dataset as well as the level of
difficulty in prediction. Specifically, based on the results in
Table 9, it is observed that the predictions for 1 d ahead dis-
placement (with MAPEs of 3.03 % and 3.94 %) consistently
outperform those for 7 d ahead displacement (with MAPEs
of 6.38 % and 7.96 %).

The 1 d ahead predictions have a shorter time horizon,
making them less affected by environmental fluctuations and
making changes more accessible to predict. Conversely, in
the case of 7 d ahead displacement prediction, this time frame
is long enough for various factors, such as weather condi-
tions and human interventions, to occur, increasing uncer-
tainty and volatility in the predicted values.

Additionally, Table 9 indicates that predictions from the
dataset of the E-2 station consistently outperform those of
the SAA station. Specifically, the displacement prediction at
the E-2 station is 3.03 % and 6.38 %, better than the corre-
sponding numbers for the SAA station, which are 3.94 % and
7.96 %, respectively. This is attributed to the dataset collected
by the E-2 station being more comprehensive and being gath-
ered over a more extended period than the data of the SAA
station (as shown in Table 4).

Table 10 presents the optimal hyperparameters identified
by the AEIO algorithm. Furthermore, in terms of running
time, most models, after fine-tuning, exhibit longer running
times compared to the original model. However, this increase
is entirely acceptable since the additional running time is
minimal and the benefits of fine-tuning are significant, as
mentioned above, aiding in the model’s more efficient op-
eration.

5.2.3 Image-based CNN models

This section presents the results of utilizing CNN models,
including VGG, ResNet, Inception, Xception, DenseNet, and
NASNet, to predict deep-seated landslide displacement. The
CNN models in this part use the default settings (Chou and
Nguyen, 2023). Table 11 displays the prediction error results
of the CNN models for 1 d ahead and 7 d ahead forecasts for
both E-2 and SAA stations.

The prediction results demonstrate that most CNN models
produce highly accurate predictions. Specifically, predictions
made by VGG, ResNet, MobileNet, DenseNet, and Inception
exhibit MAPE values below 5 %. Among these, MobileNet
and DenseNet201 emerge as the two models with the highest
accuracy. For 1 d ahead prediction, the best model for pre-
dicting displacement at the E-2 station is MobileNet, with
a MAPE of 4.11 %, and the best model for predicting dis-
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Table 7. Performance results of time series deep learning models for predicting deep-seated landslide displacement.

Model MAPE (%) MAE (mm) RMSE (mm) Time (s)

1 d 7 d 1 d 7 d 1 d 7 d 1 d 7 d
ahead ahead ahead ahead ahead ahead ahead ahead

E-2 station

RNN 12.72 12.92 23.61 24.75 31.18 29.62 83.24 177.53
Bi-RNN 12.31 12.84 22.88 21.97 30.20 34.42 91.47 114.33
LSTM 8.42 8.57 17.87 16.31 21.41 22.98 123.10 151.91
Bi-LSTM 8.13 8.75 16.63 17.84 22.85 24.67 148.56 161.14
GRU 8.43 10.15 16.06 19.38 22.46 26.75 141.50 164.26
Bi-GRU 7.90 8.16 15.09 15.69 20.84 23.32 156.97 172.96

SAA station

RNN 11.92 13.98 17.61 12.65 25.71 23.19 36.77 60.31
Bi-RNN 14.60 14.73 18.77 13.85 26.19 24.97 49.26 59.06
LSTM 10.64 10.94 12.73 12.25 29.21 29.57 62.84 113.76
Bi-LSTM 10.14 10.35 11.77 11.60 26.10 27.48 70.94 87.48
GRU 9.32 9.28 18.05 18.11 25.26 22.41 69.56 211.77
Bi-GRU 8.03 9.13 18.84 17.85 21.57 21.86 79.81 212.75

Table 8. Search ranges of the hyperparameters of the optimal hybrid
numerical models (Chou and Nguyen, 2023).

Hybrid model Hyperparameter Search range

AEIO–Bi-GRU Window size [1, 720]
Number of hidden units [1, 400]
Learning rate [0.0001, 0.5]
Dropout [0.00, 0.99]
Number of epochs [10, 120]
Batch size [32, 64]

placement at the SAA station is DenseNet201, with a MAPE
of 6.36 %. For 7 d ahead prediction, the best model for pre-
dicting displacement at the E-2 station is DenseNet201, with
a MAPE of 5.3 %, and the best model for predicting dis-
placement at the SAA station is MobileNet, with a MAPE
of 6.8 %. These models will be selected accordingly for fine-
tuning in the subsequent section.

Regarding running time, the CNN models in this section
exhibit significantly longer running times compared to the
numerical models in the previous sections. For example, the
running time of the best CNN model to predict 1 d ahead
displacement at the E-2 station – MobileNet – is 1.21 h. In
contrast, the running time of the best single numerical model
for predicting this index is 159.97 s.

While CNN models yield better prediction results, consid-
ering their extended running times, users need to weigh prac-
tical considerations before opting for this type of model. For
instance, CNN models should be employed in cases requir-
ing accurate predictions for research and measurement pur-
poses. Conversely, numerical models like Bi-GRU are more

suitable for real-time predictions and computations on low-
performance devices.

5.2.4 Best CNN models fine-tuned by the AEIO
algorithm

As analyzed in Sect. 5.2.3, the AEIO algorithm will sequen-
tially fine-tune CNN models to enhance prediction accuracy.
Table 12 illustrates the search range of hyperparameters for
the CNN models to be fine-tuned. Table 13 presents the per-
formance results of the CNN models after being fine-tuned.

However, a challenge in this section is that CNN models
primarily analyze and learn from image data. Therefore, nu-
merical data must be converted into image data before train-
ing. This poses a challenge because current computer hard-
ware may need to be fully capable of efficiently converting
numerical data into images for each computation. Hence, this
study utilizes the optimal window sizes previously identified
for fine-tuning numerical models (Table 10) for this scenario
and employs these fixed window sizes for CNN models.

The results of the fine-tuning process demonstrate that the
AEIO has successfully identified the optimal hyperparame-
ters for the CNN models, enhancing their accuracy. For in-
stance, in the case of the MobileNet model used for 1 d ahead
prediction at the E-2 station, the fine-tuning process reduced
the MAPE of this model from 4.11 % to 2.81 %. A similar
trend is also observed in the remaining prediction scenarios.

Furthermore, similar to the case of AEIO–Bi-GRU, the
CNN models exhibit the same trend, where 1 d ahead predic-
tions are more accurate than 7 d ahead predictions. Similarly,
forecasts at the E-2 station demonstrate higher accuracy than
predictions at the SAA station. The rationale for this has been
explained in Sect. 5.2.2. Lastly, the optimal hyperparameters
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Table 9. Performance results of hybrid time series deep learning model with AEIO in deep-seated landslide displacement prediction.

Model MAPE MAE RMSE Time
(%) (mm) (mm) (s)

1 d E-2 station

ahead AEIO–Bi-GRU 3.03 6.89 17.98 196

displacement SAA station

prediction AEIO–Bi-GRU 3.94 4.16 11.20 184

7 d E-2 station

ahead AEIO–Bi-GRU 6.38 10.02 18.05 261

displacement SAA station

prediction AEIO–Bi-GRU 7.96 12.49 7.82 248

Table 10. Optimal hyperparameters of the time series deep learning model identified by the AEIO algorithm.

Model Window Number Dropout Learning Number Batch
size of hidden rate rate of epochs size

units

1 d E-2 station

ahead AEIO–Bi-GRU 41 81 0.27 0.7 18 64

displacement SAA station

prediction AEIO–Bi-GRU 54 145 0.19 0.46 32 32

7 d E-2 station

ahead AEIO–Bi-GRU 97 164 0.24 0.61 20 32

displacement SAA station

prediction AEIO–Bi-GRU 69 147 0.28 0.31 17 32

of each CNN model, identified by the AEIO algorithm, are
presented in Table 14. CNN models with optimal hyperpa-
rameters are the most effective models in this study for pre-
dicting deep-seated landslide displacement.

Figure 10 illustrates the differences between typical AI
models’ actual and predicted deep-seated landslide displace-
ment. Specifically, Fig. 10a compares the performance of
single models against the predicted values, while Fig. 10b
does the same for hybrid models. The chart shows that hy-
brid models demonstrate superior predictive capability for
deep-seated landslides compared to single models. This is
evident from the displacement line of the hybrid models in
Fig. 10b, which closely aligns with the actual deep-seated
landslide displacement and significantly outperforms the sin-
gle models depicted in Fig. 10a.

5.3 Discussion

This study focuses on landslides on Lushan, Taiwan, intend-
ing to develop models to predict deep-seated landslide dis-

placement for both 1 d and 7 d forecasts. These predictive
models utilize input data such as the region’s groundwa-
ter levels, temperature, and humidity. Accurately comput-
ing deep-seated landslide displacement offers several bene-
fits. Firstly, it provides timely information for engineers to
assess the resilience of structures and infrastructure in at-
risk areas, facilitating the issuance of sensible warnings. Sec-
ondly, forecasting deep-seated landslide displacement offers
insights into the severity of the disaster, aiding in effective
evacuation and rescue planning.

Moreover, unlike AI models in previous studies (Balogun
et al., 2021; Hakim et al., 2022; Jaafari et al., 2022), our re-
search incorporates machine learning, time series deep learn-
ing, and CNN models, utilizing metaheuristic optimization
algorithms to fine-tune their hyperparameters. However, the
novelty of our study lies in adopting pre-trained models, such
as MobileNet, DenseNet, Inception, and VGG, rather than
standard CNN models.

By employing various AI models, this study identifies the
most effective model for predicting deep-seated landslides
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Table 11. Performance results of the CNN models for deep-seated landslide displacement prediction.

Model MAPE (%) MAE (mm) RMSE (mm) Time (h)

1 d 7 d 1 d 7 d 1 d 7 d 1 d 7 d
ahead ahead ahead ahead ahead ahead ahead ahead

E-2 station

VGG16 4.58 7.38 12.73 13.97 26.54 35.69 3.03 3.31
VGG19 4.47 6.30 12.53 15.11 25.74 32.82 3.14 2.82
ResNet50V2 4.87 7.68 15.28 12.52 31.82 27.19 2.99 3.44
ResNet101V2 4.61 6.60 9.81 9.08 34.67 32.74 2.24 2.96
ResNet152V2 4.71 6.46 7.26 12.60 21.13 19.08 2.94 2.05
InceptionV3 4.99 7.30 11.18 11.65 32.97 34.92 2.43 3.27
InceptionResNetV2 13.32 15.78 22.51 27.08 76.75 61.11 3.22 3.08
Xception 5.27 7.34 11.60 10.20 35.86 30.68 2.94 3.29
MobileNet 4.11 8.92 12.22 13.62 47.43 31.72 1.21 1.44
DenseNet121 11.15 11.13 16.30 21.49 37.68 46.51 3.32 3.99
DenseNet169 4.74 7.86 11.44 12.20 17.09 36.28 3.02 3.52
DenseNet201 4.66 5.30 8.11 7.44 21.82 10.39 2.09 2.29
NASNetMobile 13.82 15.91 31.00 19.52 46.07 55.65 2.53 3.13
NASNetLarge 13.20 34.23 20.46 61.81 61.52 75.39 3.89 3.93

SAA station

VGG16 5.76 7.90 6.07 12.76 9.48 8.95 3.14 3.36
VGG19 5.95 7.32 9.14 13.45 11.68 7.03 3.55 3.20
ResNet50V2 9.87 9.35 12.43 13.81 15.71 9.75 4.57 3.83
ResNet101V2 8.48 17.68 10.56 19.36 11.47 21.94 3.54 3.40
ResNet152V2 9.43 11.42 12.32 10.35 14.91 13.27 3.35 3.88
InceptionV3 10.96 8.11 12.73 9.13 14.48 12.71 3.80 3.18
InceptionResNetV2 9.86 11.08 13.51 16.75 18.04 21.59 3.23 2.91
Xception 7.42 7.28 7.82 7.08 10.13 10.47 3.48 3.60
MobileNet 7.12 6.80 8.28 9.92 11.58 13.83 1.43 2.13
DenseNet121 8.69 11.69 8.56 14.39 12.54 15.76 3.93 3.42
DenseNet169 6.55 9.56 6.16 9.61 11.08 15.51 3.60 3.76
DenseNet201 6.36 10.45 7.46 11.62 9.37 14.51 2.51 3.13
NASNetMobile 10.31 22.12 13.86 62.04 18.95 43.51 3.56 2.88
NASNetLarge 10.25 13.69 11.20 14.05 15.95 19.09 3.18 3.34

Table 12. Search ranges of the hyperparameters of the optimal hy-
brid numerical models (Chou and Nguyen, 2023).

Hybrid model Hyperparameter Search range

AEIO–CNN Learning rate [0.00, 0.1]
Decay [0.00, 0.1]
Momentum [0.00, 0.99]
Epsilon [1.0× 10−7, 0.001]
Dropout [0.00, 0.99]
Epochs [10, 120]
Batch size [32, 64]

and offers a comprehensive overview of the performance of
different AI models. Initially, machine learning models ex-
hibited relatively high prediction errors, with MAPE rang-
ing from 8.14 % to 15.19 %. This performance was generally

lower than time series deep learning models, which showed
MAPEs ranging from 7.9 % to 14.73 %. The superior perfor-
mance of the time series deep learning models is attributed to
their ability to process sequential data and retain information
from previous steps. This enables them to learn patterns from
the dataset more effectively than traditional machine learning
models.

Although time series deep learning models perform well,
they fall short compared to CNN models. This disparity can
be attributed to CNN’s more advanced learning mechanism.
The convolutional and pooling layers in CNN enable robust
feature extraction from input data, with convolutional lay-
ers particularly effective at identifying complex patterns and
subtle features in time series data, especially when spatial
correlations are present. This capability allows CNNs to un-
cover critical features that other models may overlook.
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Table 13. Performance results of best CNN models with AEIO in deep-seated landslide displacement prediction.

Model MAPE MAE RMSE Time
(%) (mm) (mm) (h)

1 d E-2 station

ahead AEIO–MobileNet 2.81 5.09 11.92 1.25

displacement SAA station

prediction AEIO–DenseNet201 3.30 6.32 15.65 3.48

7 d E-2 station

ahead AEIO–DenseNet201 4.30 5.32 15.65 3.48

displacement SAA station

prediction AEIO–MobileNet 5.63 9.35 14.27 3.39

Table 14. Optimal hyperparameters of the CNN models identified by the AEIO algorithm.

Model Learning Decay Momentum Epsilon Dropout Epochs Batch
rate size

1 d E-2 station

ahead AEIO–MobileNet 0.0011 0.00095 0.00001 3.0× 10−7 0.56 15 64

displacement SAA station

prediction AEIO–DenseNet201 0.00012 0.0012 0.00011 1.0× 10−7 0.49 16 64

7 d E-2 station

ahead AEIO–DenseNet201 0.0012 0.0011 0.00022 1.0× 10−7 0.51 15 64

displacement SAA station

prediction AEIO–MobileNet 0.00014 0.00098 0.00011 2.0× 10−7 0.50 14 64

The models developed in this study demonstrate predic-
tive solid capabilities for deep-seated landslide displacement.
Among them, the AEIO–MobileNet model is the most effec-
tive, achieving predictions with a sufficiently low error, indi-
cated by a MAPE of 2.81 %. However, these models’ prac-
tical applicability in real-world scenarios must be improved
due to the time-consuming processes involved in data col-
lection, processing, and AI model operation, making timely
predictions challenging. Meanwhile, there have been studies
that have successfully built real-time landslide detection sys-
tems (Wang et al., 2023; Das et al., 2020; Prakasam et al.,
2021). We acknowledge this limitation of our study. There-
fore, future research endeavors will aim to address this issue.

The input data used for the AI models were selected be-
cause they significantly influence the likelihood of deep-
seated landslides, as detailed in Sect. 4.2. However, a lim-
itation of this study is that it needs to evaluate the relative
importance of each input data type for prediction accuracy.
Future research should explore the impact of different com-
binations of input data on AI model performance. This could

help identify the significance of each input type and reveal
the optimal combination of inputs to enhance prediction ac-
curacy further.

6 Conclusion

This study addresses the persistent threat of large slow-
moving landslides, a primary concern due to their severe
impact on lives and property. Employing various AI mod-
els, such as machine learning, time series deep learning,
CNN models, and metaheuristic optimization algorithms,
the research focuses on predicting deep-seated landslides at
Lushan in Ren’ai Township, Nantou County. The study aims
to enhance early prediction accuracy by utilizing 8 years
of displacement and groundwater-level data from Lushan
and weather data from the POWER project. The predictions
cover 1 d and 7 d intervals, serving diverse purposes in land-
slide forecasting for timely evacuation. The research explores
single and hybrid AI models to determine the most effective
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Figure 10. Graphs comparing the real and predicted deep-seated landslide displacement: (a) prediction results of deep-seated landslide
displacement by single AI models; (b) prediction results of deep-seated landslide displacement by AI models optimized using the AEIO
algorithm.

approach. The following conclusions are drawn from this re-
search:

a. CNN models optimized by the novel AEIO algorithm
yield the best prediction results. In particular, AEIO–
MobileNet predicts 1 d ahead displacement at the E-2
station with a MAPE score of only 2.81 %, demonstrat-
ing high accuracy.

b. While CNN models boast high prediction accuracy,
their computational time is also considerable. There-
fore, decisions regarding their usage should also con-
sider real-world constraints.

c. The AEIO–Bi-GRU model also yields reasonably good
prediction results, although not on par with CNN mod-
els. The best result achieved by the AEIO–Bi-GRU
model is a MAPE of 3.03 % for 1 d ahead prediction
at the E-2 station.

d. The AEIO algorithm has successfully fine-tuned hyper-
parameters for AI models. Especially in the case of pre-
dicting 1 d ahead displacement, it has aided the Mo-
bileNet model in improving its predictive capability by
31.6 %, enabling this model to provide more accurate
predictions.

e. The prediction results from the E-2 station consistently
outperform those from the SAA station. This is at-
tributed to the fact that data from the E-2 station have
been collected over a longer and more comprehensive
period.

f. The study results demonstrate that AI models can ac-
curately predict deep-seated landslide displacement,
which can be implemented in real-world scenarios.
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Appendix A: Deep learning models for time series

The architecture of an RNN includes an input layer, a hidden
layer with a variable number of RNN cells, and an output
layer designed for label identification based on future dis-
placement values. Figure A1 illustrates the structure of sim-
ple RNNs.

Figure A1. Structure of basic RNNs.

Each cell in an RNN acts as a memory cell, which is inter-
connected to enable the sequential transfer of time-dependent
input information within a sliding window. This makes it
possible to consider temporal correlations between events
that may be widely separated in the time dimension. The fol-
lowing formula presents the hidden unit of standard RNNs at
time t :

ht = tanh(Wx · xt +Wh ·ht−1+ b), (A1)

where xt is the input vector at time t ; ht denotes the out-
put vectors of hidden units for time t ; Wx and Wh indicate
the input and interconnected weight matrices, respectively,
for the output of the hidden layer; b is the bias term; and
tanh( ) represents the hyperbolic tangent activation function
– i.e., tanh(x)= 1−e2x

1+e2x . The mechanism of learning over time
steps, stored within cells, enables RNNs to effectively cap-
ture complex relationships between cells and time sequences.
However, as the duration of dependencies increases, RNN
models are susceptible to issues related to vanishing gradi-
ents. Therefore, RNNs are well-suited to learning time series
involving short-term dependencies.

Appendix B: Convolutional neural networks

The architecture of a typical CNN, as illustrated in Fig. B1,
comprises an input layer (to receive image data) followed by
hidden layers (including convolutional, pooling, and fully

connected layers) and concludes with the output layers.
As depicted in Fig. B1, the complexity of a CNN progres-
sively increases from the convolutional layer to the fully
connected (FC) layer. This design enables the CNN to rec-
ognize relatively simple patterns (lines, curves, etc.) before
progressing to capture more intricate features (faces, objects,
etc.), with the ultimate aim of extracting relevant information
for accurate pattern identification.

As illustrated in Fig. B2, the convolutional layer is respon-
sible for most computations in the network. This involves ex-
tracting local features from an image using a set of learnable
filters known as kernels. The behavior of the filter in the con-
volutional layer is influenced by two main factors: stride and
padding. Stride refers to the pixel shift of the filter across
the image, while padding aims to preserve information at the
corners. In each iteration, a portion of the image is convolved
with a filter to generate a dot product of pixels within its re-
ceptive field. This process is replicated across the entire im-
age to produce a feature map. The convolution operation is
defined as follows:

Ci = bi +
∑di

j=1
Ij ·Fij , i = 1, . . ., dc, (B1)

where Ci is the output of the convolutional layer or feature
map, bi is the bias, di is the depth of input, Ij is the input im-
age, Fij is the filter, and dc is the depth of the convolutional
layer.

The multiplicative operations are usually followed by an
activation function (the final element in the convolutional
layer), which introduces nonlinearity and creates intricate
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Figure B1. Structure of a basic CNN.

Figure B2. Processing flow in a convolution layer.

mappings between network inputs and outputs. The activa-
tion function can be defined as follows:

Yi = f (Ci) , (B2)

where Yi is the output of the convolutional layer after the
activation function and f is the activation function.

A rectified linear unit (ReLU) is a nonlinear CNN function
with output f (x)=max(0,x). A ReLU converts all negative
values to zero or returns the original input values if the input
exceeds zero. A ReLU is only one of many activation func-
tions; however, it has proven to be the most effective overall.

Pooling layers after the convolution layer can down-
sample feature maps by summarizing features within the cov-
erage area of a 2-D filter to reduce sensitivity to feature loca-
tion, thereby improving resilience to changes in the position
of features. Pooling layers also decrease the dimensions of
the feature map, reducing the number of parameters to be
dealt with, thereby decreasing computational overhead. Out-
put dimensions from the pooling layer are computed as fol-

lows:
cw− fw+ 1

s
·
ch− fh+ 1

s
· cn, (B3)

where cn is the number of channels in the feature map and
fw and fh indicate the width and height of the filter.

Max pooling and average pooling are commonly used in
CNNs. Max pooling accentuates salient features by selecting
the maximum value within the filter’s coverage area. In con-
trast, average pooling calculates the mean value within the
exact location, providing a representative feature value. Il-
lustrations of max pooling and average pooling are presented
in Fig. B3.

The final stage of a CNN comprises a series of fully con-
nected (FC) layers. After the convolution and pooling oper-
ations, the feature map is flattened into a one-dimensional
vector that connects to the FC layers, resembling an ANN.
FC layers identify specific features, each represented by a
neuron. In regression tasks, each neuron in the FC layer cor-
responds to a feature contributing to the final numerical out-
put. The value transmitted by each neuron indicates its sig-
nificance toward the regression result. FC layers are designed
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Figure B3. Max pooling and average pooling.

Figure B4. Structure of a fully connected layer.

to predict the best continuous value for the target variable by
combining and processing these neuron outputs. Figure B4
illustrates the structure of an FC layer.
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