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Abstract. We have designed a machine learning method to
predict the occurrence of daily extreme sea level at the Baltic
Sea coast with lead times of a few days. The method is based
on a random forest classifier. It uses spatially resolved fields
of daily sea level pressure, surface wind, precipitation, and
the pre-filling state of the Baltic Sea as predictors for daily
sea level above the 95 % quantile at each of seven tide gauge
stations representative of the Baltic coast.

The method is purely data-driven and is trained with
sea level data from the Global Extreme Sea Level Analy-
sis (GESLA) dataset and from the meteorological reanalysis
ERAS of the European Centre for Medium-Range Weather
Forecasts (ECMWF).

Sea level extremes at lead times of up to 3 d are satisfacto-
rily predicted by the method, and the relevant predictor and
predictor regions are identified. The sensitivity, measured as
the proportion of correctly predicted extremes, is, depend-
ing on the stations, on the order of 70 %. The precision of
the model is typically around 25 % and, for some instances,
higher. For lead times longer than 3 d, the predictive skill de-
grades; for 7d, it is comparable to a random skill. The sen-
sitivity of our model is higher than the one derived from a
storm surge reanalysis with dynamical models that use avail-
able information of the predictors without any time lag, as
done by Muis et al. (2016), but its precision is considerably
lower.

The importance of each predictor depends on the location
of the tide gauge. Usually, the most relevant predictors are
sea level pressure, surface wind, and pre-filling. Extreme sea
levels at the meridionally oriented coastlines of the Baltic
Sea are better predicted by meridional winds and surface
pressure. In contrast, for stations located at zonally oriented
coastlines, the most relevant predictors are surface pressure

and the zonal wind component. Precipitation did not display
consistent patterns or a high relevance predictor for most of
the stations analysed.

The random forest classifier is not required to have con-
siderable complexity, and the computing time to issue pre-
dictions is typically a few minutes on a personal laptop. The
method can, therefore, be used as a pre-warning system to
trigger the application of more sophisticated algorithms that
estimate the height of the ensuing extreme sea level or as a
warning to run larger ensembles with physically based nu-
merical models.

1 Introduction

Storm surges are extreme and short-lived increases in sea
level, mainly induced by extreme atmospheric conditions of
wind (e.g. storms) and low-pressure systems (Wolski and
Wiséniewski, 2021; Field et al., 2012; WMO, 2011; Weisse
and von Storch, 2010; Harris, 1963). They are a major nat-
ural hazard for coastal societies, as they can cause not only
severe damage to infrastructure on the coast but also the loss
of human lives. Hence, monitoring and forecasting systems
for storm surges are important to prevent societal damage and
to inform decision makers. This study explores the possibil-
ity of short-term predictions (a lead time of a few days) of
storm surges in the Baltic Sea using a purely data-driven ma-
chine learning approach. Technically, the storm surge prob-
lem is an air—sea interaction problem, where the atmosphere
forces the water body, not necessarily directly at the coast,
which in turn responds with oscillations of the water level
at various frequencies and amplitudes. While the atmosphere
and its wind field influence the currents and wave dynamics
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of the sea, the currents in turn influence the wave dynamics,
which in turn may alter the wind field (Gonnert et al., 2001).
Hence, the underlying processes of storm surges are highly
nonlinear and often nonlocal, which makes predicting them
a complex problem.

Operational forecasting systems of storm surges rely
on numerical dynamical ocean—atmosphere models (WMO,
2011; Gonnert et al., 2001). In the Baltic Sea, a few regional
models are in operation, such as the BSHcmod from the Bun-
desamt fiir Schifffahrt und Hydrographie (BSH), which is
a hydrostatic ocean circulation model. While those dynam-
ical models generate reasonable estimations for general wa-
ter level elevations, they often underestimate extreme (storm
surge) events (Muis et al., 2016; Vousdoukas et al., 2016).
This is explained by an insufficient grid resolution (Muis
et al., 2016), which leads to a misrepresentation of small-
scale processes of, e.g. wind fields (WMO, 2011), as well
as the underlying ocean bathymetry. Furthermore, the effect
of mesoscale weather systems is not well represented in cur-
rent storm surge models, as no meteorological networks pro-
vide data at these spatial scales (WMO, 2011). Usually the
data of meteorological fields are interpolated in time and fed
into the ocean model (von Storch, 2014), which may lead to
too-smooth short-term variability in the atmospheric forcing,
which in turn may result in extreme events being underrep-
resented in the simulations. According to Muis et al. (2016),
the underestimation of extreme events can also be explained
by the insufficient or missing nonlinear coupling between
storm-surge-relevant processes in dynamical models.

Alternatively to dynamical models, forecasting methods
can be based on data-driven algorithms. These algorithms are
not based on equations representing the physical dynamics
but instead try to identify the relevant predictor patterns in
a dataset that appear to be associated with a specific predic-
tand. This is achieved by analysing observational datasets of
the forcing (atmospheric and/or oceanic) and of the response
(storm surge). This makes them more computationally effi-
cient than dynamical models (Harris, 1962) at the expense of
being a method that is oblivious to the underlying physical
mechanisms and is often more difficult to interpret. Besides
the classical statistical methods based on simplified statis-
tical models of the underlying processes, machine learning
(ML) is one example of a data-driven algorithm that is be-
coming more popular in climate sciences. ML algorithms are
usually more complicated than classical statistical methods
and do not attempt to explicitly or even conceptually rep-
resent physical processes but rather try to identify recurring
patterns in the data that may be used for predictions. Those
complex and non-obvious links between predictors and pre-
dictands contribute to their growing application. However,
this very complexity makes them more difficult to interpret
than classical methods. Also, special care is therefore needed
to avoid statistical pitfalls such as overfitting.

Several studies have applied ML methods in order to
analyse and predict storm surges, with promising results
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(Tiggeloven et al., 2021; Bruneau et al., 2020; Tadesse et al.,
2020; Gonnert and Sossidi, 2011; Sztobryn, 2003). Statistical
and machine learning models were compared when simulat-
ing daily maximum surges on a quasi-global scale based on
either remotely sensed predictors or predictors obtained from
reanalysis products such as ERA-Interim data (Tadesse et
al., 2020). The storm surge predictand was derived from two
datasets, the observed hourly sea level data from the GESLA
(Global Extreme Sea Level Analysis) 2 database and other
in situ data of daily maximum surges. They compared linear
regression models to a machine learning method called ran-
dom forests (RFs). The authors found that data-driven mod-
els work well in extratropical regions, e.g. the Baltic Sea,
and that the ML methods generally performed better than lin-
ear regression. Storm surge prediction on a global scale has
also been the focus of several ML models, e.g. Bruneau et al.
(2020). They show that MLs — in this case artificial neural
networks (ANNs) — reconstructed storm surges with signifi-
cant skill but still struggled to represent the strongest extreme
events. Bruneau et al. (2020) explained this by unavoidable
limitations of the training data, as extreme events are only
a small fraction of the available dataset. Because ANNs are
trained with a procedure that is ill-designed for outliers and
is biased towards the representation of the average dynamics,
extreme surges are difficult to reliably reproduce. Tiggeloven
et al. (2021) use a variety of deep-learning methods, a sub-
branch of ML, to investigate storm surges at 736 tide sta-
tions globally. The overall result showed that ML approaches
capture the temporal evolution of surges and outperform a
large-scale hydrodynamic model. However, extreme events
were underestimated for similar reasons as those found by
Bruneau et al. (2020).

Most approaches using ML methods are global and, hence,
lack specificity for the Baltic Sea basin. The only study (to
our knowledge) that applied ANNSs specifically to the Polish
coast of the Baltic Sea was undertaken by Sztobryn (2003),
using preceding mean sea level as well as wind speed and
wind direction as predictors of high water levels. The au-
thor showed that neural networks can be successfully inte-
grated into operational forecast services, possibly reducing
their average error. Similar to the global studies, the study
by Sztobryn (2003) showed an underestimation of extreme
water levels. Altogether, a thorough application of ML to
predict extreme storm surges at several tide gauging stations
in the Baltic Sea is missing in the current literature. Hence,
we will create a relatively simple RF for the specific storm
surge drivers of the Baltic Sea in order to predict extreme
storm surges, defined as the top 5% of the highest hourly
sea level measurements taken from the Global Extreme Sea
Level Analysis (GESLA) 3 project (Haigh et al., 2021). The
Baltic Sea is known for its broad coverage by atmosphere
and ocean measurements (Rutgersson et al., 2022), and thus
it is a very good test bed for ML models.

For the reader that is unfamiliar with the Baltic Sea, we
will introduce its specific characteristics when looking at
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storm surge events. In Sect. 2 we will further specify the un-
derlying datasets of this study as well as their preprocessing.
In Sect. 3 the model architecture is presented and the basic
principles of an RF are discussed. Furthermore, we will spec-
ify how the model was tuned and evaluated. In Sect. 4, we
describe all experiments conducted and their rationale, while
Sect. 5 summarizes their results. We end the study with a
discussion and conclusion.

1.1 Specific characteristics of the Baltic Sea

Apart from the atmospheric forcing, the amplitude of storm
surges also substantially varies with specific local conditions
such as the topography of the ocean basin, the extent of ice
cover, the direction of the storm track crossing the basin, and
the shape and orientation of the coastline (Muis et al., 2016;
WMO, 2011; Weisse and von Storch, 2010; Gonnert et al.,
2001).

Hence, understanding the local characteristics of the Baltic
Seais necessary when building and interpreting a storm surge
model. In the following paragraphs, we provide a brief back-
ground of the main physical processes that lead to storm
surges in the Baltic Sea.

The Baltic Sea is a semi-enclosed intracontinental sea of
the Atlantic Ocean that ranges from around 54° N-10°E to
65° N-29° E in northern Europe (Weisse and Hiinicke, 2019),
as depicted in Fig. 1. It is connected to the North Sea and
thus the Atlantic via the Danish straits and the Kattegat.
This connection plays an important role in the context of
storm surges and tides. The Danish straits block tidal waves
and allow mainly internal tides of only a few centimetres
within the Baltic Sea (Rutgersson et al., 2022; Wolski and
Wisniewski, 2021). Due to the very narrow connection to the
Atlantic, storm surges are only internally induced (Weisse
and Hiinicke, 2019). The risk of storm surges depends con-
siderably on the location due to the large meridional ex-
tent of the Baltic Sea and the different orientation of coast-
lines in combination with trajectories of pressure systems and
wind directions (Hiinicke et al., 2015; Weisse, 2014; Rutgers-
son et al., 2022; Wolski and Wisniewski, 2020; Holfort et al.,
2014).

Seasonally, the strongest peaks in water levels are ex-
pected from September to February. Those winter half-year
surges are mainly driven by processes that alter the volume
of the Baltic Sea, e.g. pre-filling (PF) and by the ones that re-
distribute internal water masses of the basin, e.g. the effects
of wind (Weisse and Hiinicke, 2019; Weisse, 2014; Hiinicke
and Zorita, 2006; Chen and Omstedt, 2005).

Due to the Baltic Sea’s semi-enclosed basin, specific
drivers of storm surges are added to the general drivers such
as wind stresses and atmospheric pressure. In the following
sections, we provide a brief overview of those drivers.
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Figure 1. Subbasins of the Baltic Sea (coloured) as indicated in
Wolski and Wisniewski (2020). White regions indicate landmasses.

1.1.1 Wind effect

Storm surges generated by the impact of wind stress are
called wind-driven storm surges. If the wind blows con-
sistently over several days, it deforms the sea surface and
causes drift currents and wind setup, which eventually lead
to a storm surge (Wolski and Wisniewski, 2021; Harris,
1963). Wind conditions in the Baltic Sea are mainly gov-
erned by the westerlies and the cyclonic activity in the north-
ern Europe—Baltic Sea area. This is especially true during
the winter months, when the winds are blowing (on average)
from south-western directions (Weisse, 2014; Leppiranta
and Myrberg, 2009). In periods when the strong westerlies
weaken or stop blowing, the elevated sea surface in the north-
eastern parts of the Baltic Sea relaxes and water masses rush
back towards the southern and south-western coasts. These
seiches raise the water levels on the corresponding coasts
(Weisse and von Storch, 2010). Furthermore, south-westerly
winds, if maintained for several days, can cause a strong
inflow of water masses into the Baltic Sea via the Danish
straits, leading to a condition of pre-filling (Gonnert et al.,
2001). Hence, the wind direction is an important indicator
for the onset of storm surges at specific coastlines (Andrée et
al., 2022; Wolski and Wisniewski, 2021).
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1.1.2 Atmospheric pressure

In the Baltic region, low-pressure systems are mostly as-
sociated with regions of less than 980hPa (Wolski and
Wisniewski, 2021; Holfort et al., 2014). Those low-pressure
systems lift up the sea surface by the inverted barometer ef-
fect (Weisse and von Storch, 2010), which eventually induces
a baric wave travelling along the trajectory of the system
(Wolski and Wisniewski, 2021). For instance, in hydrostatic
equilibrium, a drop in surface air pressure of 1 hPa lifts the
sea level by about 1 cm (Wolski and Wisniewski, 2021; Har-
ris, 1963). As low-pressure systems in the Baltic area usually
move from the (south-)west towards the (north-)east during
winter, the water surface is more frequently elevated in the
north and depressed in the south (Wolski and Wi$niewski,
2021). Wind and pressure combined may amplify the storm
surge and increase its intensity, or they may cancel each other
out and decrease the severity of the storm surge (Wolski and
Wisniewski, 2021).

1.1.3 Pre-filling of the Baltic Sea

The changing total volume of the Baltic Sea is also important
for storm surges. The Baltic Sea contains an averaged vol-
ume of 20900 km? (Eakins and Sharman, 2010) that is con-
stantly altered due to different in- and outflows (Weisse and
Hiinicke, 2019). The main inflow is the saltwater exchange of
the North Sea and the Baltic Sea via the Danish straits, which
is approximately 1180km?yr~! (Leppiranta and Myrberg,
2009). On a daily basis, up to 45km?> is exchanged between
the basins in both directions. Evenly distributing this water
mass over the whole Baltic Sea would correspond to a sea
level change of 12 cm d~! (Mohrholz, 2018).

If net water exchange persists over longer periods, the
mean Baltic sea level can rise or fall accordingly by larger
amounts. If the water level of the Baltic Sea is elevated 15 cm
above the mean sea level for more than 20 consecutive days
due to increased inflow via the Danish straits, Mudersbach
and Jensen (2010) speak of a pre-filling or preconditioning
of the Baltic Sea. Usually, water levels at the tide gauging
stations in Landsort (Sweden) or Degerby (Finland) are used
as proxies to measure pre-filling (Weisse, 2014; Janssen et
al., 2001). With a high degree of pre-filling, storm surges can
become more likely and more extreme as less wind is needed
to induce wind setup (Weisse and Weidemann, 2017; Weisse,
2014). It is mainly the already mentioned south-westerly
wind direction that, when blowing over extended periods of
time, leads to an increased inflow of water masses to the
Baltic Sea through the Kattegat (Wolski and Wisniewski,
2021; Hiinicke et al., 2015; Weisse, 2014). But a sequence of
fast-moving low-pressure systems coming from the west and
travelling to the north-east of the Baltic Sea can also result
in strengthened inflows (Wisniewski and Wolski, 2011). Ac-
cording to Leppédranta and Myrberg (2009), the peak months
of inflow are during winter, especially from November to
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January. Combined with the effects of stronger winds and
rainfall in winter, this preconditioning is an important driver
of storm surges.

1.1.4 Precipitation

Finally, when low-pressure systems and corresponding cy-
clones move over the Baltic Sea, they usually bring precipi-
tation along (Leppéranta and Myrberg, 2009; Harris, 1963).
Extreme precipitation associated with low-pressure systems
is most frequent in winter (Rutgersson et al., 2022). As stated
by Weisse and Hiinicke (2019), heavy precipitation increases
the total volume of the Baltic Sea and changes the density
due to a change in salinity profiles, which combined may
lead to an increased overall water level. Therefore, the in-
fluence of precipitation is not directly related to storm surge
magnitudes but rather alters preconditions such as the pre-
filling of the Baltic Sea and the filling of rivers and estuaries
(Gonnert et al., 2001). Hence, indirect effects of precipitation
combined with the onset of a storm surge can lead to severe
compound flooding in the Baltic Sea, especially in low-lying
coastal areas (Rutgersson et al., 2022; Bevacqua et al., 2019).

2 Data

The Baltic Sea provides one of the densest tide gauge net-
works, with records starting in the 19th century (Hiinicke et
al., 2015), which are a part of the record compilation of the
GESLA dataset.

2.1 Area of research

The area investigated ranges between 40-70° N and 5° W-
30°E, as depicted in Fig. 2, and includes the Baltic Sea. We
intentionally selected a broad region around the Baltic Sea to
account for the nonlocal links between the drivers of storm
surges and the locality of the event itself. More specifically,
seven stations were selected for model analysis. These sta-
tions are a part of the GESLA dataset. Station codes are pro-
vided in Table Al. This set of stations was chosen to rep-
resent all of the coastal orientations and bays of the Baltic
Sea.

2.2 Predictand

The GESLA dataset provides a global set of high-frequency
(at least hourly) sea level data with integrated quality control
flags (Haigh et al., 2021). Height units of all stations were
converted to metres, and the time zone was adjusted to Co-
ordinated Universal Time (UTC). A more thorough descrip-
tion of the compilation can also be found in Woodworth et al.
(2016) and Haigh et al. (2021). The data are publicly accessi-
ble at http://www.gesla.org (last access: 3 November 2024).
All stations that we selected for model analysis contain
hourly data covering the period from 2005 to 2018. This sea
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Figure 2. Map of the entire research area. Black crosses and
numbers identify the stations analysed (predictand) within the
Baltic Sea. The closest cities to the stations are Kalix (0, NSWE),
Hanko (1, FIN), Hamina (2, FINBAY), Riga (3, LVA), Travemiinde
(4, DEU), Oskarshamn (5, WSWE), and Forsmark (6, WSWE2).
The blue circle indicates the position of Degerby station, which is
used as a proxy for the pre-filling predictor.

level data are later used to derive a daily time series of a cate-
gorical binary predictand at the respective stations after pre-
processing (see Sect. 2.4). The categories of the predictand
are either no occurrence of a storm surge (0) or occurrence
of a storm surge (1), based on the exceedance of a quantile
threshold.

2.3 Predictors

We use spatially resolved fields of daily total precipitation,
daily mean wind fields (zonal and meridional), and daily
mean sea level pressure from the European Reanalysis 5
(ERAS) data provided by the ECMWF and of daily pre-
filling of the Baltic Sea. The ERAS dataset ranges from 1959
to the present, with daily estimates of atmospheric variables,
and is spatially resolved on a 30km (approximately 0.27°)
grid covering the Earth (Guillory, 2017). We select the pe-
riod from 2005 to 2018 for this study and chose an area
that broadly encompasses the Baltic Sea, North Sea, and
part of the eastern North Atlantic, which should include the
main known drivers of Baltic storm surges. All variables of
ERAS used as predictors are shown and briefly described
in Table A2. They are surface pressure (SP), total precipita-
tion (TP), eastward wind at a 10 m height (U10), and north-
ward wind at a 10 m height (V10). Each variable is extracted
from the two-dimensional (2D) field depicted in Fig. 2. Ad-
ditionally, we implemented a predictor of pre-filling using
the GESLA time series of sea level data at the station of
Degerby. The station is situated at about 60° N and 20.38°E
(see blue circle in Fig. 2). The hourly water level at the sta-
tion of Degerby from the GESLA dataset is used as a proxy
for pre-filling and is reduced to a daily time frequency using
the maximum recorded water level of a given day as an entry.
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2.4 Preprocessing

Initially, we temporally detrend the GESLA time series for
each station by subtracting a linear trend in time. We do this
for two reasons; one is to obtain a stationary process, which
is usually necessary for the application of ML algorithms.
Secondly, we subtract the long-term trend from the whole
dataset at the beginning in order to cancel out the effects of
anthropogenic and vertical land movement on the sea level.
The rationale is that the goal of the model is to predict short-
term variability in the sea level. We do not expect any issues
of data leakage due to this approach, as we also tested the
stationarity of each station’s time series before subtracting
the linear trend using a Dickey—Fuller test. Due to the short
time period used here, long multidecadal-scale trends do not
impact the analysis.

In a next step we split the GESLA dataset into a calibra-
tion set M, including the time interval from 2005 to 2016,
and a validation set My, including the years 2017 and 2018.
The calibration set is later used to fit the ML model, while
the validation set is used to evaluate the performance of the
model (see Sect. 3). For each of those subsets, we only select
months within the autumn and winter season, e.g. months
from September through February.

The calibration set is further split into a training set Cirain,
including the years 2005 to 2013, and a testing set Ciegt, in-
cluding the years 2014 to 2016. Hence, we split the calibra-
tion set continuously in time, leaving 25 % of the calibration
data for the test set.

We then proceed by computing the 95th quantile Grin of
the predictand training set for each station separately. This
station-based percentile is used as a threshold to develop the
storm surge index for all datasets (e.g. training, testing, and
validation sets) and each station. We set every entry contain-
ing a sea level strictly below girain to O (no storm surge) and
all remaining entries to 1 (storm surge). This process is visu-
alized in Fig. 3.

Doing the steps above, we obtain a time series of hourly
temporal resolution for each station, where 5 % of the data is
(by definition) classified as an extreme storm surge, and refer
to it as the storm surge index. We convert this hourly storm
surge index into a daily index by attributing a storm surge to a
specific day only if 1 h of that day exceeds the 95th quantile.

Similar to the predictand dataset, we separate the predictor
data into a calibration set, which is further split into a training
and a test set, as well as a validation set with time intervals
identical to the predictand split.

In summary, we obtain the following dimensions for the
predictors and predictand after preprocessing.

The ERAS predictors are two-dimensional spatial maps
with a total dimensionality npred X 7 XMjong X M1at, WheTe npred,
n, Nlong, and nyy are the number of predictors (drawn from
SP, TP, U10, V10), number of samples (days), longitudes,
and latitudes, respectively.
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Figure 3. Transforming a continuous sea level to a categorical predictand using a percentile-threshold-based definition of extreme storm
surges. The predictand is a vector, where 1 indicates a storm surge and 0 its absence.

The predictand is a categorical binary variable indicat-
ing the occurrence of a storm surge with dimensionality
1 X Ngtation, Where ngation = 1, as we analyse each station sep-
arately.

Additionally, the time series of the predictor and predic-
tand are intersected by date to put both on the same time-
domain. For some experiments, we introduced a time lag At
between predictor and predictand by de-aligning the timing
of predictors and predictand. In these cases, the number of
samples reduces to n — At for both the predictor and predic-
tand. Hence for a time lag of At any time point, t <n of the
predictand is predicted using predictors at prior times t — At.
To the best of our knowledge, there were no missing values
in any of the datasets.

3 Methods

The overall structure of the algorithm is sketched in Fig. 4.
Before passing data to the model, we split our predictor and
predictand datasets as described in Sect. 2.4. After splitting
the data, we feed the model, an RF, identical combinations
of predictors for each station. The RF then processes the at-
mospheric predictors (denoted features in ML parlance) by
leveraging the predictions of several decision trees (DTs). Fi-
nally, the RF provides a deterministic, binary prediction of
extreme storm surges (predictands, also called labels), indi-
cating whether a storm surge occurs (1) or not (0).
Commonly, all possible predictors are initially used as in-
puts for the model. The model can then itself derive the most
important features, which comes with additional computa-
tional costs. To avoid this circumstance, we only tested com-
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binations of predictors that were in line with the theoretical
explanation of storm surges.

Our algorithm is publicly accessible on GitHub (Belling-
hausen, 2022) and is based on the scikit-learn library of
Python.

In the following sections, we will explain the essential as-
pects of the RF, its tuning, and its evaluation.

3.1 Random forests

As a classifier, we used the RandomForestClassifier from
scikit-learn. A thorough description of RFs can be found in
Miiller (2017) and Géron (2017), from which we will briefly
discuss the most important points.

The model architecture of an RF is based on an ensem-
ble of DTs (see Fig. 4). DTs rely on a hierarchy of if/else
questions in order to conclude with a prediction. A simplified
example is shown in Fig. 5. In this case, the DT formulates
sequential if/else questions about the predictors U10, SP, and
PF. The grey nodes indicate a path of input data, where each
question is answered positively, thus leading to the predic-
tion of an extreme storm surge. In reality, the questions in
each node are more complex, testing for continuous values
of the predictor at hand (e.g. U10>17ms~! as a test for
strong west winds at a specific grid point within the research
area). When fitting the structure of a decision tree to a train-
ing dataset, the algorithm uses a concept called gini-impurity
to find the best sequence of if/else questions for a prediction.
A prediction based on new predictor data is then made by
sifting through the optimized DT, answering all if/else ques-
tions.
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In an RF (Fig. 4) as an ensemble of DTs, each of those
DTs processes a random sample of the given data in order to
reach a prediction. In general, those predictions are then ag-
gregated in order to get the overall prediction of the RF. For a
binary classification problem, as in our case, this aggregation
is done via majority voting.

Because DTs are based on an if/else hierarchy, RFs be-
long to the realm of interpretable models, as they provide a
parameter f named feature importance (FI). The FI assigns a
value between 0 and 1 to each feature (predictor), with higher
numbers indicating greater importance. The importance of
one predictor is estimated by computing the predictive loss
of the algorithm when that predictor is omitted. The value of
the importance is normalized by requiring that the sum of all
feature importance values within a DT be 1.
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In this paper, predictors are atmospheric variables on a
grid, which leads to a dimensionality of the feature impor-
tance of 7pred X Niong X 12t Hence, each grid cell is asso-
ciated with a feature importance for each climate predictor
(wind, pressure, etc.), and we can utilize it to filter regions
on the grid that are important to the prediction of a storm
surge. It is important to note that f should not be mistaken
for the causality of a predictor and only represents a (possibly
nonlinear) correlation detected by the RF. Hence, we analyse
whether the feature’s importance resolves regions and atmo-
spheric patterns coherent with the theoretical drivers of storm
surges described in the previous sections.

3.2 Model tuning

The RandomForestClassifier can be tuned in several ways by
altering its hyperparameters (HPs). We will use the training
and testing sets Ciain and Cieg for this (see Sect. 2.4). The
model’s internal parameters are optimized based on the train-
ing set Ciin; the models HPs are adjusted based on the ac-
curacy of the model on the test set Ciest, While the models
ability to generalize to completely unknown data is inves-
tigated using the validation set My, after the model fit is
completed. For an RF, the most important HPs control the
number of DTs used (n_estimator), the maximum depth of
each DT (max_depth), and the number of features used when
calculating the best split (max_features). In general, a larger
value for n_estimator will lead to a more robust ensemble
due to less overfitting, as the results of many DTs are aver-
aged (Miiller, 2017). Breiman (2001) show that the general-
ization error in RFs converges for a growing number of DTs,
again indicating less overfitting. With increasing max_depth,
the DTs get more complex; hence overfitting is more likely.
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The max_features control the randomness of each DT, with a
smaller value reducing overfitting (Miiller, 2017). While we
set the max_features HP to its default value of /Mpred, We
varied the other two.

In addition to those HPs, we altered the class_weight and
random_state parameters. The class_weight is used to as-
sociate weights with classes. This is particularly important
in this study, as we deal with extreme storm surges. Hence,
the predictand dataset is unbalanced, as there are many more
days of class 0, without a storm surge, than of class 1, with
an extreme storm surge. Setting the class_weight to balanced
adjusts weights inversely proportional to class frequencies
in the input data; i.e. the model will penalize wrong predic-
tions about class-1 days more heavily than wrong predictions
about normal conditions. We set the random_state to 0, which
gives us and the reader the possibility of reproducing results.

The HPs n_estimator and max_depth were automatically
depicted by the algorithm as the best combination of HPs
using RandomSearchCV, an optimization procedure within
scikit-learn. One can input a list of values for each HP, and
RandomSearchCV automatically selects the best combina-
tion by optimizing the validation score of the training set
based on cross-validation. This comes with the advantage
that the initial split into training and testing sets is sufficient,
and no additional validation set is needed (for more details
we recommend consulting the scikit-learn documentation).

Although the number of effective predictors is substan-
tial, we did not reduce the dimensionality of the predictor
fields (by principal component analysis or an auto-encoder)
to avoid losing any regional details that could be relevant for
each station. We preferred in this case to limit the depth of the
random forest algorithm to avoid overfitting, drawing only
from the list [1,2, 3] for the max_depth parameter. For the
n_estimator we used 333, 666, or 1000.

All settings are summarized in Table A3 for replication
purposes.

3.3 Model evaluation

A common tool to evaluate binary classification models is
the confusion matrix (CFM) (see Fig. 6). It summarizes the
accuracy of a model in terms of success or failure rates.
For our study, we aim for a high true-positive rate (TPR)
(also called sensitivity), which relates the absolute number
of correctly predicted extreme storm surges (TP) to all inci-
dences of storm surges (TP 4 FN) in the underlying data. In
Fig. 6, for example, TP =29 out of TP 4+ FN =40 extreme
storm surges were correctly predicted, leading to a TPR of
TFEr—PpN =72.50 %. A high TPR automatically leads to a low
false-negative rate (FNR) since their sum equals 1. The FNR
indicates how often the model actually fails to predict a storm
surge. With a high FNR, the model can not be trusted, as it
very likely produces false predictions of security; i.e. it is
too insensitive. Especially for extreme events, this can lead
to devastating damage to societies when protection measures
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Figure 6. Confusion matrix for a binary-classification model with
absolute and relative values. The colour bar shows the maximum
count of instances for all cases.

rely on model predictions with a high FNR, as eventually no
measures are taken due to a model prediction of no storm
surge, but in reality, an extreme surge appears.

The CFM can be evaluated on training and test data as well
as on the validation set. If model predictions are almost al-
ways correct on training data, i.e. a TPR and true-negative
rate of around 100 %, the model tends to overfit. In practice,
the CFM of test data and the validation set is more interest-
ing, as it shows the performance of a model when confronted
with data that is uninvolved in the training process.

Related to the TPR is the measure of precision. The preci-
sion p of a model measures the accuracy of positive (storm
surge) predictions and is defined as

TP
" TP+FP’

where TP and FP count the true-positive and false-positive
predictions. It answers the following question: of all in-
stances predicted to be positive, how many are actually pos-
itive? For instance, precision of 20 % indicates that, empir-
ically, every fifth prediction of a storm surge is actually a
storm surge in the real observations. A perfect model would
have p =1 and hence never predict a storm surge when there
was none. This measure is especially important for decision
makers if the prediction is used, for instance, to evacuate
cities or put protection measurements into place.

Because we are interested in a combination of good preci-
sion and good sensitivity (TPR), we will also look at the F1
score. The F1 score combines precision and sensitivity into a
single metric using the harmonic mean and is computed by

p-TPR
p+TPR’

p

f1=2
It penalizes extreme values in either precision or sensitivity,

making it a useful metric when there is a need to minimize
both types of error equally.
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To analyse the relevance of predictors, we will use a com-
bination of feature importance (FI) and a predictor map
(PM). For each model, the importance of each feature is dis-
played by weights between 0 and 1, with all weights sum-
ming up to 1. Using FI lets us compare the overall importance
amongst predictors when a combination of predictors is in-
put to the model. Furthermore, we can deduce which specific
regions within the research area are important for model de-
cisions for each predictor. We only show the top 1 % area of
importance (computed by the 99th percentile of FI for each
predictor) and depict those regions using grey squares (see
Fig. 7).

Unlike a correlation coefficient, the FI does not encode the
magnitude or sign of the feature that is indicative of the storm
surge (Miiller, 2017), e.g. whether there is low or high pres-
sure within the area of importance that is related to a storm
surge. Hence, in the results we also include an averaged value
of the predictor for all cases of a storm surge. This leads to
two separate types of PMs: one where the model correctly
predicts the storm surge, i.e. true-positive predictions (TPPs),
and another where the model predicts no storm surge even
though there is one in the observations, i.e. false-negative
predictions (FNPs). Those PMs are compared amongst each
other in Fig. 7a and b, and their difference (bias) is show-
cased in panel (c). For instance, when PMs for TPP cases
show low-pressure systems in the importance region while
the FNP PMs only display high-pressure systems, this sug-
gests that the model heavily relies on low-pressure systems
to forecast a storm surge. In contrast, it also suggests that in
some cases storm surges are caused even though there are
high-pressure systems in the area of high FI.

As it is sufficient to only show maps for TPPs and the dif-
ference to FNPs, we will do so in the results section.

4 Model configurations

We built six overarching model configurations (A-F). For
each configuration, we undertake subsets of model runs,
which are denoted by run_ids. All model runs are applied to
each station; i.e. similar predictors and initial HP lists were
used when building the model for each station (note how-
ever that the fitted model can be different for each station
due to the automatic optimization of hyperparameters). As a
starting point, we analysed the predictive skill of each pre-
dictor individually with time lags up to 1 week (A). Among
those, time lags up to 3 d showed promising results. These
time lags are interesting in order to predict storm surges in
advance. Hence, we analysed a combination of all predictors
(ERAS and PF) with time lags of 1 and 2d, eventually get-
ting insight into which predictors are most important (B). In
experiment C, we investigate the coupling of strong winds
and moving low-pressure systems by combining SP and U10
with various time lags. Because the west wind is an impor-
tant driver of storm surges in the Baltic Sea due to the con-
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nection with the North Sea via the Kattegat and the possi-
ble wave build-up in the north-eastern region, we combined
multiple time lags of U10 in experiment D. In E we looked
into cumulative rain (TP with several time lags and U10),
wind-induced waves in combination with pre-filling, and the
state of pre-filling induced by wind (both using U10 and PF).
Since we use the water level records at the Degerby station
as a proxy for pre-filling and not the rolling mean of 20 con-
secutive days such as was done by Mudersbach and Jensen
(2010), we combined several time lags (up to 30d) of PF in
experiment F.

All model runs are summarized in Tables A4 —A9 in the
Appendix.

5 Results

We selected promising results based on the metrics discussed
in Sect. 3.3 for the validation dataset M+y,, where the TPR
of this dataset is labelled the validation true-positive rate
(VTPR).

The prediction skills described in the following subsec-
tions will later be compared in Sect. 5.7 with a storm surge
reanalysis obtained from a global comprehensive dynamical
model driven by atmospheric forcing from global meteoro-
logical reanalysis (Muis et al., 2016). Before that, we can
provide a basic benchmark by indicating the prediction skill
of a simple uninformed prediction scheme. One such scheme
could be to always predict storm surges. This scheme would
display a true-positive rate of 100 % but also a false-positive
rate of 95 %. Hence, it would be very sensitive but very un-
specific. A prediction scheme that always predicts no storm
surge would display true-positive and false-positive rates of
0% each. It would be totally insensitive. Both schemes are
obviously not useful. A slightly more sophisticated scheme
would issue a storm surge prediction randomly on 5 % of the
occasions. The true-positive rate would amount to 5 % and
the false-positive rate to 5 %. It would still be rather insen-
sitive. A prediction scheme has to clearly improve on this
random sensitivity and specificity.

5.1 A -single predictors and multiple time lags

We aim to find the best predictors for each station and anal-
yse what time lags are most useful. Furthermore, we want
to investigate how physical patterns of predictors change de-
pending on the station location by investigating their feature
importance.

5.1.1 Surface pressure (SP)

In terms of VTPRs, the SP leads to good results for all sta-
tions except DEU. For most stations, it worked best if no
time lag was introduced, but for LVA station time lags up to
3d were applied without reducing the TPR below 70 %. The
highest VTPR of 81.48 % amongst all stations were seen for
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WSWE station and a time lag of 1d. In general, increasing
the lead time substantially decreases VTPRs. Amongst all
stations (except DEU), the precision is slightly above 20 %,
and F1 scores are slightly above 30 %. For instance for LVA
station, using a lead time of 3d comes with precision of
21.34 % and an F1 score of 32.7 %. The overall highest preci-
sion of 34.48 % and an F1 score of 45.9 % were also obtained
for LVA station with a lead time of 1d. Independent of the
station, low-pressure systems are important within the area
of importance (Aol), but for cases of FNPs, the pressure rises
several hPa. At NSWE station, for example, the Aol of SP is
within the region of 62.5-70° N and 5° W-5°E (see Fig. 8).
Here, mainly low-pressure systems with lower than 990 hPa
lead to a correct prediction of a surge. The model tends to
produce FNPs once the pressure in the Aol increases by a
mean of around 25hPa. In some cases, high-pressure sys-
tems of more than 1020 hPa occurred in the Aol for FNPs.
This behaviour repeats at several stations.

5.1.2 Zonal wind (U10)

The zonal wind component was mostly useful for stations at
zonal extents of the Baltic Sea coastline. For instance, for
FINBAY, a VTPR of 78 % and precision of 24.5 % were
achieved when using no time lag. For a lead time of 1d,
a VTPR of 82.76 % with precision of 38.09 % and an F1
score of 52.17 % was computed for LVA station, which were
the overall highest scores amongst all stations. Multiple lead
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times up to 2d were also useful for WSWE?2 station, but the
VTPR drops from 82.76 % without a time lag to 67.86 % for
atime lag of 2d.

The Aol depends on the location of the station as well as
on the chosen time lag (see Fig. 9). When no time lag is used,
the Aol tends to be closer to the station of interest or in a
region where it is able to induce wave setup (see the left col-
umn of Fig. 9). For instance, for FINBAY station, strong west
winds in the Aol will lead to more water masses pushed into
the bay, which will eventually lead to a storm surge at the
station location.

Interestingly, the Aol shifts significantly when the lead
time is increased to 1 d (see the right column of Fig. 9). West
winds become more important in the North Sea close to the
entrance of the Kattegat, which could be connected to the
condition of pre-filling, as water masses are being pushed
into the Baltic Sea by these type of winds.

Regardless of the Aol’s location, the main wind direc-
tion is eastward. For instance, at FINBAY station, mean west
wind speeds of around 12 ms~! occur in parts of the Aol for
TPPs, especially around the Kattegat. When looking at PMs
separately, wind speeds of 17ms~! and more (i.e. storms)
were able to be detected. Comparing the maps of TPPs to the
ones of FNPs, one can see that the model generally leads to
false predictions when west wind fields become weaker. The
difference maps show a mean decrease in west wind speeds
of around 7ms~!in parts of the Aol (not shown). Hence, the
model is not as reliable when west winds are not strong and
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no winds or even east winds occur. This behaviour repeats
for other stations except for DEU station. Here, the east wind
is used for model predictions (see Fig. 10), which is an ex-
pected result. There are fewer (positive) storm surges on the
German coast of the Baltic Sea compared to other bays, as
usually south-westerly winds lower the water level in those
regions (Weisse and von Storch, 2010). It is interesting to see,
however, that important short-term winds are mostly west-
ward in proximity to the station. This is also theoretically ex-
plained by the induced pile-up effect of wind at this station.
Another previously mentioned driver of storm surges along
the German Baltic coast is seiches. These might be induced
by the pronounced west wind around the station and over the
Baltic Sea for a time lag of 7d (Fig. 10b). The long time
lag could be sufficient for wave growth towards the oppos-
ing coast, which in turn leads to seiches once the wind turns
westward or stops blowing. Note, however, that these results
need to be taken cautiously, as the evaluation metrics are low
for DEU station, and the Aol is also widespread.

5.1.3 Meridional wind (V10)

While the zonal wind is a good predictor for stations located
at the zonal boundaries of the Baltic Sea, the meridional wind
component V10 is mostly a good predictor for stations lo-
cated at the meridional extents of the Baltic Sea. The predic-
tor — with lead times up to 2 d — was useful for all stations ex-
cept for FIN station. For instance at NSWE station, a VTPR
of 69.44 % was achieved with precision of 40.32 % and an
F1 score of 51.02 % when using no time lag. For DEU sta-
tion, a lead time of 1d results in a VTPR of 68 %, precision
of 41 %, and an F1 score of 68 %, which was the highest F1
score amongst all stations. For WSWE station, a lead time
of 2d resulted in a VTPR of 66.67 %, which dropped sig-
nificantly compared to a VTPR of 74 % when no time lag
was used. At this station a lead time of 1d has a VTPR of
70 %, precision of 21 %, and an F1 score of 32 %. The pre-
dictor maps for NSWE, DEU, and WSWE stations are shown
in Fig. 11 for time lags of 0 and 1d. Similar to the zonal
wind component, the Aol of the meridional wind component
is close to the station when no lead time is used and moves
away with increasing lead time. It is also interesting to see
that the direction of the meridional wind component switched
depending on the location of the station. For instance, for
NSWE and FINBAY (Fig. 11a—d), winds blowing towards
the station, i.e. northward, are important, while for stations
at the southern extents of the Baltic Sea, a southward wind
direction is important (Fig. 11e-h). Interestingly, at NSWE,
mainly light south winds of around 6 ms~! are seen within
the Aol for TPPs. There is also a notable shift in the pat-
terns of V10 when increasing the lead time. For instance, for
DEU station, the Aol is close to the station for no lead time,
and the southward wind fields are extended over the whole
Baltic Sea. For a lead time of 1 d, this pattern shifts, and the
strong wind fields over the Baltic Sea reduce while they are
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stronger over the North Sea, even north of the UK, eventu-
ally pushing water masses into the Kattegat. A similar pat-
tern shift was observed when looking at the predictor maps
of FINBAY (see Fig. 11c¢) and comparing them to NSWE sta-
tion. The northward wind fields are more localized close to
the station instead of reaching the whole Baltic Sea and even
into the North Sea. This could be explained by the fact that
FINBAY is situated far into the Gulf of Finland, where local
winds directed at the station become more important, while
NSWE faces more open water masses of the Baltic Sea in
a meridional direction. In summary, V10 can be used for all
stations except FIN; depending on the station’s location, the
wind direction used for predictions shifts. The model strug-
gles when no meridional winds blow in the Aol or when their
direction is opposite, facing away from the station’s location.

5.1.4 Total precipitation (TP)

Total precipitation was overall not a good predictor and only
worked for FINBAY, LVA, and WSWE?2 stations. For FIN-
BAY station, it was only a relevant predictor with a lead time
of 0d. For WSWE?2 station, lead times of 1 and 2d had a
VTPR of 71.43 %, each with precision around 21 % only. In-
terestingly, for LVA station, even a lead time of 6 d resulted
in a VTPR of 74 %, precision of 22.7 %, and an F1 score of
34.7 %. The overall highest F1 score of 41.6 % was obtained
for LVA station and a lead time of 1 d.

There is a recurring pattern for the Aol when using TP
without a time lag. Usually, it is close to the station itself, as
depicted in Fig. 12. When increasing the time lag by only 1 d,
the Aol shifts towards the area around Bergen, sometimes
showing connecting patterns of importance across the North
Sea towards the United Kingdom. Nevertheless, throughout
all experiments, TP did not show any consistent patterns in
terms of PMs and hence is not considered a relevant predictor
(at least in this model setup).

5.1.5 Pre-filling (PF)

Compared to the ERAS predictors, the pre-filling predictor
contains a significantly smaller amount data (one data point
per time step compared to a 2D spatial map of around 17 000
entries). Despite this simplicity in data volume, it works rea-
sonably well for all stations except NSWE.

Similar to ERAS predictors, the model is sensitive but not
very specific for some stations when PF is used as a predic-
tor, especially with increasing lead time. Despite this fact,
PF is the predictor with the highest precision and F1 score in
this experiment. For WSWE2 station, those maximum values
in precision and F1 score were 60.52 % and 68.6 %, respec-
tively, when pre-filling was used without a time lag.

Pre-filling is the only predictor that has consistent preci-
sion above 20 % for lead times longer than 3 d. The VTPRs
are above 70 % even for longer time lags, but increasing the
lead time comes at the cost of diminished precision. For in-
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stance, for FINBAY station, the precision and F1 score for a
lead time of 3 d are 43.8 % and 55.8 %. For LVA station, lead
times up to 1 week have precision slightly above 20 %. For
instance, for a lead time of 7 d, the VTPR, the precision, and
the F1 score are 74.07 %, 20.4 %, and 32 %, respectively.
From experiment A, we can conclude that the choice of
predictors depends on the station at hand. Depending on their
location, values of predictors in the Aols vary, especially
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when considering wind fields. For SP the model always uses
low-pressure systems in order to achieve TPPs. For the wind
fields U10 and V10, the important wind direction depends on
the station location. In general, time lags up to 3d could be
useful, but increasing lead times often leads to worse results.
Overall, PF was the most useful predictor for all stations. The
results are summarized in Fig. 13.

Since the occurrence of storm surges also depends on the
interaction between predictors, we will test combinations of
predictors in the following experiments.

5.2 B - combination of all predictors

In this experiment, we combined all ERAS predictors in or-
der to rank them by feature importance and look at the be-
haviour of their corresponding PMs. In addition, we intro-
duced time lags of either 1 or 2d to all predictors (see Ta-
ble AS5). Figure 14 shows that for almost all stations, SP and
U10 are the most important predictors. They again show pro-
nounced low-pressure fields (below 980 hPa) and strong west
winds (greater than 15ms™!) in their respective Aols. This
behaviour switched only for the stations at the Baltic Sea’s
meridional extents (DEU and NSWE), where V10 becomes
important as well. In terms of PMs, the physical components
did not change compared to experiment A.

Nevertheless, using the predictors in combination showed
an order of importance, as depicted in Fig. 14. We can see
that SP and U10 are mostly used by the models, but it also
switches depending on the station and time lags. In terms of
the maximum VTPR achieved at each station, using isolated
predictors leads to better results.

5.3 C - coupling of U10 and SP

We already noted that SP and Ul0 are important predic-
tors. In theory, resonance coupling of strong winds and mov-
ing weather systems (low-pressure systems) leads to extreme
storm surges as well. Hence, we will now investigate two sets
of combinations of those predictors, as shown in Table A6.
One set uses similar time lags for both predictors and the
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Figure 12. Mean predictor maps of TPPs for predictor TP with time lags of 0 and 1d.
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Figure 13. Summary of best predictors per station for experiment A. The bold percentage indicates the VTPR. We denoted the best precision

and the time lag of the corresponding predictors in order below each set of predictors.

other uses a shorter time lag for SP compared to U10, as we
expect the effects of U10 on storm surge to be slower than the
influence of low-pressure systems. This is due to the fact that
U10 needs to transfer kinetic energy to the ocean’s surface
first in order to induce waves.

We summarized the best combinations in terms of VTPR
in Fig. 15. For NSWE and FIN, the combination without a
time lag worked best. For FINBAY multiple combinations
worked. The best combination was a mix of short- and long-
term information on both predictors, leading to a VTPR of
80.65 %, precision of 28.4 %, and an F1 score of 42 %. In-
terestingly, even a lead time of 6d for both predictors had
a VTPR of 71.88 % and precision of 23.9 %, while the im-
portance for SP and U10 were at 68 % and 32 %, respec-
tively (not shown). For LVA station, short-term information
on U10 is most important, and VTPRs are generally above
70 % if a lead time of 1d is used for U10 within the combi-
nations. For the best combination, the VTPR, precision, and
F1 score were 85.19 %, 42.59 %, and 56.7 %. As expected
for DEU station, no combination worked well. Interestingly,
for WSWE station, the long-term info on U10 is most impor-
tant for the model prediction. The best VTPR, precision, and
F1 score are 72 %, 30.5 %, and 42.8 %, which were achieved
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when combining the short- and long-term information of the
predictors.

The PMs mainly showed similar behaviour as when using
isolated predictors.

Comparing VTPRs across all stations of both subsets of
this experiment, we deduce that similar VTPRs over 70 %
and, in the best cases even up to 85 %, were able to be
achieved.

In total, this experiment showed that, for most stations, a
combination of short- and long-term data, as well as a pos-
itive difference in time lags between U10 and SP, leads to
good results in terms of VTPRs.

5.4 D - combinations of west wind—time lags

As was already shown, west winds are an important driver
of storm surges. If those winds blow consistently over sev-
eral days, it deforms the sea surface and causes drift currents.
Hence, in this experiment, we will investigate U10 with sev-
eral time lag combinations, as shown in Table A7.

We combine short-term time lags with longer ones in the
first subset of this experiment (run IDs 0-3). In a second sub-
set, we investigated time lags up to 1 week, comparing short-
and long-term combinations of the time lag (run IDs 4-7).

https://doi.org/10.5194/nhess-25-1139-2025
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Figure 15. The best combinations of predictors in terms of VTPRs for experiment C. Time lags are indicated as subscripts of the predictor.

Importance values are given by the order of subscripted time lags.

Finally, we spread the time lags over a whole week and even
over a whole month for run IDs 8-11.

The results in terms of best VTPRs are shown in Fig. 16.
For NSWE, no combination worked well. This is in accor-
dance with results from previous experiments, where the
zonal wind is not an important predictor for this station. For
FIN station, the best VTPR was 73.33 % but with a low pre-
cision of only 13.25 %. Hence, U10 alone is also not a good
predictor for this station, at least for the combinations that
were used within this experiment. For FINBAY station, mul-
tiple combinations of U10 come with VTPRs above 70 %.
The best precision was around 33 % with an F1 score of
45 % for a combination of lead times of 1, 7, 14, and 21d.
Interestingly, even for lead times of 5, 6, and 7 d combined,
the VTPR was 71 % with precision of 22 %. For LVA sta-
tion, the combination of short- and long-term U10 works well
and leads to increased precision and F1 scores. For instance
a VTPR of 81.48 %, precision of 38.5 %, and F1 score of
52.3 % were achieved when lead times of 1, 3, 5, and 7 d were
used in combination. As expected, combinations of U10 only
are not useful for DEU station. For WSWE and WSWE?2 sta-
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tions, VIPRs were close to 70 % but only for one combi-
nation. Nevertheless, it is interesting to see that the longest
time lag comes with the highest feature importance for those
stations. This could be an indicator that, for those stations,
the pre-filling of the Baltic Sea plays a major role, as wa-
ter masses could be pushed into the Baltic Sea by the zonal
winds with longer lead times.

Aols and PMs again show similar behaviour to the pre-
vious experiments, i.e. mainly strong west winds mostly in
regions around the Danish straits or the southern Baltic coast-
line. Aols vary depending on the location of the station.
They do so even for slight positional changes in stations,
for instance, WSWE and WSWE?2 stations. Figure 17 de-
picts this for a time lag of 2d. While for WSWE?2 station,
the west winds around the North Sea entrance of the Dan-
ish straits are important, this is not the case for WSWE sta-
tion. The whole Aol shifts more eastwards. One explana-
tion might be that west winds cannot induce a direct wind
setup for WSWE?2 station, as its coastline is oriented towards
the north and hence sheltered from the winds. The opposite
is true for WSWE station. The coast here faces southwards

Nat. Hazards Earth Syst. Sci., 25, 1139-1162, 2025
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Figure 16. The best combinations in terms of VTPRs for experiment D. Importance values are ordered by subscripted time lags.

and south-westwards. Hence, west winds may induce strong
wind buildup for WSWE station, while for WSWE2 station,
a state of pre-filling is induced by the wind around the Danish
straits, which indirectly leads to a storm surge. In summary,
combinations of U10 can be used for most stations as a good
predictor when focusing on time lags up to 4 d (see Fig. 16).
For some stations, time lags up to 1 week also lead to good
predictions. Longer time lags should not be used, as they are
mostly disregarded by the model.

5.5 E - predictor combinations from theory

We tried to emulate the effect of cumulative rain and looked
into how information on pre-filling changes the behaviour
of the west wind for model predictions. The combinations
of predictors can be found in Table A8, and the results of
VTPRs are summarized in Fig. 18.

The best results for the cumulative rain combination (run
ID 0) were observed for FIN and WSWE2 stations with VT-
PRs of 73.33 % and 68 %, respectively. For FIN, LVA, and
WSWE stations as well, good results around 60 % VTPR
were calculated. However, when looking at the importance,
one can see that U10 is mostly used for model predictions.
For all stations except NSWE, the sum of TP feature impor-
tance is smaller than the feature importance of U10.

Using combinations of zonal wind U10 and PF were not
useful for any of the stations. We expected that the informa-
tion of the pre-filling would lead to a model that relies on
zonal winds that are weaker compared to model runs where
U10 was used as a sole predictor, but this was not the case.

5.6 F - combinations of pre-filling—time lags

The pre-filling of the Baltic Sea is strongly influenced by the
strong west wind. While Weisse (2014) as well as Muders-
bach and Jensen (2010) defines the pre-filling as the rolling
mean of the water levels at Degerby over 20 consecutive
days, we will use a time lag of the records of the water level
at Degerby as the predictor. In this experiment, we investi-
gate PF as an isolated predictor for time lags up to 1 month,
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as well as combinations of PF that include short-term (up to
1 week) and long-term (up to 1 month) information on the
water levels. All combinations can be found in Table A9, and
results are summarized in Fig. 19.

For NSWE and FIN stations, pre-filling did not work
very well as a predictor. For FINBAY, PF works reason-
ably well for multiple combinations instead. The best pre-
cision of around 30 % was achieved for the combination of
time lags of 5 and 10d, as well as when combining multi-
ple time lags of 3, 14, 21, and 30d. The VTPRs are 70.97 %
and 87.1 % for those combinations, respective to time lags of
5 and 10d. The importance of a lead time of 3d is highest
(66 %), but additionally, the long-term information accounts
for more than 30 % of the total importance. For LVA station,
there are high VTPRs of around 81 % for a time lag of 10d.
The precision for this lead time is below 20 %, however. The
precision increases when adding short-term information on
the pre-filling, for instance, for the combination of time lags
of 5, 15, and 25 d, the precision is 26.31 % and the VTPR is
74 %. For DEU station, PF is also a useful predictor. The best
combinations are those with lead times of 5, 15, and 254,
coming with precision of 22.8 % and a VTPR of 70.73 %.
When looking solely at VTPRs, a lead time of 10d works
best. For WSWE station, VTPRs are comparably low, only
around 70 % for most combinations. The highest precision
of 27.86 % was achieved when using lead times of 5, 15,
and 25d combined. Similar to WSWE station, the VTPRs
of WSWE2 station are around 70 %. The highest precision
of 24.32 % was computed for a combination of lead times of
5and 10d.

Pre-filling seems to be a good predictor overall for almost
all stations when combining information from the most re-
cent water records with records up to 2 weeks old. Indepen-
dent of the station, combining several time lags of informa-
tion works better in terms of precision than using the infor-
mation in isolation. The fact that the feature importance of
short-term lead times was generally higher indicates that the
model heavily relies on the most recent water level record-
ings in order to provide TPPs. Nevertheless, the additional
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Figure 18. VTPR results for all stations and run IDs from experiment E.

information regarding multiple longer lead times was not ne-
glected by the model.

5.7 Benchmark

Ideally, we should compare the performance of the random
forest algorithm with storm surge predictions obtained using
hydrodynamical models driven by the atmospheric forcing.
There are, however, several obstacles to this comparison. For
a fair comparison, the hydrodynamical predictions for day ¢
should be driven only by information available up to day ¢
minus the time lag, with varying time lags or at most includ-
ing numerical weather predictions up to day ¢. Those pre-
dictions, probably conducted by the respective hydrographic
services of the different Baltic countries, are not available
to us. Instead, we benchmarked our random forest algorithm
against a hydrodynamical modelling storm surge reanalysis
that, in principle, should be superior since the predictors used
by the storm surge dynamical model include all the informa-
tion available in the predictors without any time restrictions,
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even after day ¢, as the family of ERA atmospheric reanaly-
ses are based on a 4D-Var (4D-variational) data-assimilation
scheme (Hersbach et al., 2020).

The storm surge reanalysis that we used as a benchmark
is the global reanalysis of storm surges done by Muis et al.
(2016). Based on hydrodynamic modelling, they presented
the first global reanalysis of storm surges and extreme sea
levels (the GTSR dataset). Their model is driven by the me-
teorological reanalysis ERA-Interim. The spatial resolution
of ERA-Interim is very close to the resolution of ERAS,
from which we extract the atmospheric predictors. We pre-
processed the GTSR dataset and consider it to be a prediction
of extreme storm surges, comparing it to our preprocessed
categorical GESLA dataset as a ground truth by computing
corresponding CFMs.

The GTSR dataset consists of several model grid cells
along the global coastline with a daily temporal resolution.
For each of the stations in our research, we selected the clos-
est model grid cell within the GTSR dataset. The GTSR we
were able to download only contained the months of October

Nat. Hazards Earth Syst. Sci., 25, 1139-1162, 2025



1156 K. Bellinghausen et al.: Baltic sea level extremes predicted by random forests

(PF15) = 782%
Importance: 1

(PF74421) = 7037%
Importance: 0.57, 0, 0.43

Experiment F

(PFy5) =72%
Importance: 1

All < 60%

(PF3142130) = 87.1%
Importance: 0.66, 0.21,0.10, 0.03

(PF,,) =8333%
Importance: 1

Importance: 1

Figure 19. The best combinations in terms of VTPRs of PF for experiment F. Importance values are ordered by subscripted time lags.

to March, from which we selected the months of October to
February, which overlap with our target months within the
GESLA dataset. We use the index that we developed based
on the GESLA data as a ground truth; e.g. this index is based
on the detrended GESLA data that are further classified by
the percentile thresholds given by the training set Cirin (See
Sect. 3). To ensure that both datasets are in the same time do-
main, we intersect the GTSR time period with the GESLA
index. We then apply the same preprocessing steps to the
GTSR data that we also imposed on the GESLA data. Hence,
we proceed by linearly detrending the GTSR dataset and fi-
nally classify it using its own 95th percentile as a threshold.
This ensures that the GTSR storm surge prediction is con-
sistent with its own amplitude of simulated sea levels. This
leads to two datasets with a daily temporal resolution that
contain categorical entries indicating whether a storm surge
occurs at a specific time or not. We consider the preprocessed
GTSR dataset to be predictions of extreme storm surges and
the GESLA dataset to be the ground truth when computing
the CFMs. The resulting TPRs and precision of the GTSR
dataset are compared to the best VTPR of our study in Ta-
ble 1. The results confirm the previous findings by Muis et
al. (2016), namely that extreme storm surges are often under-
estimated by GTSR in terms of TPRs. For all stations anal-
ysed in this study, our ML approach performs better than the
GTSR in identifying storm surges. In contrast, the GTSR is
more precise than our model. Almost every time that it is-
sues a storm surge prediction, there is a storm surge in the
observations.

6 Discussion

The theory indicates that one predictor alone should not be
sufficient to describe storm surges. The main features are the
wind stress and the low-pressure systems (below 980 hPa), as
well as their speeds. Our models showed good results when
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using isolated predictors but also worked well when using
them in combination. Furthermore, for almost all stations
(except NSWE and DEU stations), surface pressure and the
west wind were the most important ERAS predictors. Our
model results suggest that mostly low-pressure fields below
980 hPa and strong (mean) west winds of 10ms~—! around
the area of the Danish straits lead to TPPs, especially for sta-
tions located in the north-east of the Baltic Sea. For those sta-
tions, the Aol of U10 was situated south of the Danish straits,
reaching inland towards central Germany. This can actually
be explained by predominant south-westerly winds in win-
ter months, which eventually push water masses towards the
north-east. Furthermore, PMs showed (when looking beyond
the Aol) that those strong west winds often acted over a
long horizontal distance, which according to Weisse and von
Storch (2010) increases the potential of storm surges. It is
this wind direction that leads to the fact that UI0 and SP
did not lead to any good predictions for DEU station. This
is theoretically sound, as for stations in the south-west of the
Baltic Sea, water is pushed away towards the north-east due
to winds and baric waves. In contrast, those stations should
be more subject to low extreme sea levels, which we did not
investigate in this study.

For stations at the meridional extents of the Baltic Sea, the
meridional wind component should be the most important
predictor. We saw that, for instance, for NSWE and DEU
stations, where northward and southward winds were a pre-
dominant factor for storm surges, respectively.

According to Leppiranta and Myrberg (2009), the largest
amount of precipitation is found on the eastern coast of the
Baltic Sea due to the winds blowing mostly eastward in win-
tertime. We were not able to reproduce this in our model. If
any structure at all could be obtained from Aols of TP, it was
the importance around the area of Bergen and the UK. Also,
the corresponding PMs of TP did not show stronger rain on
the eastern coast of the Baltic Sea. In contrast, Gonnert et al.
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Table 1. Comparison of the TPRs for the GTSR prediction and the RF prediction based on the validation set My,. We selected the best RF

in terms of the highest VTPR amongst all experiments.

Station GTSR (TPR, precision)  Best RF (TPR, precision) (predictor)
0 (NSWE) (45.68 %, 100 %) (72.22 %, 34.21 %) (SP)

1 (FIN) (47.68 %, 97.16 %) (86.67 %, 14.28 %) (PF)

2 (FINBAY) (35.1 %, 100 %) (87.1 %, 30 %) (PF)

3 (LVA) (38.95 %, 100 %) (85.19 %, 42.59 %) (SP and U10)

4 (DEU) (34.6 %, 98 %) (80 %, 20.3 %) (PF)

5 (WSWE) (47.05 %, 96.3 %) (81.48 %, 21.56 %) (SP)

6 (WSWE2) (46.5%, 99.1 %) (82.76 %, 23.76 %) (U10)

(2001) state that the influence of precipitation is not directly
related to storm surge magnitudes but rather alters precondi-
tions such as the pre-filling of the Baltic Sea and the filling of
rivers and estuaries. For almost all stations, this was actually
true. Compared to other ERAS predictors, PF generally led
to better TPRs on the validation set.

Sometimes our model showed patterns for Aol and PMs
that, however, were hard to explain using theory. For in-
stance, for NSWE station, low-pressure fields in the Euro-
pean North Sea were of great importance instead of low-
pressure systems close to the station (see Fig. 8). This be-
haviour showed up mainly when using time-lagged predic-
tors. Theoretically, low-pressure systems in those areas move
towards the east, i.e. in the direction of the station, which
might be one possible explanation. Additionally, for some
cases, storm surges were observed but not predicted (FNPs)
— for instance in the presence of high-pressure fields. This be-
haviour was not due to SP being a sole predictor, as we were
able to observe the same behaviour when accounting for a
combination of all predictors. The time lag of the predictors
might have been too long, such that high-pressure systems
were able to move past the station, giving way to a low-
pressure system before the actual day of the storm surge.
One idea to overcome this problem is to use hourly gradi-
ents of atmospheric pressure as predictors, which indicate a
rapid (de-)intensification of low-pressure systems (similar to
Bruneau et al., 2020).

Nevertheless, we saw that time lagging the predictors im-
proved model results for some stations. This is in alignment
with Tyralis et al. (2019), who showed that random forests
worked better when time-lagged predictors were used. In
general, time lags up to 2d worked quite reasonably, while
longer time lags did not add much value to VTPRs. For in-
stance, a lead time between 1 and 3 d for U10 was often the
best choice. This is what we expected, especially for north-
eastern stations, as deep-water waves need approximately 2 d
to travel across the Baltic Sea. For PF, mostly short-term time
lags work best, but still, it was even possible to increase the
time lag up to 1 week. This contradicts the actual definition
of pre-filling, and one might argue against the usage of the
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plain time series of water recordings at Degerby as a plausi-
ble predictor.

When comparing the relatively high VTPRs obtained from
all experiments to their corresponding precision, we can in-
fer a general pattern of our model; it is sensitive but not as
precise as the storm surge reanalysis. As mentioned before,
this comparison is not fair, as the drivers for the benchmark
storm surge model use complete temporal information before
and after the storm surge. Nevertheless, this is an important
caveat, especially when considering this model for decision
making. Models used for decision making should be precise,
ideally having precision of 100 %. Hence, at this stage, the
model should be improved before it can be used in a decision
making process, and we instead advise using it as a surrogate
model that can be used as a trigger to run more precise mod-
els for operational storm surge predictions. Alternatively, the
hydrographic agencies may compare the sensitivity of our
model with their operational predictions to evaluate any pos-
sible gains of this approach.

Other caveats of our model need to be mentioned as well.
First of all, we only use a period of 6 months over 12 years to
generate training and testing data. But Bruneau et al. (2020)
showed that for machine learning, and specifically artificial
neural networks, 6-7 years of daily training data are neces-
sary. In order to overcome this, one could extend the dataset
to longer time periods. Using more data increases comput-
ing time, which is one reason why we did not implement it.
Our main objective was to design a relatively simple predic-
tion scheme that would not need heavy computing resources.
However, in view of the results obtained, the algorithm could
be trained using more data with more powerful resources.

Furthermore, algorithms trained with predictors based on
remotely sensed data outperformed algorithms trained with
predictors obtained from the reanalysis data by Tyralis et
al. (2019). We used only reanalysis data as predictors. If re-
motely sensed data are available, testing the algorithm with
them could provide better statistics.

For future studies within this context, it would be inter-
esting to alter and specify some of the predictors. For in-
stance, instead of only using U10 and V10, one could actu-
ally calculate all of the wind stresses, i.e. the wind direction,
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wind velocity, and its duration. Our dataset did not involve
the duration, which is especially important for the genera-
tion of surface waves and swell. Similarly, if low-pressure
systems move at relatively high velocities, i.e. greater than
16ms~—!, a sub-pressure-driven storm surge occurs (Wolski
and Wisniewski, 2021) because the effect of the baric wave is
stronger than that of the wind. We did not use the speed or the
trajectory of a low-pressure system as model input. However,
these can be important as they induce resonance coupling and
give direction to the induced baric wave. Another physical
change that can be made is to look at negative storm surges
instead of positive ones and see if the behaviours of U10 and
SP change for stations such as DEU. For instance, the bays
of Mecklenburg and Kiel experienced strong negative storm
surges due to water outflow caused by low-pressure systems
moving towards the east (Wolski and Wisniewski, 2020).

From a technical perspective, one could adjust the def-
inition, i.e. the binary encoding of storm surges, to repre-
sent the alarm levels at specific stations instead of using per-
centiles. To improve the precision of the model, one could
also alter the loss function of the RF such that it penalizes
false-positive predictions more heavily. Ideally, this would
increase the precision and F1 score and make the RF more
suitable for direct operational usage. This could, however,
worsen the sensitivity.

It would also be interesting to extend the usage of the RF to
random regression forests in order to investigate and predict
the actual heights of the water level during storm surges. Fur-
ther, Tiggeloven et al. (2021) showed promising results using
deep-learning methods when those models are tailored for
specific regions. However, predictions over the whole range
of variations are more complex and may require either more
data or more computing power. Additionally, a more com-
mon approach in the ML literature is to supply all the input
predictors considered for the RF model and let the model
itself decide which combinations and connections are impor-
tant. We did not apply this and instead backed the choice of
predictors with the underlying theory of storm surge devel-
opment. Hence, we only tested combinations of predictors
that were in line with the theoretical explanation of storm
surges. We then wanted to infer the spatial patterns of phys-
ical predictors within the research area and their importance
compared to each other.

7 Conclusion

In this study, we designed a prediction scheme for the occur-
rence of storm surges, i.e. the top daily 5 % of coastal water
levels, for seven stations across the Baltic Sea. The predic-
tion horizon is a few days, and the method is based on a ran-
dom forest used as a binary classifier. The method was tested
on records of the water level at stations from GESLA3, and
atmospheric predictors were taken from the ERAS dataset,
from which we choose variables of surface pressure (SP),
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zonal (U10) and meridional (V10) wind speeds at 10 m above
the Earth’s surface, and total precipitation (TP). Despite its
relative simplicity, the purely data-driven random forest bi-
nary classifier is able to predict the occurrence of storm
surges in the Baltic Sea with a few days lead time with high
sensitivity. The method is able to identify the relevant predic-
tors and the relevant regions among a set of atmospheric vari-
ables, agreeing with physical expectations. The RF method is
able to discriminate between the predictors according to the
station location. For stations at the zonal extents of the Baltic
Sea, U10 and SP were the most important predictors, show-
ing strong west winds and pronounced low-pressure systems
when modelling extreme storm surges. For stations at the
meridional extents, the importance of V10 increases.

The west wind around the Danish straits often indicated
the onset of an extreme storm surge, probably due to its in-
fluence on the Baltic Sea pre-filling. Increasing predictor lead
times decreased model accuracy and precision. The method
works well for lead times of up to 2d. Combining several
time lags works better for some stations than using the dif-
ferent lead times in isolation.

Hence, this study shows that the drivers of storm surges
across the Baltic Sea depend on the locality of the event.
Due to its brief computing time, it can be used as an auxil-
iary model that gives information about the need to run more
complex and precise operational numerical models.

The model is high in sensitivity but lacks precision com-
pared to other benchmarks. Hence, future research could ex-
tend the model, for instance, using more sophisticated loss
functions and predictors by changing the predictand to a con-
tinuous water level or by switching the predictive scheme
from deterministic to probabilistic in order to evaluate un-
certainties in predictions.

Appendix A: Tables

Table Al. Stations numbers as in Fig. 2 and the corresponding
codes in the GESLA dataset.

Station GESLA code Identifier
numbers

0 “kalixstoron-kal-swe-cmems” NSWE

1 ”hanko-han-fin-cmems” FIN

2 ”hamina-ham-fin-cmems” FINBAY
3 ”daugavgriva-dau-lva-cmems”  LVA

4 “travemuende-tra-deu-cmems”  DEU

5 ”oskarshamn-osk-swe-cmems” WSWE
6 ”forsmark-for-swe-cmems” WSWE2
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Table A2. Variables from the ERAS dataset used as predictors. The description of the data is taken from the parameter database of the official
ECMWEF website.

Name  Units

Short description

SP Pa Pressure (force per unit area) of the atmosphere on the surface of land, sea, and inland water. It is measured by
the weight of total air in a vertical column above the area of the Earth’s surface.
TP m Accumulated liquid and frozen water that falls to the Earth’s surface. It represents the sum of large-scale
precipitation and convective precipitation. The units indicate the depth the water would have when evenly
spread over the grid box.
U10 ms~!  The eastward component of the 10 m wind, i.e. the horizontal speed of air moving towards the east at a height of 10 m
above the Earth’s surface.
V10 ms~!  The northward component of the 10 m wind, i.e. the horizontal speed of air moving towards the north at a height of 10 m

above the Earth’s surface

Table A3. Parameters used to find optimal hyperparameters of the random forest. When multiple values are given, the optimizer chooses the
best combination amongst those.

Parameter Value Short description

n_estimator [333, 666, 1000] Number of DT's used within an RF.

max_depth 1,2, 3] The depth of each DT.

class_weight  “balanced” Associated weighting of each class.

oob_score “True” Calculating out-of-bag sample scores for each DT.
optimizer “RandomSearchCV”  Functionality to find best combination of hyperparameters.

Optionally “GridSearchCV” can be used.

k 3 k-fold cross-validation used by optimizer.
n_iter 100 Number of parameter settings that are sampled by “RandomSearchCV”.
Trades off runtime against the quality of the solution.
Table A4. Parameters and time lags used for experiment A. All pre- Table AS. Parameters and time lags used for experiment B. Paren-
dictors are used in isolation; no combinations are used. theses indicate that predictors are used in combination.
Experiment A Experiment B
Run ID Predictors ~ Time lags (in days) Run ID Predictors  Time lags (in days)
04 SP, TP, U10, V10, PF  No time lag, i.e. 0 0 (SP, TP, U10, V10) (1,1,1,1)
5-9 SP, TP, U10, V10, PF  All with time lag 1 1 (SP, TP, U10, V10, PF) (1,1,1,1, 1)
10-14  SP, TP, U10, V10, PF  All with time lag 2 2 (SP, TP, U10, V10) 2,2,2,2)
15-19 SP, TP, U10, V10, PF  All with time lag 3 3 (SP, TP, U10, V10, PF) 2,2,2,2,2)
2024  SP, TP, U10, V10, PF  All with time lag 4
25-29 SP, TP, U10, V10, PF  All with time lag 5
30-34  SP, TP, U10,V10,PF  All with time lag 6
35-39 SP, TP, U10, V10, PF  All with time lag 7
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Table A6. Parameters and time lags used for experiment C. Parentheses indicate that predictors are used in combination.

Experiment C

Run ID Predictors Time lags (in days)
0,1,...,7 (SP,U10), (SP,U10), ..., (SP,U10) (0,0),(1,1),...,(7,7)
8,9,10 (SP, U10), (SP, U10), (SP, U10) (2,3),(2,4),(2,5)

11 (SP, SP, U10, U10) (1,3, 1,5)

12 (SP, SP, U10, U10) (1,4, 1,6)

13 (SP, SP, U10, U10) (1,5,1,7)

Table A7. Parameters and time lags used for experiment D. Parentheses indicate that predictors are used in combination.

Experiment D

Run ID  Predictors Time lags (in days)
0-3 All (U10, U10) (1,2),(2,3),(2,4), (3,6)
4-7 All (U10, U10, U10) (1,2,3),(2,3,4),(3,4,5),(5,6,7)

811 All (U10, U10, U10, U10)

1,2,3,4),(4,5,6,7),(1,3,5,7), (1,7, 14, 21)

Table A8. Parameters and time lags used for experiment E. Paren-
theses indicate that predictors are used in combination.

Experiment E

Run ID  Predictors Time lags (in days)

0 (TP, TP, TP, U10) (7,5,2,2)
1 (U10, PE, PE,PF) (3,7,5,2)
2 (U10, U10, PF) (5,2,7)

Table A9. Parameters and time lags used for experiment F. Paren-
theses indicate that predictors are used in combination.

Experiment F

RunID  Predictors Time lags (in days)

0-3 All PF 10, 15, 20, 25

4-6 All (PF, PF) (5, 10), (10, 15), (20, 25)
7,8 All (PE, PE, PF) (5, 15,25), (7, 14, 21)

9 (PF, PE, PE, PF) (3, 14, 21, 30)
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