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Abstract. Rainfall strongly affects landslide triggering; how-
ever, understanding how storm characteristics relate to the
severity of landslides at the regional scale has thus far re-
mained unclear, despite the societal benefits that would re-
sult from defining this relationship. As mapped landslide in-
ventories typically cover a small region relative to a storm
system, here we develop a dimensionless index for landslide-
inducing rainfall, A∗, based on extremes of modeled soil wa-
ter relative to its local climatology. We calibrate A∗ using
four landslide inventories, comprising over 11 000 individual
landslides over four unique storm events, and find that a com-
mon threshold can be applied to estimate regional shallow-
landslide-triggering potential across diverse climatic regimes
in California (USA). We then use the spatial distribution of
A∗, along with topography, to calculate the landslide poten-
tial area (LPA) for nine landslide-inducing storm events over
the past 20 years, and we test whether atmospheric metrics
describing the strength of landfalling storms, such as inte-
grated water vapor transport, correlate with the magnitude of
hazardous landslide-inducing rainfall. We find that although
the events with the largest LPA do occur during exceptional
atmospheric river (AR) storms, the strength of landfalling at-
mospheric rivers does not scale neatly with landslide poten-
tial area, and even exceptionally strong ARs may yield mini-
mal landslide impacts. Other factors, such as antecedent soil
moisture driven by storm frequency and mesoscale precipita-
tion features within storms, are instead more likely to dictate
the patterns of landslide-generating rainfall throughout the
state.

1 Introduction

Rainfall-induced landslides are a global hazard that result
in thousands of fatalities (Petley, 2012; Froude and Petley,
2018) and billions of dollars in economic losses annually
(Schuster and Fleming, 1986; Kjekstad and Highland, 2009).
During the progression of a hazardous storm, shallow land-
slides, those occurring primarily within a soil-mantled hill-
slope, are often triggered by infiltrating rainwater that inter-
acts with the shallow (typically less than 3 m) groundwater
system to produce destabilizing pore water pressures (Reid,
1994; Iverson, 2000; Collins and Znidarcic, 2004; Bogaard
and Greco, 2016) (Fig. 1). Over the past 5 decades, a growing
recognition of rainfall-induced landslide hazards has led to a
range of efforts in developing landslide warning systems that
assess when these rainfall thresholds for slope failure might
be exceeded using a variety of criteria (Campbell, 1975;
Keefer et al., 1987; Baum and Godt, 2010; Kirschbaum and
Stanley, 2018; Guzzetti et al., 2020, and references therein).

While operational forecasting of landslides using nu-
merical weather prediction remains rare (e.g., Guzzetti et
al., 2020; Kong et al., 2020), a growing body of research
suggests that distinct meteorological features at both the
synoptic scale (∼ 200 to 2000 km, multiple days) and the
mesoscale (∼ 2–200 km, minutes to hours) can exert a strong
control on landslide occurrence and distribution and could
potentially be used for landslide forecasting. For example,
atmospheric rivers (ARs) are synoptic features consisting
of long filaments of enhanced water vapor in the lower at-
mosphere and are typically associated with mid-latitude cy-
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Figure 1. Examples of landslides triggered by recent storms in
California. (a) Aerial photograph of a home in California’s East
Bay region damaged by a landslide initiated during an atmospheric
river storm on 6 February 2017. Photo taken by Brian Collins. (b)
WorldView-2 imagery of landslides triggered by heavy rainfall on
10 January 2005, near the town of La Conchita. (c) WorldView-3
imagery of the southernmost San Bernardino Mountains north of
Cabazon, showing debris flows triggered by the 14 February 2019
atmospheric river storm that caused extensive damage across River-
side County. Inset shows a map of California with the annotated
circles corresponding to the respective panel. The unlabeled small
blue circle corresponds to the location of the landslide inventory
associated with a storm in April 2020 that triggered numerous land-
slides near the town of Encinitas (Fig. 3d).

clones that transport moisture poleward from the tropics
to the mid-latitudes, such as the west coast of the United
States. They are a primary generator of precipitation in
California (USA) and are typically measured and denoted
by integrated water vapor transport (IVT) values exceeding
250 kgm−1 s−1 (Ralph et al., 2019). Combining news re-
ports of landslide events going back nearly 150 years with an
AR catalogue, Cordeira et al. (2019) showed that in Califor-
nia’s San Francisco Bay Area, 70 %–80 % of reported land-
slide days occur in association with AR conditions. How-
ever, the authors also found that only 5 %–12 % of ARs in
their catalogue coincided with reported landslide days, lead-
ing them to suggest that other meteorological processes may
have accompanied these storms to trigger the reported land-
slides. Similarly, Oakley et al. (2018) found that 60 %–90 %
of rainfall events exceeding published landslide-triggering
thresholds in California over a 22-year period coincided

with storms featuring ARs. At a smaller dynamic scale,
mesoscale processes that operate within synoptic storms and
that are shorter-lived phenomena compared to ARs can pro-
vide bursts of higher-intensity rainfall that can also trigger
abundant landsliding. Collins et al. (2020) found a close spa-
tial clustering between distributed shallow landslides from a
2018 storm in central California and the stalling of a nar-
row cold-frontal rainband (NCFR; a band of intense convec-
tive rainfall that can occur ahead of a cold front) that fol-
lowed the passage of an atmospheric river over the region.
Here, the timing of landslide triggering coincided with the
NCFR rather than the AR, though rainfall associated with
the AR likely primed susceptible slopes for later triggering
(Collins et al., 2020). Thus, storm characteristics at both the
synoptic scale and the mesoscale can play an important role
in shallow-landslide occurrence and distribution, and efforts
to forecast landslide occurrence could benefit from assessing
the likelihood of these meteorological processes occurring
over particular landscapes.

Evaluating the magnitude of landslide hazard potential
across the footprint of a given storm event requires some way
to estimate landslide triggering. Rainfall intensity–duration
thresholds are a common empirical method used to assess
the landslide potential for a given storm event (Cannon and
Ellen, 1985; Keefer et al., 1987; Larsen and Simon, 1993;
Guzzetti et al., 2008). These relationships are typically cali-
brated regionally (or at a specific site near a rain gauge) and
generally follow a power-law relationship where the trigger-
ing rainfall intensity declines exponentially with storm du-
ration. This exponential relationship between rainfall inten-
sity and duration for landslide triggering implies that higher-
intensity storms require less rainfall depth to trigger land-
slides than lower-intensity storms, which is known to be
related to the nonlinear soil moisture storage characteris-
tics that dictate the transmission rate of infiltrating pore wa-
ter (Green and Ampt, 1911; Richardson, 1922; Richards,
1931; Lu et al., 2011). In landscapes that do not rapidly
drain between storm events, antecedent rainfall may lower
the amount of rainfall needed to reach critically unstable
pore water pressure (Crozier and Eyles, 1980; Crozier, 1999;
Glade et al., 2000; Bogaard and Greco, 2018).

Incorporating antecedent moisture into regional estimates
of slope stability has taken several forms. Thomas et
al. (2018) considered antecedent soil moisture and rainfall
depth thresholds for driving positive pore water pressure in
soil columns using physically based infiltration models (i.e.,
using the Richards equation; Richards, 1931). They found
a nonlinear relationship between antecedent soil moisture
and the necessary rainfall depth to generate pore water pres-
sures that trigger shallow-landslide initiation in California’s
San Francisco Bay region. The nonlinearity results from the
shape of the soil water characteristic curves: as soil saturates
from dry to wet conditions, the soil hydraulic conductivity in-
creases by several orders of magnitude (e.g., van Genuchten,
1980), resulting in increasingly fast transmission of pore wa-
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ter from the surface to the water table. The antecedent water
index (AWI) proposed by Godt et al. (2006) uses only rain-
fall data in a one-dimensional mass balance model initially
derived by Wilson and Wieczorek (1995) that tracks theoret-
ical predictions of soil water throughout a rainy season. This
class of reduced-complexity soil hydrologic models is com-
monly referred to as “leaky-barrel” or “tank” models, where
rainfall immediately enters the model reservoir and drains at
a rate proportional to the reservoir height. While AWI does
not directly incorporate the physical processes of rainfall in-
filtration into the soil surface (i.e., it does not use the nonlin-
ear soil water characteristic curve relationships upon which
the Richards equation is based), the model has nevertheless
proven to capture the dynamics of a range of soil hydrologic
processes. While Wilson and Wieczorek (1995) calibrated
their model to observed changes in pore water pressure for
a landslide early warning system in the San Francisco Bay
Area, Godt et al. (2006) calibrated AWI to local measure-
ments of soil water content and used an AWI threshold as part
of a decision tree to forecast landslide events in the Seattle,
Washington (USA), region. Similarly, the Japanese Meteoro-
logical Agency used a three-tank model calibrated to a spe-
cific watershed to develop a soil water index (SWI) that has
been used to help establish rainfall-induced landslide thresh-
olds across the country (Okada et al., 2001; Saito and Mat-
suyama, 2012). Additional examples of hydrometeorological
thresholds used in various landslide forecasting frameworks
can be found in Mirus et al. (2024).

Regional variability also plays a role in setting rainfall
thresholds, and several studies have used various forms of
normalization of rainfall and/or soil moisture variables to ac-
count for this variability (Cannon and Ellen, 1985; Keefer,
1987; Wilson, 1997; Guzzetti et al., 2008; Saito et al., 2010;
Peruccacci et al., 2017). Cannon (1988) normalized rain-
fall totals by the gauge-specific mean annual precipitation
(MAP) to account for regional differences in triggering rain-
fall. Wilson and Jayko (1997) later updated Cannon’s maps
using the “rainy day normal” (where RDN is MAP divided
by the number of rainy days) to further account for regional
differences in triggering. They noted that the recurrence in-
terval of storm events is important in the equilibrium of
landscapes. Marc et al. (2019) tested the efficacy of the 10-
year recurrence 48 h rainfall anomaly (R∗48) as a predictor of
shallow-landslide concentration in Japan and showed that a
strong correlation exists between landslide concentration and
the magnitude of the rainfall anomaly. For the same storm,
Saito and Matsuyama (2012) showed that normalizing the
SWI by its locally maximum value over the preceding decade
also correlated with a clustering of landslides.

Wilson and Jayko (1997), Peruccacci et al. (2017), and
Marc et al. (2019) all posited that landscapes may experi-
ence some degree of geomorphic tuning to extreme rain-
fall, and there are several potential reasons why either cli-
matology or locally extreme rain might shape landscapes in
ways that result in varying landslide-triggering thresholds

across climates. For example, soil production and hence soil
thickness can change with increasing mean annual precipi-
tation (Richardson et al., 2019; Pelletier et al., 2016). This
may have either a destabilizing effect through increasing soil
thickness or a stabilizing effect by lowering hillslope gra-
dients through enhanced diffusivity. Furthermore, root rein-
forcement of hillslopes is controlled by vegetation density
(e.g., Schmidt et al., 2001), which also varies with precipi-
tation (Nemani et al., 2002; Tao et al., 2016). Additionally,
theoretical and numerical work shows that local rainfall in-
tensity can alter long-term landscapes by changing factors
like drainage density and mean slope (Tucker and Slinger-
land, 1997), which in turn can lead to nonlinear increases in
runoff (Carlston, 1963) that can subsequently drive shallow-
landslide and debris flow initiation. Thus, there is a strong
conceptual basis for the normalization of rainfall thresholds
with respect to the regional climatology of their respective
landscapes.

Quantifying the overall strength of storms that trigger shal-
low landslides also remains an ongoing challenge. One way
to characterize distributed storm strength is with the R-CAT
scale (Ralph and Dettinger, 2012; Lamjiri et al., 2020), which
uses 3 d precipitation totals from distributed rain gauges to
delineate broad categories of storm strength, from R-CAT
1 to R-CAT 4. This allows for intercomparison of extreme-
rainfall events over the past century when sufficient gauge
data exist. On a broader scale, the atmospheric river (AR)
scale (Ralph et al., 2019) uses the magnitude and duration of
the vertically integrated water vapor transport (IVT) to cate-
gorize the relative strength of atmospheric rivers on a scale of
AR1 to AR5 at a point. Although not a direct measurement of
rainfall, this characterization avoids the dependence of storm
impact prediction on site-specific rain gauge data. AR-scale
values are suggested to correspond to a balance between ben-
eficial and hazardous conditions, with an AR1 event repre-
senting primarily beneficial rainfall and an AR5 event rep-
resenting primarily hazardous rainfall, yet the authors stress
that these are only general guidelines and may often not be
the case (Ralph et al., 2019). Although the R-CAT and AR
scales allow for intercomparison of storm rainfall or IVT
characteristics, they do not specifically represent landslide
hazard. For example, if an R-CAT 4 or an AR5 event occurs
when soil conditions are dry, they might produce fewer (or
no) landslides than if elevated soil moisture conditions were
present preceding the storm event. These considerations war-
rant a more hazard-focused characterization of storms.

A primary aim of this study is to develop a simple hydrom-
eteorological metric that can be used to delineate conditions
consistent with regional shallow-landslide occurrence and
that can be mapped in space and time. Combining aspects
of the rainfall anomaly approaches of both Marc et al. (2019)
and Saito and Matsuyama (2012), here we develop a uni-
versal index for landslide triggering based on an anomalous
values of theoretical soil water derived from the hydrologic
tank model of Godt et al. (2006) and Wilson and Wieczorek
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(1995), which we call A∗ (Eq. 1). To test the methodology,
we use landslide inventories from four storms that span both
arid and temperate regions of California, a vast and notably
geomorphically and climatically diverse region. We show
that in the case of our four study inventories, a threshold of
A∗ can be utilized to identify landslide events in both space
and time, which bolsters the use of A∗ to broadly estimate
regionally hazardous rainfall conditions outside the areas of
mapped landslides.

To estimate the footprint of potentially hazardous (i.e.,
shallow-landslide-inducing) rainfall across the state, we
measure the distribution of hillslopes impacted by above-
threshold A∗ for each storm to define a landslide potential
area (LPA). A similar approach has been used effectively in
studies quantifying the impacts of earthquake-induced land-
slides by considering both ground shaking and topographic
metrics. For example, Marc et al. (2017) utilize seismic scal-
ing relationships and topographic slope to delineate a cumu-
lative landslide-affected area resulting from an earthquake,
and Tanyas and Lombardo (2019) consider the role of both
peak ground acceleration and topographic slope and relief to
map coseismic landslide-affected areas.

We then investigate how the magnitude and spatial pat-
tern of landslide-inducing conditions relate to meteorological
process strength and spatial extent. We apply our method-
ology to a diverse set of nine impactful landslide-inducing
storms across California from 2005–2021 (including the
four calibration events). California’s landscape encompasses
11 mapped geomorphic provinces distinct in their climatic
and topographic characteristics (Jenkins, 1938) and there-
fore provides an ideal study area in which to evaluate the
utility of our hazard index, A∗, which represents theoreti-
cal estimates of anomalous soil water against highly vari-
able climatological conditions. To examine how the strength
of AR conditions relates to the severity of shallow landslid-
ing, we compare the landslide potential area (LPA) with the
AR scale (Ralph et al., 2019) and show that, while ARs are
clearly important drivers of the events in our catalogue, an-
tecedent conditions, controlled by factors such as AR fre-
quency, and mesoscale features, which often define the dis-
tribution of brief but intense periods of rainfall, rather than
individual AR strength appear to exert a dominant control on
shallow landsliding and should therefore be assessed when
examining patterns of landslide-inducing rainfall.

2 Methods

2.1 Development of dimensionless landslide index A∗

Here we develop a proxy for rainfall-induced shallow-
landslide potential by establishing a normalized index, A∗,
which represents extreme values of the antecedent water in-
dex (AWI) relative to its local climatology:

A∗ =
AWI

AWIRI
, (1)

where AWIRI is the value of AWI at a given recurrence inter-
val (RI). This is similar to the normalized rainfall metric R∗

proposed by Marc et al. (2019) and also conceptually simi-
lar to the normalized soil water index pioneered by Okada et
al. (2001) and Saito and Matsuyama (2012); however, here
we use the hydrologic tank framework of AWI since it does
not rely on a specifically calibrated and more complex three-
tank model and has already been effectively utilized in appli-
cations of landslide forecasting along the United States west
coast (Wilson and Wieczorek, 1995; Godt et al., 2006). Sim-
ilar leaky-bucket models have also been utilized to explore
controls on monsoonal landslides in the Himalayas (Gabet et
al., 2004; Burrows et al., 2023).

Importantly, this approach using A∗ to define a universal
hydrometeorological landslide hazard index does not explic-
itly assess the susceptibility of individual slopes to rainfall-
induced failure as is commonly done for physically based
models of shallow slope stability (e.g., Montgomery and Di-
etrich, 1994; Baum et al., 2008). Rather, the normalization
process is purposefully focused on a broader, regional scale.
At this coarse spatial scale, we argue that distributions of
A∗ illustrate overall patterns of hazardous rainfall and there-
fore help provide a framework for intercomparison of storms
and the meteorological conditions associated with rainfall-
induced landslides.

The AWI used in our study was formalized by Godt et
al. (2006) to develop a landslide forecast system for Seattle,
Washington (USA). The index provides a measure of theo-
retical soil water using a simple hydrologic tank model de-
veloped by Wilson and Wieczorek (1995). The tank model
employs a mass balance where rainfall is immediately added
to a reservoir with a lower outlet that drains proportionally
to the water level in the reservoir. In the model design, reser-
voir drainage does not occur until sufficient rain has fallen
to completely fill soil pores bound by capillarity that restrict
water flow. This filling parameter is termed R0 and herein
taken to be equal to 0.180 m (Godt et al., 2006), which is ap-
proximately the amount of water needed to bring 1 m thick
loamy soil to field capacity. Once the seasonal rainfall depth
exceeds R0, the flux of additional soil water not bound by
capillarity is modeled as follows:

AWIt = AWIt−1e
−kd1t

+
Ii

kd
(1− e−kd1t ), (2)

where Ii is the rainfall rate added to the reservoir [mh−1],
kd is a drainage constant that modulates the flux out of the
system [h−1], 1t is the time step [h], and the first term in
the equation is the value of AWI [m] at the previous time
step (t − 1) that has experienced drainage over 1t . Follow-
ing rainfall, AWI decays back toward zero. The model as-
sumes that 1t exceeds the timescale required for infiltrating
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rainwater to integrate fully with the existing pore water in
the soil. The model also resets at the beginning of each wa-
ter year to its initial condition (−R0), which approximates
the impact of processes like evapotranspiration that tend to
dry soils from their field capacity back toward their resid-
ual moisture content. Application of this methodology to re-
gions outside of Mediterranean climates, like those within
our study area, may require further testing or a more direct in-
corporation of evapotranspiration processes. While the con-
stant kd in Eq. (2) may influence the local magnitude of AWI,
for A∗ only the relative value is important for a given grid
cell. For the case of the soil water index, the changing rate
constant does not significantly impact the relative distribu-
tion of peaks (Osanai et al., 2010), and we conduct a simi-
lar sensitivity analysis here. Lastly, although this model does
not directly consider the physical processes of infiltration
through the vadose zone into a shallow unconfined aquifer
(e.g., Iverson, 2000; Collins and Znidarcic, 2004; Thomas et
al., 2018), given that we are modeling changes in seasonal
average moisture storage, the model simplifications are rea-
sonable for a depth-averaged estimate of soil moisture, and
Wilson and Wieczorek (1995) and Godt et al. (2006) both
show that the model can replicate changes in pore water pres-
sure and soil moisture that have been used as part of land-
slide early warning systems in both northern California and
Seattle, Washington, respectively. Here we regard AWI as re-
flecting a general mass balance of soil water, and we do not
attempt to tie AWI to a specific measurable soil variable such
as moisture content or pore pressure.

Estimating the spatial distribution of AWIRI (the recur-
rence value estimates of AWI) across our study area re-
quired calculating an AWI climatology using a gridded pre-
cipitation dataset from which we could estimate local AWI
values at varying recurrence intervals. Here we used 4 km
grids of 6-hourly rainfall from the National Oceanic and At-
mospheric Administration (NOAA) California Nevada River
Forecast Center (CNRFC) Stage IV quantitative precipitation
estimate (QPE) (Seo and Breidenbach, 2002; Nelson et al.,
2016; CNRFC, 2023a). These precipitation products are gen-
erated by interpolating rain gauge data using the elevation–
precipitation relationships established by the PRISM Climate
Group (PRISM, 2014). Unlike other NOAA river forecast
centers, because of poor radar coverage in crucial moun-
tainous areas in California, the CNRFC does not incorpo-
rate radar data in their QPE (Nelson et al., 2016). From this
archive of gridded precipitation estimates we calculated 6-
hourly AWI for water years 2004–2022 across the state of
California. To then calculate AWIRI values for each grid cell,
we used a block maxima method (i.e., taking each annual
maximum of AWI for each water year) to create general-
ized extreme value distributions from which we calculated
local recurrence intervals along each grid cell (e.g., Marc et
al., 2019). Figure 2 illustrates the methodology for an exam-
ple pixel in our study domain. Panel (a) shows the 19-year
time series of rainfall for a representative pixel in southern

California, and panel (b) shows the AWI model results cal-
culated from the rainfall data, with annual maxima shown
as open circles. These annual maxima are then plotted as
a histogram (panel c) from which an extreme value distri-
bution can be fit (blue line). Recurrence intervals can then
be directly estimated from the best-fit distribution. As is dis-
cussed in Sect. 4.1, for this analysis we selected the 10-year
recurrence interval for AWIRI, and the resulting grid was
smoothed with a median filter to ensure continuity between
pixels.

2.2 Determination of a common A∗ threshold using
four rainfall-induced landslide inventories in
California

We determine a common A∗ threshold using a series of four
landslide-inducing storms that impacted different regions of
California from 2005–2020 (Fig. 3). These events were cho-
sen either because landslide inventories already existed or
because they could easily be mapped from available satel-
lite data. The four calibration events include a January 2005
storm that produced abundant landsliding throughout south-
ern California (Corbett and Perkins, 2024a; Table 1), includ-
ing the tragic La Conchita landslide that claimed 10 lives
during the event (Jibson, 2006); a January 2017 storm that
produced thousands of landslides in the East Bay hills of the
San Francisco Bay Area (Corbett and Collins, 2023; Thomas
et al., 2018); a February 2019 storm that produced land-
slides both in the northern San Francisco Bay Area and in
southern California’s Riverside County (Hatchett et al., 2020;
Corbett and Perkins, 2024b); and an April 2020 storm that
produced localized landslides and debris flows north of San
Diego (Oakley et al., 2020; Reported California Landslides
Database, 2025) (Table 1). These inventories together yield a
total of 11 668 individual landslides.

To find a threshold that is consistent with all four storms,
we first compare the maximum AWI for each landslide point
(i.e., 11 688 points) during the passage of each storm against
its background AWI value (as discussed below, we use the
10-year recurrence value). This serves as a simple test to see
whether the triggering AWI is a constant threshold across
different regions in California, which would plot as a hori-
zontal line, or whether any threshold depends on the back-
ground AWI itself (see Cavagnaro et al., 2023). As the land-
slide spacing is small relative to the 4 km grid cells of the
AWI dataset, we use the grdtrack function within the PyGMT
software package (Tian et al., 2025) that interpolates a pre-
cise value between neighboring grid cells. After identifying
an acceptable common AWI recurrence interval for normal-
izing A∗ (see Results), we also examined the 19-year time
series of A∗ across each inventory to illustrate the unique
occurrence of these values throughout each of the four cali-
bration storms.
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Figure 2. An example from southern California showing the methodology for calculating a climatology of AWI (b) using a 19-year record
of 6-hourly rainfall (a). AWI annual maxima are shown as open circles in (b), and years whose maxima are below zero (indicating that
antecedent conditions were not met in this water year) are not shown. A generalized extreme value distribution is fit to a histogram of AWI
annual maxima (c) from which any recurrence interval can be calculated. Here the 10-year recurrence value is shown as the bold black line
in (c).

Figure 3. Landslide inventories (a–d) used to estimate a reasonable antecedent water index (AWI) recurrence threshold above which most
landslides occurred. The black boxes and polygon in panels (a–c) represent the landslide mapping bounds for each event, and the black line
in panel (d) represents the GPS tracks from the California Geological Survey (CGS) field mapping campaign. Panel (e) shows a plot of peak
AWI modeled during the storm windows interpolated into each landslide point (y axis) against the 10-year recurrence AWI at each point
(x axis). A constant threshold across regions would plot as a horizontal line. Over 97 % of the mapped landslides plot above their 10-year
recurrence value (the 1 : 1 line). Dashed lines are the 0.9 : 1 and 1.1 : 1 lines. Shaded relief for (a–d) is derived from NASA’s SRTM 30 m
digital elevation model (DEM) (NASA, 2013).

2.3 Calculating the footprint of hazardous rainfall
using landslide potential area (LPA)

One of the main goals of our study was to develop a method-
ology for both dynamically mapping conditions across the
state in a way that is consistent with distributed shallow
landsliding and for estimating the magnitude of the potential
landslide-affected area associated with a given storm. Our
approach was to use A∗ as an index for distributed shallow-

landslide occurrence and then calculate the spatial distribu-
tions of maximum A∗ throughout the passage of a storm (Ta-
ble 1). To do this, we identified the time window bracketing
the passage of each storm over land (typically of the order
of 72 h; Table 1) and then calculated the maximum of A∗

for each pixel in the domain. The landslide potential area
(LPA) is then calculated simply as the area of hillslopes in
our study area (units of km2) with A∗ > 1. To exclude flat
terrain (i.e., not capable of shallow landsliding) and terrain
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Table 1. Event catalogue of storms used in the analysis. The synoptic features column indicates whether the event featured a closed or cutoff
low-pressure system or an atmospheric river (AR), two synoptic-scale features commonly associated with impactful rainfall events in Califor-
nia (CA). The mesoscale features column indicates whether a mesoscale feature producing high-intensity rainfall (i.e., reflectivity > 45 dBZ)
was observed in radar imagery in the area where landslides were observed at the approximate time of landslide occurrence. Embedded
convection refers to localized areas of high-intensity rainfall embedded within the broader storm system. En dashes indicate no observed
features. Also indicated for each event are the measured atmospheric river (AR) scale using the methodology of Ralph et al. (2019) and the
calculated landslide potential area (LPA).

Event name and primary
impacted regions in CA

Start date End date Synoptic features Mesoscale features AR scale LPA (km2)

January 2005. Transverse
Ranges

7 Jan 2005 11 Jan 2005 AR, closed low Embedded convection 3 11 950

February 2005. Southern CA,
Chino Hills

18 Feb 2005 21 Feb 2005 Cutoff low Embedded convection 1 6160

December 2005. Northern CA,
Coast Ranges, Klamath, Sierra
Nevada

26 Dec 2005 3 Jan 2006 AR Ring-like band of
moderate rainfall

4 38 600

January 2017. Northern CA 8 Jan 2017 10 Jan 2017 AR Convective bands in
the Sierra Nevada, San
Francisco Bay Area

5 25 750

February 2017. Northern CA,
San Francisco Bay Area

4 Feb 2017 8 Feb 2017 AR – 5 5920

March 2018. Central CA coast,
the western Sierra Nevada
foothills

21 Mar 2018 23 Mar 2018 AR Narrow cold-frontal
rainband

4 1550

February 2019. Statewide 13 Feb 2019 16 Feb 2019 AR Convective bands in
the Sierra Nevada,
embedded convection
in southern CA

4 5510

April 2020. San Diego County 7 Apr 2020 11 Apr 2020 Cutoff low Isolated thunderstorms 0 1620

October 2021. Northern CA,
San Francisco Bay Area, Sierra
Nevada

22 Oct 2021 25 Oct 2021 AR – 5 60

covered in snow (where shallow landslides are unlikely), we
created a mask of sloping terrain greater than 5°, utilizing
a 30 m SRTM-derived digital elevation model (DEM) (Farr
et al., 2007), and also excluded grid cells with elevations
greater than the typical winter snow line in the state (1024 m;
see Hatchett et al., 2017). Here we also do not consider the
bedrock-dominated deserts east of the Sierra Nevada where
our soil moisture storage model for shallow landsliding is
not strictly applicable. Although the 5° mask is a low thresh-
old for shallow-landslide-producing hillslopes, we assume a
conservative threshold given the relatively large DEM grid
size compared to the size of typical shallow landslides. This
yields a grid of shallow-landslide-prone terrain throughout
the study area. To calculate LPA [km2] we then interpolated
the grid of A∗ maxima into the masked hillslope raster and
calculated the area of hillslope cells with an A∗ maximum
equal to or greater than our defined threshold. While here we
do not propose that LPA specifically quantifies all areas im-

pacted by landslides, instead we propose this approach offers
a reasonable proxy of conditions consistent with observed
shallow landsliding that can be used to coordinate potential
landslide response.

2.4 Evaluating A∗ and LPA for a catalogue of recent
landslide-triggering storms

We tested our analytical framework for regional shallow-
landslide triggering on a catalogue of nine landslide-inducing
storm events that have occurred in California since 2005,
including the four calibration events described in Sect. 2.2
(Table 1). While there are notable and well-documented
landslide-inducing storms that occurred prior to 2005 in Cal-
ifornia, the gridded rainfall product we use in our analyses
was not available prior to 2005 (Sect. 2.2.1). Thus, we were
limited to evaluating only more recent storms. These storms
were selected because they were exceptionally large storms
with a few well-documented landslide occurrences (essen-
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tially null events, e.g., October 2021), had mapped landslides
with slightly less constrained timing (e.g., February 2005), or
were storms with known reports of extensive landsliding but
no available inventories (e.g., December 2005).

For each storm in our catalogue, we also examined the
synoptic-scale and mesoscale conditions using a variety of
meteorological data. This included analysis of several me-
teorological variables, such as geopotential height at var-
ious levels, integrated water vapor (IWV) and integrated
water vapor transport (IVT), and upper-level winds from
the ERA5 reanalysis dataset (Hersbach et al., 2020). We
used NEXRAD weather radar data archived at the Califor-
nia Nevada River Forecast Office (CNRFC, 2023b) and at
the National Centers for Environmental Information (NCEI,
2023) to evaluate spatial patterns of rainfall in storms and to
identify areas of short-duration, high-intensity rainfall asso-
ciated with mesoscale features such as narrow cold-frontal
rainbands or thunderstorms, which are represented by high
reflectivity values.

We calculated the AR-scale value for each storm using the
methodology of Ralph et al. (2019) at all ERA5 grid cells
along the Californian coast for a time window spanning 4 d
preceding the landslide event of interest; the AR scale re-
quires a minimum 72 h window for calculation. We use the
maximum AR scale at landfall in the state as representative
of the AR scale of the event. This is common practice in re-
porting the magnitude of AR events affecting a broad region
of interest (e.g., Center for Western Weather and Water Ex-
tremes, 2023a) but may differ from the AR-scale value cal-
culated at any individual landslide location. Most events af-
fected multiple parts of the state, or the maximum AR scale
at landfall corresponded to the location of one or more of
the observed landslides. An exception is the April 2020 San
Diego County event. In this event, weak AR conditions were
present in the far northern regions of California during the
event window but were irrelevant to the event itself, with no
AR conditions present south of San Francisco Bay. Thus, it
was most appropriate to represent this event as zero – no AR.
For the February 2005 Chino Hills event, AR1 conditions
were present at a few grid points north of Point Conception,
a far distance from the event but still in the broader southern
California region. While this event was registered as having
AR conditions on the AR scale, it did not feature synoptic
features consistent with an AR. Thus, we rank it as AR1 but
do not regard it as an AR in the synoptic features column.

3 Data: meteorological characteristics of storms

The nine storms in our catalogue (Table 1) show a range
of meteorological characteristics that caused rainfall-induced
landslides. The January 2005 and February 2005 storms both
impacted southern California, the January 2005 storm caused
landslides along the coastal hillslopes and inland canyons
of Ventura County (Jibson, 2006; Stock and Bellugi, 2011;

Fig. 1), and the February 2005 storm produced hundreds of
landslides in the Chino Hills region east of the city of Los
Angeles (Prancevic et al., 2020). Both storms featured atmo-
spheric rivers, with AR-scale values of AR1 and AR3, re-
spectively. They also exhibited embedded convection at the
mesoscale, which can produce short bursts of high-intensity
rainfall. Both events were also associated with cutoff or
closed low-pressure systems. Cutoff lows are mid- to upper-
level low-pressure systems that are removed from the mean
westerly flow and can result in persistent precipitation in a
focused area (Oakley and Redmond, 2014; Barbero et al.,
2019), thereby potentially affecting the resultant spatial dis-
tribution of landsliding. Localized zones of high-intensity
precipitation during or in the vicinity of ARs featured promi-
nently in several storms in our catalogue. For example, the
December 2005 storm in northern California featured an ex-
treme atmospheric river (AR4) and produced historic flood-
ing and extensive landsliding across the region (Stock and
Bellugi, 2011), including in the San Francisco Bay Area, the
Klamath River region, and the Sierra Nevada.

The January 2017 and February 2017 events were part
of a series of AR storms during the historically wet season
of 2016–2017 in the San Francisco Bay Area that produced
over 9000 landslides within the East Bay hills region alone
(Corbett and Collins, 2023; Fig. 1). During the January 2017
storm in particular, convective bands of high-intensity pre-
cipitation were observed in both the Bay Area and the Sierra
Nevada foothills. In the March 2018 event, a stalling nar-
row cold-frontal rainband occurring immediately after the
passage of AR conditions (AR4) produced abundant land-
slides over a section of the Tuolumne River canyon, west of
Yosemite National Park (Collins et al., 2020).

The February 2019 AR storm showed evidence of con-
vective bands in the Sierra Nevada (for reference, approxi-
mately 150 km east of the photo in Fig. 1a) and embedded
convection in southern California, where historic flooding
was observed in Riverside County (Hatchett et al., 2020) and
hundreds of landslides occurred (Fig. 3c). The April 2020
storm was a cutoff low-pressure system. As the cutoff low
passed over the San Diego region, isolated thunderstorms de-
veloped, producing high-intensity rainfall and triggering nu-
merous landslides around the town of Encinitas (Reported
California Landslides Database, 2025; Oakley et al., 2020).
This storm did not reach classification on the AR scale.

Finally, the October 2021 storm consisted of an AR5 event
on 24 October 2021 that pummeled the United States west
coast and was the strongest AR to make landfall in northern
California in the past 40 years during the month of October
(CW3E Event Summary, 2021). This storm led to flooding
throughout northern California, in addition to isolated land-
slides in the northern California Coast Ranges and the north-
ern Sierra Nevada.
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4 Results

4.1 Determination of a common A∗ threshold for
shallow-landslide-triggering conditions

The triggering AWI for landslides from each of the four
calibration inventories in our catalogue (January 2005, Jan-
uary 2017, February 2019, and April 2020 storms; Table 1,
Fig. 3a–d) varies with the background value of AWI for
each location (Fig. 3e). Furthermore, the 10-year recurrence
value of AWI (AWI10) appears to serve as a common thresh-
old (i.e., the 1 : 1 line) that over 97 % of mapped land-
slides exceed across the four events. Whereas the January
2017, February 2019, and April 2020 landslide AWI points
are closer to this threshold, the January 2005 event plots
farther above the 1 : 1 line. While this appears to suggest
that hillslopes with a higher AWI10 may have a compara-
tively higher triggering threshold, evaluation of more land-
slide events across a broader climatic gradient is required to
test this idea sufficiently. We thus take AWI10 as the univer-
sal normalization parameter in the calculation of A∗ for this
analysis (Eq. 1).

Because our definition of A∗ utilizes a high storm recur-
rence interval (i.e., 10 years), A∗ values above 1 are, by defi-
nition, rare. Yet, we nevertheless find value in looking at the
20-year time series of A∗ across each of our landslide cali-
bration sites for which we have consistent rainfall data. For
each of the four calibration events, we find that the landslide-
inducing storm exhibited the largest peak in A∗ across their
respective 20-year histories (Fig. 4). At a minimum, this im-
plies setting an A∗ threshold of 1 produces no false posi-
tives for each site, with the possible exception of the Febru-
ary 2019 Riverside area (Fig. 4c). Here there are two addi-
tional above-threshold peaks in the ∼ 19-year climatology.
The early peak coincides with the January 2005 event, and
while we do not have landslide mapping from this event in
this region, landslides were indeed reported in surrounding
Riverside County from this event (e.g., Los Angeles Times,
2005). Similarly, the second peak in A∗ occurred in Decem-
ber 2010 and triggered landslides and debris flows across
southern California, including in Riverside County, leading
to a request for USD 110 million in federal disaster relief for
storm damage (FEMA, 2011). Thus, while we cannot corrob-
orate these two events as producing landslides within the spe-
cific boxes due to a lack of detailed landslide inventory infor-
mation, at the regional scale they may be considered true pos-
itives. In the case of the April 2020 storm in the San Diego
region, we also show that while the pattern of A∗ is some-
what sensitive to the choice of drainage parameter kd, the
timing of the landslide event is captured over several orders
of magnitude in kd (Fig. 5). This suggests that A∗ is relatively
insensitive to kd within this region; however more work is re-
quired to fully assess how much kd can influence A∗ across
landscapes since soil drainage rates are often highly spatially
heterogeneous.

When considering false negatives (i.e., distributed shal-
low landslides associated with A∗ values less than 1), as-
sessing their outcome becomes more difficult because we
do not have detailed histories of landsliding (or they are ab-
sent) at all four sites. However, for the East Bay hills in
the San Francisco Bay Area (Figs. 3d and 4d), we do know
that the regional distributed landsliding produced by the Jan-
uary 2017 and February 2017 storms (combined number of
landslides > 9000) had not previously been observed since
the winter of 1997–1998 (Coe and Godt, 2001; Corbett and
Collins, 2023). Because these storms occurred so closely in
time, it is not possible to determine which of the January
or February 2017 storms produced the majority of landslides
(Fig. 4b), although both are known to have caused landslides.
Notably, both events produced A∗ values exceeding 1 within
the map area (Fig. 6e and h). Overall, we see that mapped
landslides from each of these four calibration storms coin-
cide with peaks in A∗ in both space and time, and a common
threshold value of A∗ = 1 based on a comparison to the 10-
year climatology can be applied to discriminate the events
from storms that occurred in these locations and that did not
produce widespread landsliding.

4.2 A∗, LPA, and the impact of atmospheric river
strength

All nine storms in our catalogue show at least some patches
of above-threshold A∗; however, the magnitude and spatial
distribution of A∗ are highly variable (Fig. 6). The interquar-
tile ranges of A∗ for above-threshold hillslopes mostly oc-
cur between 1.0 and 1.1 and do not markedly change with
the area of impacted hillslopes (Fig. 7a). Both the January
2005 and the February 2005 storms show larger interquartile
ranges of A∗ with higher absolute values, and, interestingly,
both storms occurred within 2 months of each other in the
winter of 2005 and impacted the same regions within south-
ern California (Fig. 6d and g). Both storms had embedded
convection and favorable orographic conditions (Table 1),
which can lead to locally high rainfall totals (Sect. 4.1). LPA
values, which represent the total area of hillslopes experi-
encing above-threshold A∗ for each storm, vary by nearly an
order of magnitude and range from approximately 60 km2 in
the case of the October 2021 event to just over ∼ 38000 km2

in the case of the December 2005 storm that led to severe
flooding and landslides across northern California (Figs. 6
and 7).

Given that most storms in our catalogue feature ARs, it
is logical to investigate how the magnitude of shallow land-
sliding, as represented by LPA, compares to the magnitude
of the associated AR conditions via the Ralph et al. (2019)
AR scale. Our results show that while the largest-LPA events
do generally correspond to large-AR events, there is con-
siderable variability between AR magnitude and landslide
magnitude (Fig. 7a). For example, the three storms reaching
AR5 (January 2017, February 2017, and October 2021) span

https://doi.org/10.5194/nhess-25-1037-2025 Nat. Hazards Earth Syst. Sci., 25, 1037–1056, 2025



1046 J. Perkins et al.: Characterizing the scale of regional landslide triggering

Figure 4. Time series of median A∗ within a box surrounding each landslide inventory shown in Fig. 3. The dashed black line corresponds
to a threshold value of 1, equivalent to the 10-year recurrence value of the modeled antecedent water index (AWI) (Eq. 2) at each site.
Approximate landslide timing (black star) corresponds to the maximum value of A∗ across each respective time series. For the case of (b),
where landslide observations have been commonplace, no similar instance of extensive landsliding (e.g., Coe and Godt, 2001) has occurred
during the modeled interval, indicating no false positives. For the case of (c), the above-threshold peak from December 2010 corresponds to
a massive regional storm event that produced numerous landslides and flooding in the region, and the 2005 peak corresponds to the same
landslide-inducing storm described in (a), which also produced landslides in Riverside County (see discussion in Sect. 4.1).

the smallest LPA to the second largest (Table 1), indicating
limited predictability of landslide hazard from measures of
IVT alone. This comports with the findings of Cordeira et
al. (2019), who find only a small percentage of reported ARs
is associated with reported landslides in the San Francisco
Bay Area. One reason for this variability is precisely related
to our basing A∗ on a model that accounts for antecedent soil
moisture conditions. The AR scale does not incorporate any
information on antecedent precipitation or soil moisture con-
ditions that may precondition hillslopes and potentially affect
subsequent landslide triggering.

Notably, when event LPA is plotted against the month in
which the storm occurred, a more systematic relationship be-
comes apparent (Fig. 7b). Within our event catalogue, the
largest landslide responses occur in late December and Jan-
uary and progressively decline throughout the year in an
almost-exponential fashion. Although the event catalogue is
lacking in spring events relative to winter events, the overall
apparent trend indicates that seasonal processes are at play
that likely modulate the antecedent hydrologic conditions in
landslide-prone hillslopes. This supports our use of a soil wa-
ter balance (i.e., AWI) anomaly-based metric for identifying
landslide-inducing storms; soil moisture generally decreases
in the spring months (March–April–May) as storms become
less frequent (Fig. 7b), and evapotranspiration increases with
longer days and temperatures. Thus, LPA tracks well with

storm frequency metrics, such as the frequency of AR ar-
rivals along the west coast of the United States (Mundhenk
et al., 2016), which peaks in December and January and de-
clines similarly to the monthly decline in LPA (Fig. 7b). This
is similar to the January peak observed in the monthly fre-
quency of historic landslide days in the San Francisco Bay
Area region (Cordiera et al., 2019) and the peak in observed
seasonal shallow-landslide activity in the Pacific Northwest
(Luna and Korup, 2022), indicating the role of soil moisture
storage and groundwater conditions in driving the seasonal-
ity of regional shallow-landslide activity (Luna and Korup,
2022). Because A∗ and LPA represent local extremes of soil
water, this consistent trend across all events suggests that the
observed seasonality in LPA persists across the state despite
large differences in regional climate.

To test this relationship more explicitly, we examined
whether storm LPA correlates with the degree of antecedent
A∗ values for pixels that ultimately exceeded the landslide
threshold during a storm event. Figure 7c reveals a nonlinear
relationship where the largest-LPA events in the catalogue
tend to have higher antecedent A∗ values, and both early-
season (e.g., October 2021) and late-season (e.g., April 2020)
storms with low-antecedent-A∗ conditions exhibit compara-
tively low LPA values. This relationship is well fit by an ex-
ponential function (R2

= 0.85), indicating that, perhaps un-
surprisingly, the degree to which the landscape is precondi-
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Figure 5. Plots showing the sensitivity of A∗ to the drainage coefficient kd used in the AWI model (Eq. 2) for the San Diego example shown
in Fig. 4d. The red lines show the A∗ time series for each kd value ranging from 0.001 (a) to 0.2 h−1 (d). Panel (b) is the same data as
shown in Fig. 4d. The blue star denotes landslide timing in the April 2020 event, and the dashed gray line represents the threshold A∗ value
of 1 (e.g., Fig. 3). In this example, landslide timing is at or near the threshold value across the range of kd; however, overall peaks in A∗

are broader for slower-draining soils (e.g., a) and narrow considerably with increasing drainage rate as the effect of soil storage declines.
Thus, peaks in A∗ at these drainage rates depend more on instantaneous rainfall intensity and less on multi-day accumulation, which featured
prominently in the April 2020 storm (Table 1).

tioned by prior rainfall exerts a strong control on the area im-
pacted by landslide-inducing rainfall. This result may there-
fore provide a causative link between the apparent relation-
ship between monthly AR arrival frequency and the magni-
tude of landslide potential area (Fig. 7b), as frequent rainfall
events across a region may keep the hydrologic mass balance
in an elevated state, making it more prone to exceeding its
local threshold should a comparatively strong storm system
arrive.

5 Discussion and conclusions

5.1 Effect of low antecedent moisture on large,
early-season storm impacts

The October 2021 AR5 storm offers an important example
of how low antecedent soil moisture can blunt the impacts of
an exceptional storm producing record precipitation in Cali-
fornia’s highly seasonal climate (Fig. 8). This storm followed
a year of drought and came uncharacteristically early for an
AR of its magnitude (e.g., Ralph et al., 2019; CW3E Event
Summary, 2021). Because of this, soils were close to their
residual moisture content. Despite generating a wide swath
of highly anomalous 48 h rainfall with R∗48 values locally ex-

ceeding values of 2 from the San Francisco Bay Area to the
Sierra Nevada (Fig. 8a and b), no reports of major landslid-
ing occurred outside of a few isolated events. Notably, Marc
et al. (2019) report R∗48 values exceeding 2 as an approximate
threshold for what should lead to high-density distributed
landsliding. In our calculation of A∗, the initially dry soil
conditions at the storm onset that occurred only a few weeks
into the rainfall season (beginning 1 October in California)
contributed to a diminished distribution of A∗ and therefore
little predicted landsliding (Fig. 8c). Thus, in Mediterranean
climates where dry soils can mitigate the hazardous effects
of anomalously high rainfall, consideration of soil storage
is an important factor when using normalized thresholds for
regional prediction of shallow landslides in soil-mantled hill-
slopes.

5.2 Dissecting the role of synoptic and mesoscale
meteorological processes in landslide hazard

Our study of a wide range of landslide-inducing storms al-
lows for evaluation of the role that storm characteristics
might have in the distribution of landslides. We found that
while AR presence is often associated with landslide events
(e.g., Cordeira et al., 2019), the strength of ARs as measured

https://doi.org/10.5194/nhess-25-1037-2025 Nat. Hazards Earth Syst. Sci., 25, 1037–1056, 2025



1048 J. Perkins et al.: Characterizing the scale of regional landslide triggering

Figure 6. Distributions of A∗ and resulting landslide potential area (LPA) for the nine landslide-inducing storms in our catalogue (Table 1).
Panels (a–i) are ranked in order of increasing LPA: (a) October 2021, northern California (CA); (b) April 2020, Encinitas; (c) March 2018,
Central Coast and the Sierra Nevada; (d) February 2005, Chino Hills; (e) February 2017, northern CA; (f) February 2019, Chino Hills and
eastern CA; (g) January 2005, La Conchita and southern CA; (h) January 2017, northern CA; and (i) December 2005, northern CA. Hillslopes
in our study region are shown in gray, and distributions of A∗ are shown as warm colors from A∗ = 1 (orange) to A∗ ≥ 1.75 (yellow). A∗

values outside of hillslopes are semi-transparent, and approximate landslide inventory bounds are shown as teal squares. Topographic data
are derived from NASA’s SRTM 30 m DEM (NASA, 2013).

by the AR scale did not exert a significant control on the
magnitude of landslide-triggering rainfall investigated here
(Fig. 7a).

We also find that mesoscale features producing short-
duration, high-intensity rainfall may play a more impor-
tant role in dictating where shallow landslides and associ-
ated debris flows occur (Wooten et al., 2008; Coe et al.,
2016; Collins et al., 2020). Landslides from the April 2020
storm, one of the events with the smallest LPA values in our
catalogue, were triggered by an isolated thunderstorm fol-
lowing a persistent, multi-day period of rainfall associated
with a cutoff low-pressure system (Oakley et al., 2020). The
mapped landslides spatially correlate with a roughly 10 km
wide area of high (> 50 dBZ) radar reflectivity, represent-

ing the isolated effects of the thunderstorm, which also cor-
responds to a local peak in A∗ (Fig. 9a). In a similar ex-
ample of landslide control by mesoscale processes, extreme
rainfall in the March 2018 central California–Sierra Nevada
storm event was influenced by a narrow cold-frontal rainband
(NCFR) that stalled over the region following the passage
of an AR4 atmospheric river (Collins et al., 2020). Here the
pattern of landsliding closely matches the radar reflectivity
signature of the NCFR passage across the region and the pat-
tern of A∗ (Fig. 9b). These two cases in particular highlight
how synoptic-scale and mesoscale atmospheric features may
work together to produce localized landsliding. In each case,
the synoptic feature (cutoff low or atmospheric river) pro-
vided long-duration rainfall, which sufficiently primed the
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Figure 7. Plots showing the relationship between A∗, landslide potential area (LPA), and the Ralph et al. (2019) atmospheric river (AR)
scale. Panel (a) shows how the population of above-threshold A* varies with LPA and the AR scale (color). The dots show the median value
of above-threshold A∗, and the vertical lines show the interquartile range. While most events have median values somewhere close to 1,
both the January 2005 and the April 2020 events have higher median values above 1.15 and much larger interquartile ranges. This likely
reflects the strong orographic and/or convective nature of these two storms in southern California (see discussion). High-AR-scale events
exhibit both the highest and the lowest values of LPA in our catalogue. Panel (b) shows LPA variation (left axis) with the time of the year.
Events in December and January have the highest LPA, with decreasing impacted area (i.e., smaller LPA) later in the rainy season. The right
axis shows the average annual AR arrivals along the United States west coast from reanalysis data (Mundhenk et al., 2016). Panel (c) shows
the relationship between antecedent A∗ (the value of A∗ preceding a given storm window) for pixels that ultimately exceeded the A∗ = 1
threshold and resultant LPA. The relationship is well fit by an exponential relationship (black line).

Figure 8. (a) Map showing 48 h maximum precipitation from the 25 October 2021 atmospheric river scale 5 (AR5) that struck northern
and central California and produced widespread flooding but few landslides (Table 1). (b) R∗48 metric of Marc et al. (2019) showing highly
anomalous 2 d rainfall totals for the region, calculated by taking the results of panel (a) and dividing them by the 10-year recurrence 48 h
rainfall estimates from the NOAA Atlas 14 dataset (Perica et al., 2014). (c) Map of A∗ showing that despite anomalously high rainfall,
few impacts from distributed shallow-landslide occurrence may be expected. Shaded relief for all plots is from NASA’s SRTM 30 m DEM
(NASA, 2013).

soils for failure. This was followed by a high-intensity, short-
duration burst of rainfall from a mesoscale feature that acted
as a landslide trigger (e.g., Collins et al., 2020; Bogaard and
Greco, 2018). The resultant footprint of A∗ in these two ex-
amples thus directly reflects the passage of mesoscale fea-
tures.

Conversely, the highest-magnitude LPA event in the
dataset, the December 2005 storm in northern California

(LPA of 38 600 km2), was associated with persistent (multi-
hour) moderate-intensity rainfall over broad areas (∼ 200 km
scale) (Fig. 9c). This may occur due to the persistence of AR
conditions over an area or increased precipitation rates as-
sociated with the development of mesoscale frontal waves
or secondary cyclones developing near landfalling ARs (e.g.,
Martin et al., 2019), among other atmospheric processes. The
observed rainfall intensities were not as high as the other two
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Figure 9. Maps showing examples of a range of spatial scales of precipitation influencing landslide-inducing rainfall distribution in Cal-
ifornia. Radar reflectivity values are shown as colored pixels, and associated A∗ > 1 values for each storm are shown as red contours.
(a) Mesoscale features such as isolated thunderstorms produced very high intensity rainfall and led to localized landslide hotspots in the
April 2020 storm in southern California (Table 1; black circles). (b) Narrow cold-frontal rainbands (NCFRs), of the order of a few kilometers
wide and tens of kilometers long, are another mesoscale feature that can produce high-intensity rainfall, leading to regional zones of lands-
liding, as was the case along the Sierra Nevada foothills during the March 2018 event (Table 1). The large circles are mapped landslides from
Corbett et al. (2020), the triangles are National Weather Service local storm reports of slope failures during the event (Iowa Environmental
Mesonet, 2023), and the white arrows show the propagation direction of the NCFRs. (c) Broad areas of persistent moderate-intensity precip-
itation may develop under favorable atmospheric conditions, as in the December 2005 storm in northern California (Table 1), which can lead
to widespread distributions of landslide potential area (LPA) when antecedent conditions are sufficiently high over widespread mountainous
terrain (Fig. 7c). Map tiles are copyrighted by Stamen Design (2023) under a Creative Commons Attribution (CC BY4.0) license.

events featuring well-defined mesoscale high-intensity rain-
fall features, but the persistence of moderate-intensity rain-
fall over an area with very high antecedent A∗ (Fig. 7c)
resulted in excessively anomalous rainfall at the large re-
gional scale. This region of northern California also has a
broader concentration of mountainous terrain than elsewhere
in the state (e.g., Fig. 6), which will inherently result in a
larger LPA given similar meteorological conditions. Taken
together, these results suggest spatial patterns of multi-hour
moderate-intensity precipitation and short-duration, high-
intensity rainfall can both impact a storm’s resulting LPA de-
pending on the antecedent A∗ distribution. If hillslope soils
are relatively dry over a region, then the post-event pattern
of A∗ may closely resemble the shape of the meteorological
structures that yield the highest-intensity precipitation, which
typically occur at a finer spatial scale (e.g., Fig. 9a and b). If
the soils preceding a landfalling storm are relatively wet over
a broad region, then the pattern of landslide-inducing rainfall
may more closely reflect the larger meteorological structures
that yield moderate-intensity rainfall (e.g., Fig. 9c). In this
way, for many storms the distribution of antecedent A∗ may
act as an aperture that limits what meteorological structures
imprint themselves on the landscape via distributed shallow
landsliding.

Due to the role of mesoscale processes in driving
landslide-inducing rainfall (Wooten et al., 2008; Minder et

al., 2009; Coe et al., 2016; Collins et al., 2020), the qual-
ity of the quantitative precipitation estimates (QPEs) used in
A∗ and the resultant LPA is important. QPEs that incorporate
radar observations may better capture smaller-scale convec-
tive features that may not be represented by interpolated rain
gauge observations such as the CNRFC 6-hourly QPE (CN-
RFC, 2023a). This is particularly true in landscapes where
rain gauges may be heterogeneously distributed. For exam-
ple, the NCFR passage that drove landsliding in the March
2018 storm was captured well by radar but not particu-
larly well in the rain-gauge-interpolated precipitation dataset
along the Sierra Nevada foothills where gauge data are rel-
atively sparse (Fig. 9b). However, QPEs incorporating radar
observations may be limited by radar coverage in the com-
plex terrain of the western United States.

5.3 Evaluating A∗ performance at the statewide level:
an example from the winter 2023 atmospheric river
sequence

Concerns also remain as to the degree of predictive success
for A∗ across a broader range of events and beyond the rel-
atively small regions (approx. 10 to 10 000 km2) used for
model calibration (e.g., Fig. 3). More systematic and com-
plete landslide inventories are therefore needed at the mega-
regional scale (i.e., more than 100 000 km2; California is
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424 000 km2 in size) to better evaluate how variations in A∗

map with changes in both the presence and the absence of
landslides and their relative spatial density. Further, if these
indices are utilized in decision-making schemes for evaluat-
ing risk and regional warning criteria, more work is required
to not only examine a broader range of events, particularly
large storms that did not trigger landslides, but also evalu-
ate how A∗ correlates to landslide triggering across changes
in parameters, such as topography, lithology, vegetation, and
evapotranspiration. For example, Marc et al. (2019) showed
that increasing R∗ scales with increasing landslide spatial
density, and accounting for lithologic differences further in-
creased correlation. The A∗ threshold in this analysis is de-
signed to signify regions of widespread shallow landsliding,
but to what extent do increases in A∗ correlate with increases
in shallow-landslide density, and how sensitive is A∗ as a
predictor for more isolated landslide events?

Recently, California experienced an extreme-storm se-
quence of nine back-to-back atmospheric river arrivals from
December 2022 to January 2023 (DeFlorio et al., 2024), driv-
ing statewide impacts, including flooding, landslides, and de-
bris flows, and significant wind damage that produced an es-
timated USD 5–7 billion in damages (Moody’s RMS, 2023).
Throughout the emergency response to the ongoing impacts,
the California Geological Survey (CGS) collated and verified
reported landslides from state and federal government agen-
cies (i.e., Brien et al., 2023), social media, California High-
way Patrol, news reports, and citizen submissions to include
in the CGS Reported Landslides Database (2023). The result-
ing inventory includes over 700 landslide reports from across
the state, mostly nearby road networks where observers were
located. Although the inventory does not include a full, de-
tailed account of shallow landslides from satellite imagery
(e.g., Fig. 3), it covers the entire California study area and
thus provides an opportunity to explore how variations in A∗

throughout the AR sequence correlate with the location and
relative densities of reported landslides. To examine how rel-
ative landslide density may correlate with A∗ magnitude, we
sum the landslide points and spatially average A∗ maxima in
15 arcmin (∼ 20 km) bins (Fig. 10c).

Figure 10 shows snapshots of A∗ maxima and reported
landslides from the CGS database during two of the most
intense storm periods during the 2023 AR sequence: 30 De-
cember 2022–3 January 2023 (AR3; Fig. 10a) and 9 January–
11 January 2023 (AR3; Fig. 10b). Overall, the footprints of
A∗ generally cover the zones of high landslide density at
the regional scale for both cases. Isolated landslides are not
very well resolved by the method; however, some events in
the reported landslide database may be related to land use
and may not reflect purely natural conditions. Additionally,
at this level of mapping it is difficult to evaluate false posi-
tives (i.e., zones of above-threshold A∗ where reported land-
slides are absent) because of potential reporting biases. For
example, landslides may be under-reported in areas of low
road or population density or in instances when certain roads

may have already been closed due to storm damage. Future
work with a more robust mapping of natural failures across
the entire domain (a time-consuming but essential effort)
would help quantify prediction uncertainty and likely pro-
vide a more statistically robust relationship between increas-
ing A∗ and landslide spatial density. Even so, a gross com-
parison of reported landslide spatial density with increases in
A∗ (Fig. 10c) shows a marked rise in landslide spatial den-
sity as A∗ approaches and exceeds a value of 1, our calibrated
threshold based on the local 10-year recurrence of AWI.

Although the climatic normalization process does appear
to account for some regional landslide susceptibility differ-
ences potentially driven by the geomorphic tuning of the
landscape to the regional climate (e.g., Marc et al., 2019),
more local site heterogeneity in soil strength and root cohe-
sion likely exert a strong second-order control on landslide
triggering during extreme-rainfall events (e.g., McGuire et
al., 2016; Rengers et al., 2016; Peruccacci et al., 2017). How-
ever, the analysis presented here indicates that A∗ is an ef-
fective first-order metric for delineating zones of widespread
landsliding and can hence serve as a useful guide for the eval-
uation of regional hazard potential.

5.4 Towards predicting the effects of rainfall-induced
landslide hazards

A primary goal of this analysis was to work towards en-
hancing situational awareness of rainfall-induced shallow-
landslide hazard. Global forecast models such as the Global
Forecast System (NCEP, 2024) and the European Centre for
Medium-Range Weather Forecasts (ECMWF, 2024) provide
precipitation forecasts of approximately 2 weeks and can be
used as input to provide forecasts of A∗ and LPA. Gridded
precipitation estimates such as the NOAA Stage IV product
(Seo and Breidenbach, 2002; Nelson et al., 2016) could be
used to calculate season-to-date A∗ in an operational sce-
nario, which itself can provide a glimpse into what potential
impacts from an incoming storm may look like (e.g., Fig. 7c).
In data-poor regions where calibrated gridded precipitation
datasets may not be available, this methodology could be
tested using globally available satellite-derived precipitation
products. Although the methods developed herein are only
applicable for situational awareness of hazardous rainfall at
the scale of the precipitation data used, which is typically
coarser than the spatial scale of individual hillslopes, one po-
tential advantage is its simplicity of implementation as only
rainfall data are needed as model input for A∗. In future work,
a more rigorous investigation of model rate constants and ad-
ditional controls on the water mass balance, such as evapo-
transpiration, could be investigated. This could be particu-
larly important for Mediterranean climates like California,
which are projected to see an increasing number of dry days
in a warming climate (Polade et al., 2014).

Nevertheless, our analysis shows that A∗ provides a good
first-order indication of landslide-inducing rainfall for soil-
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Figure 10. Maps showing distributions of A∗ maxima and reported landslides during two periods of the December 2022–January 2023
atmospheric river sequence: (a) 30 December–3 January, which strongly impacted the San Francisco Bay Area, and (b) 9 January–11
January, which strongly impacted the central coast and southern California. The yellow symbols are landslides from each time period from
the California Geological Survey Reported Landslides Database. Panel (c) shows a plot relating a grid of landslide point density (y axis) to
A∗ maxima for each respective period in the storm sequence. Although a number of isolated slides show low values of A∗, as A∗ approaches
1 landslide density begins to rise rapidly. This highlights the efficacy of the method for identifying zones of widespread landsliding rather
than locally isolated events. Shaded relief in (a) and (b) is from NASA’s SRTM 30 m DEM (NASA, 2013).

mantled hillslopes across a range of climatic conditions in
California. This simple approach could be used with precip-
itation forecasts and estimates to provide early warning of
landslide hazards and support emergency management deci-
sions ahead of potential events. Additionally, the approach
presented here can be used to provide insight into the meteo-
rological and climatic processes that control landslide haz-
ard, conduct intercomparisons of past landslide events, or
assess the potential for increased landslide hazard in future
storm events for climate model output.
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