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Abstract. Consecutive droughts, becoming more likely, pro-
duce impacts beyond the sum of individual events by altering
catchment hydrology and influencing farmers’ adaptive re-
sponses. We use the Geographical, Environmental, and Be-
havioural (GEB) model, a coupled agent-based hydrologi-
cal model, and expand it with the subjective expected util-
ity theory (SEUT) to simulate farmer behavior and subse-
quent hydrological interactions. We apply GEB to analyze
the adaptive responses of ∼ 1.4 million heterogeneous farm-
ers in India’s Bhima basin over consecutive droughts and
compare scenarios with and without adaptation. In adaptive
scenarios, farmers can either do nothing, switch crops, or dig
wells, based on each action’s expected utility. Our analysis
examines how these adaptations affect profits, yields, and
groundwater levels, considering, e.g., farm size, risk aver-
sion, and drought perception. Results indicate that farmers’
adaptive responses can decrease drought vulnerability and
impact after one drought (6 times the yield loss reduction)
but increase them over consecutive periods due to switch-
ing to water-intensive crops and homogeneous cultivation
(+15 % decline in income). Moreover, adaptive patterns, vul-
nerability, and impacts vary spatiotemporally and between
individuals. Lastly, ecological and social shocks can coin-
cide to plummet farmer incomes. We recommend alternative
or additional adaptations to wells to mitigate drought impact
and emphasize the importance of coupled socio-hydrological
agent-based models (ABMs) for risk analysis or policy test-
ing.

1 Introduction

Anthropogenic climate change and population growth have
increased the exposure of societies to droughts (Smirnov
et al., 2016). Furthermore, the growing demand on wa-
ter increasingly stresses freshwater systems, amplifying the
impact of droughts (Best and Darby, 2020; Van Loon et
al., 2016). Therefore, there is a necessity to strive for
drought risk adaptation both at larger scales by governments
(e.g., reservoir management) and at local scales by farmers
through efficient water use and irrigation (UNDRR, 2015;
Wilhite et al., 2014).

Empirical research into what factors drive adaptation is
ongoing but mostly focuses on single events and at one point
in time (Blauhut et al., 2016; Udmale et al., 2015). How-
ever, consecutive droughts are becoming more likely and can
result in impacts that differ from the sum of the individual
events’ parts (Anderegg et al., 2020; van der Wiel et al.,
2023; Zscheischler et al., 2020). Consecutive droughts im-
pact farmer communities via a few distinct (but interrelated)
processes. (1) The first (of consecutive) drought(s) can have a
physical hydrological impact on the second drought. For ex-
ample, a lowered groundwater table after the first event may
not have been replenished before the second drought starts,
which can limit the capacity for irrigation during the second
drought (Anderegg et al., 2020; van der Wiel et al., 2023;
Zscheischler et al., 2020). (2) Moreover, socio-economic fac-
tors like income or debt also influence the vulnerability of
farmers and their ability to adapt during multiple drought
events. For example, the reduced income of farmers after a
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first drought (e.g., due to less yield) may lead to less finan-
cial capacity to cope with the second drought. (3) Finally,
behavioral factors such as risk aversion and risk perception
also play a role in how farmers adapt to (multiple) droughts
(Habiba et al., 2012; Ward et al., 2014). For example, farm-
ers can have an increased risk perception after the first event,
which may lead to an accelerated implementation of drought
adaptation measures (Aerts et al., 2018; van Duinen et al.,
2015; Habiba et al., 2012; Nelson et al., 2013), thus reducing
the impact of the second drought.

A key research challenge is to capture the spatiotempo-
ral dynamic feedbacks between vulnerability, human behav-
ior, and physical hydrological processes over periods with
consecutive droughts (Cui et al., 2021; Trogrlić et al., 2022;
van der Wiel et al., 2023). Empirical data from surveys may
support analysis about the factors driving drought adaptation
feedbacks. However, only a few studies provide empirical
data on the spatiotemporal drivers of drought vulnerability
and adaptation under multi-drought conditions (Kreibich et
al., 2022). This is why current drought risk assessment re-
search suggests developing model-based approaches (Cui et
al., 2021; Trogrlić et al., 2022).

A special class of simulation models is called agent-
based models (ABMs). ABMs are specially designed to cap-
ture the behavior of autonomous individuals (i.e., agents)
(Blair and Buytaert, 2016; Schrieks et al., 2021; Wens et
al., 2019). When integrated with a hydrological model, they
can also capture bi-directional human–water feedbacks, with
agents reacting to environmental changes (e.g., precipita-
tion deficits) and impacting their surroundings (e.g., deplet-
ing groundwater levels) (de Bruijn et al., 2023; Klassert et
al., 2023; Yoon et al., 2021). In contrast to other socio-
hydrological models, ABMs can simulate how drought adap-
tation of individual farmers is influenced by other agents.
This is essential, as adaptive feedbacks by farmers are het-
erogeneous and depend on the varying physical, socio-
economic, and behavioral characteristics among the farmer
population (e.g., risk aversion, income, farm size, adap-
tations, upstream/downstream location, proximity to reser-
voirs; Di Baldassarre et al., 2018; Habiba et al., 2012; Ud-
male et al., 2014, 2015). For example, government-led large-
scale adaptation efforts, like reservoir management, may af-
fect farmers’ irrigation usage (Di Baldassarre et al., 2018).
Additionally, agents can emulate their neighbors’ practices,
such as cropping patterns (Baddeley, 2010). However, most
ABM-based studies that simulate individual farmers remain
at small scales (Zagaria et al., 2021), whereas studies at
large basin scales aggregate agents, data, and processes and
omit small-scale behavior due to computational constraints
(Castilla-Rho et al., 2017; Hyun et al., 2019).

To address these challenges, de Bruijn et al. (2023)
developed the Geographic, Environmental, and Be-
havioural (GEB) model, an ABM coupled with a hydro-
logical model (CWatM, Burek et al., 2020) that is able to
model the behavior of millions of agents efficiently at a

“one-to-one” scale, meaning for each farmer in the study
area, an individual farmer agent is modeled. With GEB,
it is possible to analyze the culminated hydrological and
agricultural impacts of many small-scale processes at the
river basin scale. However, to analyze the complex human
decision-making process under consecutive droughts we
require a farmer’s characteristics and behavior to change
dynamically in response to drought events (Groeneveld et
al., 2017; Pahuja et al., 2010; Schrieks et al., 2021; Shah,
2009). In the current version of GEB this is not possible,
as its decision rules for adaptation are based only on imi-
tating neighbors that currently have higher profits, without
accounting for dynamic risk perception, previously incurred
debts due to drought loss or adaptation (Solomon and Rao,
2018; Udmale et al., 2014, 2015), the possibility of future
droughts, or heterogeneous farmer characteristics such as
risk aversion (de Bruijn et al., 2023; Schrieks et al., 2021).

The main goal of this study is to assess the vulnerabil-
ity and adaptive responses of farmer agents under consecu-
tive droughts. Therefore, we integrate the subjective expected
utility theory (SEUT; Savage, 1954; Fishburn, 1981) into
the GEB model in combination with imitation (Baddeley,
2010) and elements of prospect theory (Kahneman and Tver-
sky, 2013; Ribeiro Neto et al., 2023). The SEUT is a well-
established behavioral economic theory that explains farmer
adaptation decisions as economic maximization under risk,
influenced by subjective estimates of drought probability and
factors such as risk aversion and time-discounting prefer-
ences. By parameterizing and calibrating the SEUT with lo-
cal data and letting the risk perception change dynamically
in response to drought events, we attempt to create a more
accurate depiction of adaptation under consecutive droughts.
We further refine our characterization of farmers – including
their drought experience, adaptation costs, and loan debts –
to better understand changes in their individual vulnerability
and risk, such as fluctuations in income, debt levels, adapta-
tion uptake, and groundwater levels.

We apply and calibrate the augmented GEB in the Bhima
basin, which is part of the Krishna basin in India. Our work
helps in understanding how consecutive drought events af-
fect different types of farmers’ vulnerability and impact. The
paper is organized as follows: we begin with a high-level
overview of the model setup (Sect. 2.1) and a description of
the study area (Sect. 2.2). We then detail our implementation
of behavior (Sect. 2.3), crop cultivation methods (Sect. 2.4),
and agent initialization (Sect. 2.5) and conclude with model
calibration and a scenario setup (Sect. 2.6). Next, in the Re-
sults section, we analyze the evolution of model vulnerability
and risk parameters over consecutive droughts in an adapta-
tion scenario (Sect. 3.1) and compare it to a no-adaptation
scenario (Sect. 3.2). This leads into a discussion of our key
findings and challenges to our methods (Sect. 4). Finally, we
summarize our conclusions and suggest directions for future
research (Sect. 5).
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2 Methods

2.1 Model setup

Figure 1 shows the structure of the GEB model. GEB is
developed in Python and couples a large-scale agent-based
model (orange part) that simulates the adaptation behav-
ior of millions of agents (farmers and reservoir operators)
(de Bruijn et al., 2023) to a hydrological model (blue part)
simulated with the CWatM (Burek et al., 2020) and MOD-
FLOW models (Langevin et al., 2017). The hydrological pro-
cesses of CWatM operate at daily time steps at a 30 arcsec
grid size, while GEB’s agent processes are at the sub-grid
level. The interactions between both, such as irrigation, oc-
curs daily, while adaptation decisions are made at the end
of each growing season for the next one. The CHELSA-
W5E5 v1.0 observational climate input data at 30 arcsec hor-
izontal and daily temporal resolution were used as climate
forcing (Karger et al., 2022). We do not aggregate agents;
thus for approximately each farmer in the river basin we
generate one representative agent, which we refer to as the
one-to-one scale. The agent’s individual characteristics are
derived from socio-economic data (census data on, e.g., in-
come), survey data (on, e.g., risk aversion, discount rate),
agricultural data (past yields, crop rotations, farm sizes),
and data on the past climate and droughts (SPEI, standard-
ized precipitation evapotranspiration index) (Sect. 2.3–2.5).
These data are used to calculate the subjective expected util-
ity (SEUT) equation to determine whether a farmer adapts or
not, given the hydroclimatic context. For an extensive model
overview, see the ODD+D protocol (Sect. S1 in the Supple-
ment; Müller et al., 2013).

2.2 Case study

The upper Bhima catchment in Maharashtra, spanning
45 678 km2, varies in elevation from 414 m in the east to
1458 m in the Western Ghats mountain range (Fig. 2). The
catchment is mostly flat, with 95 % of its area below 800 m.
The area experiences significant rainfall variation due to in-
teraction of the monsoon and the Western Ghats, ranging
from 5000 mm in the mountains to less than 500 mm in the
east (Gunnell, 1997). Over 90 % of this rain falls during the
monsoon months (June–September), with substantial deficits
from October to May. The state’s agricultural cycle includes
the monsoon kharif season (June–September) and the dry
rabi season (October–March), with April and May constitut-
ing the hot summer period.

To manage the water supply, reservoirs in the Western
Ghats accumulate water during monsoon rains. This water
is released to the river and to farmers in the reservoir through
areas with a system of canals during the monsoon (kharif)
and the dry irrigation season (rabi and summer). This results
in human-controlled river flows, which are less dependent on
natural climate patterns (Immerzeel et al., 2008). Although

reservoirs distribute irrigation water, agriculture in Maha-
rashtra still mainly relies on monsoon rain, with 19.7 % of
the state’s gross cropped area being irrigated and 80.2 % be-
ing dependent on rainfed farming (Udmale et al., 2015). Dur-
ing the study period there were approximately three periods
with a prolonged negative 12-month standardized precipita-
tion evapotranspiration index (SPEI) score: a severe (−1.5 to
−1.99 SPEI, 2000–2005), a mild (0 to −0.99 SPEI, mid-
2009 to 2010), and a final moderate (−1.0 to −1.49 SPEI,
mid-2012 to 2015) drought (Fig. 3; McKee et al., 1993). Dur-
ing the last drought there was a brief period of positive SPEI,
but for ease of referencing we refer to it as one drought.

2.3 Farmer decision rules

Agents base their decisions on the SEUT (Fishburn, 1981;
Savage, 1954) in combination with imitation of their neigh-
bors (Baddeley, 2010; Haer et al., 2016) and elements of
prospect theory (Kahneman and Tversky, 2013; Ribeiro Neto
et al., 2023). The SEUT builds on the EUT (Von Neu-
mann and Morgenstern, 2007) by incorporating the con-
cept of “bounded rationality”, where agents remain ratio-
nal utility maximizers but base their decisions on subjec-
tive estimates of drought probability. Their subjective esti-
mates overestimate probabilities following a drought and un-
derestimate probabilities after periods of no drought. Such
boundedly rational behavior, observed in reality (Aerts et al.,
2018; Kunreuther et al., 1985), aligns more closely with ac-
tual adaptation behavior than fully rational models (Haer et
al., 2020; Wens et al., 2020) and has been incorporated into
various ABMs to simulate adaptive behavior (Groeneveld et
al., 2017; Haer et al., 2020; Tierolf et al., 2023; Wens et
al., 2020). Furthermore, the SEUT also accounts for an in-
dividual’s subjective characteristics (i.e., risk aversion and
discount rate). At each yearly time step agents calculate the
following (S)EUTs:

1. SEUT of taking no action (Eq. 1)

2. SEUT of investing in a (tube) well (Eq. 2)

3. SEUT of their current crop rotation (Eq. 3)

4. EUT of their current crop rotation (Eq. 4).

2.3.1 Crop switching

To switch crops, farmers imitate their most successful neigh-
bor. This is done for two reasons: first, literature shows that
people tend to emulate their neighbors’ practices (Baddeley,
2010; Haer et al., 2016). Second, there are over 300 unique
crop rotations used within the model. The expected utility
calculation (GEB) is optimized for handling many agents
simultaneously but is not designed for frequent repetition.
Thus, it would be computationally inefficient for each agent
to calculate the SEUT for each rotation. Therefore, all agents
calculate only their own crop rotation’s SEUT (Eq. 3) and

https://doi.org/10.5194/nhess-25-1013-2025 Nat. Hazards Earth Syst. Sci., 25, 1013–1035, 2025



1016 M. W. M. L. Kalthof et al.: Adaptive behavior of farmers under consecutive droughts

Figure 1. Simplified setup integrating the hydrological model CWatM (blue boxes) with an agent-based model (orange boxes). AET: actual
evapotranspiration, PET: potential evapotranspiration.

Figure 2. Overview of the Bhima basin’s location in India and the land use classification used in the model. The forested area in the west is the
Western Ghats mountain range. Map of the Bhima basin land cover produced from land cover data from Jun et al. (2014). © OpenStreetMap
contributors 2024. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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Figure 3. The average 12-month standardized precipitation evaporation index (SPEI) in the Bhima basin. Derived from the CHELSA-
W5E5 v1.0 dataset (Karger et al., 2022).

EUT (Eq. 4; using neutral risk perception, aversion, and the
discount rate; Sect. 2.5). Then, agents compare their current
crop rotation’s SEUT with the EUT of a random selection of
a maximum of five random neighboring farmers using sim-
ilar irrigation sources (within a 1 km radius, using a reser-
voir, surface water, groundwater, or no irrigation). The EUT
is used since using a neighbor’s SEUT would mean using
another agent’s subjective factors. They then adopt the crop
rotation of the neighbor whose EUT is highest if this exceeds
their own SEUT.

2.3.2 Well adaptation

To decide whether to invest in a well, agents compare the
SEUT of taking no action (Eq. 1) with the SEUT of digging a
well (Eq. 2). When the SEUT favors adaptation and adapting
is within the agent’s budget constraints, the farmers invest in
a well.

SEUTno_action =

p1∫
p2

βt,x ·pi ·U

(
T∑
t=0

Inci,x,t
(1+ rx)t

)
dp (1)

SEUTtube_well =

p1∫
p2

βt,x ·pi ·U

(
T∑
t=0

Incwell
i,x,t −C

well
t,x,d

(1+ rx)t

)
dp (2)

SEUTown_crop_rotation =

p1∫
p2

βt,x ·pi ·U

(
T∑
t=0

Inci,x,t −C
input
t,x,c

(1+ rx)t

)
dp (3)

SEUTown_crop_rotation =

p1∫
p2

pi ·U

(
T∑
t=0

Inci,x,t −C
input
t,x,c

(1+ rx)t

)
dp (4)

Utility U(x) is a function of expected income Inc and
potential-adapted income Incwell per event i and adaptation
costs Cwell for each agent x. In Eq. (2), Cwell is dependent on
groundwater levels d , and Cinput in Eq. (4) is dependent on
current market prices for the crops c that the agent x is cur-
rently cultivating. To calculate the utility of all decisions, we
take the integral of the summed time-discounted utility, with
the discount factor r and time (t) in years, under all possible
events i with a probability of pi and adjust pi with the sub-
jective risk perception βt for each agent x. See Sect. S1.2.2
for an overview of all model parameters.

2.3.3 Predicted income

To calculate the expected utility, we need information on
farmer income during droughts of varying return periods
with and without an adaptation. Since droughts of similar
return periods have different severities depending on the
farmer’s location and since this relation is also dependent
on each farmer’s crop rotation and irrigation capabilities, no
straightforward empirical relationship exists. Therefore, we
established this relationship endogenously for each farmer
in the following manner. After each harvest, the 12-month
SPEI (derived from the CHELSA climate data between 1979
and 2016) at the time of harvest and the harvest’s yield ra-
tio (Sect. 2.4) are determined for each agent. The SPEI is
converted to a drought probability, and these values are then
averaged per year. In order to get more data points, they are
then averaged per farmer group, which are based on farm-
ers’ elevation (upstream, midstream, downstream), irrigation
(well or no well), and crop rotation. Then, a relation (Eq. 5)
is fitted between drought probability and yield ratio for each
group using the last 20 years of data (a spin-up period of
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20 years is used where no behavior occurs). We refer to this
relation as the agent’s objective drought risk experience. The
12-month SPEI and base-2 logarithm were chosen as they re-
turned the highest R2 between drought probability and yield
ratio for this region (∼ 0.50).

SPEIi,t = a · log2
(
yieldi,t

)
+ b (5)

The relation between probability and the yield ratio is used to
derive yield ratios associated with 1-, 2-, 5-, 10-, 25-, and 50-
year return period drought events i, which are then converted
to income per return period event Inci (Sect. 2.4). To deter-
mine their potential income after adaptation Incadapt, within
groups of similar cropping and elevation, the non-irrigating
groups determine their yield ratio gain from the yield ratios
of their well-irrigating counterparts.

2.3.4 Cost of wells

To determine the cost of wells, we adapted the cost equations
and parameterization of Robert et al. (2018) (Sect. S3.4.1).
These are a function of pump horsepower, pumping hours,
electricity costs, the probability of well failure, maintenance
costs, and drilling costs. Drilling costs are dynamic and de-
pendent on the well’s depth, which are put at 20 m below the
current groundwater table. Together with the agent’s interest
rate r (Sects. 2.4 and S2.1.4), this is converted to an annual
implementation cost Cadapt for the n-year loan using Eq. (6).

C
adapt
t,d = Cfixed cost

d ·
r · (1+ r)n

(1+ r)n− 1
+C

yearly costs
t (6)

2.3.5 Crop cultivation costs

Yearly cultivation input costs Cinput per hectare for each
crop type c, which include expenses such as purchasing
seeds, manure, and labor, are sourced from the Ministry
of Agriculture and Farmers Welfare in rupees (INR) per
hectare (https://desagri.gov.in/document-report-category/
cost-of-cultivation-production-estimates/, last access:
20 February 2025) (de Bruijn et al., 2023).

2.3.6 Loans and budget constraints

We assume that agents are “saving down” (Bauer et al., 2012)
and taking loans for agricultural inputs (Hoda and Terway,
2015) and investments using Eq. (6). We assume farmers
cannot spend their full income on inputs and investments
and implement an expenditure cap (Hudson, 2018), which
we use as a calibration factor (Sect. 2.6). If the proposed an-
nual loan payment for a well exceeds the expenditure cap,
agents are unable to adapt. Chand et al. (2015) put the expen-
diture of inputs such as seeds, fertilizer, plant protection, re-
pair, and maintenance feed and other inputs at approximately
20 %–25 %. Thus, including the extra well investment cost,
we calibrate the expenditure cap of yearly payments to be-
tween 20 %–50 % of yearly non-drought income (Pandey et
al., 2024).

2.3.7 Time discounting and risk aversion

For Eqs. (1)–(3) the agent’s individual discount rate and risk
aversion (Sect. 2.5) are used. For Eq. (4), as the goal is a
“neutral” expected utility of a farmer’s crops, all farmers
use the average discount rate and risk aversion. For Eqs. (1)
and (2) a time horizon of 30 years following Robert et
al. (2018) is used, while for Eqs. (3) and (4) a time hori-
zon of 3 years is used. The utility U(x) as a function of risk
aversion σ is as follows:

U(x)=
x1−σ

1− σ
. (7)

2.3.8 Bounded rationality

Bounded rationality within the SEUT is described by the
risk perception factor β. β rises after agents have experi-
enced a drought, overestimating drought risk (β > 1). After
time without a drought, it lowers again, underestimating risk
(β < 1). We follow the setup of Haer et al. (2020) and Tierolf
et al. (2023) and define β as a function of t years after a
drought event:

βt = c · 1.6−d·t + e. (8)

We set d to −2.5, resulting in a slower risk reduction than in
Haer et al. (2020) and Tierolf et al. (2023), as farmers are as-
sumed to retain more awareness of drought risk compared to
households of flood risk (van Duinen et al., 2015). We set the
minimum underestimation of risk e to 0.01 and calibrate the
maximum overestimation of risk c between 2 and 10 (Botzen
and van den Bergh, 2009).

2.3.9 Drought loss threshold

As the onsets of droughts are not as obvious as with floods
(Van Loon et al., 2016), we define an agent’s drought event
perception (Bubeck et al., 2012) according to a loss in
the yield ratio against a moving reference point, similar to
prospect theory (Kahneman and Tversky, 2013; Ribeiro Neto
et al., 2023). The moving reference point is the 5-year aver-
age difference between the reference potential yield and the
actual yield (Sect. 2.4). We calibrate the drought loss thresh-
old between 5 % and 25 %. This means that if the current
harvest’s difference between the potential and actual yield
falls 5 %–25 % below the historical average, the years since
the last drought event t (Eq. 8) are reset and β rises.

2.3.10 Microcredit

If the yield falls below the drought loss threshold, agents will
also take out a loan equal to the missed income (Udmale et
al., 2015). The loan duration is set to 2 years (Rosenberg et
al., 2013).
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2.4 Farmer crop cultivation

2.4.1 Yield and income

Farmers grow pearl millet (bajra), groundnut, sorghum,
paddy, sugar cane, wheat, cotton, chickpea, maize, green
gram, finger millet, sunflower, and red gram. Each crop
undergoes four growth stages (d1 to d4). The crop coeffi-
cient (Kc) for a particular day is then calculated as follows
(Fischer et al., 2021):

Kct =
Kc1 , t < d1

Kc1 + (t − d1)×
Kc2−Kc1

d2
, d1 ≤ t < d2

Kc2 d2 ≤ t < d3

Kc2 + (t − (d1+ d2+ d3))×
Kc3−Kc2

d4
, otherwise

, (9)

where t represents the number of days since planting and
d1 to d4 are the crop-specific durations of each growth stage.
Kc is multiplied daily with the reference potential evapotran-
spiration to determine the crop-specific potential evapotran-
spiration (PETt ). At the harvest stage, the actual yield (Ya) is
determined based on a maximum reference yield (Yr; Siebert
and Döll, 2010), the water-stress reduction factor (KyT ), and
the ratio of actual evapotranspiration (AET; calculated based
on the soil water availability by CWatM) to potential evapo-
transpiration (PET) throughout the growth period (Fischer et
al., 2021):

Ya = Yr×

1−KyT ×

1−

t=h∑
t=0

AETt

t=h∑
t=0

PETt


 . (10)

We refer to the latter part of Eq. (10) as the “yield ratio”,
i.e., the fraction of the maximum yield for a specific crop.
The actual yield is then converted into income based on the
state-wide market price for that particular month. Historical
monthly market prices are sourced from Agmarknet (https:
//agmarknet.gov.in, last access: 27 July 2022) (de Bruijn et
al., 2023) in rupees (INR) per kilogram.

2.4.2 Irrigation

The irrigation demand for farmers is calculated based on the
difference between the field capacity and the soil moisture,
and it is restricted by the soil’s infiltration capacity (de Bruijn
et al., 2023). If agents have access to all irrigation sources,
they first meet their demand using surface water, followed
by reservoirs and finally groundwater. When a farmer opts
to irrigate, the necessary water is drawn from the appropri-
ate sources in CWatM and subsequently dispersed across the
farmer’s land.

2.5 Agent initialization

2.5.1 Agent initialization

To generate heterogeneous farmer plots and agents with char-
acteristics statistically similar to those observed within the
Bhima basin, factors from the India Human Development
Survey (IHDS; Desai et al., 2008), such as agricultural net
income, farm size, irrigation type, or household size, were
combined with Agriculture Census data (Agricultural Census
India, 2023a). For this, we use the iterative proportional fit-
ting algorithm, which reweights IHDS survey data such that
they fit the distribution of crop types, farm sizes, and the ir-
rigation status at the sub-district level reported in the Agri-
culture Census (de Bruijn et al., 2023). The farmer agents
and their plots were randomly distributed over their respec-
tive sub-districts on land designated as agricultural land (Jun
et al., 2014) at 1.5 arcsec resolution (50 m at the Equator),
shown in Fig. 2. There were a total of 1 432 923 agents that
remained constant over the simulation period. We avoid ag-
gregating agents as we do not know what a representative
agent for our study area is (Page, 2012), and by preemp-
tively aggregating agents, we may lose interactions that we
were not aware existed in the first place (Page, 2012). Fur-
thermore, the idea of “representative individuals” is in itself
disputed, and aggregating agents, even if they are all ratio-
nal utility maximizers, can lead to wrong conclusions (Ax-
tell and Farmer, 2022; Kirman, 1992). Lastly, the vectorized
design of the model enables the efficient simulation of large
populations (de Bruijn et al., 2023).

2.5.2 Risk aversion and discount rate

To set risk aversion and the discount rate, we first normal-
ized the distribution of agricultural net income. Then, as risk
aversion and the discount rate correlate with household in-
come (Bauer et al., 2012; Just and Lybbert, 2009; Maertens
et al., 2014), we rescaled the normalized income distribution
with the mean and standard deviation of (marginal) risk aver-
sion σ (0.02, 0.82; Just and Lybbert, 2009) and the discount
rate r (0.159, 0.193; Bauer et al., 2012) of Indian farmers.
Noise was added to both to prevent each present-biased agent
also being classified as risk taking by definition.

2.5.3 Interest rates

To account for the variation in access to credit and inter-
est rates among farmers, we assigned each agent an interest
rate based on their total landholding size, with smaller-scale
farmers receiving higher and larger-scale farmers receiving
lower rates (Sect. S2.1.4, Maertens et al., 2014; Udmale et
al., 2015). This assignment is based on the interest rates ob-
served among Indian farmers (Hoda and Terway, 2015; Ud-
male et al., 2015).
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2.6 Calibration, validation, sensitivity analysis, and
runs

2.6.1 Calibration

We calibrated the model from 2001 to 2010 using observed
daily discharge data and yield data. The full data range of
available observed data was used to calibrate the model,
following the recommendations of Shen et al. (2022), who
found that calibrating fully to historical data without con-
ducting model validation was the most robust approach for
hydrological models. The daily discharge data were obtained
from five discharge stations at various locations in the Bhima
basin. The yield data were obtained by dividing the total pro-
duction by the total cropped area from ICRISAT (2015) to
determine the yield in metric tons per hectare. This figure
was then divided by the reference maximum yield in met-
ric tons per hectare to calculate the percentage of the max-
imum yield, aligning with the latter part of Eq. (10). Cali-
bration is done for several standard hydrological parameters,
including the maximum daily water release from a reservoir
for irrigation, typical reservoir outflow, and irrigation return
fraction (Burek et al., 2020). Furthermore, it was done for
the expenditure cap, base yield ratio, drought loss threshold,
and maximum risk perception. The process utilizes the Non-
dominated Sorting Genetic Algorithm (NSGA-II; Deb et al.,
2002) as implemented in DEAP (Distributed Evolutionary
Algorithms in Python; Fortin et al., 2012) to optimize the
calibration based on a modified version of the Kling–Gupta
efficiency (KGE) score (Eq. 11; Kling et al., 2012), similar
to (Burek et al., 2020; de Bruijn et al., 2023)

KGE′ = 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2, (11)

where r is the correlation coefficient between the monthly
and daily simulated and observed yield ratio and discharge,
respectively; β = µs

µ0
represents the bias ratio; and γ =

CVs
CV0
=

σsµs
σ0µ0

is the variability rate. The optimal values for r ,
β, and γ are 1. The final KGE scores were ±0.63 for the
discharge and ±0.60 for the yield.

2.6.2 Sensitivity analysis

A delta-moment-independent analysis with 300 distinct sam-
ples was done using the SALib delta module (Iwanaga et
al., 2022). Risk aversion, the discount rate, the interest rate,
well cost, and the drought loss threshold were varied to as-
sess their impact on well uptake, crop income, the yield, risk
perception, the groundwater depth, reservoir storage, and the
discharge upstream and downstream. For detailed parameter
settings, refer to Fig. B1 and Table B1 in Appendix B.

2.6.3 Model runs and scenarios

A full model run consists of a “spin-up” from 1980 to 2001
and a “run” from 2001 to 2015. The spin-up period serves

to set up accurate hydrological stocks in the rivers, reser-
voirs, groundwater, etc. and to establish enough data points
for the drought probability–yield relation. At the end of the
spin-up, the model state is saved and used as a starting point
of the run. The start of the run in 2001 was chosen as both
the IHDS (Desai et al., 2008) and the Agriculture Census
(Agricultural Census India, 2023a) collected data in 2001.
As the climate data were available from 1979–2016, the 12-
month SPEI was available from 1980. Thus, the spin-up pe-
riod from 1980 to 2001 was selected to maximize the time
frame, ensuring that the drought probability–yield relation-
ship (the “objective drought risk experience”) encompassed
as many drought events as possible. Adaptation only occurs
during the run. During the run there were three prolonged
negative 12-month SPEI periods: a severe (2000–2005), mild
(mid-2009 to 2010), and moderate–mild (mid-2012 to 2015)
drought (McKee et al., 1993). Two scenarios were run as fol-
lows: one without adaptation, where agents maintained the
same crop rotation and irrigation status as at the start of the
model, and another where agents could change their crops or
dig wells according to the decision rules outlined in Sect. 2.3.
Both scenarios use the same spin-up data. To account for
stochasticity, both scenarios were run 60 times, after which
the average results and the standard error of the mean were
calculated.

3 Results

3.1 Crop switching and well uptake in the adaptation
scenario

Figure 4 shows how agent characteristics change over time
for three different field sizes: large-scale (67th–100th per-
centile of size, > 1.8 ha; green), medium-scale (33rd–
67th percentile of size, 0.82–1.9 ha; blue), and small-scale
(0th–33rd percentile of size,< 0.82 ha; orange) farmers. Fig-
ure 4a shows the percentage of agents with wet wells. Uptake
for large-scale farmer adaptation first slowly rises and subse-
quently speeds up after the first drought (2001–2004), along-
side an increase in risk perception from the first drought. For
medium-scale farmers, the fraction of wet wells initially de-
creases but then increases alongside a similarly heightened
risk perception. For smallholder farmers, the number of well
owners with groundwater access declines and only slightly
recovers after the first drought, even though they have a
higher risk perception compared to medium- and large-field
farmers. This difference among well owners can be attributed
to the varying interest rates available to them; smallholder
farmers face the highest loan interest rates, while large-scale
farmers benefit from the lowest rates (Appendix A1). Ad-
ditionally, the initial investment costs per square meter are
lower for farmers with more land and higher incomes. During
the last drought (2011–2015), despite high risk perception,
the proportion of farmers with wet wells accessing ground-
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Figure 4. Evolution of wells, risk perception, and crops in the Bhima basin. (a, b) Farmers are categorized by field size into small (0th–
33rd percentile, < 0.82 ha), medium (33rd–67th percentile, 0.82–1.9 ha), and large (67th–100th percentile, > 1.8 ha) groups: (a) the fraction
of the total group with a wet well and (b) the mean risk perception of each group. (c, d) Evolution of the dominant crops in the (c) wet kharif
and (d) dry rabi season. (a–d) Values are 60-run means, (a, b) error bars indicate the standard error, and light-grey areas indicate years where
the average 1-month standardized precipitation evaporation index (SPEI) was below 0.

water declines across all farm sizes (Fig. 4a and b). Wet-
well use among large-scale farmers declines most in abso-
lute terms, while smaller-scale farmers experience the largest
percentage drop, with a reduction of more than half. The
reduction in wells results from wells both exceeding their
30-year lifespan (Sect. S3.4.2) and drying up. However, the
abrupt drop is likely due to wells drying up, as it occurs more
quickly than the lifespan would suggest and aligns with a
drop in groundwater levels (Fig. 6d).

In the wet kharif season, mainly groundnut increases in
prevalence (Fig. 4c). Groundnut rose steeply in profitabil-
ity compared to other crops during the study period (Ap-
pendix A2). Given that the decision theory primarily focuses
on economic maximization, this could account for the sharp
rise in groundnut cultivation, although such a steep rise is

seemingly unrealistic. In the dry rabi season we see a large
decrease in farmers who leave their field fallow (i.e., no
crops), which is mainly replaced by cultivating groundnut,
although there is a much greater heterogeneity of cultivated
crops in the rabi season as compared to the wet kharif sea-
son (Fig. 4d). Furthermore, the increase and decrease in
jowar cultivation, which is less water-intensive compared to
groundnut and performs well during droughts (Singh et al.,
2011), align very well with drought and non-drought periods.

Figure 5a shows a large difference in the yield ratio be-
tween farmers with or without a well, likely stemming from
the increased water reliability due to irrigation wells. Con-
sequently, farmers with wells saw a yield ratio increase in-
stead of a decrease during the first drought. Yearly crop in-
come is approximately 30 % higher for farmers with wells
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Figure 5. Evolution of the (a) yield ratio, (b) inflation-adjusted early income in rupees (INR) per square meter after harvesting and selling
crops, (c) groundwater depth in meters below the surface, and (d) two main crops in the dry rabi season in the Bhima basin. Farmers are
categorized by whether they have wells in each year into a not-adapted and adapted group. Light-grey areas indicate years where the average
1-month standardized precipitation evaporation index (SPEI) was below 0.

(Fig. 5b), though incomes for both groups have increased
due to switching to higher-priced crops. Importantly, these
data show not only the effects of wells but also which farm-
ers are able to initially afford wells, stemming from a prior
higher yield, income, and lower groundwater levels. Ground-
water levels are unexpectedly higher for farmers with wells
(Fig. 5c), despite wells being the primary cause of ground-
water depletion for most farmers (Figs. 6d and 7c). How-
ever, note that in the figure, farmers whose well dried up
count as not adapted. Thus, when farmers with wells are in
locations where groundwater recharge cannot keep up with
extraction, their wells dry and they are switched to the not-
adapted group. Subsequently, only farmers with wells where
groundwater is not rapidly depleted or those who have re-
cently installed wells remain in the adapted group, resulting
in high average groundwater levels for this group. The ex-
traction and hydroclimatic conditions at the farmers’ loca-

tions where depletion matches the adapted group’s average
thus provide an estimate of the necessary circumstances to
sustainably maintain wells. As long as these conditions are
present, the increased yield ratios and income (Fig. 5a and b)
can be maintained.

Figure 5d depicts the development of fallow, jowar, and
groundnut cultivation during the dry rabi season. We show
these crops as they are the most widely cultivated and dy-
namic (Fig. 4). In the kharif season, crop patterns are simi-
lar for both groups and follow the pattern of Fig. 4a. During
the rabi season, agents both with and without wells switch
to jowar during the first drought (2001–2004, Fig. 5d). How-
ever, after the initial drought, the percentage of agents with
wells cultivating jowar is massively reduced, while the frac-
tion without wells cultivating jowar remains stable. Further-
more, during the dry rabi season, more adapted agents cul-
tivate groundnut, while fewer leave their land fallow. This
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Figure 6. Evolution of income, loan payments, the groundwater depth, and the yield ratio in the Bhima basin for a scenario where agents
adapt (filled line) and where they stick to their initial adaptations and crops (dotted lines). (a–d) Farmers are categorized by field size into
groups of small (0th–33rd percentile, < 0.82 ha), medium (33rd–67th percentile, 0.82–1.9 ha), and large (67th–100th percentile, > 1.8 ha):
(a) inflation-adjusted early income in rupees (INR, abbreviated in the figures as Rs.) per square meter after harvesting and selling crops;
(b) inflation-adjusted yearly loan payments in INR per square meters, consisting of payments for cultivation costs, well loans, and microcredit
in the case of crop failure; (c) average yield ratio of agent groups; and (d) groundwater depth in meters below the surface. Values are 60-run
means, and light-grey areas indicate years where the average 1-month standardized precipitation evaporation index (SPEI) was below 0.

contrast in cultivation patterns among well-irrigating and
non-irrigating groups highlights the critical role of water
availability in an agent’s crop selection. If rainfall is ample,
such as during the wet season, the patterns between farmers
with and without wells are similar. However, in drier condi-
tions, these patterns diverge because farmers with wells have
greater water availability. This aligns with the patterns seen
in Fig. 4.

3.2 Crop switching and well uptake in the adaptation
vs. the no-adaptation scenarios

Figure 6 shows that during the first and most severe droughts
from 2001 to 2004, the drop in the yield ratio of the no-

adaptation scenario was 6 times worse (5 % vs. 30 % drop,
Fig. 6c). These initial yield gains were likely due to a shift
towards less water-intensive crops (jowar), as for medium-
field farmers yields also increased, while their well uptake
declined (Figs. 4a and 6c). Subsequent yield increases align
better with well uptake, with larger-scale farmers achiev-
ing higher yields than smaller-scale ones. Furthermore, af-
ter the initial drought period, larger-scale farmers switched
to higher-grossing but more water-intensive crops (Fig. 4d),
as the yield ratios between small- and large-scale farmers
were similar, while profits were higher. However, ultimately,
well uptake dropped (Fig. 4a). Consequently, during the last
drought from 2011 to 2015, the relative yield drop for larger-
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Figure 7. Evolution of wells, the groundwater depth, the two most cultivated crops in the dry rabi season, the yield, and the inflation-adjusted
yearly crop income in rupees (INR) per square meter. Farmers are categorized by farmer elevation into lower-basin (0th–33rd percentile
elevation), middle-basin (33rd–67th percentile), and upper-basin (67th–100th percentile) groups (a–f). Values are 60-run means, and light-
grey areas indicate years where the average 1-month standardized precipitation evaporation index (SPEI) was below 0.

scale farmers was similar across both the adaptation and no-
adaptation scenarios, contrasting with the decrease of 6 times
seen during the first drought. Furthermore, the income fell
10 %–20 % more in the adaptation scenario (Fig. 6a).

In Fig. 6d, the groundwater levels in the no-adaptation sce-
nario drop 5 m between 2001–2004 and then stabilize. Con-
versely, in the adaptation scenario, groundwater levels con-
tinue to decrease by an average of 1 m annually, stabilizing
briefly during periods of positive SPEI (i.e., no droughts) and
declining rapidly during droughts. The rate of groundwater
decline is roughly the same for all farmers, regardless of farm
size. The most recent rapid decline in 2011 corresponds with
a decrease in wet wells (Fig. 4a), suggesting that this decline
is primarily due to wells drying up. Since larger-scale farmers
were the early adopters, their shallower wells were the first
to dry up, which explains their more rapid decline compared
to medium- and small-scale farmers (Fig. 4a). However, de-
spite declining well uptake, loan payments remain high due
to prior loans.

In Fig. 7, farmers are categorized as upstream (67th–
100th percentile elevation), midstream (33rd–67th per-
centile), and downstream (0th–33rd percentile). Mid- to
downstream farmers initially see a reduction in well use, with
increases only occurring at the end of the first drought (2001–
2004, Fig. 7a). This aligns with increased incomes late in the
first drought as a result of the drought ending and switching
to more profitable crops (Fig. A2). The crop switching has
a dual effect: firstly, it boosts income, enabling agents to in-
vest more in wells, and, secondly, it enhances well profitabil-
ity, as now more water leads to a larger absolute increase in
income. Upstream, the initial yield, income, and groundwa-
ter levels are higher. Higher groundwater levels reduce the
price of wells, and higher incomes increase what agents can
spend on wells. This reduces the effective investment costs,
meaning the wells cost a smaller percentage of the agents’
income, and more agents adapt. This causes upstream farm-
ers to immediately adapt as the model starts, even during the
first drought (2001–2004). Similar to the trends in Fig. 6d,
groundwater levels quickly drop during droughts and stabi-
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lize when the SPEI is positive (Fig. 7b). This pattern is mir-
rored in well uptake, which increases until 2007 but halts
in 2008, coinciding with a sharp decline in groundwater dur-
ing the middle drought (2007–2009). During the last drought
(2011–2015), groundwater levels rapidly fall again and well
uptake substantially declines due to wells drying up. This de-
cline intensifies downstream, resulting in downstream farm-
ers having fewer wells than they initially had (Fig. 7a).

Despite fewer wells among downstream farmers, ground-
water levels decline similarly to those in the middle and
lower basins (Fig. 7b). Comparing this against spatially vary-
ing parameters between the lower, middle, and upper basins,
we mainly see that upstream agent density is lower and pre-
cipitation is higher (Appendix A3). In the upper basin this
means less additional irrigation water is required, resulting in
more recharge and fewer agents abstracting groundwater per
square kilometer. This also correlates with the shown higher
yield and income (Fig. 7d and e).

During the wet kharif season, mid- and downstream farm-
ers almost solely grow groundnut, whereas upstream paddy
cultivation is also common (Fig. 7c). This follows the ear-
lier shown pattern of higher water availability generally lead-
ing to more water-intensive crops. The yield ratio is highest
upstream and lowest downstream, with the downstream area
also showing a greater difference in yield between the adap-
tation and no-adaptation scenarios (Fig. 7d). This may be
the effect of higher water demand upstream, which is caused
by more water-intensive crops offsetting more of the supply
gains. This is also reflected in a lower yield ratio compared
to the no-adaptation scenario, even though there are more
agents with wells.

For mid- and downstream farmers, yield ratios increased
during the first drought compared to the no-adaptation sce-
nario, even though well uptake declined (Fig. 7a and d). Sim-
ilar to what was discussed regarding Figs. 4–6, this increase
was due to a shift toward a less water-intensive crop (jowar,
Fig. 7f). Subsequently, as water availability increased, the
prevalence of jowar declined, while groundnut, which re-
quires more water than jowar but less than paddy, continued
to rise due to its steep price increase (Fig. 7f, Appendix A2).
This pattern again followed water availability, as this was
more pronounced for the mid- and upstream farmers. The
economic maximization through crop switching boosted in-
comes without requiring additional water from wells (Fig. 7a
and e). However, yields in the adaptation scenario for mid-
and downstream farmers continued to rise compared to the
no-adaptation scenario. Furthermore, both yields fell less
during the middle drought. This pattern aligns with the initial
rise in well usage for these groups (Fig. 7a). Ultimately, well
uptake fell, and during the last droughts (2011–2015) yield
ratios fell by 18 %–22 %, approximately equal to the amount
in the no-adaptation scenario. However, from 2011 to 2015,
crop income in the adaptation scenario fell by 25 %–35 %,
a 10 %–15 % greater decline compared to the no-adaptation
scenario. This is a larger fall than what only the yield ratios

would suggest and can be explained by a simultaneous drop
in prices for the main cultivated crops (Appendix A3).

4 Discussion and recommendations

In this study, we further developed a large-scale socio-
hydrological ABM to assess the adaptive responses of dif-
ferent farmer agents under consecutive droughts. We show
that farmers with more financial resources invest in irrigation
quickly when a drought occurs, whereas farmers with fewer
resources or no wells switch to less water-intensive crops
to increase yields (Birkenholtz, 2009, 2015; Fishman et al.,
2017). After the first drought, as risk perception is still high
and income has increased, well uptake also increased among
farmers with fewer financial resources. In the short term,
this increased the area’s income and resilience, reflected in
rising yields and income over consecutive droughts. How-
ever, similar to reservoir supply–demand cycles (Di Baldas-
sarre et al., 2018), the widespread adoption of wells led to
an increase in water-intensive crops and growth of crops
during the dry season, which in turn raised water demand.
During wet periods the available groundwater could sup-
port this demand, but during dry periods the groundwater
rapidly declined. Consequently, despite being less severe
than the first, the last drought resulted in many wells drying
up quickly and yields declining. Furthermore, homogeneous
cultivation as a result of economic maximization made the
region more sensitive to market price shocks. This was seen
from 2013 to 2015, where crop market prices of the main
cultivated crops dropped, which led to a much larger drop
in farmers’ average income compared to the no-adaptation
scenario. Thus, although drought vulnerability initially de-
creased and incomes rose, ultimately, a farmer’s adaptive re-
sponses under consecutive droughts increased drought vul-
nerability and impact. This underscores the importance of
considering consecutive events, as focusing solely on the first
event would overlook the ultimate impact. Suggested policies
to address groundwater decline and well drying while main-
taining higher incomes include promoting efficient irrigation
technologies (Narayanamoorthy, 2004), implementing fixed
water use ceilings (Suhag, 2016), encouraging rainwater har-
vesting (Glendenning et al., 2012), or combinations of these
all techniques (Wens et al., 2022).

The maladaptive path of tube well irrigation expansion,
growth of water-intensive crops, and subsequent rapid deple-
tion of groundwater and resulting economic decline we sim-
ulated here have been commonly observed in India (Birken-
holtz, 2014; Pahuja et al., 2010; Roy and Shah, 2002;
Solomon and Rao, 2018). Previous studies modeling the eco-
nomics of wells show the income and groundwater fluc-
tuations from wells and crop changes occurring gradually
(Robert et al., 2018; Sayre and Taraz, 2019). Aside from
investment costs, they show profits and groundwater levels
rising and falling gradually over time, with the simulations
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never experiencing shocks. However, we observe that this
process is not steady but is instead characterized by peri-
ods of stabilization during wet periods and rapid declines in
groundwater levels and incomes during dry periods. Addi-
tionally, under consecutive droughts, we see social (i.e., con-
tinued loan payments, crop price drops) (Solomon and Rao,
2018) and ecological shocks (i.e., lower groundwater levels,
drought) coinciding (Folke et al., 2010). Therefore, agricul-
tural decline may occur more suddenly and rapidly in an
approach using socio-hydrological systems than what pre-
vious studies predict (Manning and Suter, 2016; Robert et
al., 2018; Sayre and Taraz, 2019). Such sudden shocks are
harder to adapt to, potentially leading to more severe impacts
or disasters (Rockström, 2003). Thus, for future analyses, we
recommend transitioning to similar coupled agent-based hy-
drological models, combined with climate data, to identify
areas where drought risk is or will be high.

We also observed that adaptive patterns are spatiotempo-
rally heterogeneous. For example, the farmers’ location de-
termined the number of wells that could be held before de-
pleting groundwater levels, influenced by factors like precip-
itation and agent density. Water availability, resulting from
precipitation and irrigation, along with market dynamics, in-
fluenced crop choices. This led to varied cropping patterns as
prices fluctuated between wet and dry periods, seasons, and
locations upstream or downstream. Furthermore, at an indi-
vidual scale, we observed that variations in farm size, access
to credit, time preferences, or risk attitudes influenced farm-
ers’ adaptation decisions. Building on our demonstration of
the impact of varying hydroclimatic conditions and farmer
characteristics on adaptation behavior, as well as the sub-
stantial effects of this behavior on a river basin’s hydrology,
we again highlight the value of large-scale coupled socio-
hydrological models. These models can further enhance un-
derstanding of both basin hydrology and farmer behavior.
This is needed to design policies such that they, for exam-
ple, minimize overall impacts and specifically reduce im-
pacts on smallholder farmers (Wens et al., 2022). By further
exploiting our methods, it is possible to attempt to identify
policies that can slow the expansion of wells in areas where
it is unsustainable, while simultaneously avoiding interfer-
ence in regions where growth is more sustainable, which is
recommended as sustainable well use can also greatly im-
prove water resilience (Blakeslee et al., 2020; Pahuja et al.,
2010; Roy and Shah, 2002; Shah, 2009; Solomon and Rao,
2018). Furthermore, these novel approaches can help to de-
termine which adaptation alternatives and policies can de-
crease drought vulnerability while simultaneously being fi-
nancially attractive enough to see adaptation beyond the vil-
lage scale (Fishman et al., 2017).

In this study we were able to model emergent patterns
as a result of many combined small-scale processes due
to human behavior under consecutive droughts at a river
basin scale and quantitatively assess their hydrological and
agricultural impacts. The model almost exactly replicated

the commonly observed stages of well expansion; initial
higher resilience; groundwater overextraction due to a shift
to high-value water-intensive crops; groundwater table de-
cline; and subsequent well failure, indebtedness, and agri-
cultural decline in India, as detailed by Birkenholtz (2014),
Pahuja et al. (2010), Roy and Shah (2002), and Solomon
and Rao (2018). Secondly, it provides a much better rep-
resentation of the accelerated groundwater decline during
droughts observed in the field (Birkenholtz, 2014; Pahuja et
al., 2010; Udmale et al., 2014), which was not captured in
previous well-modeling studies (Robert et al., 2018; Sayre
and Taraz, 2019). Thirdly, our results reflect a similar ob-
served pattern of crop choice, where farmers facing water
scarcity during and after droughts switch to drought-tolerant
crops (Birkenholtz, 2009; Udmale et al., 2014). Lastly, the
water table decline of approximately 1 m yr−1 fits the many
reports of groundwater decline of 1002 m yr−1 by Singh and
Singh (2002). However, although we anticipated that changes
in risk perception would have a stronger impact on well up-
take, our results and the sensitivity analysis (Fig. B1) show
that economic considerations were predominantly the driving
factor. This aligns with other studies which mention drought
response as a major driver of well uptake (Pahuja et al.,
2010; Shah, 2009) but call social and economic aspirations
the main driver (Solomon and Rao, 2018). Additionally, the
2011–2012 Agriculture Census reported that only approxi-
mately 25 % of farmers in our area owned a well (Agricul-
tural Census India, 2023b), which is lower than what our
findings suggest. This discrepancy likely stems from the tim-
ing of our simulations not aligning with the study area’s
current stage of the cycle of well expansion and decline
(Fig. 20 of Roy and Shah, 2002). In reality, well expan-
sion occurred before the first census and simulation period
(Central Ground Water Board, 1995) and declined from 2001
to 2011–2012 (Agricultural Census India, 2023a, b). Con-
sequently, the area’s groundwater levels should have been
lowered and the cost of adaptation should have increased.
However, as there were no spatial (longitudinal) ground-
water level observations available to initialize or calibrate
the model with, our simulation had to move through the
first stages of well expansion (Roy and Shah, 2002) before
groundwater levels and adaptation costs matched those of the
area’s. Thus, our well uptake is lagging behind. For these rea-
sons and given that other inputs like drought loss thresholds
are theoretical (Bubeck et al., 2012; Kahneman and Tversky,
2013; Ribeiro Neto et al., 2023) and not specifically defined
for droughts, this paper focuses on patterns, variations among
farmers, locations, and scenario differences rather than on
temporally specific absolute values. For future studies where
timing is more important, e.g., those focused on future pol-
icy scenarios, initializing groundwater levels, by either low-
ering them during calibration or collecting observations, is
crucial. In general, we highly recommend the development
of detailed spatial and behavioral data to improve the accu-
racy of large-scale ABMs. Regarding agents’ crop choices,
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we observed a trend toward highly homogeneous cultivation
of certain crops that experienced significant price increases.
Although a progression towards uniform cultivation of crops
has been observed under similar circumstances (Birkinshaw,
2022) and groundnut is described as being by far the most
cultivated crop (Batchelor et al., 2003; Birkenholtz, 2009),
the degree seen here is unlikely. We incorporate rational eco-
nomic decisions influenced by subjective risk perception as
a result of experiencing droughts into our analysis, as this
was the central focus of our study. However, other subjec-
tive behaviors exist, such as decisions influenced not by per-
sonal benefit assessments but by perceptions of others’ be-
liefs, cultural norms, attitudes, or habits (Baddeley, 2010).
Including this type of behavior in future research may re-
duce homogeneity; however, no behavioral theory perfectly
encompasses all adaptive behaviors (Schrieks et al., 2021).
Therefore, we recommend keeping the SEUT while incorpo-
rating a market feedback that lowers the profitability of com-
monly cultivated crops due to increased cultivation costs and
reduced market prices, calibrated with observed prices. Al-
ternatively, we suggest adding a calibrated unobserved cost
factor for all crops (Yoon et al., 2024). Both modulate the
profitability of crops and reduce the modeled divergence
from historical patterns. Furthermore, subsistence farming,
which involves cultivating crops for household consumption,
could reduce homogeneity as well (Bisht et al., 2014; Hai-
legiorgis et al., 2018). Subsistence farms cultivate more di-
verse crops and take up most of a smallholder farmer’s cul-
tivated area (Bisht et al., 2014). A proposed model imple-
mentation could mandate that all farmers dedicate one plot to
subsistence crops. This would limit the smallest-scale farm-
ers to their initial crop rotations, while larger-scale farm-
ers would be free to cultivate commercial crops on their re-
maining land. Incorporating perceptions of economic condi-
tions could also make crop choice modeling more realistic by
farmers forecasting and adjusting future crop prices based on
their likelihood. For instance, while current high prices for
groundnuts might not persist, government-regulated sugar-
cane prices provide certainty. Thus, e.g., risk-averse farmers
might favor the predictability of sugarcane over crops with
more volatile pricing. Lastly, while GEB efficiently simu-
lates agents at a one-to-one scale, exploring how aggregate
phenomena shift with varying degrees of agent aggregation
could be valuable, since higher levels of aggregation might
optimize model runtimes.

5 Conclusions

In this study, we assess the adaptive responses of het-
erogenous farmers under consecutive droughts at the river
basin scale in the Bhima basin, India. To do so, we fur-
ther developed a large-scale socio-hydrological agent-based
model (ABM) by implementing the subjective expected util-
ity theory (SEUT) alongside heterogeneous farmer character-

istics and dynamic adaptation costs, risk experience, and per-
ceptions to realistically simulate many individuals’ behavior.
From the emergent patterns of all individuals’ behavior un-
der consecutive droughts we were able to assess river basin
scale patterns and come to these three main conclusions.

First, a farmer’s adaptive responses under consecutive
droughts ultimately led to higher drought vulnerability and
impact. Although a farmer’s switching of crops and uptake
of wells initially reduced drought vulnerability and increased
incomes, subsequent crop switching to water-intensive crops
and intensified cropping patterns increased water demand.
Furthermore, the homogeneous cultivation encouraged by
economic maximization made the region more sensitive to
market price shocks. These findings highlight the importance
of looking at consecutive events, as focusing solely on adap-
tation during first events would overlook the ultimate impact.

Second, the impacts of droughts on (groundwater-
irrigating) farmers are higher and can happen more sud-
denly in a socio-hydrological system under realistic climate
forcings compared to what just gradual numerical econom-
ical models can predict. This is because groundwater de-
pletion happens in periods of stabilization and rapid re-
duction instead of gradually and because ecological shocks
(i.e., droughts) and social shocks (i.e., crop price drops) can
coincide to rapidly decrease farmer incomes.

Third, adaptive patterns, vulnerability, and impacts are
spatially and temporally heterogeneous. Factors such as mar-
ket prices, received precipitation, farmers’ characteristics and
neighbors, and access to irrigation influence crop choices and
adaptation strategies. This variability underscores the bene-
fits of using large-scale ABMs to analyze specific outcomes
for different groups at different times.

This research presents the first analysis of a farmer’s adap-
tive responses under consecutive droughts using a large-scale
coupled agent-based hydrological model with realistic be-
havior. We emphasize the added value of employing coupled
socio-hydrological models for risk analysis or policy testing.
We recommend using these models to, for example, test poli-
cies designed to minimize overall impacts or to minimize
them for smallholder farmers. Further research could also
explore alternative adaptations to wells that reduce drought
vulnerability and are financially viable enough to encourage
wider adoption. Lastly, we advocate for research aimed at
developing detailed regional data to improve the accuracy of
large-scale ABMs, along with acquiring empirical data on
behavioral aspects to refine behavioral estimates.
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Appendix A: Additional figures

Figure A1. Well uptake and income grouped based on the agent’s interest rate, risk aversion, and discount rate. The values indicate the means
of 60 runs, while the error bars indicate the standard error.

Figure A2. Inflation-adjusted crop market prices for groundnut,
jowar, paddy, and the mean of all other crops.
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Figure A3. Spatial patterns of (a) adaptation, (b) precipitation, and
(c) agent density in the Bhima basin.

Appendix B: Model sensitivity analysis

B1 Sensitivity analysis method description

Sensitivity parameters were changed differently per param-
eter. The function latin.sample using Latin hypercube sam-
pling from SALib (Iwanaga et al., 2022) was used to gener-
ate 300 sets of values of each sensitivity parameter between
their min and max. The min and max were used as inputs
either to change the absolute values of a parameter (drought
loss threshold), to change the distributions of all agents’ val-
ues (risk aversion, discount rate), or to change all agents’ in-
dividual parameters with a fixed rate (interest rate).

B1.1 Risk aversion

See Sect. 2.5 on how the initial risk aversion was determined.
To change this, this distribution was normalized and rescaled
using a new standard deviation, which was a latin.sample
value between the given min and max.

B1.2 Discount rate

Similar to risk aversion, now instead of the standard devia-
tion, the mean was sampled between the min and max and
used to rescale the distribution.

B1.3 Interest rate

Each agent’s individual interest rate (Sects. 2.5 and S2.1.4)
was multiplied with a sampled value between the given min
and max.

B1.4 Well cost

The well cost factor is determined by adjusting the fixed and
yearly costs by an absolute factor. This absolute factor ad-
justs the price based on a normal distribution of values. The
standard deviation is 0.5 (50 % higher/lower price), and the
mean is 1 (no price change). The latin.sample function then
samples quantile values between 0 and 1 and uses the stan-
dard deviation and mean to calculate the adjustment factor.
Thus, the percent adjustment factor follows a normal distri-
bution around the original price (Eq. 1).

Table B1. Min and max settings of the sensitivity analysis.

Variable/parameter Value/range

discount_rate min: 0.059, max: 0.259
interest_rate min: 0.5, max: 1.5
well_cost min norm: 0.5, max norm: 1.5, min: 0, max: 1
drought_threshold min: −5, max: 5
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Figure B1. Delta moment sensitivity analysis. Values indicate how sensitive an output factor (y axis) is to the influence of a specific input
factor (x axis), in relation to the influence of all other input factors. The output consists of the number of wells, the yearly crop income, the
yield, risk perception, the groundwater depth, reservoir storage, and discharge up- and downstream. The changed input parameters consist of
risk aversion, the discount rate, the interest rate, well cost, and the drought threshold.

B1.5 Drought loss threshold

An absolute value was added to or subtracted from the
drought loss threshold based on the sampled values between
the min and max.

B2 Sensitivity analysis results

Our results show that well uptake is highly sensitive to well
cost and not very sensitive to the drought threshold. Diving
deeper into this relation, Fig. 8 shows that although well cost
substantially affects the adoption of wells and yield, its im-
pact on income is minimal compared to other factors. This
notion is supported by Figs. 4 to 7, which reveal that many
farmers cannot afford wells regardless of cost changes and
that decreasing groundwater levels result in the loss of wells.
Thus, although the effect of wells is large for farmers with
wells (Fig. 4), a large group remains without wells through-
out the basin. In contrast, risk aversion substantially affects
both well adoption and crop selection, and crop selection is
relevant to all farmers. Furthermore, crop selection is espe-
cially impactful as the price of groundnut, the primary crop
farmers switch to in the main season, doubled relative to
other crops (Fig. 7g). This illustrates that a farmer’s adaptive
behavior is a mix of climate and market dynamics.

However, Fig. 8 shows that well cost substantially in-
fluences all hydrological parameters except upstream dis-
charge. Recorded in regions with higher precipitation and
fewer agents (Appendix A3), upstream discharge shows lit-
tle sensitivity to well cost, suggesting groundwater extraction
makes up a smaller fraction of total river inflow. Similar to in-
come, yield reacts to risk aversion through crop choice. Risk
perception is sensitive to the drought loss threshold and is the
second most influential factor for income.

Appendix A1 shows that the interest rate significantly im-
pacts farmers’ ability to afford wells and influences their in-
come more than risk aversion and the discount rate. This con-
trasts with Fig. 8, which shows that all three input factors
equally affect well uptake and that risk aversion and the dis-
count rate are more important for income. This likely stems
from the sensitivity analysis parameters, where the change in
the interest rate is based on a factor multiplied by the agent’s
initial rate, leading to minimal variation if the initial value
is low. Furthermore, agents with higher initial interest rates
are already not adapting (Appendix A1) and thus are only
sensitive to (one-way) decreasing interest changes.
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Code and data availability. The most recent version of the GEB
and adapted CWatM model, as well as scripts for data acquisi-
tion and model setup, can be found on GitHub (https://github.
com/GEB-model, last access: 20 February 2025). The model in-
puts, parameterization, and code are accessible through Zenodo
(https://doi.org/10.5281/zenodo.11071746, Kalthof and De Bruijn,
2024). This page also includes the averages and standard deviations
of the 60 runs of the adaptation and non-adaptation scenario which
are featured in all figures.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/nhess-25-1013-2025-supplement.
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