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Abstract. Until now, a full numerical description of the
spatio-temporal dynamics of a landslide could be achieved
only via physically based models. The part of the geosci-
entific community in developing data-driven models has in-
stead focused on predicting where landslides may occur via
susceptibility models. Moreover, they have estimate when
landslides may occur via models that belong to the early-
warning system or to the rainfall-threshold classes. In this
context, few published research works have explored a joint
spatio-temporal model structure. Furthermore, the third el-
ement completing the hazard definition, i.e., the landslide
size (i.e., areas or volumes), has hardly ever been mod-
eled over space and time. However, technological advance-
ments in data-driven models have reached a level of ma-
turity that allows all three components to be modeled (Lo-
cation, Frequency, and Size). This work takes this direc-
tion and proposes for the first time a solution to the assess-
ment of landslide hazard in a given area by jointly mod-
eling landslide occurrences and their associated areal den-
sity per mapping unit, in space and time. To achieve this,
we used a spatio-temporal landslide database generated for
the Nepalese region affected by the Gorkha earthquake. The
model relies on a deep-learning architecture trained using an
Ensemble Neural Network, where the landslide occurrences
and densities are aggregated over a squared mapping unit of
1 km× 1 km and classified or regressed against a nested 30 m
lattice. At the nested level, we have expressed predisposing

and triggering factors. As for the temporal units, we have
used an approximately 6 month resolution. The results are
promising as our model performs satisfactorily both in the
susceptibility (AUC= 0.93) and density prediction (Pearson
r = 0.93) tasks over the entire spatio-temporal domain. This
model takes a significant distance from the common land-
slide susceptibility modeling literature, proposing an inte-
grated framework for hazard modeling in a data-driven con-
text.

1 Introduction

The literature on physically based models for landslides
shows various solutions to estimate where landslides might
occur, when or how frequently they occur, and how they
may evolve (e.g., Formetta et al., 2016; Bout et al., 2018).
This framework allows one to describe the dynamics of a
landslide from its initiation, propagation, and entrainment to
the runout and deposition (e.g., Burton and Bathurst, 1998;
Zhang et al., 2013). As a result, metrics such as the veloc-
ity, runout height, overall landslide area, and volume con-
stitute standard outputs of such a modeling approach (see,
van den Bout et al., 2021b, a). However, these models are
often constrained to single slopes or catchments because of
the spatial data requirements on geotechnical parameters.
This limitation has stimulated the geoscientific community
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to develop data-driven statistical models instead (Van Westen
et al., 2006). These are much more versed in being extended
over large regions because, rather than requiring specific
geotechnical properties, they can rely on terrain attributes
and remotely sensed data acting as geotechnical proxies
(Van Westen et al., 2008; Frattini et al., 2010). However, in
doing so, the geoscientific community has almost exclusively
focused on assessing where landslides may occur, as tempo-
ral landslide inventories were scarcely available. This notion
is commonly referred to as landslide susceptibility (Reichen-
bach et al., 2018; Titti et al., 2021). As for the low num-
ber of publications focused on estimating when or how fre-
quently landslides may occur at a given location, the commu-
nity has produced a number of near-real-time predictive land-
slide models for rainfall (Intrieri et al., 2012; Kirschbaum
and Stanley, 2018; Ju et al., 2020) and seismic (Tanyaş et al.,
2018; Nowicki Jessee et al., 2018) triggers. With regard to
characteristics such as velocity, kinetic energy and runout,
albeit fundamental to describing a potential landslide threat
(Fell et al., 2008; Corominas et al., 2014), these cannot cur-
rently be used for data-driven modeling because no observed
dataset of landslide dynamics exists to support the model-
ing and prediction paradigm based on Artificial Intelligence
(AI) or statistical approaches. Guzzetti et al. (1999) proposed
to alternatively model landslide areas that can be easily ex-
tracted from a polygonal inventory. Nevertheless, the first
spatially explicit models able to estimate landslide areas have
been recently proposed by Lombardo et al. (2021) and Zap-
ata et al. (2023). In their work, the authors exclusively esti-
mated the potential landslide size at a given location without
informing whether the given location would have been sus-
ceptible in the first place. This limitation has been further ad-
dressed by Bryce et al. (2022) and Aguilera et al. (2022), im-
plementing models that couple susceptibility with landslide
area prediction. Nevertheless, even in these cases, the ab-
sence of the temporal dimension in their work implies that no
current data-driven model is capable of solving the landslide
hazard definition (Guzzetti et al., 1999), jointly estimating
where, when (or how frequently) and how large landslides
may be in a given spatio-temporal domain. Apart from spatial
modeling, temporal aspects of landslides are also addressed
in works of Lombardo et al. (2020); Samia et al. (2020); Oz-
turk et al. (2021).

The present work expands on the data-driven literature
summarized above by proposing a space–time deep-learning
model based on an Ensemble Neural Network (ENN) ar-
chitecture. Neural Networks (NN) are not new to the land-
slide literature, although they have found the spotlight so
far mostly for automated landslide detection (Catani, 2021;
Meena et al., 2022), monitoring (Neaupane and Achet, 2004;
Wang et al., 2005), and for landslide susceptibility assess-
ment (Lee et al., 2004; Catani et al., 2005; Gomez and Kav-
zoglu, 2005; Grelle et al., 2014; Montrasio et al., 2014;
Catani et al., 2016; Nocentini et al., 2023). Here, the main
difference is that our ENN is built as an ensemble made of

two elements, i.e., a landslide susceptibility classifier and a
landslide density area regression model, both simultaneously
defined over the same spatio-temporal domain. Thanks to the
open data repository of Kincey et al. (2021), we tested our
space–time ENN, fully complying for the first time with the
landslide hazard definition (as per Guzzetti et al., 1999).

The paper is organized as follows: Sect. 2 describes the
data we used; Sect. 4 summarizes how we partitioned the
study area; Sect. 5 lists the predictors we chose; Sect. 6 de-
tails our space–time ENN architecture; Sect. 7 reports our
results, which are then discussed in Sect. 8, and Sect. 9 con-
cludes our contribution with an overall summary and future
plans.

2 Study area and landslide inventory

The 2015 Gorkha (Nepal) Earthquake is one of the strongest
recent earthquakes in South Asia, and specifically along the
Himalayan sector (e.g., Kargel et al., 2016). The Mw 7.8
mainshock occurred on 25 April 2015, and together with
a sequence of aftershocks, it was responsible for trigger-
ing more than 25 000 landslides (Roback et al., 2018). The
ground motion not only affected the Nepalese terrain right
after the earthquake through co-seismic landslides, but its
disturbance increased landslide susceptibility in the follow-
ing years, a phenomenon commonly referred to as earth-
quake legacy (Jones et al., 2021; Tanyaş et al., 2021a). The
legacy of the Gorkha earthquake has been recently demon-
strated by mapping a multi-temporal inventory, which has
been publicly shared by Kincey et al. (2021). The authors
mapped landslides across the area shown in Fig. 1 from
2014 to 2018, including the co-seismic phase, as well as all
pre-monsoon and post-monsoon seasons, with an approxi-
mate temporal coverage of six months. They used a time se-
ries of freely available medium-resolution satellite imagery
(Landsat-8 and Sentinel-2) and aggregated the resulting land-
slide areas at the level of a 1 km squared lattice. Overall, they
mapped three pre-seismic and seven post-seismic landslide
inventories in addition to the co-seismic one. In this work,
we excluded three pre-seismic inventories and selected the
inventories from April 2015 onward because the effect of
the ground motion and its legacy is present only after the
event. As a result, from the gridded database by Kincey et al.
(2021), we extracted a total of eight landslide inventories.

As the landslide information was aggregated at a 1 km res-
olution, it is not possible to disentangle single landslides,
one from the others. Thus, each 1 km grid reports the whole
landslide area mapped by the authors each time without ex-
cluding the footprint of previous failures. For this reason,
we had to include a pre-processing step where each tempo-
ral replicate was re-calculated and re-assigned with the dif-
ference in landslide area density between two original sub-
sequent inventories. In the attempt to focus on newly acti-
vated landslides, we then considered only grid cells with an
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Figure 1. Study area defined within the cyan polygon, where Kincey et al. (2021) mapped the multitemporal landslide inventories upon
which we based the analysis in this work. The Beach Ball shows the moment tensor of the energy release from the 2015 Gorkha Earthquake.

increase in landslide area. The interpretation here is that an
increase with time implies either newly formed landslides or
re-activated ones. Conversely, the grids where the landslide
area diminished with respect to their previous counterpart
were assigned with a zero value under the assumption that
no landslide took place, but rather that vegetation recovery
was responsible for the estimated change. The resulting tem-
poral inventory at different time periods over the 1 km grid is
shown in Fig. 2.

3 Geological context

Geology largely controls the landslide initiation and flow,
and thus, it is commonly used as part of landslide suscep-
tibility studies (Fan et al., 2019). In the context of this exper-
iment, the majority of the study area (9 %) is classified as the
Siwalik Formation, followed by the Himal group and a com-
bination of many river formations such as the Seti and Sarung
Khola formations (Dahal, 2012). The Siwalik Formation is
mostly a Molasse deposit of the Himalayas, consisting of
sandstone, mudstone, shale, and conglomerate. The river for-
mations that predominantly outcrop in the middle Himalayas
are a combination of Schist, Granite, Gneiss, Phyllite, and
Quartzite. The upper Himalayan region consists instead of
a combination of Schist, Gneiss, Migmatites, and Marbles
(Upreti, 2001).

This general overview is summarized in the geological
map by Dahal (2012). However, this map does not cover
a substantial portion of the upper Himalayas, where the
landslide multi-temporal inventory mapped by Kincey et al.
(2021) includes many landslides. Therefore, this map is

largely unsuitable for testing a data-driven model aimed at
explaining the landslide hazard associated with the above-
mentioned inventory.

A second geological map covers the Nepalese territory,
this made by Dahal (2012). However, it is limited to a very
coarse resolution (1 : 1000000) and only reports informa-
tion about the formations rather than the associated mate-
rial. Even if one were to extrapolate the respective rock types
from the literature, (Upreti, 2001), such formations would
only summarize the complexity of the Himalayan landscape
in a few classes, thus making it of limited use in the context
of data-driven landslide modeling. The Department of Mines
and Geology of Nepal is currently collating all the informa-
tion with the intent of producing a detailed geological map
at a 1 : 50000 scale. However, this is a work in progress that
still misses most of the study areas considered in this study.

This major limitation affected our ability to consider ge-
ology in this article. Therefore, although we are aware of its
relevance in any landslide study, geological information is
not explicitly included as a predictor in the modeling proto-
col presented below.

4 Selection of mapping units

To partition our study area, we use the same mapping unit
defined by Kincey et al. (2021). Because the authors ag-
gregated the landslide information on a 1 km× 1 km square
grid, our model targets are defined within the same lattice
structure. As for the definition of the predictor set, unlike
current data-driven practices where medium resolution map-
ping units are assigned with the mean and standard devia-
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Figure 2. Landslide Area Density (% in a 1 km2 grid) calculated as the difference between two consecutive inventories mapped with different
time ranges provided by Kincey et al. (2021). The colorbar is saturated between 2 % and 60 % because there are very few grid cells with such
landslide area density in the data.
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Figure 3. Panels showing the various mapping unit structures: (a) the covariate and existing inventory grid structure, with a 1 km× 1 km
grid with 32× 32 pixels of terrain image in the background, (b) the patching of a 4× 4 inventory grid with a 4 km× 4 km grid, and (c) the
shifted patch structure with a similar grid structure to (b).

tion of the predictors under consideration (Ardizzone et al.,
2002; Schlögel et al., 2018), here we exploit an NN struc-
ture to treat each predictor as an image. In other words, each
1 km× 1 km square grid was not summarized with its mean
and standard deviation values, but rather, we provided the en-
tire spatial distribution of predictors as an image patch to our
convolutional NN (CNN) model, which is capable of extract-
ing information from image data.

Only feeding a single grid structure to the NN would ne-
glect any spatial dependence coming from neighboring areas
(Glenn et al., 2006; Vasiliev, 2020). As landslides are dy-
namic phenomena, it is essential to inform the model about
how the landslide distribution changes across the neighbor-
ing landscape, as well as the characteristics of the neighbor-
hood under consideration. To do so, we extended the “spa-
tial” vision of our ENN by creating two additional sets of
lattices, each encompassing 16 grids measuring 1 km, in a
4× 4 patch. Figure 3 further explains the mapping unit struc-
tures, wherein in panel (a), we can observe that the 1 km red
polygonal lattice created by Kincey et al. (2021) contains
32× 32 pixels of the underlying terrain characteristics.

The subplot (Fig. 3b) shows how each patch is gener-
ated through the green boxes containing 16 inventory grids.
Each box will later be used as the training patches in the
ENN, which in turn implies a 128× 128 pixel structure
(32 pixel× 4= 128) as input data. The model will then out-
put 16 inventory grids, following the same data structure ex-
pressed at the 4× 4 patch level. Notably, if we had used the
single patch arrangement shown in Fig. 3b, then the land-
scape characteristics along the edges of each patch would
have been lost.

Therefore, we also produced a second patch arrangement,
identical to the first but shifted by 2 km to the east and 2 km
to the south. This operation returned the blue patches shown
in Fig. 3c. In this way, the total data volume is also increased,

providing multiple terrain and landslide scenarios defined
over the different spatial data structures.

Note that these spatial manipulation procedures are quite
common for Convolutional Neural Networks (e.g., Amit and
Aoki, 2017). Here, we have simply adapted them in the con-
text of the gridded structure defined by Kincey et al. (2021).

5 Predictors

The predictor set we chose features a number of terrain at-
tributes, as well as hydrological and seismic factors. These
predictors are selected based on their influence on landslides,
which is observed by many existing works as represented in
Table 1. Our assumption is that their combined information
is able to explain the distribution of landslide occurrences
and area densities (the combined targets of our ENN) both in
space and time. These predictors are listed in Table 1, graph-
ically shown in Fig. 4. Below, we report a brief explanation
to justify their choice.

The Slope carries the signal of the gravitational pull act-
ing on potentially unstable materials hanging along the to-
pographic profile (Taylor, 1948). Elevation, Eastness and
Northness are common proxies for a series of processes such
as moisture, vegetation, and temperature (Clinton, 2003), and
their effect on slope stability (Neaupane and Piantanakulchai,
2006; Whiteley et al., 2019; Loche et al., 2022). As for the
Planar and Profile Curvatures, these are known to control the
convergence and divergence of overland flows (Ohlmacher,
2007). This hydrological information is also supported by
the Topographic Wetness Index and Distance to River (Yesil-
nacar and Topal, 2005). To these finely represented predic-
tors, we also added a number of coarser ones, represent-
ing the potential triggers behind a landslide genetic pro-
cess, namely, Rainfall (its Maximum seasonal value (per
pixel) and 95 % Confidence Interval (CI) (per pixel) within
the inventory time-frame, calculated from daily CHIRPS
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Table 1. Predictors’ summary.

Type Covariate: (Acronym | Unit) Reference

Morphometric (30 m SRTM) Slope (Slope | degrees) Zevenbergen and Thorne (1987)

Morphometric (30 m SRTM) Elevation (Elevation | m) –

Morphometric (30 m SRTM) Northness (Northness | unitless) Steger et al. (2016)

Morphometric (30 m SRTM) Eastness (Eastness | unitless) Steger et al. (2016)

Morphometric (30 m SRTM) Profile Curvature (PRC | m−1) Heerdegen and Beran (1982)

Morphometric (30 m SRTM) Planar Curvature (PLC | m−1) Heerdegen and Beran (1982)

Morphometric (30 m SRTM) Topographic Wetness Index (TWI | unitless) Sörensen et al. (2006)

Precipitation (∼ 5 km CHRIPS) Maximum daily rainfall (Max. Precip. | mmd−1) Funk et al. (2015)

Precipitation (∼ 5 km CHRIPS) 95 % CI rainfall in the inventory period (95 % CI Precip. |
mmd−1)

Funk et al. (2015)

Seismic shaking (1 km USGS) Maximum Peak Ground Acceleration from main event and
major aftershock (Max PGA | ms−2)

Worden and Wald (2016)

Seismic shaking (1 km USGS) St. Dev. Peak Ground Acceleration (1Std. PGA | ms−2) Worden and Wald (2016)

Distance to River Distance to River (Dist2Riv | m) –

Monsoons after Earthquake (count) Monsoons after the Earthquake (Monsoons | year) –

data spanning between two subsequent landslide inventories;
Funk et al., 2015) and Peak Ground Acceleration (its Max-
imum value from between main shock and aftershock and
their respective standard deviation estimated using empirical
ground motion prediction equations, available through the
ShakeMap system of the United States Geological Survey
(USGS); Worden and Wald, 2016).

The PGA is empirically estimated from local ground mo-
tion recording stations, and it has been shown to correlate
with the Gorkha co-seismic landslide scenario (Dahal et al.,
2023). Similar to PGA, Peak Ground Velocity (PGV) could
also be used in this case to model the landslides as it is a bet-
ter predictor in some cases (Maufroy et al., 2015; von Specht
et al., 2019). However, very few stations actively recorded the
Gorkha earthquake. This is the reason why the differences
in the spatial patterns of the PGA and PGV available in the
USGS ShakeMap system are negligible (Hough et al., 2016).
Therefore, with the objective of explaining the co-seismic
landslide scenario over such a large study area, any of the
two ShakeMaps would produce similar results.

To these spatially and temporally varying predictors, we
also added the number of wet seasons after the Gorkha Earth-
quake to inform the model about the combined effect of land-
scape characteristics, earthquake legacy, and meteorological
stress.

6 Neural networks

6.1 Model architecture

To contextually estimate landslide susceptibility and area
density, we designed an NN with a multi-output design, re-
lying on the same 1 km gridded data input. In short, the first
model component estimates a “pseudo-probability” via a sig-
moid function, whereas the second component regresses the
area density information against the same set of predictors
used in the previous step.

The NN design is shown in the Fig. 5. The susceptibility
block is modified from the U-Net model (Ronneberger et al.,
2015) with the backbone of Resent18 (He et al., 2015), where
the model processes input information through the 18 blocks
of Convolution, Batch Normalization (Ioffe and Szegedy,
2015b), dropout, Rectified Linear Unit (ReLU), and Max
pooling (Wu and Gu, 2015) with a total 23 556 931 trainable
parameters, which are variables that need to be optimized
during the training process. The convolution layer in each
block convolved with the 3× 3 window, and it was initial-
ized with the Glorot uniform initialization function (Glorot
and Bengio, 2010). The convolution function was followed
by a batch normalization, which works as a regularization
function. This prevents the model from overfitting, and it is
followed by a dropout layer. The dropout layer randomly de-
activates 30 % of the neurons in the convolution layer, such
that the model does not overfit. Following this, the feature
space passes through the ReLU activation function, which al-
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Figure 4. Predictors used for training the Ensemble Neural Network. The Max Precip. is one example of the maximum daily rain calculated
for each inventory. The same applies to the 95 % CI Precip. calculated as the difference between the 97.5 and 2.5 percentiles of the daily
rainfall distribution. Max PGA and 1Std PGA are, respectively the maximum and one standard deviation calculated from the Peak Ground
Acceleration maps of the main shock and aftershock. Dist2Riv is the Euclidean distance from each 30 m pixel to the nearest streamline. PLC,
PRC, and TWI are acronyms for Planar Curvature, Profile Curvature, and Topographic Wetness Index.

lows for nonlinearity in the model, and finally, a max pooling
layer is added to reduce the spatial dimension of the feature
space.

The decoder part consists of the U-Net structure, but un-
like the conventional U-Net model, it produces an output
scaled down by a factor of 8. The schematic design of the
model is shown in Fig. 6. To understand the spatial depen-
dence between the different inventory grids (1 km× 1 km
grid), we have used a 4× 4 aggregation patch as input for the

susceptibility block, which is equivalent to 128× 128 input
pixels. After receiving 128× 128 pixels, the convolution op-
eration learns the contribution of physical properties such as
earthquake and rainfall intensities as well as terrain charac-
teristics to produce the susceptibility in a 4× 4× 1 batch of
1 km× 1 km grids. We stress here that we specifically chose
to use a 32× 32 pixel structure per 1 km grid to convey all the
possible information to the model and provide flexibility to
the neural network to learn relevant information. As a result,

https://doi.org/10.5194/nhess-24-823-2024 Nat. Hazards Earth Syst. Sci., 24, 823–845, 2024



830 A. Dahal et al.: Space–time landslide hazard modeling via Ensemble Neural Networks

Figure 5. Designed landslide susceptibility and area density prediction model.

Figure 6. Susceptibility part of the model designed with a U-Net-like structure.

the model can extract the relevant information it needs from
the distribution of 32× 32 pixels, rather than using arbitrary
summary statistics such as the mean and standard deviation
as per tradition in the geoscientific literature (e.g., Guzzetti
et al., 2000; Lombardo and Tanyas, 2020). In other words,
the model can learn by itself: (1) scanning 32× 32 pixel im-
ages corresponding to single 1 km grid cells and (2) matching
the image characteristics to the landslide presence or absence
labels.

The area density block also relies on a 1 km grid structure.
However, we did not introduce the 4× 4× 1 neighborhood
because the landslide presence or absence data present some
spatial pattern beyond the extent of a 1 km grid. Conversely,
the landslide area data do not present obvious spatial clusters
of small or large densities.

Furthermore, it is also evident that landslides are discrete
phenomena in space. This means that a large area density can
be estimated at a 1 km grid, but its neighbor may not have
suffered from slope failures (area density of 0). Conveying
this “salt and pepper” spatial structure to the U-Net (via a

4× 4 neighboring window) tasked with regressing continu-
ous data would negatively affect the model (unreported tests).

To address this issue, we reshaped the input data to a
16× 32× 32× 13 shape, where 16 inventory grids, each as-
sociated with 13 predictors of 32× 32 pixels, are present.
The area density block is made of six dense sub-blocks,
encompassing fully connected, batch normalization (Ioffe
and Szegedy, 2015b) and dropout layers (Srivastava et al.,
2014a). Before passing the data to the dense block, we added
one Convolution block consisting of Convolution, Batch
Normalization (Ioffe and Szegedy, 2015b) as well as Rec-
tified Linear Unit and Max pooling (Wu and Gu, 2015) lay-
ers to extract the features from the input patches. Once both
the area density and the susceptibility are estimated, the area
density needs to be reshaped to match the data structure
of the susceptibility component. To then generate landslide
hazard estimates, as per the definition proposed by Guzzetti
et al. (1999), we added a step where the pseudo-probability
of landslide occurrence is multiplied by the landslide area
density.
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Notably, the developed model is spatio-temporal because
it is built to explain the variability of the landslide hazard in
space and time. However, the convolution layers used in this
modeling approach are of a 2D nature. Therefore, the spa-
tial structure in the data is handled via the 2D CNN, whereas
the connection between subsequent spatial layers is not ex-
plicitly built in. The landslide hazard definition includes the
concept of return periods to treat the temporal component,
where for a given triggering situation of a given return period,
the landslide hazard is estimated. The concept of return time
could theoretically be included as part of the architecture pre-
sented here. However, the length of the multi-temporal inven-
tory is relatively short. Thus, our model should not be consid-
ered suitable for long-term prediction, but rather, its validity
is confined to the spatio-temporal domain under considera-
tion or very close to it, both in space and in time (Wang et al.,
2023). In other words, it should not be considered for gener-
ating long-term predictions under climate change scenarios.

6.2 Experimental setup

Binary classifiers are quite standard in machine or deep
learning. Thus, for the susceptibility component, we opted
for a focal Tversky loss function (FTLc, see equation be-
low for clarity), as Abraham and Khan (2018) have shown
this measure to be particularly suited to imbalanced binary
datasets such as ours. The major reason for choosing this loss
function is the dominant absence of landslides in the dataset,
complemented by many fewer cases (≈ 10 %) where slope
failures occurred. This may bias the model result and lead
to a wrongly trained model if the loss function is not suit-
ably implemented to handle this imbalance. The definition of
Focal Tversky Loss can be denoted as:

FTLc =
∑
c

(1−TIc)
1
γ ,

TIc =

∑N
i=1picgic + ε∑N

i=1picgic +α
∑N
i=1picgic +β

∑N
i=1picgic + ε

, (1)

where γ is the focal parameter, pic ∈ [0,1] is the probability
that the pixel i is of the Landslide class c, and pic ∈ [0,1] is
the probability that the pixel i is of the non-Landslide class c.
The gic ∈ 0,1 is the observed presence of landslide per pixel
(i.e., the ground truth), and gic∈0,1 is the observed absence of
landslide per pixel. α, and β are the hyperparameters that can
penalize false positives and false negatives and ε value was
set to 10−7. Furthermore, c represents the landslide presence
class in the landslide classification problem; this could be
represented by any positive integer in the case of multiclass
classification problems. As for FTLc, it represents the Focal
Tversky Loss for binary classification, and TIc is the Tversky
Index.

To train the susceptibility component of the model, we
trained a standard U-Net equipped with an early stopping
functionality for a total of 500 epochs. The stopping crite-
rion was set to detect overfit that may last for over ten epochs.

The overall data were then randomly split into training and
testing sets to monitor the U-Net learning process.

As for the area density component, we opted for a loss
function expressed in terms of mean absolute error (MAE,
see Eq. 2 below for clarity), following the recommendations
in Qi et al. (2020). The MAE is defined as:

MAE=

∑n
i=1

∣∣yi − ŷi∣∣
n

, (2)

where yi is the observed area density and the ŷi is the pre-
dicted area density in the ith pixel, and n is the total number
of samples in one batch.

To train the area density component, the imbalance in ze-
ros and ones hindered the optimization process because the
mean absolute error function did not perform well when most
of the landslide densities were zeroes. This led to explod-
ing gradients, returning all zeroes as the output. To solve
this issue, we gradually increased the complexity of the task
by subsampling the data and transforming the distribution
of area density. The process is commonly known as cur-
riculum learning (Wang et al., 2021), which lets the model
learn a simple task at the start, and the process continues
by gradually increasing the complexity of the subsequent
tasks, each one linked to the previous one. To do so, we
first removed all data points that contained zeros among the
area density 1 km grids. We then log-transformed the tar-
get variable to convert the exponential-like distribution to a
Gaussian-like distribution. Once the data were expressed ac-
cording to a near-normal distribution, we trained the model
for 200 epochs, including an early stopping criterion. The
estimated parameters were set to initialize the subsequent
steps. Specifically, with the initialization parameters avail-
able, we removed the logarithmic transformation and trained
the model directly in the original landslide area density scale.
This step was further run over 200 epochs, and the result-
ing parameters were fine-tuned to match the overall landslide
area density distribution. In other words, we re-introduced
the 1 km grids with zero density at this stage. Ultimately, the
data were then randomly divided into 70 % for calibration
and 30 % for validation.

The models were trained on a workstation with 160 GB
Random Access Memory, a 32-core AMD Ryzen Threadrip-
per PRO virtual CPU, and an NVIDIA RTX A4000 GPU.
The computational resource used in this case made use of
a shared infrastructure, with the entire training process tak-
ing 30 %–40 % load on the node and taking 35–40 h, depend-
ing on the available GPU memory. For the backpropagation,
we used the Adam optimizer (Kingma and Ba, 2014), with
an initial learning rate of 10−3, exponentially decreasing ev-
ery 1000 steps of training. Because simultaneously training a
model with two outputs based on a large and complex dataset
would be extremely difficult to achieve, we opted to train the
two elements separately in the beginning and combine their
weights at the end of the learning process to generate a single
model. This is then further trained for a few more steps to op-
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timize the area density component for the nonlandslide grids.
This approach is commonly known as ensemble modeling in
the data-driven modeling context. The model is trained with
a batch size of 16, and the training dataset is randomly di-
vided into a 30 % validation set to check the model conver-
gence at each epoch. The training process also featured an
early stopping functionality where the model training would
stop if the validation loss started to diverge. Simply put, the
model weights were selected at the minimum validation loss
to avoid overfitting. The number of convolution blocks, batch
size, and initial learning rate were optimized through a hy-
perparameter tuning process, whereas other parameters were
selected from the pre-existing models. For the convolution
blocks, all the integer numbers of blocks were tested be-
tween 6 and 64, and we found that 18 was the best-suited
number of blocks. For the batch size, four different batch
sizes were tested (8, 16, 32, 64), and the fastest convergence
was obtained through a batch size of 16. Moreover, learning
rates from 1 to 10−4 were tested by decreasing the learning
rate by a factor of 10 each time, and we found the initial
learning rate of 10−3 to be the most stable.

6.3 Performance metrics

We used the following performance metrics for susceptibility
and the area density components.

6.3.1 Susceptibility component

To evaluate the model’s performance during the training pro-
cess and the inference, we used two common metrics, namely
the F1 score (Meena et al., 2022; Nava et al., 2022) and the
Intersection over Union (IOU) score (e.g., Huang et al., 2019;
Ghorbanzadeh et al., 2020). We did not use binary accu-
racy because it is heavily influenced by data imbalance (Yeon
et al., 2010; Li et al., 2022) and can produce high accuracy,
even for poor classifications. The F1 score is calculated as:

F1=
2× precision × recall

precision + recall
,

precision =
TP

TP+FP
, recall =

TP
TP+FN

, (3)

where TP denotes the True Positives, FP denotes the False
Positives, TN denotes the True Negatives, and FN denotes
the False Negatives in the confusion matrix.

As for the IOU, this is another common metric for binary
classifiers, computed as:

IOU=
TP

TP+FN+FP
. (4)

We chose to use the IOU because it is a metric specifi-
cally dedicated to highlighting the accuracy in predicting the
number of susceptible pixels and their location in a raster im-
age (Monaco et al., 2020). Furthermore, to visualize how the
model performs at different probability thresholds and what

the performance capacity of the model is, we also evaluated
the Receiver Operating Characteristic (ROC, Fawcett, 2006)
curve. This is generated at varying probability thresholds by
computing pairs of True-Positive and False-Positive Rates.
Moreover, we calculated the Area Under the ROC Curve
(AUC) to evaluate the model’s performance and to observe
if the model overfits (Brenning, 2008; Brock et al., 2020).

6.3.2 Area density component

To evaluate the trained model for the landslide area density,
we opted to use the MAE (see Eq. 2) to monitor how the
algorithm converges to its best solution, minimizing such a
parameter. During the inference process, we also considered
Pearson’s R coefficient Pearson (1895), defined as:

R =

∑
(xi − x)(yi − y)√∑
(xi − x)

2∑(yi − y)
2
, (5)

where R denotes the correlation coefficient, xi are the values
of the x-variable in a sample, x stands for mean of the val-
ues of the x-variable, yi are the values of the y-variable in a
sample, and y stands for mean of the values of the y-variable.

This parameter essentially provides the degree of correla-
tion between two datasets, here taken as the observed and
predicted landslide density per 1 km grid. A perfect model
should have Pearson’s R-value of 1, whereas two totally un-
correlated vectors would return a Pearson’s R-value of 0.

7 Results

This section reports the model performance, initially from
a purely numerical perspective. Later, we will translate this
information back into maps and evaluate their temporal char-
acteristics.

Figure 7 offers an overview of the performance that our
ENN returned for its two components. The left panel reports
an AUC of 0.93, associated with an F1 Score of 0.96 and
IOU of 0.95. This predictive performance complies with the
classification performance of outstanding data-driven mod-
els (Hosmer and Lemeshow, 2000). In the context of NNs,
this is quite common because such architectures as much as
other machine- or deep-learning tools and advanced statis-
tical methods have proven to be able to reliably classify a
landscape into landslide-prone or unstable slopes (e.g., Lom-
bardo et al., 2019; Steger et al., 2021). Traditionally, the only
missing element is that the vast majority of efforts so far
have been spent solely in the context of pure spatial pre-
dictions, whereas the temporal dimension has been explored
in a relatively smaller number of multivariate applications
(Samia et al., 2017; Fang et al., 2023). Conversely, the per-
formance of the area density component is far beyond the
few analogous examples in the literature. So far, no spa-
tially or temporally explicit model exists for landslide area
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Figure 7. Summary of model’s performance for the two components: landslide susceptibility in (a) and Area Density in (b) in the validation
data.

density. However, four recent articles have explored the ca-
pacity of predicting landslide areas (Lombardo et al., 2021;
Aguilera et al., 2022; Bryce et al., 2022; Zapata et al., 2023).
They all returned suitable predictive performance, but still
far from the match seen in the second panel of Fig. 7, be-
tween observed and predicted landslide density in the out-of-
sample (test) dataset. There, an outstanding alignment along
the 45° line is clearly visible, together with a Pearson’s R co-
efficient of 0.93 and a MAE of 0.26. It is important to stress
that such metrics are calculated including the 1 km grids with
zero landslide densities, i.e., the validation set in the study
area as a whole. We also computed the same metrics exclu-
sively at grid cells with a positive density, these resulting in
a Pearson’s R coefficient of 0.92 and a MAE of 0.24.

With a closer look, we can note a few exceptions, with
some observations being strongly underestimated and very
few cases being overestimated. This might be because we
used MAE as the loss function. The MAE is a metric tailored
toward the mean of a distribution, and therefore smaller val-
ues in the batch may be misrepresented without increasing
the MAE. Moreover, the model is optimized by minimization
of the MAE. Thus, it places more emphasis on suitably es-
timating large landslides and potentially underestimating the
smaller ones. This problem could also have been influenced
by the log-transformation step introduced at the beginning of
the training process. This inevitably converted smaller val-
ues to very small ones, thus limiting their influence on the
loss function even more. We are sharing this issue with the
reader to provide the best description of a new modeling pro-
tocol. However, we should also mention that we consider
such misrepresentation a minor problem. In fact, geoscience
and risk science in general refer to the worst-case scenarios
as the prediction target. Here, this is expressed by very large
landslides, which appear to be correctly represented in most
cases. Another worst-case scenario may be the combination

of large numbers of medium-sized landslides and their po-
tential coalescing evolution. However, the bulk of the land-
slide density distribution is very well represented. This leaves
most of the errors confined to the left tail (or very small val-
ues) of the landslide density distribution. These correspond
to the phenomena from which one would expect the least po-
tential threat or capacity to create damage, assuming a uni-
form vulnerability distribution.

These two plots offer a graphical overview of our ENN
performance but they do not convey their signal in space and
time. To offer a geographic and temporal overview of the
same information, we opted to translate the match between
observed and predicted values into maps, for both the sus-
ceptibility and the area density components. Figure 8 shows
confusion maps (Titti et al., 2022; Prakash et al., 2021) where
the distribution of TP, TN, FP, and FN is geographically pre-
sented for the co-seismic susceptibility as well as the fol-
lowing seven post-seismic scenarios. Across the whole se-
quence of maps, what stands out the most is that the TP and
TN largely dominate the landscape, with few local excep-
tions. Notably, aside from the geographic translation of the
confusion matrix, we reported the actual counts in logarith-
mic scale through the nested subpanels. There, the dominant
number of TP and TN is confirmed once more and a better
insight into the model misses is provided (FP and FN).

Figure 9 highlights the mismatch between observed and
predicted landslide area densities. Most of the residuals are
confined between −1 and +1 percent, with a negligible num-
ber of exceptions reaching an overestimation of −45 % and
an underestimation of +15 %. Aside from these outliers, the
most interesting element that stands out among these maps
is the fact that the residuals do not exhibit any spatial pat-
tern. They actually appear to be distributed randomly in both
space and time.
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Figure 8. Confusion Maps offering a cartographic prediction of the performance for the susceptibility component. The TP, FP, FN, and TN
are represented in the log scale.

Having stressed the predictive performance reached by our
ENN, in Fig. 10, we finally offer a direct overview of the two
outcomes (susceptibility and area density), as well as their
product (hazard). Figure 10 reports the co-seismic case only
and the post-monsoon estimates. We opted for this for rea-
sons of practicality and visibility in a quite crowded subpan-
eled figure.

Reading these maps should be intuitive, but below we
stress the assumptions behind the hazard one, being the first
time such a map has ever been shown. The first column re-

ports the probabilities of landslide occurrence per 1 km grid.
The second column shows the predicted landslide area den-
sity for the same 1 km lattice. The product of the two de-
livers an important element, where only coinciding high-
susceptibility and high-density grids stand out. The rationale
behind this is that large probability values of landslide occur-
rence will be inevitably canceled out whenever multiplied by
low area density values. The same is valid in the opposite
case. Large expected densities will be canceled out if mul-
tiplied by very low susceptibility values. Thus, the hazard
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Figure 9. Maps displaying the pre- and post-monsoon residuals for the area density (expressed as percentages of failure in a pixel). The
residuals are computed as observed landslide density minus the corresponding predicted values.

maps really do inform of the level of threat one may incur at
certain 1 km grids and certain times, because a high hazard
value implies that the mapping unit under consideration is
not only expected to be unstable but the resulting instability
is expected to lead to a large failure too.

The implications of the estimated patterns and considera-
tions in terms of hazard will be further explored in Sect. 8. To
support such discussions and highlight the link between sus-
ceptibility, hazard and their temporal evolution, we opted to

plot their signal via two-dimensional density plots, as shown
in Fig. 11.

We can observe an interesting element, attributable to a
concept known as earthquake legacy in the geoscientific lit-
erature. In fact, high landslide area density values associ-
ated with high susceptibility are quite well represented on
the co-seismic panel and the first post-seismic one. However,
as time passes, the density and proneness of the landscape
appear to be estimated with lower landslide susceptibilities
and area densities.
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Figure 10. Predicted landslide susceptibility, area density, and hazard over time for co-seismic and post-monsoon seasons only, because this
period had most of the landslides.

8 Discussion

In this section, we discuss the model’s performance, appli-
cability, limitations, and necessary future developments in
two subsections containing the supporting and opposing ar-
guments.

8.1 Supporting arguments

The model results and the observations show that the deep-
learning-based methods perform well in predicting land-
slide susceptibility and area density through a joint mod-
eling approach. Such models can obviously provide much
more information than modeling only susceptibility (Lom-
bardo et al., 2021). Only using the susceptibility informa-
tion is blind to landslide characteristics, such as how many
landslides may manifest or how large they may become once
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Figure 11. Contour plot of Area Density versus Susceptibility in different time periods showing how the area density and susceptibility are
related to each other, where lighter color represents the lower density of the values and darker color represents the higher density of the
values. Furthermore, it shows how in different periods after the earthquake the area density and susceptibility are distributed over space and
how the range of susceptibility and area density changes.

they start moving downhill (Di Napoli et al., 2023). Thus,
the combined information of which slope may be considered
unstable and the expectation on the landslide can become an
important source of information, not only for hazard assess-
ment but even for risk reduction and management practition-
ers, once combined with the elements at risk.

Our ENN has shown the capacity to assess the two core el-
ements, and interesting considerations can be made of its out-
come. Figure 8 shows that each inventory mostly produced
true positives and true negatives across the whole study site.
More importantly, the number of false negatives was almost
negligible. As for the false positives, their number is reason-
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able and highlights locations where landslides have not man-
ifested yet but may still occur in the future. As for the area
component, Fig. 9 shows that the patterns of the residuals ap-
pear quite random in both space and time, thus fulfilling the
ideal homoscedasticity requirements of a data-driven model.
We can also stress that most of the residuals away from a
few percentage points are confined toward negative values.
This implies that our model overestimates the landslide area
in a few isolated cases. However, similar to the point raised
for the FP in Fig. 8, this outcome is to be expected. A neg-
ative residual indicates a location where the observed land-
slide area is lower than the predicted one. As most of the
study site is characterized by grid cells where landslides did
not occur, a negative residual points out locations that may
not have exhibited landslides in the first place but whose ge-
omorphological characteristics still indicate a likely release
of a relatively larger unstable mass in the future.

Ultimately, Fig. 10 shows the constructive and destructive
interference between the susceptibility and area density sig-
nals. This leads to isolating landslide-hazardous locations,
which appear to be mostly located along the highest portions
of the Himalayan range under consideration. There, a greater
hazard is to be reasonably expected, for the higher relief is
associated with higher gravitational potential and thus with a
greater conversion into kinetic energy as the given landslide
triggers, propagates, and finally halts.

An interesting by-product of our ENN can also be seen
in Fig. 11. There, the high hazard levels estimated for the
first two landslide inventories are shown to decay with time.
Moreover, we can also observe that the susceptibility and
area density do not necessarily correlate, meaning that the
probability of landslide occurrence does not directly corre-
late with its size. This was also visible in the raw data shared
by Kincey et al. (2021). Such a decay supports the notion of
earthquake legacy effects on landslide genetic processes (Oz-
turk, 2022), something still under debate in the geoscientific
literature (Tanyaş et al., 2021b). Our output could bring addi-
tional information on this topic, supporting the scientific de-
bate on landslide recovery (the time required for a given land-
scape to go back to pre-earthquake susceptibility conditions)
by observing the predicted susceptibility change over time.
Overall, multi-temporal landslide inventories and various as-
sociated parameters (e.g., number, size, area, or volume of
landslides) have already been used to explore landslide re-
covery during post-seismic periods (e.g., Tanyas et al., 2022).
However, this has usually been done on a very generic and
broad scale, usually leaving the slope scale out of the analyt-
ical process. Therefore, we see an added value in our model
as it provides a comprehensive evaluation of landslide oc-
currences and their size. It is worth noting that examining
landslide recovery is beyond the scope of this research. Yet,
something worth sharing with the readers is that the decay we
observe appears to have slowed down in 2017 and 2018, with
a slight increase in the number of landslides, susceptibility,
area density, and hazard. During those years, though, Kincey

et al. (2021) could not regularly map landslides as they previ-
ously did. Thus, both pre-monsoon seasons in 2017 and 2018
were mapped on a longer time window than the authors did in
previous years, inducing a slight temporal bias in the model.

Another element worth noting is that landslides across
any given landscape are rare events. Thus, the number of
presences will always be much smaller than the absences.
This creates imbalanced data sets, which are often not ide-
ally modeled in the deep-learning context (see, Johnson and
Khoshgoftaar, 2019). In turn, imbalanced data sets limit the
use of traditional metrics such as accuracy and the use of loss
functions such as Binary Cross Entropy, because the latter
will produce a high number of false negatives. We addressed
this problem by adopting a Focal Tversky loss for the sus-
ceptibility component (Abraham and Khan, 2018). As for the
area density component, we also faced some technical issues.
Overall, around 85 % of the 1 km grids cells had a zero den-
sity value assigned to them (no landslides). In addition to this
issue, the area density distribution is quite positively skewed,
and regression tasks in deep learning have been mostly tested
in the context of Gaussian or near-Gaussian distributions. To
solve this problem, we had to split the modeling routine into
a series of intermediate operations. First, we removed all ze-
ros and used logarithmic transformation to shape the data ac-
cording to a normal distribution. From this, we trained the
first stage of our area density component. Once the model
converged to its best solution in the log-density domain, we
interrupted the training procedure, removed the log transfor-
mation, and further trained our model. This approach by-
passed the need to implement even more complex NN ar-
chitectures able to handle heavy-tailed distributions typical
of extreme value theory (Weng et al., 2018).

An important factor to consider in a deep-learning-based
modeling approach is the model overfitting and its general-
ization. Usually, large models can easily overfit and to avoid
this, we have employed three major approaches. First, we
used model regularization by adding batch normalization and
dropout layers, according to standard deep-learning practices
(Srivastava et al., 2014b; Ioffe and Szegedy, 2015b). Second,
we included early stopping to halt the training process when
divergence is observed in 30 % random validation data. Up
to this point, generalization has not yet been checked. This is
actually achieved by further testing over 50 % of the unseen
data from which all the reported metrics are computed.

8.2 Opposing arguments

A major limitation we would like to recall relates to geolog-
ical data availability. As discussed in the section 3, no de-
tailed geological map covers the area where (Kincey et al.,
2021) mapped landslides, nor does the only available alter-
native provide enough geological classes to be meaningful
in a data-driven context. In fact, the few available geolog-
ical classes in Dahal (2012) present analogous proportions
of landslide presences or absences and density data. This is
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mainly because the few geological units necessarily cover
very large extents owing to the coarse mapping resolution. In
turn, this makes the available geology maps non-informative
for the presented landslide modeling protocol. However, it
is important to mention that a geological, or even better, a
lithotechnical map, constitutes a precious layer of informa-
tion for any engineering geological applications as they con-
trol landslide initiation and size. This is the reason why we
consider our space–time ENN as it is currently valid only
for the area we tested it for. And we would recommend re-
adapting it in the case of new targets. For instance, another
source of potentially relevant information could be the dis-
tance to active faults, which may be responsible for frac-
turing, fissuring, and rock strength degradation in general.
This being said, our model still produced outstanding per-
formance (Hosmer and Lemeshow, 2000) within the context
of the Nepalese landscape under consideration, although its
validity elsewhere still needs to be verified.

Another limiting factor we faced was the selected multi-
temporal landslide inventory. First, a sequence of three years
after the earthquake may not be enough to display the po-
tential of space–time landslide hazard models fully. Second,
owing to the resolution of satellite imagery used for mapping,
some small landslides could have been omitted. To address
the first issue, we have limited our predictor covariates to the
temporal extent for which the mapping was carried out. This
largely limits our model predictions to the time when ground
truth data are available and verifiable. This model can cap-
ture the spatial and temporal variations in the landslide oc-
currence and size and, therefore, can be used to understand
the landslide hazard for different return periods. However,
we have not calculated the landslide hazard for different re-
turn periods specifically because we did not have a suffi-
ciently long landslide occurrence sequence. This could be
further improved in subsequent studies as this work mainly
focuses on introducing our model as a novel methodologi-
cal tool. The second limitation related to the potential omis-
sion of smaller landslides is much more difficult to address,
mainly because, as universal functional approximators, the
deep- learning models can only learn based on ground truth
data. Therefore, this limitation cannot be removed. However,
we recall that our model looks into a 1 km× 1 km grid for the
area density and presence and absence of landslides. There-
fore, the presence or absence of a landslide is not affected
if a smaller landslide occurs together with larger and visible
landslides, and it becomes a problem only when a small land-
slide occurs without a visible landslide within a 1 km× 1 km
grid. In other words, the mapping units of the susceptibility
component should be assigned with a presence value, even if
in a 1 km2 grid, a few small landslides may be missed. As for
the area density, the effect on landslide area density may be
more pronounced. However, as the landslide one may miss is
small to very small in size, the effect may still be expressed
within the uncertainty range of our model, potentially lead-
ing to minor omissions. This being said, outside the scope

of this paper, where this ENN architecture is introduced, we
recommend future users to select an even more complete and
long-term multitemporal inventory.

From the pure methodological perspective, even though
the model produced outstanding results, there is still much
room for improvement. As mentioned before, we ad-
dressed the heavy-tailed density distribution by using a log-
transformation and L1 losses to measure the model conver-
gence. In other words, we used a negative log-likelihood of
a normal distribution to build our model, which in turn in-
herently assumes a normal distribution of the error. How-
ever, because the area density follows an extreme value dis-
tribution in its right tail, instead of a model built on a log-
transformation and then re-trained on the original density
scale, a more straightforward procedure would directly use
the original data distribution and make use of performance
metrics or losses that are suitable for the considered data.
However, owing to a lack of mature research on existing
methods of using extreme value theory with deep learning,
we could not use such an approach. For further research, one
of the possible approaches could be the integration of ex-
treme value distributions (Davison and Huser, 2015) within
our regression model. A similar procedure has been recently
proposed to model wildfires (Richards et al., 2023; Cisneros
et al., 2023).

Moreover, our model relies on a gridded partition of the
geographic space under consideration. This lattice has two
main elements that call for further improvements. The first is
related to the size of the lattice itself. A 1 km grid cell is quite
far from the spatial partition required to support landslide-
risk-reduction actions. Thus, the current model output can
offer far richer information than the sole occurrence proba-
bilities. However, to be actually useful for territorial manage-
ment practices, the scale at which we trained should be prob-
ably downscaled at a finer resolution. The second element
where our ENN can be further improved in terms of spatial
structure has to do with the geomorphological significance
of a lattice when used to model landslides. Such geomor-
phological processes, in fact, do not follow a regular gridded
structure. In other words, when geoscientists go to the field,
they do not see grids, whether they are a few centimeters or
the 1 km scale of our model. What a geomorphologist sees is
a landscape partitioned into slopes. Slopes are also the same
unit that geotechnical solutions aim to address. Thus, an im-
provement to our ENN could involve moving away from a
gridded spatial partition and toward more geomorphology-
oriented mapping units such as slope units (Alvioli et al.,
2016; Tanyaş et al., 2022b), sub-catchments, or catchments
(Shou and Lin, 2020; Wang et al., 2022). Moreover, the mod-
eling approaches could also be further improved by the addi-
tion of landslide trigger classification (see. Rana et al., 2021),
which could inform the model about which parameter (either
PGA or rainfall) is responsible for causing landslides in this
particular predictive context.
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It is important to stress here that the structure of a Con-
volutional Neural Network mostly requires gridded input
data. Thus, the extension toward irregular polygonal parti-
tions such as the ones mentioned above would also require
an adaptation of our ENN toward graph-based architectures
(Scarselli et al., 2008).

Aside from the technical improvements that we already
envision, a key problem we could not address is the lack
of detailed spatio-temporal information on roadworks. Land-
scapes where roads are built may relapse through pronounced
mass wasting (Tanyaş et al., 2022a). Nepal is known for
building small roads without accounting for the required
engineering solutions to maintain slope stability (McAdoo
et al., 2018). For instance, Rosser et al. (2021) highlights that
the elevated landslide susceptibility captured during post-
seismic periods of the Gorkha earthquake could be partly as-
sociated with road construction projects. Thus, landslides are
triggered on steep slopes owing to human interference, which
we could not include in our model. During the very first
phase of our model design, we actually tried to map those
roads using freely available satellite images such as Sen-
tinel 2 and PlanetScope. However, because the spatial res-
olution of those satellites is relatively coarse and the typical
“self-made” roads are quite small (2–3 m in width), we could
not automatize the road-mapping procedure to match our
ENN spatio-temporal requirements. Therefore, rather than
conveying wrong information to the model, we opted not
to introduce road-network data to begin with. This is cer-
tainly a point to be improved in the future, not only for the
Nepalese landscape but for any mountainous terrain where
anthropogenic influence may bias the spatio-temporal distri-
bution of landslides. Another parameter that could be added
to inform our model about anthropogenic disturbances could
be informal human modifications that have an influence on
landslide triggering (Ozturk et al., 2022). Particularly, in this
case, mountainous regions of Nepal do not have significant
urban influences, and we opted not to include them. How-
ever, we recommend readers to include such features when-
ever necessary, depending on the study sites.

We stress that the vast majority of Neural Networks are
tailored toward solving prediction tasks, and our ENN es-
sentially offered the same outstanding performances reported
in many other deep-learning applications. However, this ar-
chitecture makes it very difficult to understand the causal-
ity behind the examined physical process. As our goal is to
move toward a unified spatio-temporal hazard model, causal-
ity may not be a fundamental requirement at this stage. How-
ever, we envision future efforts to be directed toward more
interpretable and causal machine or deep learning.

Ultimately, more can be done to clarify how our ENN
should and should not be used, at least in its present form.
For instance, with the current or even higher temporal fre-
quency, our output could be used as part of parametric insur-
ances (Horton, 2018) or large-scale risk reduction planning
(Prabhakar et al., 2009). However, it is surely unsuitable for

infrastructure planning (Dhital, 2000) for the 1 km2 resolu-
tion is far too coarse to be useful for detailed scale design.

9 Conclusions

We present a data-driven model capable of estimating where
and when landslides may occur, as well as the expected land-
slide area density per mapping unit, a proxy for intensity. We
achieved such a modeling task thanks to an Ensemble Neu-
ral Network architecture, a structure that has not yet found
its expression within the geoscientific literature, making this
model the first of its kind in landslide science. The impli-
cations of such a model can be groundbreaking because no
data-driven model has provided an analogous level of infor-
mation so far. The predictive ability of the model we propose
still needs to be explored, isolating certain types of land-
slides, tectonic, climatic, and geomorphological settings. If
similar performance is confirmed, then this can even open up
a completely different toolbox for decision-makers to work
with. So far, territorial management institutions have relied
almost exclusively on susceptibility maps in the case of large
regions and for long-term planning. The dependency on the
concept of landslide susceptibility is also valid for regional
and global organizations providing near-real-time or early-
warning alerts for seismically or climatically triggered land-
slides. The model we propose can potentially link these two
elements and provide a piece of even richer information, ex-
ploiting its predictive power away from the 6 month time
resolution we tested here and more toward near-real-time or
daily responses for various-scale applications.
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