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Abstract. The Maritime Continent (MC) regularly experi-
ences powerful convective storms that produce intense rain-
fall, flooding and landslides, which numerical weather pre-
diction models struggle to forecast. Nowcasting uses ob-
servations to make more accurate predictions of convective
activity over short timescales (∼ 0–6 h). Optical flow algo-
rithms are effective nowcasting methods as they are able to
accurately track clouds across observed image series and pre-
dict forward trajectories. Optical flow is generally applied
to weather radar observations; however, the radar coverage
network over the MC is not complete and the signal cannot
penetrate the high mountainous regions. In this research, we
apply optical flow algorithms from the pySTEPS nowcasting
library to satellite imagery to generate both deterministic and
probabilistic nowcasts over the MC. The deterministic algo-
rithm shows skill up to 4 h on spatial scales of 10 km and
coarser and outperforms a persistence nowcast for all lead
times. Lowest skill is observed over the mountainous regions
during the early afternoon, and highest skill is seen during
the night over the sea. A key feature of the probabilistic al-
gorithm is its attempt to reduce uncertainty in the lifetime of
small-scale convection. Composite analysis of 3 h lead time
nowcasts, initialised in the morning and afternoon, produces
reliable ensembles but with an under-dispersive distribution
and produces area under the curve scores (i.e. ratio of hit
rate to false alarm rate across all probability thresholds) of
0.80 and 0.71 over the sea and land, respectively. When di-
rectly comparing the two approaches, the probabilistic now-
cast shows greater skill at ≤ 60 km spatial scales, whereas
the deterministic nowcast shows greater skill at larger spa-
tial scales ∼ 200 km. Overall, the results show promise for

the use of pySTEPS and satellite retrievals as an operational
nowcasting tool over the MC.

1 Introduction

The “Early Warnings For All Initiative” was launched by the
United Nations in November 2022 and calls for the whole
world to be covered by early warning systems by the end of
2027 (World Meteorological Organization, 2023). It focuses
on poorer countries in Asia, Africa, South and Central Amer-
ica, and the Pacific and motivates the development of early
warning weather systems for these regions.

The Maritime Continent (MC) is a region of Southeast
Asia that includes the countries of Indonesia, Malaysia, the
Philippines, Papua New Guinea, Brunei and Timor-Leste. It
is a complex mix of land and ocean with major islands such
as Sumatra, Java, Borneo and New Guinea, making it the
largest archipelago on Earth (Fig. 1a). It is also one of the
wettest places on Earth with its complex topography and lo-
cation across the Equator, making it a hotspot for extreme
weather. The region often experiences natural disasters such
as flooding and landslides that have disastrous effects on al-
ready very poor areas. Easterly trade winds blow warm wa-
ter across the Pacific into the MC, creating a “warm pool”
around the region (Dayem et al., 2007), which, when com-
bined with its proximity to the Equator and the inter-tropical
convergence zone, provides favourable conditions for deep
convection. The large amounts of latent heat released from
this convection mean that the region is often referred to as the
“boiler box” of the tropics as it plays a crucial role in con-
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Figure 1. (a) Orographic map of the Maritime Continent showing the domain over which the nowcasts were generated and the domain over
which they were evaluated (dotted red line). (b) The diurnal cycle of peak rainfall within the evaluation region (interpolated to local solar
time) using the Global Precipitation Measurement dataset (Hou et al., 2014) from December, January and February 2001–2020.

tributing to the global atmospheric circulations (the Hadley
and Walker cells), in turn affecting both local and global
weather systems (Ramage, 1968).

The MC’s strong diurnal cycle (shown in Fig. 1b by the
spatial variation in timings of peak rainfall) is one of its dom-
inant drivers of convective activity (Yamanaka, 2016). It has
typical characteristics of most diurnal cycles across the trop-
ics (Yang and Slingo, 2001), starting with peak solar insola-
tion around midday. This starts to form a land–sea temper-
ature contrast due to the lower heat capacity of the land. A
sea breeze then develops blowing on land, often triggering
convection which builds into the late afternoon and evening.
Many islands in the MC also contain mountains close to
the coast with altitudes of over 2000 m (e.g. Sumatra). Oro-
graphic lifting driven by the mountains can further enhance
the convection (Mori et al., 2004). Into the late evening and
overnight this convection propagates offshore until the early

morning the following day, leaving clear skies over land in
the morning for strong solar insolation to restart the process.

Numerical weather prediction (NWP) models struggle to
represent the moist convection that dominates weather in
the MC, with coarser-resolution models often initiating con-
vection too early in the day (Porson et al., 2019) or under-
estimating the amount of rainfall (Qian, 2008). Ferrett et al.
(2021) show that the ensemble forecasts from a higher-
resolution, convective-scale configuration of the Met Office
Unified Model, with 4.5 km horizontal grid spacing over In-
donesia, only start to show skill (during the first day after ini-
tialisation) when coarsened up to spatial scales of ∼ 150 km.
Mesoscale convective systems are defined as having spatial
scales of at least ∼ 100 km, and so convective-scale models
cannot be relied upon to skilfully resolve impactful storms
over the MC.
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Table 1. Information on some of the state-of-the-art nowcasting systems that are currently in operational use around the world.

Nowcasting system Input sources Region of application Reference

Short-Term Ensemble Prediction Sys-
tem (STEPS)

Weather radar, NWP UK Bowler et al. (2006)

Integrated Nowcasting System through
Comprehensive Analysis (INCA)

Weather radar, NWP, satellite, sur-
face station observations

Europe (Alpine regions) Haiden et al. (2011)

Short-range Warning of Intense Rain-
storms in Localised Systems (SWIRLS)

Weather radar, NWP China Srivastava et al. (2021)

Auto-Nowcast System (ANC) Weather radar, NWP, satellite, sur-
face station observations, wind pro-
filer, atmospheric sounding, light-
ning detector

USA Mueller et al. (2003)

McGill Algorithm for Precipitation
nowcasting using Lagrangian Extrapo-
lation (MAPLE)

Weather radar Canada, USA Germann and Zawadzki
(2002)

Spectral-Prognosis (S-PROG) Weather radar Australia Seed (2003)
Global Synthetic Weather
Radar (GSWR)

Satellite, lightning, NWP USA Reen et al. (2020)

Support to Nowcasting and Very Short
Range Forecasting (NWC SAF)

Satellite Europe Marcos (2015)

Nowcasting is the process of obtaining current observa-
tions of the atmosphere and using them to generate rapid,
short-term (typically∼ 0–6 h ahead) predictions of the future
atmospheric state (Roberts et al., 2022). It requires real-time
observations (e.g. from weather radar) as an input and the ap-
plication of predictive techniques to forward-propagate these
observations. Unlike NWP models, nowcasting tools do not
use large sets of complex numerical equations in order to
model the atmosphere. Instead, they use cutting edge compu-
tational techniques such as optical flow and artificial intelli-
gence algorithms, enabling them to generate useful output at
near-instantaneous timescales (Ayzel et al., 2020; Han et al.,
2019; Gijben and de Coning, 2017).

Currently, there are a number of state-of-the-art nowcast-
ing systems in operation around the world, typically based in
developed countries, which take advantage of large weather
radar networks to provide near-instant, wide spread data cov-
erage of precipitation. There are, of course, many operational
systems in use globally, but Table 1 covers some of the most
advanced ones.

Weather radar networks are expensive to implement, main-
tain and often not suitable for regions with mountainous ter-
rain (e.g. the MC), meaning the types of nowcasting systems
listed in Table 1 cannot always be implemented. There is,
therefore, a widespread interest within nowcasting research
in the use of satellite data as the main source of input, espe-
cially in the tropics, which can provide constant, widespread
coverage of the Earth’s atmosphere from space. The advance-
ment of satellite technology in recent years has given us ac-
cess to data on increasingly higher spatial and temporal res-
olutions (e.g. Line et al. (2016) use 1 min retrievals of 1 km
resolution imagery for forecasting), allowing finer detail of

cloud structures to be observed and more accurate track-
ing of weather systems (Sieglaff et al., 2013). This provides
the basis for extrapolation nowcasting methods that use the
tracked history of weather features (e.g. storms) to calculate
motion vectors, which the features are then propagated along
to create future predictions (Burton et al., 2022; Vila et al.,
2008; Line et al., 2016). The vast volume of satellite data also
makes nowcasting a suitable candidate for the application of
machine learning methods to make future predictions of the
atmosphere. Most commonly, studies have trained machine
learning models to take in consecutive satellite images as in-
put and then output (nowcast) the future consecutive images
(Lebedev et al., 2019; Lagerquist et al., 2021).

The MC itself has received little attention in the field of
nowcasting, despite the region experiencing regular intense
convective activity affecting the lives of millions. The In-
donesian network consists of 42 weather radars (Permana
et al., 2019) but is sparse relative to the size of the country;
the country is highly mountainous and experiences commu-
nication issues between sites, meaning real-time full radar
coverage of the region is not possible (Permana et al., 2019).
One of the radars within the network was used by Ali et al.
(2021) to nowcast two rainfall events over southern Borneo.
On the other hand, satellite data were used by Harjupa et al.
(2022) to apply the Rapidly Developing Cumulus Area algo-
rithm (Sobajima, 2012) to a region of western Java to predict
heavy rainfall for 77 events. The limited sample size and do-
main of these studies makes it difficult to understand how
effective the methods are for other regions of the MC. There
is, therefore, a need to test nowcasting tools that can be ap-
plied and evaluated across the entire MC domain.
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pySTEPS (Pulkkinen et al., 2019) is a free, open-source
Python library that provides modules for a variety of opti-
cal flow-based nowcasting methods (see Sect. 2.1a for op-
tical flow description). The library is designed for use on
radar data and has been used to show skilful prediction of
stratiform precipitation in the mid-latitudes (Han et al., 2022;
Imhoff et al., 2020). To the best of the authors’ knowledge,
the only study that has applied pySTEPS to satellite data over
the tropics is Burton et al. (2022), who produced nowcast
skill up to a 4 h lead time over West Africa. It is this result
that motivates the application of pySTEPS to the MC.

This paper presents the evaluation of both deterministic
and probabilistic nowcasts produced by applying pySTEPS
to satellite data over the MC. The aim is to highlight their
strengths and weaknesses and demonstrate their potential use
as an operational nowcasting system.

2 Data and methods

2.1 Data

This study uses brightness temperature (BT; the temperature
a black body would need in order to emit the radiance de-
tected by a satellite) data from the Himawari-8/Himawari-9
satellites as input to the nowcasting algorithms. Himawari-
8 and Himawari-9 are passive geostationary satellites with
16 band channels ranging from 0.47 to 13.3 µm, covering
parts of the visible, near-infrared and infrared (IR) spectrum
(Bessho et al., 2016). Hourly BT data from channel 13 on
board Himawari-8/Himawari-9 have been used, which detect
IR radiation with a wavelength of 10.4 µm. The full-disc im-
ages are transformed to a Cartesian grid with a grid spacing
of 2 km, using the gdalwarp command from the Geospatial
Data Abstraction Library (Rouault et al., 2023). Convective
clouds can be clearly identified in BT maps as they have cold
tops relative to the surface of the Earth. The data are selected
from the December, January and February (DJF) season,
which is the peak season for convection over the MC (Birch
et al., 2016), for five seasons from 2015/2016–2019/2020
(data retrievals of Himawari-8 began in 2015; Bessho et al.,
2016).

In this study, nowcasts were produced using three BT
maps as input, spaced evenly apart by 1 h, starting with the
latest observation. A total of 3476 nowcasts were produced
for initialisation times every 3 h from 00:00 LT to 21:00 LT
to incorporate the diurnal variability of weather over the MC,
with the number of nowcasts at each initialisation time shown
in Table 2. In order to avoid issues of new convection en-
tering the edge of the domain, which cannot be reproduced
(optical flow can only propagate convection that exists in
the domain at the nowcast initialisation time), the nowcasts
were first produced using BT data on a 15◦ S–15◦ N, 90◦–
153◦ E domain and then evaluated on a 10◦ S–10◦ N, 94–

Table 2. The number of nowcasts that were produced at each ini-
tialisation time throughout the day.

Initialisation Number of
time (LT) nowcasts

00:00 441
03:00 422
06:00 422
09:00 441
12:00 440
15:00 429
18:00 441
21:00 440

149◦ E domain, which still includes the major islands of the
MC (Fig. 1a).

2.2 Methods

2.2.1 pySTEPS/optical flow

pySTEPS provides a well-documented framework that al-
lows users to employ optical flow algorithms for both deter-
ministic and probabilistic nowcasting approaches, as well as
a range of verification techniques. Optical flow is a computer
vision technique that generates velocity fields to describe the
apparent motion of objects across consecutive images (Horn
and Schunck, 1981). The key assumption of optical flow is
that each pixel intensity remains constant across all images
as it is advected. Given I (x,y, t) is the intensity of a pixel at
time t = 0, this results in

I (x,y, t)= I (x,y, t +1t), (1)

where 1t is the time between image frames. Applying a Tay-
lor series expansion to Eq. (1) leads to

∂I

∂x
U +

∂I

∂y
V +

∂I

∂t
= 0, (2)

where U = dx
dt

and V =
dy
dt

are the velocity components of
the motion field. Equation (2) is known as the optical flow
equation. ∂I

∂x
, ∂I

∂y
and ∂I

∂t
can be calculated as they represent

the image gradients over space and time, whereas U and V

are unknown meaning. Equation (2) represents an underde-
termined system that cannot be solved directly. Optical flow
methods attempt to get round this by applying various spatial
constraints to U and V . Section 2.2.2 and 2.2.3 will describe
the two optical flow methods within pySTEPS that were used
in this study.

2.2.2 Lucas–Kanade deterministic algorithm

The Lucas–Kanade algorithm (LK; Lucas and Kanade, 1981)
is an optical flow method that assumes, for a given pixel,
the eight immediately surrounding pixels move along with

Nat. Hazards Earth Syst. Sci., 24, 567–582, 2024 https://doi.org/10.5194/nhess-24-567-2024



J. Smith et al.: Evaluating pySTEPS optical flow algorithms for convection nowcasting 571

Figure 2. An example (using BT over Sumatra) of how a motion field is generated using the LK method. Features are identified and tracked
across the three input images (T − 0, T − 1 and T − 2) to generate the sparse motion field. The sparse motion field is then interpolated onto
the rest of the domain to produce the dense motion field.

that given pixel. This assumption results in nine separate
versions of Eq. (2) (eight from the surrounding pixels and
one from the given pixel itself), representing an overdeter-
mined system. A least squares fit method is then applied to
the nine equations to obtain the optimum solution for the
given pixel. To create a motion field the algorithm first iden-
tifies the key features within an image by using the Shi–
Tomasi corner detection algorithm (Shi and Tomasi, 1994).
The velocity field components are then calculated for each
feature within the image (using the LK assumption) to cre-
ate a sparse motion field, which is then interpolated onto
the rest of the image (where there are no velocity vectors)
to generate a dense motion field. Once the motion field has
been determined, the latest observation needs to be advected
along the motion field. pySTEPS implements the backward-
in-time semi-Lagrangian advection scheme (Germann and
Zawadzki, 2002). The nowcast is the resulting advected field.
In this study, three consecutive images (the current BT ob-
servation and the two images prior) are inputted into the
LK algorithm, as shown in Fig. 2. Sparse motion vectors
are generated from each successive image pair (T −2/T −1
and T −1/T −0) and then combined together onto one field
(sparse motion field). If a pixel in the sparse motion field has
two motion vectors associated with it, they are averaged to-
gether to produce one motion vector.

The LK algorithm is a deterministic optical flow nowcast-
ing approach that describes the evolution of a field (in this
study BT fields) by moving current observations along mo-
tion fields. However, this simplistic approach also means it is
unable to predict the initiation–growth–decay (IGD) of con-
vection within BT fields.

2.2.3 Short-Term Ensemble Prediction System
algorithm

The pySTEPS library also contains modules for more ad-
vanced, probabilistic nowcasting approaches that attempt to
address the IGD problem. The Short-Term Ensemble Predic-
tion System (STEPS; Bowler et al., 2006) was jointly de-
veloped by the UK Met Office and the Bureau of Meteorol-
ogy Research Centre, Australia, and aims to address the issue
of unpredictability in the lifetime of convection by injecting
fields of varying stochastic noise. It does this by applying a

fast Fourier transform to the current BT field (T − 0) to de-
compose it into cascades of different length scales. Varying
intensities of Gaussian noise fields are then injected into each
cascade field depending on the length scale. Cascades con-
taining the small length scale features will receive greater
intensity of noise injection, as these features represent the
greatest uncertainty in growth and decay of convection. In
contrast, the large length scale features receive a lower inten-
sity of noise, as these features represent the least uncertainty
in growth and decay. The cascades are then recomposed to
produce the new BT field, which is ready for extrapolation.
In this work the motion field for extrapolation is generated
using the LK algorithm (as in Fig. 2, by using T − 0, T − 1
and T − 2 BT fields). Stochastic noise perturbations are also
applied to the motion fields to try to capture the uncertainty
in the extrapolation of the BT fields. The magnitude of the
perturbation increases with respect to lead time as the mo-
tion field increases in uncertainty. Finally, the new BT field
is extrapolated along the motion field to create one ensemble
member of the nowcast. Ensemble members are generated
by using new realisations of the noise perturbations to create
multiple versions of the nowcast.

2.2.4 Verification methods

The stochastic nature of convection in the MC makes it ex-
tremely challenging to nowcast the precise location (pixel to
pixel) of convective activity. When evaluating a nowcasts’
ability to predict convection on a pixel-to-pixel basis, the
nowcast may be broadly correct but slightly misaligned in lo-
cation. If we simply take the difference between the nowcast
and the verification, this leads to the double-penalty prob-
lem: firstly, the model is penalised for a miss, and secondly it
is penalised for a false alarm in the slightly misaligned loca-
tion. To overcome this problem Roberts and Lean (2008) de-
veloped a method known as the fractional skill score (FSS),
which enables a forecast to be verified on a range of spatial
scales as opposed to a pixel-by-pixel basis, allowing leeway
for minor misalignments. The FSS firstly creates two binary
fields from the nowcast field and the observation field by us-
ing a threshold value of 235 K (this value was used to try
and include the entirety of the convective system; Roca et al.,
2017; Feng et al., 2021; Machado and Laurent, 2004) – any
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pixel with a value below this is set to 1, and any pixel with a
value above this is set to 0. An n× n kernel is then convolved
with both binary fields, where n is the desired spatial scale
set by the user, and the fraction of pixels within the kernel
that have a value of 1 is calculated. The mean squared error
(MSE) between the fraction of 1’s in the observation kernel,
O(n), and the fraction of 1’s in the nowcast kernel, M(n), is
then calculated:

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1
[O(n)i,j −M(n)i,j ]

2, (3)

where Nx and Ny are the number of pixels in the longitude
and latitude direction. Because MSE(n) is highly dependent
upon the frequency of the event, it must be compared to the
MSE of a relatively low-skill reference nowcast in order to
provide any usefulness, which is defined in Murphy and Ep-
stein (1989) by

MSE(n)ref =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
O2

(n)i,j +M2
(n)i,j

]
. (4)

The final FSS is then calculated as

FSS= 1−
MSE(n)

MSE(n)ref
. (5)

The nowcast can be evaluated at different spatial scales
by changing the value of n. In this study 10, 20, 60, 100 and
200 km were chosen as the spatial scales. This range of scales
allows a nowcast to be evaluated in its ability to predict con-
vection on a range of scales. An FSS of 1 can be interpreted
as a perfect score, whereas an FSS of 0 can be interpreted
as a nowcast with no skill. A threshold value for FSS above
which a nowcast is useful is given by

FSS(useful) ≥ 0.5+
f

2
, (6)

where f is the fractional coverage of pixels with a value of 1
over the entire domain. As f becomes small, then FSS(useful)
can be approximated by

FSS(useful) ≥ 0.5. (7)

This is the basic approach to the FSS, which calculates a
single score for each nowcast to describe the skill over the
whole domain. However, often the skill of a nowcast will
vary across the domain due to differences in environments
(e.g. land, sea and mountains) and the different interactions
that result from these changing environments. Woodhams
et al. (2018) developed an adapted version of FSS known
as the localised fractional skill score (LFSS), which enables
the skill of a nowcast to be evaluated at each pixel across the
domain, resulting in a spatial map of FSSs. The LFSS is cal-
culated by adapting Eqs. (3) and (4) so that instead of divid-
ing the sum of the squared error between O(n) and M(n) over

the spatial domain, it is divided over the time domain (i.e.
the number of time steps). This results in replacing Eqs. (3)
and (4) with

MSE(n) =
1
Nt

Nt∑
j=1
[O(n)t −M(n)t ]

2 (8)

and

MSE(n)ref =
1
Nt

Nt∑
j=1

[
O2

(n)t + M2
(n)t

]
, (9)

where Nt is the number of time steps.
The skill of a given ensemble nowcast produced by the

STEPS algorithm is evaluated by generating the probabilis-
tic nowcast from the ensemble members and then compar-
ing it to the observations at different probability thresholds.
At each probability threshold, any pixel in the probabilistic
nowcast with a value equal to or greater than the threshold
is assigned a value of 1, and any pixel with a value less
than the threshold is assigned a value of 0 (creating a bi-
nary field). The observation field is then converted into a bi-
nary field in the same way except using a threshold value
of 235 K. The two binary fields are compared at each corre-
sponding pixel to obtain the number of hits (both pixel val-
ues equal 1), misses (nowcast pixel value is equal to 0 but
observation pixel value is equal to 1), false alarms (nowcast
pixel value is equal to 1 but observation pixel value is equal
to 0) and correct negatives (both pixel values equal 0). These
metrics are then used to calculate the probability of detec-
tion (POD) [hits/(hits+misses)] and the probability of false
detection (POFD) [false alarms/(correct negatives+ false
alarms)]. This is repeated at multiple probability thresholds,
and the PODs are plotted against the POFDs to produce a
receiver operating characteristic (ROC) curve. The nowcasts
with highest skill will minimise the POFD and maximise the
POD, resulting in a ROC curve in the top left corner of the
diagram with a large area under the curve (AUC) score.

Reliability diagrams are used to evaluate how well
STEPS’s probabilistic predictions compare to the actual ob-
served frequency of events (in this work an event counts as
a pixel with a value less than or equal to 235 K). For a given
ensemble forecast, the predicted event probabilities are first
evenly binned, creating a sub-group of nowcasts for each bin.
The frequency for which events are observed is then calcu-
lated for each sub-group. The mean event probability within
each bin is plotted against the observed event frequency to
create a reliability diagram. A perfectly reliable nowcast will
predict event likelihoods consistent with the observed fre-
quency, i.e. a diagonal X = Y line.

In order to gain a useful understanding of the optical flow
nowcast skill, a persistence nowcast is used for comparison.
A persistence nowcast is considered as having the baseline
of minimum skill and is produced by using the latest obser-
vation as the next prediction; i.e. it assumes that the current
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weather will persist and be identical at the next nowcast lead
time.

3 Results

3.1 Deterministic nowcasting – Lucas–Kanade
algorithm

Figure 3e–g show an example of a nowcast (each lead time
is produced using the same T − 0, T − 1 and T − 2 obser-
vations) produced by the LK algorithm for a qualitative as-
sessment of the skill against observations (Fig. 3a–d), whilst
Fig. 3h–j provides the LFSS (evaluated on a 20 km scale to
show clearly defined differences in skill) at each time step
of the nowcast (where Nt = 1) for a quantitative assessment.
This particular set of observations contains convection on a
range of scales, with regions of propagation and regions of
initiation, providing a good example to evaluate the LK al-
gorithm on a range of capabilities (for this reason the same
example is used throughout the paper). At T−0, the observed
organised, large-scale convection (e.g. north of Borneo) ap-
proximately maintains its shape through T + 1 and T + 3 and
then starts to change in structure at T + 6 (e.g. east of Suma-
tra). There is also the development of relatively smaller-scale
convection observed during the T + 3 and T + 6 h lead times
(e.g. over New Guinea).

Visually, the deterministic LK approach appears to predict
the propagation of large-scale, organised convection well.
The T + 1 nowcast best resembles the corresponding obser-
vation due to the least amount of new convection developing
during this time, as well as little propagation of the organised
convection (the nowcast at T + 1 closely matches the persis-
tence nowcast). This is seen in Fig. 3h, which shows high
skill in the organised convective regions over the majority of
the domain. As the lead time increases, westward propaga-
tion of the large-scale convection is observed, which appears
to be effectively tracked by the LK nowcast at T + 3 (e.g.
east of Sumatra). This is confirmed in Fig. 3i, which shows
the skill of the nowcast at T + 3 remaining high over the re-
gions of organised convection. There is, however, a clear in-
crease in areas of low skill at T + 3 and T + 6 due to the LK
nowcast being unable to reproduce the IGD of convection. At
T + 6, the change in structure of convection also contributes
to the majority of the domain experiencing low skill. The
nowcast at this lead time shows the least resemblance to the
observations with only the largest regions of predicted con-
vection providing any skill (Fig. 3j).

Figure 3 highlights some of the key advantages and dis-
advantages of the LK algorithm. Overall, it does well at pre-
dicting the propagation of large-scale, organised convection.
However, because of the principle that underlies optical flow
– that each pixel maintains its intensity between time steps –
it is unable to capture the IGD of convection. Smaller-scale
convection exhibits higher rates of change in its evolution

(Venugopal et al., 1999) and so has the greatest uncertainty
associated with it. Initially, this justifies why the majority of
low skill is seen at smaller scales (Fig. 3h-i). However, at
T + 6 the difference in small-scale features between the ob-
servations and the nowcast becomes more widespread, and
so the low skill spreads further across the domain (Fig. 3j).

Figure 4 shows the mean FSSs for all 3467 LK now-
casts (Table 2) and their corresponding persistence nowcasts,
evaluated at spatial scales of 10, 20, 60, 100 and 200 km.
The 10 km spatial scale is the smallest scale of evaluation;
hence it consistently produces the lowest scores. However,
the model still shows good skill on this scale (FSS≥ 0.5) at a
lead time of 4 h. Doubling the spatial scale to 20 km increases
the skilful lead time by∼ 1 h. At the 60, 100 and 200 km spa-
tial scales, the LK nowcasts show skill across all lead times
with FSS scores of ∼ 0.54, ∼ 0.61 and ∼ 0.75, respectively,
at the 6 h lead time.

Skill reduces with lead time for all spatial scales and in-
creases with spatial scale at all lead times. On average, the
LK nowcasts outperform the persistence nowcasts at all lead
times and for all spatial scales. Both the persistence and the
LK nowcasts maintain the same structure and intensity at
each lead time (hence relatively smaller skill difference at 1–
2 h lead time). However, the LK nowcasts propagate the con-
vection across the domain, whereas the persistence nowcasts
remain stationary. This explains the increasing added value
of the LK nowcast with lead time, as the observations move
further from the persistence nowcast and the skill difference
increases. Greater added value of the LK nowcast over per-
sistence is also seen at smaller spatial scales. For example,
the skill gap between the persistence nowcasts and the LK
nowcasts at the 6 h lead time is greater for 10 km spatial scale
compared to 200 km spatial scale. The trend of FSSs across
the shown lead times also varies for different spatial scales.
At smaller spatial scales the nowcast is being evaluated on
its ability to predict smaller-scale convection, which changes
most rapidly/unpredictably, resulting in a higher rate of de-
crease in skill. The FSS evaluation on higher spatial scales
smooths out these smaller-scale convection changes, and so
a much lower rate of decrease in skill is seen. The rate of
decrease of the FSS evaluated on the 10 km spatial scale ap-
pears to show its largest rate of skill decrease at 1–2 h and
then decelerates over the following time intervals. On the
other hand the rate of skill decrease for the 200 km spatial
scale increases with lead time.

Figure 5 shows the mean LFSS for 3 h lead time nowcasts
over the MC, evaluated at a 100 km spatial scale. Evaluation
on this scale has been used as it is able to clearly highlight
the variations of skill across the domain. For all nowcast ini-
tialisation times there is consistent noise in the skill over the
sea. This may be representative of the stochastic nature of
convection initiation over the sea. It therefore would be ex-
pected that, if the period of evaluation were extended beyond
2015–2020 (i.e. increasing the number of nowcasted events
used in the averaging over time in Eqs. 8 and 9), the LFSS
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Figure 3. Panels (a–d) are maps of BT observations showing convection propagating across the MC on 11 December 2019 starting from
the initial observation at 09:00 LT (T − 0), followed by the observation at 1 h (T + 1), 3 h (T + 3) and 6 h (T + 6) later. Panels (e–g) are the
nowcasts produced by the LK algorithm at each of the corresponding observations, and the green lines show the contour of the corresponding
persistence nowcast. Panels (h–j) are the LFSS maps produced by evaluating each nowcast against the corresponding observation on a 20 km
spatial scale.

Figure 4. Composite FSSs against lead time for 3457 LK nowcasts
(solid line) and persistence nowcasts (dashed line), evaluated at a
threshold of 235 K for 20, 50, 60, 100 and 200 km spatial scales.
The grey horizontal line marks the 0.5 FSS line, which is considered
the cut-off for nowcast skill.

noise field would become smoother over the sea. During the
overnight and morning initialisation times (Fig. 5a–d) there
is, on average, high skill over the majority of the domain
(Fig. 5i). This is to be expected as at these times the ma-
jority of convection has formed large-scale, organised cloud
systems with very few small-scale convection initiations oc-
curring. These larger-scale systems will most often be prop-
agating offshore of the islands (as part of the diurnal cycle),
which the LK algorithm is most effective at capturing. Fur-
thermore, overnight and during the morning there is, on av-
erage, relatively less convective activity than during the day
meaning that reduced skill from inaccurate propagation pre-
dictions is minimised.

Between 09:00 LT and 12:00 LT there is a significant drop
in the mean skill over land (Fig. 5i). Figure 5e–f show these
distinct regions of low skill over land, which are tightly con-
strained to the coastal and mountainous regions of the islands
and are closely tied to the diurnal cycle of convection over
the MC. Convection begins to initiate and develop over the
coastal and mountainous regions of the islands in the early af-
ternoon, which is not present at 12:00 LT. The LK nowcast is
unable to capture this new convection, resulting in low over-
land skill for the 12:00 LT initialisation. Over these locations
at this time of day, the LK algorithm would not be a skilful
nowcasting tool. The low skill is still seen at 15:00 LT but to
a lesser extent. At this initialisation time the T − 0 observa-
tions that are inputted into the LK algorithm will, on average,
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Figure 5. (a–g) Composite LFSS maps for 3 h lead time nowcasts that were initialised at 00:00 LT, 03:00 LT, 09:00 LT, 12:00 LT, 15:00 LT,
18:00 LT and 21:00 LT, respectively. The LFSS was evaluated on a 100 km scale, and the local time is with reference to Sulawesi (the vertical
dotted lines show the time difference across the domain). (i) The mean LFSSs at each initialisation time for sea only, land only and the whole
domain.

contain the majority of the convection that has initiated over
the early afternoon. This convection will likely remain sta-
tionary over this time but will be growing in size. Therefore
the persisting low skill at 15:00 LT is representative of the
LK nowcasts’ inability to predict the growth of convection.

The development of convection starts to slow as storms
reach their mature stage in the evening. Less growth results

in higher skill over the land. At 21:00 LT the LFSS map looks
similar to the overnight LFSS maps with high skill across the
entire domain. Over this 3 h forecast period the LK algorithm
has shown good skill at being able to nowcast the propagation
of mesoscale convective systems offshore, which developed
overland during the afternoon.
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Figure 6. (a) An example of a 20-member ensemble, 3 h lead time BT nowcast produced by the STEPS implementation of pySTEPS on
11 December 2019. (b) The observation at the nowcast initialisation time and (c) the observation 3 h later.

Understanding that the LK algorithm is unable to predict
the IGD of convection means that, by identifying anomalous
regions of low skill, LFSS maps can be a useful tool for iden-
tifying local effects due to land–sea interactions. An example
of this is seen in a region of low skill over the northeast coast
of Borneo at 18:00 LT. On average, at this time of the day
a land breeze begins to develop along the entire concave-
shaped coastline, potentially causing convergence near the
middle. This convergence may then lead to the initiation of
convection that the LK algorithm is unable to predict.

3.2 Ensemble nowcasting – STEPS algorithm

Figure 6a provides an example of a 20-member ensemble
nowcast (generated using the same T −2, T −1 and T −0 set
as for the LK algorithm example in Fig. 3), with a lead time
of 3 h, produced by pySTEPS’s implementation of STEPS.
Over the 3 h period the main differences between the T − 0
and T + 3 observations are around New Guinea where new
convection develops over the land and the convection north

of the island becomes more scattered (Fig. 6b–c). Visually,
each ensemble member provides a good prediction of the
large-scale convection (e.g. north of Borneo), with little dif-
ference between the members in the predicted shape and
structure. The main differences between the ensemble mem-
bers come from differences in the stochastic fields injected
for each member. This is seen in the varying levels of BT
intensities in the large-scale convection in each member. For
example, the BT intensity over northern Borneo in ensem-
ble member 13 is greater than in ensemble member 2. Dif-
ferences are also seen between each ensemble member in
the distribution of the predicted small-scale convection (e.g.
over the Philippine Sea). Over Borneo, some members have
predicted small-scale convection which approximately aligns
with the new convection observed at T + 3 (e.g. ensemble
member 18), whereas some members have predicted no con-
vection here at all (e.g. ensemble member 17).

One of the key aims of STEPS is to address the uncertainty
in the evolution of small-scale convection. In all members the
convection northwest of New Guinea appears much noisier
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Figure 7. An example of a probabilistic BT nowcast for lead times
of 1, 3 and 6 h produced by the STEPS implementation of pySTEPS
on 11 December 2019. A BT threshold of < 235 K is used in order
to include all pixels in the nowcast.

than in the T − 0 observation. STEPS has recognised this as
a region of uncertainty and addressed it by injecting noise at
this scale. When compared to the T + 3 observation, it can be
seen that the convection does in fact become more scattered
and dissipated, and so, although STEPS has not been able to
precisely predict the new shape of the scattered convection,
it has been able to capture the unpredictable nature of the
evolution of this small-scale convection.

The 20-member ensemble in Fig. 6 has been used to pro-
duce the probabilistic nowcast in Fig. 7 (extended to 1, 3 and
6 h lead times). This probabilistic nowcast uses a threshold
of 235 K, therefore including all the pixels that were used to
produce each ensemble nowcast. At T + 1 the probabilistic
nowcast shows a high degree of certainty in its prediction
of the shape and location of convection, meaning that there
is little variance between ensemble members. The T + 1 lead
time is the first time step prediction that the algorithm makes,
and so it contains the least amount of stochastic noise in the
extrapolation motion field, hence the least amount of member
variance. As the lead time increases, more stochastic noise is
injected into the extrapolation motion fields, and so the un-
certainty of the probabilistic nowcast increases. This can be
seen in the reduction in high probabilities over the regions
enclosed within the 20 % contour. A reduction of high un-
certainties within the 20 % contour is also matched with a
greater spread of low ensemble probability across the entire
domain (outside the 20 % contour) at T + 3 and T + 6.

Figure 7 also shows the number of small-scale features in
the probabilistic nowcast reducing at longer lead times. For
example, at T + 1 the convection northwest of New Guinea
appears scattered in small blobs, whereas at T + 6 STEPS
has smoothed out this small-scale convection into a larger
region. Again, this is evidence of the algorithm’s attempt to
address the uncertainty in the evolution of small-scale con-
vection by replacing it with stochastic noise.

Figure 8a and b show the mean ROC and reliability curves
for STEPS nowcasts initialised in the morning (09:00 LT)
and afternoon (15:00 LT), evaluated over the sea and the land.
For both surface types and initialisation times, the POD in-
creases at each threshold meaning that, even as more uncer-
tain regions enter the evaluation, the proportion of hits to
misses increases. Furthermore, the POD exceeds the POFD
at each threshold indicating that STEPS has skill in predict-
ing regions < 235 K BT over the MC. The greatest POD–
POFD difference, which is considered the optimum threshold
for a probabilistic nowcast, is shown at the≥ 10 % likelihood
threshold for all of the curves.

For both initialisation times in Fig. 8a, STEPS produces
higher area under the curve (AUC) scores over the sea (0.80
and 0.78 for 09:00 LT and 15:00 LT, respectively) than over
the land (0.71 and 0.68 for 09:00 LT and 15:00 LT, respec-
tively), meaning that STEPS has more skill over the sea at
these times. This can be explained by lower POD scores over
the land, which is due to the STEPS algorithm being unable
to capture the new convection that most often develops there
(increasing the number of misses). Furthermore, a compar-
ison of each region within initialisation times suggests that
STEPS is slightly more skilful in the morning (average AUC
of 0.76) than in the afternoon (average AUC of 0.73). The
morning–afternoon difference in POFD is also much greater
over the land than the sea. This is likely due to a greater de-
crease in correct negative scores over the land, caused by new
convection initiating where there was previously none, which
STEPS is unable to predict.

The positive slope between all the points for each relia-
bility curve in Fig. 8b means that, over both surface types,
as the observed frequency of events increases, STEPS pre-
dicts a higher likelihood of that event occurring. This shows
that overall STEPS is able to produce a reliable nowcast
for these initialisation times. However, for both regions and
times of day, STEPS presents a lower probability than the ob-
served frequency for probabilities . 0.35 and a higher prob-
ability than the observed frequency for probabilities & 0.65.
The distribution of ensemble predictions is therefore under-
dispersive, meaning that the spread of predictions falls within
the spread of observations; i.e. it does not provide an opti-
mum estimate of uncertainty.

When comparing the two surface types it can be seen that
the under-prediction at lower nowcast probabilities is greater
over the land, meaning the ensemble distribution has less
variance and STEPS is better at capturing uncertainty over
the sea for these initialisation times. However, at higher now-
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Figure 8. Composite (a) ROC and (b) reliability curves over the sea and land for STEPS 3 h lead time nowcasts, initialised at 09:00 (441
nowcasts) and 15:00 (405 nowcasts), with a threshold of < 235 K. The numbers next to the green points in (a) represent the thresholds used
to evaluate the nowcast at different likelihoods. Red dot represents the optimum threshold.

cast probabilities, more over-prediction is seen over the sea
compared to over the land, meaning that STEPS becomes too
confident at predicting higher-likelihood events over the sea.

The under-dispersive feature of STEPS over the MC is
due to low ensemble member variance, which (as previously
mentioned) can be exemplified by visually assessing the lack
of diversity between the ensemble members in Fig. 6. The
main source of ensemble member variance comes from the
differences in the stochastic noise fields that STEPS injects
into the nowcasts, and so, increasing the range of noise field
intensities, or simply adding more members, would likely
help to reduce this under-dispersive feature.

3.3 Comparison of STEPS, LK and persistence

By applying a threshold to a probabilistic STEPS nowcast, it
is possible to produce a deterministic STEPS nowcast (in the
form of a binary field) that can be evaluated using the FSS
and directly compared to the corresponding LK and persis-
tence nowcast. Figure 9 shows the mean FSSs for 3467 LK
nowcasts (solid), persistence nowcasts (dashed) and STEPS
deterministic nowcasts produced using a threshold of≥ 10 %
(dotted; STEPS10). The choice of threshold was based on the
results of Fig. 8, which show that, for both the morning and
evening initialisation times, the optimum likelihood thresh-
old was ≥ 10 %.

At 10 km spatial scale, STEPS10 shows skill up to ∼ 5 h
and has the highest skill across all lead times, outperform-
ing LK and persistence. At 60 km scales STEPS10 still out-
performs persistence across all lead times but approximately
equals the skill of LK from 1–3 h lead time. Onwards of 3 h
lead time, STEPS10 shows higher skill than LK.

The added value of STEPS10 over both LK and persis-
tence decreases between the 10 and 60 km spatial scales and,
by the 200 km scale, STEPS10 shows the least skill out of
all the nowcasts. This is likely due to less of the propaga-

Figure 9. Composite FSSs against lead time for 3457 LK (solid
line), STEPS10 (dotted line) and persistence (dashed line) now-
casts, evaluated at a threshold of 235 K for 10, 60 and 200 km spa-
tial scales. The grey horizontal line marks the 0.5 FSS line, which
is considered the cut-off for nowcast skill.

tion being detected within the 200 km scale evaluation com-
pared to the 10 and 60 km scales – hence LK tends towards
persistence at greater scales. Unlike LK, STEPS changes the
internal structure of the convection through the injection of
stochastic noise. This change in the internal structure of con-
vection (as opposed to change due to propagation) will be
detected on the 200 km spatial scale and may contribute to a
drop in performance relative to LK and persistence.
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4 Conclusion

A deterministic (LK algorithm) and probabilistic (STEPS al-
gorithm) implementation of the pySTEPS optical flow now-
casting library have been applied to satellite data over the
MC to produce nowcasts with lead times of up to 6 h.

Overall, the LK algorithm predicts the propagation of con-
vection across the domain with skill (FSS ≥ 0.5) up to 4 h on
the 10 km scale (the smallest scale of evaluation) and up to
at least 6 h on the 60 km scale. Similarly, Burton et al. (2022)
used the LK algorithm to nowcast convective rain rates over
West Africa using retrievals of BTs. Although it is difficult to
precisely compare the two sets of results (rainfall retrievals
likely have more fine-scale variability and errors in rainfall
retrievals will affect nowcast skill (Hill et al., 2020)) they are
nevertheless comparable. Burton et al. (2022) show skill up
to about 3 h on the 64 km scale, whereas we would expect
somewhat higher skill for BT nowcasts over the MC.

Similar to the findings in Burton et al. (2022), the LK al-
gorithm was unable to predict the initiation–growth–decay of
convection, which is a manifestation of the optical flow as-
sumption – each pixel maintains its intensity across all time
steps. This inability to predict IGD of convection is clearly
seen when analysing maps of LFSS over the MC. Over the
sea the LK algorithm shows, on average, good skill at all
nowcast initialisation times due to convection being mostly
propagating in nature. Over land, however, the model shows
high skill in the morning and evening but much lower skill in
the afternoon. In the early afternoon this is due to the initia-
tion of convection, which is closely constrained to the moun-
tains. Later in the afternoon the low skill is due to the growth
of the convection that initiated earlier on and persists over
the mountains. Over the mountainous regions of the MC dur-
ing the afternoon, the LK algorithm would not be a useful
nowcasting tool.

The STEPS algorithm aims to address the issue of un-
predictability in the initiation–growth–decay of convection
by injecting varying intensities of stochastic noise at differ-
ent length scales to produce an ensemble nowcast. When
analysing a probabilistic nowcast produced by a STEPS
ensemble, it can be seen that the injection of noise has
a smoothing effect, removing small-scale convection and
maintaining the shape of the larger, more predictable con-
vective regions.

A composite analysis of STEPS nowcasts was performed
using ROC and reliability curves for 3 h lead times predic-
tions. The ROC curve is a measure of a nowcast’s ability to
discriminate between convective events that happened and
convective events that did not (the higher the area under a
ROC curve, the more efficient it is at this), whereas the relia-
bility curve measures how well the probabilistic predictions
compare to observations. Overall, the analysis showed that
STEPS can produce both skilful and reliable ensemble pre-
dictions for 3 h lead times. When comparing land and sea at
different times of day, it was shown that STEPS has highest

skill over the sea during the morning (09:00 LT initialisation
time) with an AUC score of 0.8 (compared to an AUC score
of 0.71 over the land). Imhoff et al. (2020) also applied the
pySTEPS implementation of STEPS to radar data over the
Netherlands to produce nowcasts for a range of lead times.
In their work they produced composite ROC curves for now-
casts with a lead time of 95–120 min, which had an AUC
score of 0.81. The Netherlands experiences far less convec-
tive activity than the MC with the majority of its weather
coming from propagating frontal clouds. This, therefore, fur-
ther highlights the effectiveness of STEPS for the MC as it
tries to predict convective clouds, which have a more un-
predictable nature. However, the disadvantages of STEPS
were revealed when analysing the reliability curves. A com-
mon feature across both times and regions was the under-
dispersive ensemble distributions, which were more extreme
over land. This highlights STEPS’s inability to predict the
low-likelihood events (e.g. new initiations) and capture the
whole uncertainty of the observed system.

To compare STEPS with LK and persistence, a determinis-
tic version of STEPS was produced by thresholding the prob-
abilistic nowcasts at ≥ 10 % (STEPS10). When evaluated,
the STEPS10 nowcasts had higher skill at spatial scales of
10 km (across all lead times) and 60 km (from 3–6 h). There-
fore, not only does STEPS provide insight into the uncer-
tainty of a convective system, but it can also derive a better
single deterministic nowcast than LK and persistence at these
scales. However, at a higher spatial scale of 200 km (where
relatively less convection propagation is detected), LK now-
casts had the highest overall skill and the injection of stochas-
tic noise produced by STEPS likely caused the STEPS10
nowcasts to have the lowest overall skill.

Continuous nowcasting over the entire MC is a require-
ment for early-warning systems, which does not currently
exist. By providing both nowcast examples and composite
nowcast analysis, this paper has shown the effective appli-
cation of a deterministic (LK) and probabilistic (STEPS) al-
gorithm to satellite data, showing their potential to be used
operationally over the whole of the MC. The work highlights
the key strengths and weaknesses of both algorithms, pro-
viding important information to a potential forecaster using
these tools.
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