
Nat. Hazards Earth Syst. Sci., 24, 4661–4682, 2024
https://doi.org/10.5194/nhess-24-4661-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ready, Set & Go! An anticipatory action system against droughts
Gabriela Guimarães Nobre1, Jamie Towner1, Bernardino Nhantumbo2, Célio João da Conceição Marcos Matuele2,
Isaias Raiva2, Massimiliano Pasqui3, Sara Quaresima3, and Rogério Manuel Lemos Pereira Bonifácio1

1World Food Programme (WFP), Rome, Italy
2Mozambique National Meteorology Institute (INAM), Maputo, Mozambique
3National Research Council, Institute for BioEconomy, Rome, Italy

Correspondence: Gabriela Guimarães Nobre (gabriela.nobre@wfp.org)

Received: 23 February 2024 – Discussion started: 15 March 2024
Revised: 27 September 2024 – Accepted: 17 October 2024 – Published: 19 December 2024

Abstract. The World Food Programme, in collaboration with
the Mozambique National Meteorology Institute, is partner-
ing with several governmental and non-governmental orga-
nizations to establish an advanced early warning system for
droughts in pilot districts across Mozambique. The “Ready,
Set & Go!” system is operational in Mozambique for activat-
ing anticipatory action (AA) against droughts based on pre-
defined thresholds, triggers and pre-allocated financing. The
system uses bias-corrected and downscaled seasonal fore-
casts from the European Centre for Medium-Range Weather
Forecasts (ECMWF) as core information to anticipate se-
vere reductions in rainfall during the rainy season. This in-
formation guides the implementation of actions to reduce the
impacts of rainfall deficits in the critical window between a
forecast and the onset of the drought event. Within this win-
dow of opportunity, the system releases an alert for readiness
(Ready) and activation (Set) preceding the mobilization of
anticipatory action on the ground (Go). With the recent adop-
tion of the Southern African Development Community “Ma-
puto Declaration on Bridging the Gap between Early Warn-
ing and Early Action”, member states have committed to en-
hancing the reach of early warning system by leaving no one
behind. Therefore, there is a need to assess the opportunities
and limitations of the Ready, Set & Go! system to scale up
drought AA information to all districts in Mozambique. This
study describes the Ready, Set & Go! system, which uses en-
semble forecasts of the Standardized Precipitation Index to
trigger anticipatory action against droughts on a seasonal
timescale. The Ready, Set & Go! optimizes the use of sea-
sonal forecast information by choosing triggers for anticipa-
tory action based on verification statistics and on a double-
confirmation process, which combines longer lead times with

shorter lead time forecasts for issuing drought alerts. In this
study, we show the strengths of the system by benchmark-
ing it against three simpler triggering approaches. Our find-
ings indicate that the Ready, Set & Go! system has significant
potential to scale up AA activities against severe droughts
throughout the entire rainy season, covering on average 76 %
of the Mozambican districts. This approach outperforms the
three benchmarked methods, demonstrating higher hit rates,
extended lead times and a lower false alarm. If efforts are
concentrated on the first part of the rainy season, national
coverage against severe droughts could be expanded to 87 %
of all districts. By aligning with the objectives outlined in the
“Maputo Declaration” and the “Early Warning for All” ini-
tiative, this research contributes to safeguarding communities
against the adverse impacts of climate-related events, align-
ing with the ambitious goal of universal protection by 2027.

1 Introduction

Mozambique experienced one of its worst drought events in
decades in 2015/2016, which affected the food security of
approximately 2.3 million people, leading to its government
to declare a state of national emergency (OCHA, 2017). This
El Niño-induced drought caused an exceptional lack of pre-
cipitation in two consecutive rainy seasons, which resulted
in significant losses in rain-fed yields, below-average irri-
gated crops, poor pasture conditions and high cattle mortal-
ities (WFP, 2016). The dryness propagated into water reser-
voirs in southern Mozambique, where the impact on water
levels remained for 5 years (Echo Flash, 2023).
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Mozambique is a country exposed and vulnerable to mul-
tiple hazards due to its geographical location and latitudinal
extent. Its climate is affected by several modes of climate
variability such as the El Niño–Southern Oscillation (ENSO;
Rapolaki et al., 2019; Blamey et al., 2018), the Indian Ocean
Dipole (IOD; Ashok et al., 2001; Manatsa et al., 2011; Saji et
al., 1999) and the Subtropical Indian Ocean Dipole (SIOD;
Behera and Yamagata, 2001). These climate modes of vari-
ability modulate the frequency and intensity of the various
weather systems that are directly associated with multiple
natural hazards happening as a single or consecutive risk (e.g.
Hart et al., 2010; Manhique et al., 2015, 2021; Mawren et
al., 2020; Rapolaki et al., 2019; Reason and Keibel, 2004).
Impacts of single and consecutive hazards including flood-
ing, cyclones and droughts are exacerbated by poverty and
weak institutional development, where climate-related dis-
asters are one of the main driving forces of inequality and
food insecurity in the country (Baez et al., 2020; De Ruiter
et al., 2020). In Mozambique, nearly 25 % of its population
lives in areas with a high probability of experiencing a cli-
mate shock (World Bank, 2018). Therefore, the adoption of
protective mechanisms and systems to anticipate and prepare
the government and communities to climate shocks is crucial
for building resilience and for sustainable development. Re-
cently, the national government has made climate risk man-
agement a priority strategy following the adoption of the Ma-
puto Declaration on Bridging the Gap between Early Warn-
ing and Early Action, in which member states of the Southern
African Development Community (SADC) have committed
to take an active people-centred role to ensure all citizens
have access to effective early warning and early action sys-
tems (SADC, 2022).

Since 2019, a multi-sector government-led anticipatory
action (AA) trigger system against drought (WFP, 2023)
has been under development in Mozambique, coordinated
by the Mozambique National Institute of Disaster Manage-
ment (INGD) with the technical support of relevant ac-
tors, including the National Meteorological Institute (INAM)
and the World Food Programme (WFP). Droughts are a
slow, recurrent and predictable phenomenon (Guimarães No-
bre et al., 2023), yet they cause an estimated yearly loss
of USD 20 million (Baez et al., 2020) to Mozambique. A
drought early warning system (EWS) has a great potential to
reduce some of these losses when AA is implemented ahead
of a shock based on forecast information. Previous studies
have assessed the skill of seasonal forecasts to predict the
onset of droughts (Gebrechorkos et al., 2022; Guimarães No-
bre et al., 2023; Trambauer et al., 2015; Winsemius et al.,
2014), whereas only a few have focused on an in-depth in-
terpretability of the forecast quality through the lenses of
decision-making and practical implications. For instance, a
reflection on the adequateness of lead time of information
for action and/or definition of probabilistic trigger values for
releasing drought alerts and advisories for AA are aspects
largely missing in the scientific literature.

AA approaches are gaining more traction with an in-
creased number of institutions dedicating funding and pilot
studies in Mozambique and elsewhere. There are currently
anticipatory action initiatives and projects in 43 countries,
supported by 179 organizations, including the Red Cross
movement and UN entities such as the United Nations Office
for the Coordination of Humanitarian Affairs and the WFP
(Anticipatory action in the world, 2024). However, the evi-
dence of the benefits of acting earlier is still fairly new and
limited. Overall, existing evidence based on pilot experiences
in other parts of the world has mainly suggested a positive
impact of AA at household level, with beneficiaries report-
ing higher crop productivity and less food insecurity during
prolonged periods of drought (Weingärtner et al., 2020). In
Mozambique, AA drought pilots are limited – to date – to
11 districts, and further scale-up of activities to the national
level is desired. However, an assessment of the opportuni-
ties and limitations of the current drought AA trigger system
is currently missing, especially given the 2023 El Niño sce-
nario, which negatively affected the 2023–2024 rainy sea-
son. In response to the need for assessing the potential of
bringing AA to scale, this study describes the operational
triggering system for drought AA being piloted in Mozam-
bique during the southern Africa rainy season 2023–2024.
This article presents the analytical routines involved in the
definition and monitoring of triggers for AA, describing the
technical methodologies of the system by outlining data pro-
cesses, forecast application, decision-making and operational
activities linked to the release of AA advisories to pilot areas.

2 Case study and methods

2.1 Case study

We developed a methodology that is being piloted and is
scalable for triggering AA against droughts for all districts
in Zimbabwe and Mozambique, although this study has a
special focus on the latter. Currently in Mozambique, a
government-led AA plan is in place for 11 pilot districts
(see Fig. 1). However, an anticipatory action system is de-
sired for the whole country that requires the upscaling of the
current set-up. Concerning climatology, the rainy season in
Mozambique lasts from October to May, although the largest
amounts of precipitation are experienced between November
and April. The wettest months are December and January;
however January alone is the wettest month across the coun-
try (WFP, 2018). Rainfall amounts increase from south to
north. For instance, areas with low annual rainfall (less than
500 mm) include the southern provinces of Maputo, Gaza,
Inhambane and the southern half of Tete, whereas areas with
high total rainfall (over 2000 mm) include the provinces of
Cabo Delgado, Niassa, Nampula and Zambezia. Rainfall in-
terannual variability is stronger in areas of lower rainfall to-
tals and is a major limiting factor in livelihoods and small-
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Figure 1. Districts in Mozambique with government-approved anticipatory action plans.

scale rain-fed agriculture (Guimarães Nobre et al., 2023).
In addition, the province of Gaza has a remarkably variable
and short growing season length (mostly below 3 months).
Interannual climate variability in the southern Africa re-
gion is particularly linked to the El Niño–Southern Oscil-
lation (ENSO) (Richard et al., 2001). During the months of
October to December, the El Niño phase often drives rainfall
increases in Cabo Delgado and Niassa in northern Mozam-
bique (and decreases in the southern provinces of Maputo,
Gaza and Inhambane). During these months, when a La Niña
state is observed, rainfall increases are observed in parts of
the central provinces of Manica, Sofala and northern Inham-
bane. In addition, during the months of January to March,
El Niño leads to drier conditions across most of the country,
whereas in the south and centre of the country a moderate in-
crease in rainfall is observed during La Niña phases (WFP,
2018). Mozambique is a highly climate vulnerable coun-
try where livelihoods rely on local natural resources (e.g.
agriculture and fisheries) as their primary economic activ-
ity. Drought events affect the ability of farmers and fishers to
sustain crops and fish, often cascading into situations of food
insecurity, malnutrition and unsustainable incomes.

2.2 Methodological framework

The operational triggering system for drought AA is de-
veloped and tested in three stages (Fig. 2): (1) data pre-
processing, (2) forecast application and decision-making,
and (3) sensitivity analysis. A detailed explanation of each
stage is provided in Sect. 2.2.1 to 2.2.3.

2.2.1 Part 1: data pre-processing

Collecting rainfall observations (from 1981)

As source of rainfall estimates, we use daily blended pre-
cipitation records from the Climate Hazards Group InfraRed
Precipitation with Station data (CHIRPS) version 2 for the
period of January 1981 to near present. CHIRPS is a high-
resolution (0.05°) precipitation dataset, which is used for
drought early warning purposes by the Famine Early Warn-
ing Systems Network This dataset integrates data from
real-time meteorological stations with infrared satellite data
(therefore called a blended precipitation product), covering
from 50° N to 50° S via a blending procedure further de-
scribed in Funk et al. (2015).
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Figure 2. Flowchart of the methodological framework applied in this study, handled in three stages: (1) data pre-processing, (2) forecast
application and decision-making, and (3) sensitivity analysis.

Collecting seasonal forecast data (ECMWF from 1993)

As a source of forecast data, we use seasonal precipita-
tion forecasts from the ECMWF’s seasonal forecasting sys-
tem (SEAS5) for the period 1993–2022. In its native resolu-
tion, the forecast is available at 1 arcdeg, and new forecasts
are released monthly on the fifth day covering the coming
7 months. SEAS5 is composed of a set of 25 ensemble mem-
bers until 2016 (hindcast period) and 51 ensemble members
from 2017 onwards as part of the operational system (Ratri et
al., 2019). It is important to highlight that ECMWF SEAS5
has had a new version (SEAS5.1) since November 2022 with
an extended hindcast until 1981; the full time series of hind-
cast and operation forecast can be freely downloaded from
the Copernicus Climate Data Store.

Remapping CHIRPS and seasonal forecast data

Since the datasets of rainfall estimates and forecasts are
available in different spatial resolutions, we remapped them
into an intermediate resolution of 0.25°. This moderate reso-
lution was chosen taking into consideration the size of pilot
districts in which the system will be implemented and the
computational capacity, as well as to reduce the impact of
rainfall small-scale variability. For this process, we used bi-
linear interpolation, one of the most commonly used methods
of climate grid interpolation (The National Center for Atmo-
spheric Research Staff, 2014). Bilinear interpolation resizes

the data by estimating values at a point by averaging the val-
ues of the surrounding points.

Extracting time series of observed SPI 2 and SPI 3
within the rainy season

From the daily CHIRPS rainfall estimates, we extract the
Standard Precipitation Index (SPI), a widely used indicator
for measuring rainfall variability over a long-term climato-
logical period (World Meteorological Organization, 2012).
The SPI is centred around the mean rainfall for a given time
and location, with values ranging from − 4 to +4. Nega-
tive SPI values indicate various levels of rainfall deficits,
which are particularly relevant to the designed trigger sys-
tem. The SPI can also highlight drought situations when a
“danger threshold” is identified, signalling rainfall deficits
severe enough to prompt anticipatory action to mitigate the
impacts on livelihoods.

In this study, SPI values are calculated using 2- and 3-
month accumulation periods (SPI 2 and SPI 3, respectively).
These accumulation windows are particularly suitable for de-
tecting risks to agricultural systems during the crop develop-
ment cycle. It is crucial to note that the AA framework aims
to protect food security by reducing the risk of crop failures
in rain-fed systems. Therefore, only SPI values extracted dur-
ing the rainy season are relevant to the trigger system (see the
section below for a detailed explanation of windows of op-
portunity for anticipatory action).
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To derive the SPI estimates, the CHIRPS rainfall dataset,
accumulated over 2 and 3 months, is fitted to a gamma distri-
bution and subsequently transformed to a normal distribution
with z values (Lloyd-Hughes and Saunders, 2002). The pe-
riod from 1981 to 2018 serves as the reference climatology
for calculating the gamma distribution parameters. This pe-
riod was selected due to the availability of a complete series
of rainfall observations at the start of the project in 2019. Pe-
riods with zero precipitation are handled by assigning SPI
values based on the historical occurrence of such periods
from 1981 to 2018. However, since we use precipitation data
accumulated over 2 and 3 months, zero values are rare, es-
pecially as SPI is only extracted during the rainy season. For
extracting SPI during the dry season or in arid regions, more-
sophisticated techniques, such as those described by Stagge
et al. (2015), are available and should be preferred.

Extracting time series of ensemble SPI 2 and SPI 3
within the rainy season for multiple lead times

For the forecasting series, the parameters of the gamma dis-
tribution are determined using data from all ensemble mem-
bers for the years 1993 to 2018, as data prior to 1993 are
not available in the Copernicus Climate Data Store (SEAS5).
The routine adopted for handling zero values is similar to
the one described for deriving SPI estimates (see above).
In Fig. 3, we illustrate the extraction of SPIs for various
lead times of the forecast system with a 7-month lead time.
For example, the seasonal forecast released at the beginning
of May covers the subsequent months (May to November).
Therefore, the only indicator extracted from this forecast is
SPI 2 ON, as October marks the first month of the rainy sea-
son in the country.

Defining danger threshold for identifying past drought
events

Given that the Standardized Precipitation Index (SPI) is
linked to the probability of certain rainfall amounts, we con-
vert a specific z value into an expected frequency by cal-
culating the area under the normal distribution curve up to
that z value. This proportion, or probability (p), is then con-
verted into a return period (T ) by taking the inverse of the
probability (p = 1/T ). In the operational AA trigger sys-
tem, three z-value thresholds are used, as highlighted by
Guimarães Nobre et al. (2023), corresponding to different
severity levels. This article focuses on the most severe cat-
egory in the AA trigger system, which is SPI≤−1, as this
negative anomaly is expected to cause the most significant
damage among those adopted by the system.

However, it is important to highlight that the impact of
a drought threshold should ideally be estimated using his-
torical observations combined with information on who and
what is exposed to a hazard (exposure and vulnerability).
Due to the lack of extensive drought impact data at the dis-

trict level, the choice of a threshold level is based on fre-
quencies suitable for AA operations in the region. Typically,
AA programmes target hazards that occur at least once every
3–6 years on average. Implementing AA pilots periodically
is crucial for enhancing programme activities. Consequently,
thresholds for AA operations should not be set too low, given
that the occurrence of drought events of such intense magni-
tude is rare. A SPI≤−1 (named severe category in the AA
trigger system) corresponds to an event occurring approxi-
mately once every 6–7 years (or p = 15.87 %). By applying
the SPI≤−1 threshold to the series estimated by SPI 2 and
SPI 3, we obtain a time series since 1981 of past drought
events for the respective 2- and 3-month periods in the pilot
districts.

Bias correction of ensemble-forecasted SPI 2 and SPI 3

We employ a quantile–quantile mapping (QM) technique,
conditioned on the state of ENSO, to adjust SPI forecast
values. This is achieved by aligning the cumulative density
function of SPI forecasts at each grid cell with the reference
SPI data extracted from CHIRPS at the corresponding grid
cell and its k nearest neighbours. The SPI forecast and ref-
erence distributions are matched by establishing an ENSO-
informed, quantile-dependent correction function. This func-
tion adjusts the forecast quantiles based on their observed
SPI counterparts, translating the SPI forecast time series into
bias-adjusted values that accurately represent the observed
SPI data distribution.

The transfer functions for bias correction are developed
based on the SPI reference and SPI forecast time series,
specifically targeting the AA drought indicator rather than
daily or monthly rainfall. By incorporating ENSO informa-
tion, we aim to ensure that rainfall variability is more accu-
rately represented in the corrected forecast data, especially in
regions and timescales where ENSO has a significant impact
(Manzanas and Gutiérrez, 2019). This approach combines a
statistical quantile mapping bias correction with ENSO state
knowledge during rainy seasons. Furthermore, information
from the nearest neighbours from the reference pixel is used
to account for the spatial dependence inherent in climate data
(k = 9) (Cannon, 2018) and to extend the SPI time series
used to create the transfer function. By targeting the SPI in-
dicator directly with the transfer function, we aim to increase
the accuracy of drought detection by bringing SPI forecasts
closer to the observed SPI climatology, ensuring that the SPI
derived from forecasts is more consistent with historical pat-
terns and trends. This is critical for the Ready, Set & Go! sys-
tem that releases alerts based on negative anomalies through
the SPI indicator rather than on rainfall amounts.

In practical terms, incorporating ENSO information into
quantile mapping involves the following: (i) categorizing
data by ENSO phases, (ii) generating empirical cumulative
distribution functions for each ENSO phase separately for
both SPI observations and SPI forecasts, (iii) performing
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Figure 3. Illustration of the SPIs representing rainfall anomalies during Mozambique’s rainy season, along with the corresponding forecast
months used for their extraction.

quantile mapping by applying the transfer function to the test
year (year left out during cross-validation) of the analysis ac-
cording to the ENSO phase of the year being bias corrected,
and (iv) combining corrected forecast outputs if the bias cor-
rection is found to improve skill in detecting droughts.

In summary, the quantile mapping transfer function cor-
rects the SPI forecast based on the SPI reference value of
the pixel under investigation and its nine neighbouring pix-
els conditioned on the state of ENSO. To prevent inflating
the skill of the bias correction, a leave-one-year-out cross-
validation (LOCV) scheme is used. The bias correction trans-
fer function is constructed by pooling all ensemble members
of the forecast and then applied to all members of the left-out
test year.

An overview of this scheme is available in Fig. 4. For a list
of ENSO years, see Sect. S1 in the Supplement.

Defining danger threshold for extracting the probability
of drought events from bias-corrected and raw forecasts

From both raw and bias-corrected forecasts, we apply the
danger threshold (SPI≤−1, classified as severe in the
AA trigger system) to determine the probability of a severe
drought. This is done by calculating the proportion of ensem-
ble members that meet or fall below the threshold. We repeat
this process for each forecast issue month from 1993 to 2022,
creating a time series of drought probabilities at different lead
times for both the raw and bias-corrected forecasts.

In practice, the bias-corrected drought probabilities re-
place those from the raw forecast only when there is a
demonstrable gain in skill for forecasting severe drought.
This gain in skill is evaluated by comparing the area under
the receiver operating characteristic (AUROC) curve scores
of the raw and bias-corrected forecasts (further detailed in
the section below). Consequently, the bias-corrected drought
probability information is used only if it shows an improved
ability to predict severe droughts in the pilot districts, con-
sidering specific cases (such as a particular forecast lead time
and SPI 2 and SPI 3 aggregation).

2.2.2 Part 2.1: forecast application and
decision-making

Skill verification and assessment of raw and
bias-corrected data

As described in the previous section, we obtain drought prob-
abilities from both the raw and bias-corrected forecasts. For
each specific district, lead time and SPI indicator, we use the
forecast with the higher skill in predicting severe drought to
develop triggers for the AA. The forecast with lower skill is
discarded from the AA system. Skill is assessed by extracting
and comparing the AUROC scores of the forecasts.

The AUROC score (e.g. Fawcett, 2006) is a widely applied
indicator that measures the ability of a probabilistic forecast
to discriminate between binary outcomes (e.g. severe drought
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Figure 4. Bias correction methodology in seven steps next to an illustrative example. The accompanying graphics visually demonstrate the
process applied to a specific pixel with coordinates 31.875, −23.875.

or no drought). The AUROC score calculation requires set-
ting a range of trigger values to convert a probability forecast
into a categorical one, and therefore it is related to decision-
making in response to whether the forecast should release an
alert. For the releasing of a “drought alert”, several triggers
are tested, and a graph (known as a ROC curve) is produced
to summarize the hit rate and false alarm rate that can be
expected from different probability trigger values. The area
under the ROC provides a summary statistic for the perfor-
mance of probability forecasts, ranging from 0 to 1 (worst to
best). Forecasts with little or no skill have a ROC score of
approximately 0.5. Forecast is perfectly incorrect when the
ROC is zero. In summary, for a specific district, lead time
and SPI indicator, we choose which source of forecast to
use for the Ready, Set & Go! triggers (raw or bias corrected)
based on the forecast skill assessment informed by the AU-
ROC score at the district level.

Testing several triggers for the Ready, Set & Go! system

Triggers for anticipatory action indicate the forecasted sever-
ity of drought that would prompt a response. If the fore-
cast exceeds the trigger, funds are automatically allocated,
and anticipatory actions are initiated. A trigger is essentially
a value that converts a probability forecast into a decision
on whether to take action, effectively determining whether
a drought alert should be issued. Defining a trigger involves
understanding when forecasting information can be trusted to
successfully mobilize anticipatory actions, despite inherent
uncertainties. Therefore, triggers are based on the skill levels
of the forecasts, requiring an investigation of past forecast
accuracy and an acknowledgement of forecast uncertainty.

Forecasts at any lead time can be tested to derive triggers
for anticipatory action. It is common practice for organiza-
tions to define two types of triggers for anticipatory action:
(i) a preparedness trigger with a longer lead time and (ii) a
confirmatory trigger for the activation of activities with a
shorter lead time before the drought onset. These triggers
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are defined based on the skill levels of the forecasts for each
lead time. However, testing lead times independently may
result in an unrealistic performance of the anticipatory ac-
tion programme, as the system relies on both triggers being
exceeded, even though they are set based on their individ-
ual performance. Additionally, organizations may assign pre-
paredness and activation activities based on a single trigger
from a specific lead time. This approach can vary depend-
ing on the organization’s specific capacity to respond to the
forecasted information.

The Ready, Set & Go! system employs a double-
confirmation approach for drought alerts. This means that the
trigger value, tailored for each forecast month, district and
SPI indicator, must be exceeded for 2 consecutive months to
prompt action. The performance of these triggers for antici-
patory action is evaluated in combination rather than individ-
ually. For example, if the trigger based on the August forecast
for Chibuto district, which predicts potential severe droughts
in October–November, is exceeded, the “Ready” phase is ac-
tivated. If the trigger based on the September forecast for the
same district is also exceeded, the “Set” phase is activated,
and activities are immediately mobilized on the ground, ini-
tiating the “Go!” phase. Testing triggers in combination with
a double-confirmation process aims to create a more accurate
trigger system and provide a longer window for readiness and
preparedness activities before AA implementation. This ap-
proach is validated using a sensitivity analysis explained in
Sect. 2.2.4.

For instance, readiness activities might involve preparing
internal documents, which can then lead to initiating a pro-
curement process if an AA advisory is issued. Practically, for
each forecast month that can produce a “Ready” and “Set”
trigger, we jointly test several candidate pairs of triggers.
This testing is conducted in steps of 1 % ranging from 0 %
to 100 %, resulting in 10 201 combinations of candidate trig-
gers. This is done for each district, pair of forecast months
and SPI 2 and SPI 3 indicator. For a complete overview of
the triggers for SPI ON for a given district, we test all candi-
date pairs of triggers for the following forecast month combi-
nations: May (Ready) and June (Set), June (Ready) and July
(Set), July (Ready) and August (Set), August (Ready) and
September (Set), and September (Ready) and October (Set).
For each pair of triggers, we calculate key performance met-
rics (e.g. hit rate and false alarm ratio) to evaluate how the
drought alerts would have performed in the past. The rele-
vance of these metrics was identified during a workshop held
in 2022 with governmental partners.

Applying pre-mapped quality criteria for the trigger
choice

The definition of a trigger value for drought AA is intrin-
sically linked to the skill of the forecast and the identifica-
tion of a certain degree of risk tolerance levels by users of
the forecast (Lopez et al., 2018). In practice, when a low

probability trigger value is chosen, one can expect to fore-
cast droughts frequently, whereas if a very high value is cho-
sen, the opposite is expected to happen. The optimum trigger
value should reflect appropriateness through the lenses of the
decision-maker and the relative importance given to drought
false alarms versus missed drought events.

Users who are averse to missing a drought will choose a
lower trigger value and deal with an increase in false alarms.
For instance, a low trigger value can be a suitable option for
actors that seek to assist very fragile populations and/or when
the portfolio of AA is considered “non-regret” (Chaves-
Gonzalez et al., 2022). Anticipatory actions are classified as
“non-regret” when they are worth investing in even if a crisis
does not materialize and would not be regretted with hind-
sight. Following this approach, we have created a menu of
“emergency triggers”, to be used when pilot districts expe-
rience high levels of vulnerability. On the other hand, users
who are averse to false alarms will choose a higher trigger
and manage occasional missed events. For instance, a high
trigger value can be a suitable option for actors that have
limited funds and/or when the portfolio of AA contains ac-
tions that affect livelihoods, such as evacuations, which are
considered highly regrettable if a false alarm occurs. This
approach can be of high relevance for scaling up AA to all
districts in Mozambique as the largest geographical cover-
age is desired and funding distribution/sharing across a wide
area is expected. Following this approach, we have created a
menu of “general triggers” to be used when pilot areas expe-
rience normal to low levels of vulnerability. As displayed in
Table 1, the expected performance of both menus is different,
especially concerning the tolerance to false alarms and the
probability of drought detection. Operationally, the assess-
ment of vulnerability information is done prior to the start
of the AA season in Mozambique (see Sect. 2.2.3 for further
explanation).

Define triggers for anticipatory action

After testing all combinations of trigger pairs for the “Ready”
and “Set” phases and recording the statistics listed in Table 1,
we began a selection process based on the quality criteria
outlined in the same table. The suitable pairs were ranked
according to their hit rate and false alarm ratio, considering
both district-specific performance and the stage of the rainy
season: (i) start to mid-season (referred to as Window 1) and
(ii) middle to the end of the season (referred to as Window 2).
Only the best-performing trigger pairs were selected for fur-
ther analysis, which is presented in Sect. 3.4.

It is important to clarify that AA targets these two win-
dows of the rainy season because the activities implemented
before the onset of drought within these periods serve differ-
ent purposes. The forecast of drought risks within these win-
dows informs the refinement of the AA portfolio, as rainfall
deficits during the start to mid-season and middle to the end
of the season are expected to impact crops differently. For
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Table 1. List of quality criteria for assigning forecast-based triggers for severe drought events. It is important to highlight that criterion 5
plays a role in the calculation of criteria 2, 3 and 4.

Number Criteria for determining triggers General Emergency
menu menu

1 The selected trigger must have predicted at least 55 70
x % of the past droughts

2 The chance of successfully implementing AA 65 55
following a Ready & Set alert must be greater
than x %

3 The chance of unsuccessfully implementing AA 35 45
following a Ready & Set alert must be less than
x %

4 Return period (years) for the implementation of 7 6
AA against droughts

5 Actions will only be counted as “in vain” if the SPI >−0.68
Ready & Set alert for severe drought is followed
by an SPI meeting the following criterion.

6 Minimum number of full months for the Go! 1
phase (implementation)

Table 2. Description of anticipatory action windows per zone and province with an illustration of SPI indicators informing drought events.

Zone Provinces Months within SPI 2 and SPI 3 Months within SPI 2 and SPI 3
window 1 informing window 2 informing

window 1 window 2

North Nampula, December to SPI DJ, SPI DJF, SPI JF, March to June SPI FMA, SPI MA, SPI
Cabo Delgado March SPI JFM, SPI FM MAM, SPI AM, SPI
and Niassa AMJ, SPI MJ

Central Manica, November to SPI ND, SPI NDJ, SPI February to SPI JFM, SPI FM, SPI
Sofala, Tete February DJ, SPI DJF, SPI JF May FMA, SPI MA, SPI
and Zambezia MAM, SPI AM

South Gaza, October to SPI ON, SPI OND, SPI January to SPI DJF, SPI JF, SPI
Inhambane, January ND, SPI NDJ, SPI DJ April JFM, SPI FM, SPI
Maputo City FMA, SPI MA
and Maputo

example, AA implemented before potential droughts in Win-
dow 1 aims to support planting and sowing activities, such as
distributing drought-tolerant seeds, while AA implemented
in Window 2 focuses on supporting livelihoods, such as pro-
viding cash transfers.

Furthermore, due to the variation in climatology across the
country, the periods covered by Windows 1 and 2 differ by
zone, shifting by approximately 1 month from south to north.
Table 2 provides an overview of the timing of these windows,
the indicators used to assess drought risks within them and
the provinces associated with each zone. The division of the
rainy season into these windows was defined by the tech-
nical working group (TWG) for drought early warning sys-
tems (EWS) and AA, which includes several governmental

and non-governmental institutions (WFP, 2023). Further de-
tails can be found in the discussion section.

2.2.3 Operation

Once the repository of triggers for AA has been finalized,
several operational activities follow. Although these activi-
ties do not impact the overall system performance (as pre-
sented in the results section), they provide valuable insight
into the operationalization of the methodology showcased
in this study. The first key activity following the initiation
of forecast and trigger monitoring for AA is a vulnerabil-
ity analysis. This analysis is conducted annually, typically
around April and May as the rainy season concludes. Its pur-
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pose is to assess the levels of vulnerability in the AA pilot
districts by examining recent climate shocks and projected
food security outcomes. The results of this analysis inform
decisions about which set of triggers – general or emergency
– each pilot district should employ for the upcoming AA sea-
son. For example, if a district experienced drought during
the most recent rainy season, with anticipated negative im-
pacts on food security, the emergency triggers are selected
for the next AA season due to the heightened vulnerabil-
ity in that area. Once this decision is made, forecasts from
May to February of the following year are processed, and the
AA triggers are monitored on a monthly basis. The moni-
toring of the Ready, Set & Go! system triggers is conducted
by INAM and WFP, with updates communicated to the tech-
nical working group (TWG) for drought early warning sys-
tems (EWSs) and AA through a dashboard and regular bul-
letins.

2.2.4 Sensitivity analysis including four scenarios

We evaluate the robustness of our methods through a sensi-
tivity analysis, considering four distinct scenarios. For each
scenario, we extract four key metrics:

1. Hit rate is the percentage of past severe droughts accu-
rately captured by the AA trigger(s).

2. Tolerant false alarm ratio accounts for false alarms
when the AA trigger is exceeded, but the drought
threshold is narrowly missed. For example, a false alarm
occurs if a severe drought trigger (SPI≤−1) is followed
by an SPI value just below the threshold (e.g. −0.99).
To better contextualize false alarms, we calculate the
“tolerant” false alarm ratio, which considers the num-
ber of severe drought alarms followed by an SPI greater
than −0.68 (see Table 1). This introduces extra tol-
erance when analysing forecasting errors, as severe
drought alerts followed by SPI values between −0.68
and −0.99 are not counted as non-drought situations.
This approach is based on the practical assumption that
AA interventions will still benefit the population even if
implemented during slightly less severe dryness.

3. Lead time of implementation is the time difference be-
tween the starting month of the SPI indicator and the
month in which the forecast was issued. For instance, a
forecast issued in May is considered to have a lead time
of 4 months when providing outlooks of SPI ON.

4. AA percentage coverage is the percentage of Mozambi-
can districts where an AA trigger was identified, meet-
ing the criteria outlined in Table 1.

It is important to clarify that these metrics were derived from
the skill assessment of the forecasts from 1993 to 2021.
Specifically, the number of hits and false alarms during this

period is used to calculate a key metric from the quality cri-
teria list: the “return period (years) for the Implementation of
AA against droughts”. This metric helps determine whether
the empirical frequency of AA interventions aligns with the
frequency of the threshold for severe droughts. Furthermore,
the scenarios for the sensitivity analysis are defined as fol-
lows:

1. Scenario 1 is an AA advisory based solely on a single
alert, using only one lead time from the raw SPI fore-
casts.

2. Scenario 2 is an AA advisory based solely on a single
alert, using either raw or bias-corrected SPI forecasts,
depending on which has the highest skill.

3. Scenario 3 is an AA advisory requiring double confir-
mation but using only raw SPI forecasts.

4. Scenario 4 is an AA advisory based on the Ready,
Set & Go! system, requiring double confirmation and
using a combination of bias-corrected and raw SPI fore-
casts.

3 Results

3.1 Zonal-based overview of the years with severe
drought conditions within the rainy season

In Fig. 5, we illustrate the frequency of severe drought oc-
currences during the rainy season from 1981 to the present.
We began by extracting the mean SPI 2 and SPI 3 indicators
for each district, focusing on the rainy windows relevant to
each district and/or province (see Table 2 for SPI indicators
and their associated windows). We then counted how often
the severe drought threshold was met or exceeded. The top
5 years with the highest number of 2- and 3-month periods
experiencing severe drought conditions are highlighted. Bars
in the figure are coloured to indicate the ENSO phase during
the respective rainy seasons in Mozambique (see Sect. S1 for
classification). To simplify the data presentation, districts are
grouped by zones (refer to Table 2 for zone-to-province list).
A similar overview of severe drought years at the province
and district levels is provided in Sect. S2.

Overall, severe drought conditions can occur during any
of the three ENSO phases across all zones. This underscores
the need for an AA system that is effective regardless of
the ENSO phase. However, we found that severe droughts
are significantly more frequent during El Niño phases (mean
frequency= 66) compared to neutral (mean frequency= 41)
and La Niña phases (mean frequency= 31), as confirmed by
a t test (p < 0.01). Previous studies also support this find-
ing (Araneda-Cabrera et al., 2021; Lyon and Mason, 2007).
Additionally, the top 5 drought years for different windows
vary considerably. In the north zone, only the rainy season
of 2004–2005 appears in the top 5 for both windows. In the
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Figure 5. The frequency with which the SPI 2 and SPI 3 indicators exceeded or equaled the severe drought threshold since 1981 is shown
for each zone and window. The counts are first calculated at the district level and then aggregated by zone for window 1 (a, c, e) and
window 2 (b, d, f). For details on which SPI 2 and SPI 3 indicators correspond to each window, refer to Table 2. The zones are defined as
follows: (i) central zone includes districts from the provinces of Manica, Sofala, Tete and Zambezia; (ii) north zone includes districts from
Nampula, Cabo Delgado and Niassa; and (iii) south zone includes districts from Gaza, Inhambane, the province of Maputo City and Maputo
Province. Bars are colour-coded according to the dominant ENSO phase during the rainy season in Mozambique (red – El Niño, blue –
La Niña and grey – neutral). The top 5 years for each window and zone are highlighted.

central zone, only the 1991–1992 rainy season ranks in the
top 5 for both windows. In the south zone, the rainy sea-
sons of 1991–1992 and 2015–2016 are among the top 5 for
both windows. This variation highlights the importance of
developing an early warning system that accounts for dif-
ferent intra-seasonal rainfall patterns and adjusts operations
according to the stages of the rainy cycle.

3.2 Zonal-based overview of bias correction

Figure 6 presents the percentage of areas per zone, the SPI in-
dicator and the forecast month that showed an improved AU-
ROC score after applying bias correction. The primary focus
of our evaluation is the AUROC score, as it offers a practical
measure of whether bias correction enhances the accuracy of
severe drought forecasts, which is crucial for users. The goal
of this approach is to identify opportunities for improving
forecast accuracy, thereby reducing the risk of misallocated
anticipatory action resources due to inaccurate predictions.

For a spatial representation, similar results are displayed in a
series of maps in Sect. S3.

Overall, the north zone showed the highest mean per-
centage of improved forecast areas (38 %), followed by
the central and south zones (both at 19 %). In the north
zone, the forecast month with the highest mean improve-
ment was July (56 %), while February had the lowest (20 %).
For the central zone, January showed the greatest improve-
ment (26 %), while August showed the least (10 %). In the
south zone, July and August had the highest mean improve-
ment (26 %), whereas December and January had the lowest
(14 %). Across all forecast months, the SPI indicators that
demonstrated the greatest skill improvement were SPI ON,
SPI DJ and SPI NDJ for the north zone; SPI JFM for the
central zone; and SPI ON for the south zone. Most of these
indicators pertain to the first window of the rainy season in
the country.

Additionally, for all districts and all SPI 2 and SPI 3 in-
dicators across all lead times, 24 % demonstrated improved
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Figure 6. Percentage of zonal areas in which skill was gained using bias correction for different lead times of the forecast used to extract the
SPI 2 and SPI 3 indicators.

skill (measured by AUROC score) after bias correction com-
pared to the raw forecast. A more detailed overview of the
AUROC scores can be found in Sect. 3.3.

3.3 Overview of the maximum AUROC score

Figure 7 shows the mean AUROC index per district for pre-
dicting severe droughts, combining outcomes from both raw
and bias-corrected forecasts across all extracted SPI 2 and
SPI 3 periods and lead times. On average, the SPI DJ indi-
cator had the highest AUROC score (0.79), while SPI AM
had the lowest (0.63). Severe drought events are generally
more predictable during the early to mid-rainy season (av-
erage AUROC score of 0.76 for window 1; see Table 2 for
indicator details) compared to the middle to late rainy season
(average AUROC score of 0.69 for window 2). In particu-
lar, the predictability of severe droughts in districts located
in the south zone is notably high during window 1 (average
AUROC= 0.77), primarily driven by high forecast accuracy
in December and January (SPI 2 DJ). In the central and north
zones, severe droughts are most predictable during Decem-
ber to February (average AUROC of 0.78) and November to
January (average AUROC of 0.80), respectively.

In Sect. S4, we highlight the lead times that yield the high-
est forecast skill for severe drought prediction. In the south
zone, about 44 % of districts achieve the highest AUROC
score using the December forecast for SPI DJ. In the central
zone, 55 % of districts achieve their best performance using
the August forecast for SPI DJF. In the north zone, around

66 % of districts see their highest AUROC scores based on
the November forecast for SPI NDJ.

However, it is crucial to note that the implementation
of AA requires at least 1 full month for the “Go!” phase (see
Table 1 for criteria). As a result, forecasts released in Novem-
ber, which predict severe droughts between November and
January, are not used in operational mode. This means that
the Ready, Set & Go! trigger system often cannot rely on the
most accurate lead times, as they do not allow enough time
for action mobilization.

After determining whether to use the raw or bias-corrected
forecast for a specific lead time, SPI indicator and district,
we move to the most computationally intensive phase of the
Ready, Set & Go! trigger system. This phase involves testing
pairs of triggers for AA, as described in the section “Test-
ing several triggers for the Set & Go! system”. The testing is
conducted in 1 % increments, ranging from 0 % to 100 %,
resulting in 10 201 combinations of candidate triggers per
district, forecast month pair and SPI 2 and SPI 3 indicator.
After testing all combinations and recording their statisti-
cal performance, only the best-performing trigger pair for
each window is selected for presentation in the next section.
The statistical performance of triggers, for the different sce-
narios, is based on the overall performance using hindcasts
from 1993 and 2021 compared to observed SPI 2 and SPI 3
values within this period.

All selected trigger pairs must meet the quality criteria
outlined in Table 1. To evaluate the value of using mixed
forecast information (raw and bias corrected) with a double-
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Figure 7. Overview of the maximum AUROC score across lead times combining outcomes of both raw and bias-corrected forecasts.

confirmation approach, we expanded the analysis to include
additional testing. This extended analysis examines the per-
formance of single versus double triggers and the impact of
including or excluding bias correction in the methodology.

3.4 Sensitivity analysis

Table 3 presents the average performance of the best triggers
for AA during both window 1 and window 2, comparing dif-
ferent activation mechanisms:

– Scenario 1 issues an AA advisory based on a single alert
using only the raw SPI forecasts from a specific lead
time. If the forecast for a specific month, district and
indicator exceeds the assigned probabilistic trigger, an
AA advisory is issued and implemented.

– Scenario 2 issues an AA advisory based on a single
alert, using either raw or bias-corrected SPI forecasts,
depending on which has higher predictive skill.

– Scenario 3 requires double confirmation of drought con-
ditions but uses only raw SPI forecasts.

– Scenario 4 represents the operational Ready, Set & Go!
system, which issues an AA advisory based on dou-
ble confirmation, using a combination of both bias-
corrected and raw SPI forecasts.

Overall, scenarios using a double-confirmation approach per-
form better than those relying on a single drought alert for
AA activation.

Specifically, in the simplest scenario (Scenario 1), 59 %
of districts in Mozambique would be covered by a gen-
eral AA trigger, while 42 % would be covered by an emer-
gency trigger (see the section “Applying pre-mapped qual-
ity criteria for the trigger choice” for definitions of these
trigger types). This indicates that raw forecasts alone pro-
vide reasonably accurate severe drought predictions for many
districts. Incorporating bias correction (Scenario 2) only
marginally increases coverage to 61 % (general trigger) and
43 % (emergency trigger).

However, applying a double-confirmation approach signif-
icantly increases the proportion of districts covered by an
AA trigger. In Scenario 3, coverage increases to 73 % (gen-
eral trigger) and 59 % (emergency trigger). Scenario 4, which
is the operational system in Mozambique, achieves the high-
est national AA coverage across all approaches. Additionally,
the Ready, Set & Go! system improves both the hit rate and
reduces the false alarm ratio compared to single-alert sys-
tems (Scenarios 1 and 2). Furthermore, the Ready, Set & Go!
approach extends the lead time for preparedness activities.
While single-alert scenarios provide, on average, 2 months
of lead time for AA implementation once the trigger is ex-
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Table 3. Sensitivity analysis of different approaches for establishing an AA drought trigger system for the two menus of triggers. Statistics
of the different scenarios are based on the average of the best-performing SPI 2 or SPI 3 indicator for AA within windows 1 and 2.

Scenario 1: Scenario 2: Scenario 3: Scenario 4:
single single double Ready, Set &

drought drought confirmation Go! and
alert alert and raw including

and raw including forecast bias-
forecast bias- only corrected

only corrected forecast
forecast

General Hit rate 62 % 62 % 64 % 64 %
triggers False alarm ratio 21 % 21 % 17 % 16 %

Lead time for preparedness 2.10 2.00 2.90 2.90
AA coverage 59 % 61 % 73 % 76 %

Emergency Hit rate 72 % 72 % 73 % 73 %
triggers False alarm ratio 29 % 30 % 26 % 26 %

Lead time for preparedness 2.10 2.10 3 2.90
AA coverage 42 % 43 % 59 % 63 %

ceeded, the Ready, Set & Go! system increases this lead time
to nearly 3 months.

3.5 Spatial overview of the Ready, Set & Go! system

Figure 8 provides a detailed spatial statistical overview of
the performance of the Ready, Set & Go! triggers, comple-
menting the results for Scenario 4 presented in Sect. 3.4. As
noted earlier, severe droughts are predicted with greater skill
in window 1 compared to window 2, allowing for AA triggers
to be assigned to more districts in window 1. The percentage
of districts with a valid AA trigger is as follows: (i) 66 %
for the emergency trigger menu in window 1 and 59 % in
window 2 and (ii) 87 % for the general trigger menu in win-
dow 1 and 64 % in window 2. Notably, every district with
an emergency AA trigger also has a general AA trigger, in-
dicating that for most districts, AA triggers can be adjusted
annually based on current vulnerability levels. However, in
some cases, the general trigger is the only applicable option.

In terms of trigger performance across windows, the cen-
tral zone showed the highest and lowest mean hit rates, with
window 1 achieving 74 % and window 2 achieving 61 %.
Across all menus and windows, the emergency menu in win-
dow 1 had the highest mean hit rate (77 %), while the gen-
eral menu in window 2 had the lowest (61 %). This result is
expected, as the emergency menu is designed for higher hit
rates, particularly given the greater predictability of severe
droughts in window 1.

In addition to the highest drought predictability, the south
zone of Mozambique also exhibited the highest total AA cov-
erage, with an average of 86 % of districts having an AA
trigger. The highest single window and trigger menu cov-
erage was in the south zone under the general menu, with
97 % of districts having a trigger. Spatial differences in trig-

ger performance were also observed between neighbouring
provinces, such as Manica and Tete in window 1 under the
general menu. These differences could be driven by varying
forecast skill levels. For instance, the AUROC scores for the
general trigger in window 1 are 0.82 for Manica and 0.68 for
Tete. Factors contributing to these differences could include
under- or over-estimation of rainfall events used to verify
forecasts in Mozambique (as noted in a previous study by
Toté et al., 2015), numerical effects from data rescaling, and
the resolution of district-level assessments using CHIRPS
and ECMWF forecasts.

Regarding the average false alarm ratio of the triggers
across different windows (Fig. 9), the highest and lowest ra-
tios are observed in the south zone for window 2 (20 %) and
the central zone for window 1 (10 %), respectively. Across
various menus and windows, the emergency menu and win-
dow 2 exhibit the highest false alarm ratio (16 %), while the
general menu and window 1 have the lowest (10 %). This
pattern is expected, as the emergency menu is designed to
tolerate a higher false alarm ratio to ensure a higher hit rate,
making it less prone to missing a drought forecast.

Section S5 details the specific SPI indicators used for
AA triggers. For window 1, SPI DJ is the most commonly
selected indicator across all zones. In window 2, different
SPIs are chosen per zone: (i) SPI FMA for the north zone,
(ii) SPI JFM for the central zone and (iii) SPI DJF for the
south zone.

Regarding lead times, the earliest “Ready” alert for pre-
paredness in window 1 can be issued for a few districts in the
south zone based on the May forecast. However, for most dis-
tricts in the south zone, the July forecast is used for prepared-
ness, whereas in the north and central zones, the September
forecast is most commonly used for the “Ready” alert. In
window 2, most districts in the south zone use the August
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Figure 8. Hit rate of the Ready, Set & Go! trigger system for severe droughts for two trigger menus (emergency and general) and two windows
of intervention (window 1 and window 2). No triggers for the Ready, Set & Go! for severe droughts were found for the districts in grey.

Figure 9. False alarm ratio of the Ready, Set & Go! trigger system for severe droughts for two trigger menus (emergency and general) and
two windows of intervention (window 1 and window 2). No triggers for the Ready, Set & Go! for severe droughts were found for the districts
in grey.

forecast for preparedness, while the north and central zones
typically use the October forecast.

It is important to note that regional rainfall climatology
significantly influences the choice of intervention windows
and indicators. As a result, districts in the south zone may re-
ceive readiness alerts earlier in the season compared to other
areas. This factor is crucial for planning AA activities and
allocating geographical funding.

4 Discussion, limitations and next steps

In this study, we present the methodology behind the opera-
tional Ready, Set & Go! trigger system used by Mozambican
governmental institutions and their partners to guide AA ac-
tivities against droughts. The system optimizes the use of

seasonal forecast information by identifying triggers for AA
through a double-confirmation process. This approach com-
bines longer and shorter lead time forecasts to issue more-
reliable drought alerts. Our findings indicate that by utiliz-
ing both bias-corrected and raw ensemble rainfall forecasts,
AA efforts could potentially be scaled up to cover the entire
rainy season in 76 % of Mozambique’s districts. If focused
solely on the first part of the rainy season, where drought
predictability is higher, AA activities could expand to 87 %
of all districts. This demonstrates that seasonal forecasts
can reliably inform AA months before the onset of severe
droughts, meeting the quality criteria established by mul-
tiple institutions. Such scalability indicates strong potential
for expanding current AA pilots nationwide, supporting the
ambitious goals of the Maputo Declaration, in which south-
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ern Africa governments committed to extending early warn-
ing systems across the region (SADC, 2022). Globally, the
Ready, Set & Go! system also aligns with the Early Warn-
ing for All initiative, which aims to ensure that every indi-
vidual worldwide is protected from climate events through
early warning systems by 2027 (WMO, 2022). This initia-
tive underscores the need for expanding the climate infor-
mation portfolio of national meteorological and hydrological
services for direct application in disaster risk management.
However, there are still limitations and opportunities for im-
provements, which we discuss in the following sections.

This study demonstrates that the Ready, Set & Go! trigger
system can effectively issue severe drought alerts using SPI 2
and SPI 3 indicators, which the technical working group in
Mozambique has deemed suitable for monitoring and an-
ticipating drought risks in agricultural systems. However,
these indicators and thresholds are not flawless in detecting
drought damage, as the relationship between drought risk and
impact is often location-specific, is non-linear and is influ-
enced by non-climatic factors such as vulnerability (Brida et
al., 2013; Silva and Matyas, 2014). The ideal method for es-
tablishing AA thresholds that reliably detect drought-related
losses would involve a historical analysis examining the con-
nection between drought events and socio-economic impacts,
such as crop yields, income losses, health outcomes and food
security. Past studies on index-based insurance for the agri-
cultural sector have extensively explored the gap between
rainfall measurements and actual agricultural losses, high-
lighting challenges in accurately capturing real-world farmer
impacts (Clarke and Dercon, 2009; Clement et al., 2018;
Greatrex et al., 2015). Unfortunately, comprehensive, down-
scaled impact data are largely unavailable, particularly across
African countries, limiting further refinement of thresholds
and indicators within the system and hindering the ability to
solidify links between drought conditions and past impacts.
Future efforts should focus on refining these thresholds to
strengthen the relationship between physical drought hazards
and expected impacts. This could be achieved by utilizing
spatially explicit socio-economic datasets, such as the Inte-
grated Food Security Phase Classification indicator from the
Famine Early Warning Systems Network, along with data re-
covery exercises. This would allow users to better understand
food security outcomes tied to drought events.

Additionally, the Ready, Set & Go! system issues drought
alerts based on a multi-month SPI indicator, which can over-
look the effects of short but impactful dry spells, poorly dis-
tributed rainfall, intense rainfall episodes or delayed/early
cessation of rain. Incorporating additional drought indica-
tors could help better capture these risks, ideally through an
exploratory analysis that links specific drought indicators to
negative impacts and evaluates their predictability.

Two technical aspects related to the extraction of the
SPI indicator also require further improvement. First, more-
sensitive statistical tests could be used to identify candidate
probability distributions for normalizing drought indices. Al-

though this study applies the two-parameter gamma distri-
bution, as recommended by Stagge et al. (2015), a more
rigorous assessment of the assumed SPI distributions could
be beneficial. Second, the handling of zero precipitation
poses challenges, particularly in regions with very low sea-
sonal rainfall. In this system, zero-precipitation events are
accounted for by assigning SPI values based on their histor-
ical occurrence. However, this approach can be problematic
when many zero values are present, as SPI requires a mean
value of 0 to reflect typical conditions, where half of the years
are wetter, and half are drier. While the presence of zero pre-
cipitation was rare in this study, further refinement is needed
to handle these cases more effectively. Using a method such
as the centre of probability mass, as suggested by Stagge et
al. (2015), could offer a more robust approach to calculating
SPI in extremely dry regions.

The Ready, Set & Go! trigger system aims to extend AA
and reliable early warning information to all districts in
Mozambique. Although we have not yet fully achieved this
goal using our current technique, we believe that refining the
bias correction methodology will enhance the system’s ef-
fectiveness. Bias correction is a critical element in precipi-
tation forecasts, with QM being one of the most commonly
applied techniques. In developing an AA trigger system, we
designed and evaluated a bias correction methodology to im-
prove the accuracy of seasonal forecast in predicting severe
droughts. While our methodology has increased forecast for
24 % of the predicted SPI at the district level and expanded
AA coverage by 4 % (as shown in Table 3, comparing Sce-
nario 3 to Scenario 4), there is still potential to further en-
hance the bias correction approach. Below, we outline the
improvements that can be made.

Firstly, our method uses an ENSO-informed quantile map-
ping transfer function to correct the SPI forecast based on the
SPI reference value of the pixel under investigation and its
nine neighbouring pixels conditioned on the state of ENSO.
This process ensures that the bias correction accounts for
variations in the SPI quantities according to the climatol-
ogy of different ENSO phases, effectively capturing rele-
vant global processes (Manzanas and Gutiérrez, 2019; Ma-
raun et al., 2017). In practice, this involves splitting SPI time
series, derived from both CHIRPS and ECMWF ensemble
forecasts, into neutral, La Niña and El Niño years depend-
ing on the ENSO phase (detailed in Sect. S1). However, in
some regions of Mozambique, such as part of Tete, the ENSO
rainfall signal is weak, particularly during October to De-
cember (WFP, 2018). Therefore, relying solely on an ENSO-
based approach may not be ideal in these areas. Other cli-
mate variability modes, such as the Indian Ocean Dipole, are
also known to influence annual rainfall variability in Mozam-
bique (Ficchì et al., 2021; Harp et al., 2021; Ogwang et al.,
2021). This suggests a need to investigate the suitability of
incorporating additional teleconnection modes into the bias
correction process.
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Second, since extreme droughts generally affect broad ar-
eas rather than single locations (Eskridge et al., 1997; Liu
et al., 2021), our bias correction methodology accounts for
the spatial dependence of SPI. To bias-correct a single grid
point of the SPI ensemble forecast, we incorporate data from
multiple grid points (the target grid point and its nine neigh-
bours) from the reference SPI dataset to build the transfer
function. Previous research has shown that addressing spa-
tial dependence reduces bias in climate model outputs (Can-
non, 2018; Nahar et al., 2018). To avoid overfitting, we use
a leave-one-year-out cross-validation scheme, excluding the
year being bias corrected from the transfer function. For the
spatial dependence set-up, we tested two k values (4 and 9),
ultimately selecting 9 based on improved spatial homogene-
ity of AUROC scores. However, this approach could benefit
from further optimization by assessing the k value that yields
the highest AUROC scores for specific locations.

Third, improvements in bias correction may be achieved
by exploring emerging methodologies such as machine learn-
ing (ML). Recent studies indicate that ML has the potential
to outperform traditional techniques like QM (e.g. Yoshikane
and Yoshimura, 2023; Zarei et al., 2021). Lastly, our initial
internal tests showed significant improvements in drought
predictability by creating a transfer function that directly
links SPI forecasts to SPI observations rather than taking
the traditional approach of bias correcting daily or monthly
raw rainfall forecasts before converting them into SPI values.
This direct approach has led to both statistical and practical
gains, as it allows the system to focus directly on drought de-
tection. If the system evolves to include additional rainfall-
based indicators, such as dry spells or the start/cessation of
rain, a method that directly bias-corrects raw forecasts could
offer operational advantages, as it can be widely applied to
generate additional indicators.

We also highlight the potential to scale up AA by utiliz-
ing rainfall seasonal forecasts from the ECMWF. In our ap-
proach, the seasonal forecast is downscaled from 1 to 0.25°
using bilinear interpolation, which allows us to assess fore-
casting skill at the district level. Extracting drought alerts at
the district level is crucial to align with the geographical tar-
geting of AA interventions. However, further investigation
into other downscaling techniques, such as ML, could be
beneficial, as ML has been shown to enhance forecast skill
(Jin et al., 2023). ECMWF was initially selected as our pri-
mary source of forecasting information due to its superior
skill in predicting precipitation over the African continent
compared to other centres (Gebrechorkos et al., 2022). Nev-
ertheless, future studies may benefit from shifting from a
single-model approach to a multi-model ensemble (MME)
strategy. MME integrates independent models from vari-
ous forecasting centres of information, which helps mitigate
model errors and can enhance the reliability of seasonal out-
looks (Doblas-Reyes et al., 2010; Gebrechorkos et al., 2022;
Rozante et al., 2014).

We demonstrate that the Ready, Set & Go! system im-
proves the accuracy of AA advisories, resulting in a higher
hit rate and a lower false alarm ratio compared to a system
that relies on a single alert for AA advisories. Additionally,
we observe that this system extends the lead time for pre-
paredness activities, allowing for the scale-up of AA efforts
against severe droughts during the first window of the rainy
season, covering 87 % of districts in Mozambique. However,
since AA triggers are identified and optimized at the district
level, the system is prone to issuing advisories for individual
districts, even though past severe droughts have often had
broader impacts, including widespread socio-economic con-
sequences (Baez et al., 2020). This discrepancy may occur
because the system uses different lead times for forecasting
information across districts within the same province or be-
cause triggers for different implementation windows within
a province are based on varying SPI indicators. An exam-
ple of this can be seen in southern Mozambique (refer to
Sect. S5). Despite these statistical gains, optimizing AA trig-
gers at the district level needs to be contextualized for prac-
tical decision-making, particularly for large-scale operations
and the distribution and management of funding. Therefore,
while district-level optimization may be effective statisti-
cally, it may not always be the most appropriate approach
for AA planning, especially when scaling up AA across the
entire country. One potential solution to avoid asynchrony in
AA triggers is to refine the selection of indicators and lead
times by evaluating their performance across the majority of
districts within a province, ensuring more synchronized and
coordinated AA efforts.

We also demonstrate that the triggers for the Ready,
Set & Go! system can be adjusted based on vulnerability in-
formation, adding an important nuance to AA operations
(Baez et al., 2020). However, measuring vulnerability is a
complex task that often requires frequent updates, location-
specific data, and further disaggregation by age and gender
(Chaves-Gonzalez et al., 2022). In Mozambique, the Techni-
cal Secretariat for Food Security and Nutrition (SETSAN) is
responsible for providing such information. AA operations
would greatly benefit if these data were made available in
a timely manner, ideally before the start of the AA season.
Unfortunately, this is not always the case. More research is
needed to understand vulnerability trends and their relation-
ship to climate hazards (Baez et al., 2020; Hallegatte et al.,
2016). As the system expands, collecting timely vulnerabil-
ity data may become increasingly challenging. Therefore, a
systematic, rapid, yet robust methodology for vulnerability
analysis is essential. We have also observed a lower percent-
age of districts covered by AA when emergency triggers –
modulated by vulnerability – are used. These emergency trig-
gers inherently allow for a higher rate of false alarms and
focus on “no-regret” actions (Chaves-Gonzalez et al., 2022)
while increasing the probability of detection. This approach
aims to maximize the number of extreme droughts antici-
pated by AA interventions and provide a safety net for ar-
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eas with high vulnerability. However, the current criteria for
identifying emergency triggers are not achieving higher cov-
erage compared to general triggers. Revisiting these criteria
(see Table 1) through a statistical optimization process may
help enhance the system’s effectiveness.

As previously mentioned, the Ready, Set & Go! system is
currently being piloted in 11 districts across Mozambique,
with plans to scale up AA operations in 2024. Due the 2023–
2024 El Niño, several AA advisories have already been is-
sued to districts in the Gaza, Sofala and Tete provinces,
marking the system’s first operational deployment during
the 2023–2024 rainy season. While humanitarian and gov-
ernmental organizations have substantial experience in re-
sponding to hazards after they occur, most monitoring and
evaluation (M&E) efforts have focused on the effects of
emergency responses post-crisis. There is limited evidence
of the benefits of AA, particularly regarding drought inter-
ventions, partially given the small number of pilot interven-
tions to date and the challenges faced by studies in benefit
estimations and/or modelling. As the evidence base for the
value for money begins to form, WFP’s AA programmes are
showing potential as a sustainable way to support climate-
vulnerable governments with limited resources (Anticipa-
tory Action for Climate Shocks, 2024). In Kenya, drought-
related AA could save up to USD 20 billion over 20 years,
even with false alarms costing significantly less than a late
response. In Ethiopia, Kenya and Somalia, AA could save
USD 1.6 billion over 15 years by mitigating drought im-
pacts before price spikes and negative coping strategies. In
Nepal, AA reduced damage to vulnerable populations by
75 % and cuts asset losses by 50 %, saving USD 34 for ev-
ery dollar invested and reducing long-term recovery costs.
In Zimbabwe, AA reached 32 500 people before drought im-
pacts, with 97 % of farmers benefiting from climate infor-
mation and 80 % adapting their practices, leading to higher
resilience than a control group.

Given that AA represents an innovative approach and a
relatively new concept in risk management, it is crucial to
establish a robust M&E system to evaluate the effectiveness
of AA interventions. This system will provide valuable in-
sights into what has worked well in practice and highlight
areas for improvement in future operations. Ultimately, a
well-designed M&E process will help determine whether AA
interventions effectively reduce or mitigate the impacts of
droughts on affected populations (Gros and Heinrich, 2021).

5 Conclusions and recommendations

In this article, we introduced and benchmarked the “Ready,
Set & Go!” system, which is being piloted in Mozambique
to trigger anticipatory action against severe droughts. This
system is designed to implement measures that mitigate the
impacts of rainfall deficits during the critical period between
forecasting and the onset of drought. Following the recent

adoption of the SADC Maputo Declaration by its member
states, there is a need to evaluate the system’s opportunities
and limitations for expanding drought AA coverage to all dis-
tricts in Mozambique. Our findings include the following:

– Potential for expansion. The Ready, Set & Go! sys-
tem could potentially scale AA activities to 76 % of
Mozambican districts. Additionally, 63 % of these dis-
tricts could adopt an alternative trigger system tailored
to vulnerability levels. This feature allows the system
to proactively address potential vulnerabilities for the
upcoming season. If only the first window of the rainy
season is targeted, coverage could increase to 87 %.

– Impact of bias correction. The bias correction method-
ology used in the Ready, Set & Go! system enhances
forecasting skill for 24 % of all forecasted SPI indicators
at the district level. This improvement slightly raises
AA coverage from 73 % to 76 % for the general menu
and from 59 % to 63 % for the emergency menu. This
means bias correction can extend operational AA cover-
age to about six additional districts, representing a slight
improvement but also enhancing the potential for life-
saving AA.

– Increased hit rate and lead time. The Ready, Set & Go!
system improves both the hit rate and lead time for AA
compared to three alternative triggering approaches.
The highest mean hit rate across different windows was
observed in the central zone within window 1 (74 %).
SPI DJ is the most commonly used indicator for AA in
window 1. The earliest “Ready” alert for preparedness
can be issued for a few districts in the south zone based
on the May forecast.

– Reduced false alarm ratio. The Ready, Set & Go! sys-
tem achieves a lower false alarm ratio compared to the
three alternative approaches. The mean lowest average
false alarm ratio is found in the central zone for win-
dow 1 (10 %). Among different menus and windows,
the mean highest false alarm ratio is 21 % for the emer-
gency menu in window 2, while the mean lowest is 10 %
for the general menu in window 1.

We observed that the piloted drought EWS has significant po-
tential for scaling up AA across Mozambique, aligning with
the goals of the Maputo Declaration and the Early Warning
for All initiative to provide climate event coverage and pro-
tection to all citizens by 2027. However, several next steps
could further enhance the effectiveness of the EWS.

Enhancing bias correction methodology to

– explore additional climate indices to incorporate more
indices related to climate variability to refine the trans-
fer function.
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– optimize nearest neighbours to fine-tune the number of
nearest neighbours used in bias correction.

– investigate emerging techniques to explore advanced
methods such as machine learning to improve accuracy.

Improving forecast resolution to

– explore downscaling techniques to investigate alterna-
tive downscaling methods to enhance the resolution of
seasonal forecasts.

– consider multi-model ensemble approaches to evaluate
whether combining multiple models could improve the
reliability of seasonal outlooks.

Strengthening impact links to

– connect thresholds to socio-economic impacts to en-
hance understanding of the socio-economic conse-
quences of droughts to better plan and target AA ac-
tivities.

– incorporate additional indicators to include other rele-
vant drought indicators, such as the onset of rain and
rainfall cessation, to provide a more comprehensive as-
sessment.

Contextualizing trigger optimization to

– refine triggers for practical decision-making to consider
the impact of optimizing triggers at the district level,
which may lead to asynchrony in AA activations among
neighbouring districts. Select SPI 2 or SPI 3 indicators
and lead times based on their performance across most
districts within a province.

Investing in monitoring and evaluation to

– support ongoing pilots to invest in monitoring, evalua-
tion and learning to inform future expansion of the an-
ticipatory approach and maximize the impact of AA ac-
tivities.

These steps may help to maximize the effectiveness and cov-
erage of the EWS, ensuring that AA efforts are timely, more
accurate and well targeted.
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