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Governing equations of the spatiotemporal debris flow numerical model:

To determine the rate of percolation water, the values of initial moisture content and hydraulic
conductivity of the three soil layers are needed (the soil zone can be considered as a single layer too).
For the calculation of the unsaturated hydraulic conductivity, the empirical soil-water characteristic
curve (SWCC) by Farrell and Larson (1972) has been used, and the matric suction [h/ (kPa) is defined

as:

|hq| = hgexplas (1 — S1)]; |hz| = hyzexplaz (1 — S3)]; |hs| = hyzexplas(1 — S3)] s1

where [h1/, |h2/, and [hsz] (m) are the absolute values of matric suction head for soil layers 1, 2 and
3, hai, haz, and has (m) are the absolute matric suctions at the air entry value, and a, az, and as

(dimensionless) are the slopes of the log-linear relationship of In([h:/) and (1-S,). This relationship

becomes valid whenever the matric suction increases above the air entry value.

Based on the SWCC of Farrell and Larson (1972), the relative hydraulic conductivity in unsaturated

condition becomes:
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where the tortuosity t is assumed equal to 4/3 following Farrell and Larson (1972). The kr(ﬁE) is

dimensionless, ranging from zero at the residual moisture content and one at complete saturation.

The absolute unsaturated hydraulic conductivity, k(&,), is subsequently obtained by multiplying the
relative hydraulic conductivity at unsaturated state with the saturated hydraulic conductivity k_,
(m/s). The same procedure is followed for the other two soil layers.

The lateral fluxes from the center of each pixel are modelled according to the following relationship

(Begueria et al., 2009; Quenta et al., 2007):
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where Q is the lateral flux, W is the depth of wetting front, CL is the cell length (the resolution of the

DEM), and t is the numerical timestep.

Once the volume of water outflowing from each pixel is known, it is routed both in the x and y

directions according to the following formulae (Begueria et al., 2009):
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where Qx and Q, are the lateral fluxes in x- and y- directions, respectively, and Slope is the slope of the

pixel obtained from the DEM.

The gravitational and matric potential induced water flow/seepage flux is one-dimensional according
to Eq. S3, which is common in many distributed slope stability models (Alvioli and Baum, 2016; Alvioli
et al.,, 2014; Alvioli et al., 2018; Van Asch et al., 1999; van Asch et al., 2009). Hydrological parameters,
such as the saturated hydraulic conductivity, are given in a time history format. Once the spatial extent
and other variables are provided to the numerical model, the precipitation boundary condition is
imposed as a function of time. The total duration of the numerical simulation is decided by the

duration of the precipitation\climate boundary conditions.

The solid materials of a debris flow begin to deposit when V is smaller than a critical flow velocity (1,

m/s), and at the same time C,, is larger than C,.We use the V, proposed by Takahashi et al. (1992):
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where g (m/s?) is the gravity acceleration, h (m) is the flow height, 6, (2) is the flattest slope on which
a debris flow that comes down through the change in slope does not stop, and p (kg/m?) is the bulk

density of the debris flow. 6, and p are defined as:
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p =Cy(ps— pw) + Pw 7

Moreover:

Al= (2—’:)1/3 -1 s8

The deposition rate (i, m/s) can be expressed as (Takahashi et al., 1992):

, V \ Cyoo—Cy
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where §,4 is a non-dimensional coefficient of deposition rate obtained through back-analysis and p(<1)
is a non-dimensional coefficient to describe the initiation of the depositing process. A value of 0.67 for

the latter is recommended by Takahashi et al. (1992).

Assuming turbulent flow conditions, which seem likely in steep and rough channels (Montogomery
and Buffington, 1997), V is calculated using the Manning’s equation when C,, is below an arbitrarily

chosen limit of 0.4 (van Asch et al., 2014).

h2/3sing1/2
V= Y S10

where n (m*3/s) is the Manning’s number equal to 0.04 (van Asch et al., 2014). For C,, > 0.4 (van Asch

et al., 2014), a simple equation of motion is used:

% = g(sin6 cos@ — ktand — S;) s11

where k is the lateral pressure coefficient (taken equal to 1; van Asch et al. (2014), and S is a resistant

factor depending on the rheology of the flow:

= cos? ] 3k )
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where ¢’ (2) is the apparent friction angle of the flow for a certain pore water pressure, and u (kPa-s)
is its dynamic viscosity.

The spatially explicit rainfall timeseries maps from the WRF numerical model is shown in Fig.S1.
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Figure S1 Spatially explicit timeseries of rainfall from WRF model at selected time intervals like 0-hour, 15
hour, 45 hours, and 62 hours. The total duration of the simulation is 72 hours. The grid spacing is at 1.8 km *
1.8 km. Rainfall units are in mm. Images plotted using the open source PCRaster Aguila visualisation tool

(Pebesma et al., 2007): https://pcraster.geo.uu.nl/
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Figure S2 12.5m resolution digital elevation model keyed into the debris flow numerical model. The units are
in m. a.s.l. Images plotted using the open source PCRaster Aguila visualisation tool (Pebesma et al., 2007):

https://pcraster.geo.uu.nl/
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Figure S3 Input data of regolith/debris thickness into the debris flow numerical model. The units are in meters.

Images plotted using the open source PCRaster Aguila visualisation tool (Pebesma et al., 2007):

https://pcraster.geo.uu.nl/
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Figure S4 WRF modelled rainfall timeseries from 15 June 2013 to 17 June 2013 over the 121 landslides

occurred in Kedarnath during the 2013 North India Floods. Plotted using Python in Jupyter Notebook (Kluyver

et al., 2016)
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Coordinate 75 25 75! 25
Count (Days) 10 10 10 10
Mean| 4456391 33209| 30.15367|  30.93523
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Figure S5 Comparison matrix of IMD data with WRF model output at daily timescales
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Figure S6 Random points used for accuracy assessment of the debris flow model. Image plotted using the open

source PCRaster Aguila visualisation tool (Pebesma et al., 2007): https://pcraster.geo.uu.nl/

=== Detailed Accuracy By Class ===

TP Rate FP Rate

0.484 0.226
0.774 0.516
Weighted Avg. 0.633 0.375

=== Confusion Matrix ===

a b <-— classified as
447 477 | a = Yes
221755 | b = No

Figure S7 Details of accuracy assessment with True Skill Statistics (TSS) Evaluation. Image plotted using open-
source Waikato Environment for Knowledge Analysis (WEKA) (Eibe et al., 2016)

https://www.cs.waikato.ac.nz/ml/weka/
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weka.classifiers.trees.RandomTree -K 0 -M
Time taken to build model: 0.1€ seconds

=== Evaluation on training set ===

Time taken to test model on training data:

=== Summary ===

Correctly Classified Instances 1202
Incorrectly Classified Instances €698
Rappa statistic 0.
Mean absolute error 0.
Root mean sgquared error 0.
Relative absolute error 932
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Total Number of Instances 1500
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Figure S8 Details of accuracy assessment using Kappa statistics. Image plotted using open-source Waikato

Environment for Knowledge Analysis (WEKA) (Eibe et al., 2016) https://www.cs.waikato.ac.nz/ml/weka/

Intensity of Rainfall

No rain Rainfall amount realised in a day is 0.0 mm

Trace Rainfall amount realised in a day is between 0.01 to 0.04 mm
Wery light rain Rainfall amount realised in a day is between 0.1 to 2.4 mm
Light rain Rainfall amount realised in a day is between 2.5 to 7.5 mm
Moderate Rain Rainfall amount realised in a day is between 7.6 to 35.5 mm
Rather Heavy Rainfall amount realised in a day is between 35.6 to 64.4 mm
Heavy rain Rainfall amount realised in a day is between 64.5 to 124.4 mm
Very Heavy rain Rainfall amount realised in a day is between 124.5 to 244 .4

mm
Extremely Heavy rain

244.5 mm

Exceptionally Heavy Rainfall  This term is used when the amount realised in a day is a value
near about the highest recorded rainfall at or near the station
for the month or season. However, this term will be used only
when the actual rainfall amount exceeds 12 cm.

Rainy Day Rainfall amount realised in a day is 2.5 mm or more.

Figure S9 Intensity classification of rainfall as per IMD glossary.

Rainfall amount realised in a day is more than or equal to
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Figure S10 Intensity classification of spell of rainfall as per IMD glossary
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Figure S11 Map showing the small catchment area with no landslides within the analysis domain of WRF
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model. India administrative boundary highlighting Uttarakhand (Copyright: Survey of India, downloaded from:

https://onlinemaps.surveyofindia.gov.in/Home.aspx, the Location of Uttarakhand (Copyright: Survey of India,

downloaded from: https://onlinemaps.surveyofindia.gov.in/Home.aspx. Image plotted using ArcMap ArcGIS

version 10.8.2.
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Figure S12 DEM and Debris flow volume =0 for the small catchment with no/less landslides. Images
plotted using the open source PCRaster Aguila visualisation tool (Pebesma et al., 2007):
https://pcraster.geo.uu.nl/
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Figure S13 Daily rainfall data used for simulating moisture content at each pixel within the study area. Data is
from 2003 to 2015. Image plotted using the open source PCRaster Aguila visualisation tool (Pebesma et al.,

2007): https://pcraster.geo.uu.nl/
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