
Nat. Hazards Earth Syst. Sci., 24, 4507–4522, 2024
https://doi.org/10.5194/nhess-24-4507-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Flood risk assessment through large-scale
modeling under uncertainty
Luciano Pavesi, Elena Volpi, and Aldo Fiori
DICITA, Roma Tre University, Rome, Italy

Correspondence: Luciano Pavesi (luciano.pavesi@uniroma3.it)

Received: 18 June 2024 – Discussion started: 10 July 2024
Revised: 8 October 2024 – Accepted: 10 October 2024 – Published: 10 December 2024

Abstract. The complexity of flood risk models is intrinsi-
cally linked to a variety of sources of uncertainty (hydrol-
ogy, hydraulics, exposed assets, vulnerability, coping capac-
ity, etc.) that affect the accuracy and reliability of the anal-
yses. Estimating the uncertainties associated with the differ-
ent components allows us to be more confident in the risk
values on the ground, thus providing a more reliable assess-
ment for investment, insurance and flood risk management
purposes. In this study, we investigate the flood risk of the en-
tire Central Apennines District (CAD) in Central Italy using
the laRgE SCale inUndation modEl – Flood Risk (RESCUE-
FR), focusing on the interaction between the uncertainty in
the hydraulic Manning parameter and the risk variability. We
assess the coherence between the quantile flood risk maps
generated by our model and the official risk maps provided
by the Central Apennines District Authority (CAD Author-
ity) and focusing on three specific zones within the CAD re-
gion. Thus, RESCUE-FR is used to estimate the expected an-
nual damage (EAD) and the expected annual population af-
fected (EAPA) across the CAD region and to conduct a com-
prehensive uncertainty analysis. The latter provides a range
of confidence of risk estimation that is essential for identify-
ing vulnerable areas and guiding effective mitigation strate-
gies.

1 Introduction

Floods are one of the world’s most devastating natural dis-
asters, posing a significant threat to human life, infrastruc-
ture, economy and the environment (Doocy et al., 2013;
Rentschler et al., 2022; Llasat et al., 2009). Defined as the
temporary inundation of land not normally covered by wa-

ter (Sayers et al., 2013), floods have shaped human civiliza-
tion throughout history and continue to challenge societies
worldwide. In recent years, the frequency and severity of
flood events have increased due to factors such as climate
change, land use change and population growth (Schilling
et al., 2014; Blöschl et al., 2017; Cred, 2020).

Understanding flood risk, defined as the probability of
a flood event combined with its potential adverse conse-
quences, is paramount to effective disaster preparedness,
response and mitigation strategies (EU Floods Directive,
2007). Flood risk assessment plays a crucial role in assessing
the vulnerability of communities, infrastructure and ecosys-
tems to flood events. It involves estimating the likelihood and
potential impact of flooding (defined as hazard), taking into
account the exposure (the presence of people, assets and sys-
tems in hazard zones) and the vulnerability (the susceptibility
of these elements to flood damage) (UNISDR, 2009). Accu-
rate flood risk assessment informs land use planning, emer-
gency management and infrastructure development, helping
to identify high-risk areas and prioritize mitigation measures
(Falter et al., 2014; Convertino et al., 2019).

Despite its importance, flood risk assessment presents sev-
eral challenges, particularly at large spatial scales that are
fundamental for comparative analyses. Traditional methods
for large-scale analysis often rely on empirical or simplified
models that may overlook important spatial variability and
uncertainty in flood hazard and impact estimates such as a
simple aggregation of local flood depth maps and damage
assuming homogeneous return periods (Alfieri et al., 2016;
Vorogushyn et al., 2018). In addition, the dynamic nature
of flood risk, influenced by socio-economic changes and cli-
mate variability, adds further complexity to long-term assess-
ments (Field, 2012).
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The latest advances in hydrology and hydrodynamic mod-
eling have enabled more accurate and detailed assessments
of flood risk at larger spatial scales. These models provide
improved representations of flood hazard, ranging from em-
pirical methods to detailed hydrodynamic simulations (Man-
freda et al., 2011; Schumann et al., 2013). Among these, LIS-
FLOOD stands out as a widely used model for large-scale
flood inundation mapping. It provides valuable insights into
flood extent and depth (Bates et al., 2010). In addition, the
advances in large-scale flood modeling have contributed sig-
nificantly to the assessment of flood risk at the continental
scale. The Catchment-based Macro-scale Floodplain (CaMa-
Flood) model, developed by Yamazaki et al. (2011), is an ex-
ample of this progress, using advanced hydrodynamic simu-
lations to capture the complex interactions between precipi-
tation, land surface characteristics and river systems. High-
resolution topographic data, coupled with advanced model-
ing techniques, allow for more precise delineation of flood
extent and depth, enhancing the reliability of flood risk as-
sessments (Sampson et al., 2015; Yan et al., 2015).

Despite these improvements, flood hazard estimates are
still quite uncertain. Uncertainty generally affects the relia-
bility of risk estimates and arises from a variety of sources,
including the climate projections, the model parameters and
also the socio-economic factors determining the estimate of
losses (Dankers et al., 2014; Ward et al., 2014).

The estimation of large-scale flood losses is a complex
issue due to the different interactions between systems that
are complex, such as urban, suburban and agriculture. In
fact Merz et al. (2010b) and Meyer et al. (2013) highlight
different types of damage. These include, for example, di-
rect damage (damage caused by contact between water and
structures), indirect damage (damage to customers/suppliers
who cannot access the flooded area), damage due to busi-
ness interruption (e.g., due to broken tools as a result of the
flood), intangible damage (loss of life, epidemics, environ-
mental damage, etc.) and risk mitigation costs (installation
of mitigation infrastructure, maintenance, etc.).

Due to the difficulty of representing all of these types of
damage in models, modelers generally limit themselves to
assessing direct damage (Merz et al., 2010b) because it can
be associated with various hydraulic variables provided by
flood hazard models, such as water depth and velocity. These
types of direct flood damage models can have different lev-
els of complexity in terms of the variables considered and
the spatial scale. They can be univariate, assuming that flood
damage is influenced by only one variable (usually water
depth), and multivariate, assuming that flood damage is in-
fluenced by several variables including flood depth, inunda-
tion duration, flow velocity and resistance parameters (e.g.,
building type, construction material) (Gerl et al., 2016). In
terms of spatial scale, they can be micro-scale (the damage
is assessed at the building scale), meso-scale (the damage is
assessed at the spatial aggregation) and large-scale (the dam-

age is assessed at the municipal, regional or national scale)
(Merz et al., 2010b).

Quantifying the overall uncertainty in both hazard and im-
pact estimates is essential to understanding the robustness of
results in flood risk assessment and management (USACE,
1992; Peterman and Anderson, 1999; Downton and Pielke,
2005; Dankers and Feyen, 2009; Alfieri et al., 2015, 2016).
Incorporating estimation uncertainty allows for a probabilis-
tic assessment of risk, providing a confidence interval for
the results obtained rather than a deterministic risk value.
This is useful for informed decision-making (Kreibich et al.,
2017; Merz and Thieken, 2009; Merz et al., 2010a), in par-
ticular where we do not have data to validate our own dam-
age estimates (Figueiredo et al., 2018; Molinari et al., 2020).
More generally, this type of estimation supports the decision-
making needs of different stakeholders who may have differ-
ent attitudes to risk or different cost–benefit ratios for risk
reduction measures (Merz and Thieken, 2009).

In this paper, we show how the variability in the Man-
ning roughness parameter can affect the risk estimate. We
consider here the Manning parameter to be representative of
most of the uncertainty characterizing the hydraulic model-
ing of flood risk. This is only one of the sources of uncer-
tainty that need to be assessed in this context, such as the un-
certainty in the estimates of the hydrological discharge, the
vulnerability curve and the exposed-asset values. Assessing
uncertainty from other sources could provide additional in-
sights and improve the overall confidence, but achieving this
requires a balance between the spatial resolution and the un-
certainty assessment.

In this context, the use of a large-scale, simple and com-
putationally inexpensive flood hazard model facilitates the
parametric uncertainty analysis. To this aim we use the
hydrologic–hydraulic modeling approach named RESCUE
(laRgE SCale inUndation modEl), which was suited for the
specific scope of the probabilistic assessment of flooded ar-
eas (Pavesi et al., 2022). Coupled with a damage model,
this provides an estimate of the uncertainty in the flood risk.
The RESCUE framework combined with the damage model
is called RESCUE-FR (RESCUE – Flood Risk). The area
of study is the Central Apennines District (CAD) in the
center of Italy with a geographic surface of 42 298.22 km2.
The RESCUE-FR framework is applied to the 25 main river
basins in the area, as defined by the Italian National Geo-
portal, with areas ranging from 125 km2 to over 17 000 km2.
Although this article proposes a case study for Italy, where
some damage studies have been carried out for the specific
geographic region (see, e.g., Molinari et al., 2014; Amadio
et al., 2019), we decided to adopt here the continental dam-
age model of Huizinga (2007) and Huizinga et al. (2017) in
order to be able to extend our analysis to a large transna-
tional context in future works. In addition, we estimate the
population affected by floods; within this scope, we make the
common simplifying assumption that the population is fully
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affected if located in the flooded area, regardless of the water
depth (Ward et al., 2013; Alfieri et al., 2015).

The innovative aspect of this work is twofold:

– A more complete view of flood risk for a large-scale
assessment of the associated uncertainties is provided,
given by the use of large-scale flood models. This ap-
proach is achievable, not through complex models re-
quiring intensive computational processing and calibra-
tion parameters but through simpler large-scale models
that illustrate the trade-off between quantile uncertainty
and spatial resolution/detail.

– The RESCUE-FR framework is developed, which in-
tegrates simple, globally accepted hazard, vulnerabil-
ity and exposure assessment methodologies to ensure
wider applicability of flood risk estimates across re-
gional boundaries.

The paper is structured as follows: in Sect. 2 we explain
the methods of the RESCUE-FR framework, in Sect. 3 we
present the study area, in Sect. 4 we present the main results
and discussions, and in Sect. 5 we draw the main conclusions
of our work.

2 Methods

2.1 Flood risk analysis

Hazard, vulnerability and exposure are the three fundamental
modeling components of flood risk. In this work, we pro-
vide a probabilistic assessment of risk by accounting for
the uncertainty due to the hydraulic modeling parameter,
denoted here as n. To this aim we make some simplify-
ing assumptions; we assume that the probability of flood-
ing (i.e., the hazard) and the hydraulic characteristics of the
inundation (e.g., water depth and velocity) are fully deter-
mined by the probability distribution function of the peak
discharge p(Q) and of the Manning roughness parame-
ter p(n) (where p(.) indicates the probability density func-
tion), where Q and n are independent of each other. More-
over, we assume that the damage D (which results from the
product of vulnerability and exposure) depends only on the
water depth in the flooded area h. Thus, risk R can be de-
scribed by the following equation:

R =

∫
�

Rnp(n)dn

=

∫
�

 ∞∫
Q∗

D(h(Q,n))p(Q)dQ

p(n)dn, (1)

where Q∗ is the minimum peak discharge value produc-
ing damages and Rn = EQ[D|n] (with EX[.] denoting ex-
pectation relative to the probability distribution function of

the variable X) is the expected annual economic loss in a
given year, i.e., the expected annual damage (EAD), and for
a specific value of n in the range of variability �. Thus,
R = En[Rn|n] is the average EAD (with respect to the proba-
bility distribution of n) and, likeRn, is expressed in monetary
terms.

Similarly, we can estimate the average population exposed
to the effects of flooding in a given year, i.e., the expected an-
nual population affected (EAPA), which is instead expressed
in number of inhabitants. We denote 2n = EQ[η|n] as the
EAPA for a specific value of n in the range of variability �
and the average EAPA 2= En[2n|n]. These are obtained
by substituting the damage function D(h(Q,n)) in Eq. (1)
for the function η(Q,n), counting the number of affected in-
habitants as a function of the hydrological load Q and of the
Manning parameter value n. As previously mentioned, we
assume that the affected population does not depend on the
water depth.

Note that Eq. (1) provides the average with respect to
n variability in EAD or EAPA at any point of the flooded
area. Results can be integrated in space at the desired aggre-
gation scale. Given the main objective of this work, in the ap-
plication of the framework to the case study (Sects. 3 and 4)
we particularly focus on the probability distribution of Rn
and 2n at different spatial scales.

Finally, we used a simplified approach to account for flood
protection works. In large-scale flood hazard models, the res-
olution of the digital terrain model (DTM) is often insuffi-
cient to represent flood defense structures, and comprehen-
sive databases detailing such defenses are often not available
for manual integration. Previous studies have used various
simplified approaches, such as assuming a uniform level of
protection (Rojas et al., 2013) or using the gross domestic
product (GDP) per capita (Feyen et al., 2012) or the expo-
sure (Zanardo and Salinas, 2022) as a proxy for the level of
protection. We adopt here a uniform level of protection by
assuming the threshold value Q∗ in Eq. (1) is equal to the
designed return period of the flood protection works. While
such an assumption may add an additional component of un-
certainty, we surmise that it is less significant than the un-
certainty in the Manning parameter as it mainly affects the
lower part of the damage distribution, which has less of an
impact on risk.

In the next subsections we describe in detail the methodol-
ogy of the three components of the RESCUE-FR framework.

2.2 The hazard model: RESCUE

RESCUE is a large-scale inundation model that allows for
the assessment of flood hazard over large areas (Pavesi et al.,
2022). It is a hybrid model combining geomorphological and
hydrologic–hydraulic approaches and consists of four dis-
tinct components.

1. Geomorphological analysis. Using a DTM, the river
network is extracted and segmented into nodes and
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reaches. This segmentation helps to identify critical
points such as breach nodes or channel heads. Each river
segment is divided into equal lengths where possible.

2. Cross-section definition. Average cross-sections are de-
fined for each reach identified in step 1. Key hy-
draulic properties such as the wetted perimeter and area
are derived using the Height Above Nearest Drainage
(HAND) model (Nobre et al., 2011) as described in
Zheng et al. (2018). These properties, together with wa-
ter levels, are used to calculate key parameters such
as the mean wetted area and the hydraulic radius. The
Manning equation is then used to generate the rating
curve for each segment.

3. Hydrological load. The discharge in all river reaches for
a given return period is calculated using the rational
formula. This approach requires minimal information
on the hydroclimatic conditions of the catchment and
includes parameters such as the runoff coefficient and
the critical rainfall intensity derived from an intensity–
duration–frequency (IDF) curve (see the “Model setup”
Section). This approach is used because it is simple
and flexible, and although it is usually applied to small
catchments, it can be applied to larger catchments if it
is properly calibrated.

4. Flood map generation. Flood maps are generated by
solving the 1D hydrodynamic model under steady-state
conditions. Starting from downstream boundary condi-
tions, the gradually varied-flow equation is solved along
the river network to calculate water profiles for each
segment. Water levels at segment nodes are interpolated
and spatially propagated using the HAND map to iden-
tify flooded areas based on the terrain elevation and the
water depth.

The framework produces the extent of the flooded area for
specific peak discharge values, corresponding to given return
period scenarios, and the related values of the water depth
h(Q,n) in any DTM cell of the area. To solve the integrals
in Eq. (1), that is to account for the probability distribution
of the peak discharge and the uncertainty associated with the
Manning roughness parameter n, a Monte Carlo analysis is
performed, resulting in several flood maps for each return
period and Manning value.

2.3 Probabilistic mapping of flood hazard scenarios

The general approach to probabilistic flood mapping involves
the evaluation of the statistical distributions for both model
inputs (the peak discharge Q) and the parameters. Samples
are taken simultaneously from each distribution and used as
inputs to numerous model simulations. For each simulation,
the inundated area is delineated and the flood inundation is
defined in probabilistic terms by analyzing the distribution

of the results (e.g., the water depth). In RESCUE we incor-
porate only the statistical variability in the Manning rough-
ness parameter n, considering it to be representative of most
of the uncertainty characterizing the hydraulic modeling of
flood risk. Indeed, floodplain roughness is the main factor of
uncertainty impacting the hydraulic modeling (Annis et al.,
2020). This is represented in RESCUE-FR by the Manning
coefficient. It represents a significant proportion of the over-
all uncertainty in hydraulic flood risk modeling, as it incorpo-
rates factors such as variations in terrain elevation, the extent
of flood-prone areas and potential channel restrictions due to
the presence of infrastructure.

To account for the variability in the Manning coefficient,
we perform a Monte Carlo analysis using Latin hypercube
sampling (LHS), as described in McKay et al. (2000). Com-
pared to the case of Pavesi et al. (2022), where a uniform
distribution of the Manning parameter n was assumed to as-
sess the adaptation of flood hazard in flood-prone areas to
official maps, we identified two key points:

1. A uniform distribution for the roughness parameter is
used, giving equal weight to all roughness values in a
relatively wide distribution, resulting in a certain over-
estimation of the water depth in the channel and conse-
quently in the floodplains.

2. The elevation of the channel cells obtained from the
DTM is uncertain due to the presence of a waterbody.
This affects the estimate of the channel bottom slope,
which often results in null or very low values, thus in-
troducing an additional source of uncertainty in the es-
timation of the rating curve.

In general the discussion of the reliability of the rating
curves and the key parameters influencing the rating curves is
based on the model proposed by Zheng et al. (2018) and has
been addressed in the literature by various authors (Garousi-
Nejad et al., 2019; Godbout et al., 2019; Johnson et al.,
2019; Ghanghas et al., 2022). In particular, from the results
of Ghanghas et al. (2022), changes in the Manning rough-
ness and channel slope predominantly affect rating curves
during high flows, while the absence of bathymetric data has
a significant influence at low flows, with the effect decreas-
ing as discharge increases. In RESCUE, our primary focus is
on high flows, allowing us to neglect the bathymetric factor.
In addition, the study by Johnson et al. (2019) suggests that
wider ranges for varying the Manning parameter can be con-
sidered to improve the accuracy of the rating curve estimate
and the effectiveness of flood-mapping models.

To address issues related to the channel bed slope parame-
ter, particularly in low-relief areas characterized by very low
or zero slopes, we decided to extend the lower limit of the
Manning range parameter from 0.03 to 10−3 m−1/3 s, devi-
ating from the approach used in Pavesi et al. (2022). In ad-
dition, to overcome the challenges associated with the uni-
form distribution of the Manning parameter, as discussed

Nat. Hazards Earth Syst. Sci., 24, 4507–4522, 2024 https://doi.org/10.5194/nhess-24-4507-2024



L. Pavesi et al.: Flood risk assessment through large-scale modeling under uncertainty 4511

in point 1, we chose a normal probability distribution of
the Manning parameter. In general, there is no widely ac-
cepted probability distribution for the Manning coefficient,
as its estimation relies heavily on empirical formulae and
expert judgment, making it inherently subjective (Stephens
and Bledsoe, 2020). Comparative studies such as that of Pa-
paioannou et al. (2017) show that normal, lognormal, gamma
and beta distributions can all be used with a minimal dif-
ference in results, leaving the choice of distribution to the
expert judgment of the modeler. For the probabilistic mod-
eling of the Manning parameter, we assumed for n a normal
distribution with the parameters of µ= 0.0505 m−1/3 s and
σ = 0.01921 m−1/3 s. These parameters were chosen to en-
sure that 99 % of the sample is positive and that the sample
values around the mean are consistent with literature values
for the Manning parameter n in floodplains as reported in
Chow et al. (1988).

2.4 Flood damage model

The results from the hazard model, the water depth in each
DTM cell of the flooded area h(Q,n), can be combined with
the damage model D(h) to produce probabilistic estimates
of risk, according to Eq. (1). The damage model follows the
procedure described in Huizinga (2007), which is valid for all
European countries. The choice of this type of damage model
is guided by the fact that the hazard model is implemented
and solved at a large scale and therefore requires a consistent
damage model at the same scale (Merz et al., 2010b). In ad-
dition, the RESCUE model in combination with this damage
model can also be used in an international context in future
works. This is introduced considering the product of the vul-
nerability, which strictly depends on the water depth, and the
exposure, i.e., the exposed-asset value.

Besides, with regard to estimating the affected popula-
tion η(Q,n), we consider the resident population affected for
each positive water depth as in Alfieri et al. (2015) and Ward
et al. (2013).

After calculating D(h(Q,n)) and η(Q,n) maps, in all the
DTM cells of the inundated areas generated by the hazard
model, we can derive the Rn and 2n maps by numerically
solving the inner integral in Eq. (1) cell by cell; then, the
empirical cumulative distribution functions (ECDFs) of Rn
and 2n are calculated for each cell.

In the following subsections the two components of the
damage model and the population database used in the anal-
yses are described in detail.

2.4.1 Vulnerability curves

The vulnerability assessment is based on relative (i.e., ex-
pressed in percentage terms) depth–damage functions at the
European scale. As documented in Huizinga (2007) and
Huizinga et al. (2017), these curves are derived from a com-
prehensive literature review of flood damage data and dam-

age functions for 11 European countries. Five depth–damage
curves are established for distinct economic sectors, namely
residential, commercial, industry, infrastructure and agricul-
ture. For those countries for which no information on flood
vulnerability is available, the vulnerability curves are the
mean value between the curves available for the European
continent.

2.4.2 Exposure

The exposure is available for each of the 11 European coun-
tries and at the European scale; the latter is the average max-
imum asset damage among all the countries for which we
have information. For countries with no information on the
overall value of the exposed assets, a methodology is applied
to scale the average maximum losses (obtained from coun-
tries with available information) at a national scale across dif-
ferent economic sectors using GDP (gross domestic product)
per capita PPS (purchasing power standard) obtained from
Eurostat. For further explanation, see Huizinga (2007).

In this way, the maximum-damage values are known for
all countries. Since these values refer to the year 2007, it
is necessary to take inflation into account and to update the
maximum-damage values for each country. This adjustment
is made by calculating the ratio between the consumer price
index (CPI) of the current year and that of 2007. For further
clarification the reader is referred to Huizinga et al. (2017).

This procedure is widely accepted as the standard ap-
proach for large-scale damage assessment in Europe, as
shown by Rojas et al. (2013) and Merz et al. (2010b). The
outlined procedure provides clear damage estimates for in-
dividual countries at the national level but lacks differentia-
tion at the sub-regional level (NUTS 3). The NUTS classi-
fication (Nomenclature of Territorial Units for Statistics) is
a hierarchical system used to subdivide the economic terri-
tory of the EU for the purposes of the collection, develop-
ment and harmonization of European regional statistics and
the socio-economic analysis of regions, whereby NUTS 1
represents large socio-economic regions, NUTS 2 represents
basic regions for the implementation of regional policies
and NUTS 3 represents small regions for specific diagnosis.
Our study is particularly focused on this differentiation, and
therefore we have rescaled the maximum-damage values to
the NUTS 3 level. This rescaling was achieved by assigning
weights derived from the ratio between the national GDP and
the GDP of the respective province.

The assessment of exposed assets is carried out using
the CORINE (Coordination of Information on the Environ-
ment) Land Cover (CLC) map, which includes 44 different
land cover classes. We adopt the methodology outlined in
Huizinga (2007) to assess exposure on land cover grid data.
This methodology is based on the integration of data from
the European Land Use/Cover Area frame Survey (LUCAS).
Following the methodology of Huizinga (2007), statistical
mapping aligns the observed LUCAS data with the CLC
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Figure 1. Area of interest: the Central Apennines District (Italy) divided into municipalities (black boundary); the main cities in terms of
population and economic activity are reported (black dots).

classes, resulting in a cross-tabulation. This cross-tabulation
provides a comprehensive allocation of land use percent-
ages within each CLC cell. Finally, we calculate a damage
function for each land cover class as a linear combination
of the corresponding damage functions for different land
use classes. The weights in the sum are determined from
Huizinga (2007).

2.4.3 Population

To assess the population at risk, we chose to use the European
baseline dataset HANZE 2.0 (Paprotny and Mengel, 2023).
The HANZE (Historical Analysis of Natural Hazards in Eu-
rope) dataset was released in 2017, revised and expanded as
HANZE 2.0 in 2023. It was the first comprehensive exposure
dataset with a resolution matching pan-European flood haz-
ard maps, namely 100 m, covering the years 1870 to 2020,
designed specifically to enable the analysis of exposure and
land use change within flood assessment studies. This deci-
sion was made in favor of the finer grid resolution compared
to the 1 km resolution available in other European datasets.

3 Case study: Central Apennines District

To illustrate and discuss the advantages of a probabilis-
tic approach for large-scale flood risk mapping, we apply
RESCUE-FR to the area pertaining to the Central Apen-
nines District (CAD). The CAD is a geographical area of
42 298.22 km2 located in the heart of Italy (yellow area in
Fig. 1). It stretches from the Tyrrhenian Sea to the Adriatic
Sea, including the Apennines, and comprises seven regions:
Emilia-Romagna, Tuscany, Umbria, Lazio, Marche, Abruzzo
and Molise. As shown in Fig. 1, Rome, Perugia, Pesaro,
Ancona, Ascoli Piceno, Teramo, Pescara, Chieti, L’Aquila,
Viterbo and Latina are among the most important cities (the
boundary of each municipality is reported in the figure) in
the district in terms of population and economic activity.

The CAD climate is Mediterranean, with rainfall concen-
trated in the autumn and winter months. The morphology is
characterized by mountains, hills and valleys, shaped by the
erosive action of the rivers and streams that cross the area.
The most vulnerable areas are those located in the floodplains
of rivers and their tributaries.
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The Central Apennines District Authority (CAD Author-
ity) provides the official flood risk maps for the whole district
through the PGRAAC (Piano di Gestione del Rischio Allu-
vioni dell’Appennino Centrale, i.e., the flood risk manage-
ment plan of the Central Apennines). These maps are qual-
itative risk maps that can be considered a reference for the
assessment of the RESCUE-FR model. The PGRAAC maps
are obtained by superimposing flood hazard maps (which
generally result from different hydrologic methods and de-
tailed hydrodynamic models) and a detailed land use vec-
tor map. These risk maps do not represent risk in economic
terms but are based on the identification of four qualitative
risk classes: R1 (low risk), R2 (moderate risk), R3 (high risk)
and R4 (very high risk). The CAD Authority maps are based
on a risk matrix that considers different return period flood
maps and evaluates the land use within the flooded area. Re-
gions with lower return periods and urban land use, with the
potential for a large amount of damage to buildings and harm
to people, have higher risk (R4 or R3). Conversely, areas with
higher return periods and agricultural or forest land use have
moderate (R2) to low risk (R1). The four classes, from R1
to R4, are in order of increasing risk severity.

Model setup

Identifying the exact location of rivers is crucial to flood
risk assessment. Relying solely on an unconditioned DTM
for river extraction can lead to inaccuracies, particularly in
planimetry, which may lead to incorrect overlapping with
land use types such as residential or others that are not ap-
propriate. To address this issue, we used the MERIT Hydro
dataset (Yamazaki et al., 2019), which is hydrologically con-
ditioned globally, ensuring a more accurate representation of
river networks. This choice increases the reliability of the
analysis by minimizing inaccuracies in river delineation and
subsequent overlaps with land use categories for damage es-
timation.

The RESCUE model setup mirrors the configuration used
in Pavesi et al. (2022) in terms of geomorphological analysis
and hydrological discharge estimation. A threshold area for
channelization of Ac= 10 km2 and an average reach length
of λ= 1 km are used for geomorphological analysis. The ra-
tional method uses the IDF curves at the regional scale based
on the two-component extreme value (TCEV) distribution
provided by the VAPI project (Rossi and Villani, 1994). The
hydrologic model also includes the modified Soil Conserva-
tion Service curve number (SCS-CN) approach by Hawkins
et al. (2010).

Only in the Adriatic coastal areas, where the SCS-CN
method does not accurately reproduce the peak discharge, is
the rational approach discarded. Therefore, to ensure reliable
discharge estimation in these catchments, we integrated offi-
cial basin-scale studies obtained from hydrologic–hydraulic
reports available online (AUBAC, 2024).

We also deviate from Pavesi et al. (2022) for the hydraulic
Manning distribution. We choose a normal distribution for
the Manning parameter n with a mean of µ= 0.0505 m−1/3 s
and a standard deviation of σ = 0.01921 m−1/3 s. These pa-
rameter choices were made on the basis of the discussions
outlined in Sect. 2.3.

The analysis was carried out on the 25 main catchments
defined by the Italian National Geoportal. The simulations
were run separately for each of these basins. The basin to be
simulated is then defined a priori, and the area in which the
simulation is carried out coincides with the area of the basin.
In order to assess risk and damage scenarios in each catch-
ment, we have discretized the peak discharge return period
into chosen intervals ranging from a 100- to 1000-year return
period. In this regard, for each return period, we conducted
11 simulations using Latin hypercube sampling (LHS) to en-
sure that each sample was representative of a certain prob-
ability of occurrence of the Manning parameter. In a single
simulation, the same Manning coefficient is used across the
entire spatial domain.

To account for flood protection works, we assumed a uni-
form level of protection in all areas. In Italy the areas exposed
to higher potential damage are generally protected by flood
defenses up to a return period value of 200 years. Assuming
a uniform flood protection return period of 200 years in the
whole area may lead to a significant underestimation of the
risk in those areas, whose extent is not negligible, that are ef-
fectively unprotected. For this reason, we look for a trade-off
between these two issues and choose a uniform flood protec-
tion return period of 100 years. The choice of this return pe-
riod is in agreement with the studies of Ward et al. (2013) and
Rojas et al. (2013). Hence, we assume Q∗ =Q100 in Eq. (1)
to mitigate the overestimation of flood risk associated with
the lower return periods, whereQ100 is the 1−1/100= 0.99
quantile of the probability distribution of the peak discharge
(the discharge for a return period of 100 years).

As described in Sect. 2.4.1, we adopted the European-
scale vulnerability curves following the procedure outlined
by Huizinga (2007). The NUTS 3 level was considered to be
the most appropriate scale for our case study, which focused
on the Central Apennines District. It was therefore essen-
tial to assess differences between different provinces rather
than regions (NUTS 2 level). To ensure consistency with the
methodology presented in Huizinga (2007), where a cross-
tabulation between LUCAS and CLC data is presented, we
have updated the maximum-damage values for each category
from Huizinga (2007) to current values adjusted for inflation.
In addition, we have chosen to use the CLC 2000 dataset
(Büttner et al., 2002) and refer to the land use percentages in
each cell as reported in Huizinga (2007).
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Figure 2. Comparison between (a, c, e) the PGRAAC maps and (b, d, f) the RESCUE-FR 50th quantile of Rn risk maps: zoom of the
(a, b) upper Tiber River near the city of Perugia, (c, d) middle Tiber Valley near Rome and (e, f) entire Musone River in the region of
Marche. See the text for the definition of the PGRAAC and RESCUE-FR risk classes.

4 Results and discussion

In this section, we present and discuss the results of the anal-
ysis of flood risk estimation uncertainty carried out in the
CAD case study. First, we focus on evaluating the consis-
tency between the flood risk maps generated by RESCUE-
FR and the official risk maps provided by the CAD Author-
ity. This comparison is essential to assessing the reliability of
RESCUE-FR; results are illustrated in Fig. 2 for the whole
CAD region.

In Fig. 2, we compare the PGRAAC maps (Fig. 2a, c and e)
with the RESCUE-FR risk maps at the 50th quantile of risk
(the median of Rn distribution) (Fig. 2b, d and f), expressed

in euros per year. Note that agricultural land use has signif-
icantly different maximum-damage values compared to the
other land use types, varying by about 2 orders of magni-
tude because the maximum-damage value for agriculture in
European countries is on average lower by 2 to 3 orders of
magnitude than that associated with residential, commercial
and industrial land uses (Huizinga, 2007). To illustrate these
differences, we have chosen a logarithmic scale for risk visu-
alization (per order of magnitude), in line with the qualitative
approach used by the CAD Authority. To simplify the repre-
sentation and favor the comparison with PGRAAC maps, we
assign three different risk classes based on the loss entity:
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C1 risk class for a value up to EUR 100 per year, C2 up to
EUR 1000 per year and C3 above EUR 10 000 per year. Our
classes, no matter how they are defined, do not correspond to
the R1–R4 risk classes used by CAD that are not defined in
numeric values.

Figure 2a and b focus on an area of the upper Tiber River
at the confluence with the Chiascio River near Perugia. Here,
the two flooded areas (RESCUE and PGRAAC) differ sig-
nificantly, especially along the Chiascio River. In particular,
RESCUE tends to underestimate the flood extent for higher
return periods compared to PGRAAC; this is due to errors
in the DTM representation of the valley (results not shown).
However, in the case of forest/agricultural land use, despite
a significant underestimation of the flooded area, the error in
risk assessment due to underestimation of the flooded area by
the hazard model is not very significant because the flooded
area underestimated by RESCUE is in the R1 low-risk class
in the PGRAAC risk map. This would be different if the
land use was of a different type (residential, industrial, etc.),
which would result in a higher-risk class and make the local
underestimation more relevant.

Figure 2c and d show a zoomed-in section of the middle
Tiber Valley, revealing very good agreement between the two
maps in the transition from moderate-/low-risk to high-/very
high-risk zones. However, we do notice some differences in
high-risk areas, which could be underestimated, particularly
in zones adjacent to the river channel. This discrepancy is
primarily due to the coarser resolution of the RESCUE-FR
model. The CLC dataset, with a spatial resolution of 100 m,
cannot capture detailed land use variations within a single
cell compared to the land use vector map used by the CAD
Authority. Therefore, if a cell has a small percentage of resi-
dential or industrial land use but the majority is agricultural,
it will be classified as agricultural damage. However, the re-
sulting underestimation of risk compared to the total risk is
almost negligible. Finally, in Fig. 2e and f we show risk maps
of almost the entire Musone River, where we can draw simi-
lar conclusions to those drawn from Fig. 2c and d. The land
use of the CAD area at risk is shown in Fig. 3, where Fig. 3a–
c are focused, respectively, on the area at risk covered by
Fig. 2a and b, Fig. 2c and d, and Fig. 2e and f.

In general, RESCUE-FR shows consistent agreement with
the official CAD maps, with the exception of areas that can-
not be accurately mapped by the hazard model due to lim-
itations of the DTM and the spatial resolution of the CLC,
which may miss localized areas of land use. In the following
we analyze and discuss the results of the uncertainty analysis.

Figure 4a shows an illustrative median Rn risk map of a
segment within the Aterno-Pescara basin, derived from the
RESCUE-FR model analysis. Similar to Fig. 2, the legend
is log-scaled to highlight the variation in risk between dif-
ferent land use types within cells. The purpose of this figure
is to highlight the variability due to parameter uncertainty
that is reflected in the Rn probability curve and to understand
the added value of the uncertainty assessment. In general,

three patterns of risk distribution were identified through-
out the analysis. These are shown in Fig. 4b–d. To illustrate
these patterns, we select three specific cells with different
land uses, different empirical cumulative distribution func-
tions (ECDFs) and different distances from the channel along
a cross-section of the risk area.

In Fig. 4b, we show the Rn distribution of cell 1, which
is a typical cell close to the main river channel and therefore
always wet, with water depths often above 6 m (maximum
damage). The distribution trend is asymptotic, and there is
no variation in the inter-quantile range. The risk values are
the values of a cell which remains in commercial/residential
land use, such as CLC class 1.1.2. For a description of the
CORINE Land Cover (CLC) classes see, e.g., Büttner et al.
(2002).

In Fig. 4c, we see a different pattern of the risk Rn dis-
tribution, for a typical cell far from the main river channel
that starts to be wet from about the 7th quantile and with a
large variation in its inter-quantile range. The Rn values are
the values of a cell which remains in agricultural land use
such as CLC class 2.4.1. For this type of land cover class
the risk value is very low compared to the land cover class
representing the residential/commercial risk. The variability
for agricultural land cover is therefore negligible in absolute
economic terms.

Figure 4d, on the other hand, shows a typical cell which,
despite being very close to the channel, is topographically
much higher than the channel bottom and therefore only
flooded when the water depth reaches very high levels. Here
we can see that if we did not use such an approach to quantify
the parametric uncertainty, we would greatly underestimate
the risk associated with a certain area. In fact, in this case, the
land use is commercial/residential, and therefore the relative
risk is very high if the cell is flooded. Without this approach,
we would probably have rated the risk in this cell as zero.

To summarize, there is considerable variability in the risk
values provided by large-scale maps due to the uncertainty
in the Manning parameter, embedding the parametric uncer-
tainty in the hydraulic modeling approach. Thus, it is im-
portant to understand how these risk values Rn can be used
effectively. A clear and comprehensive view of the extent of
risk variability across the whole area is essential in order to
identify the critical points across the area of interest and thus
delineate the areas where risk reduction efforts should be fo-
cused and their priority.

Therefore, in Figs. 5 and 6 we present the main character-
istics of the probability distribution of the expected annual
damage Rn and the expected annual population affected 2n
aggregated at the municipal level; for both, we show the me-
dian and the 90th quantile. Note that the boundary of each
municipality is depicted in black as in Fig. 1. It is impor-
tant to stress that, as mentioned in Sect. 3, the analysis was
carried out only for the 25 largest catchments. Since within
some municipalities there are areas pertaining to catchments
that are not simulated with RESCUE-FR, we have excluded
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Figure 3. Land use of the Central Apennines District (Italy) area at risk: zoom of the (a) upper Tiber River near the city of Perugia, (b) middle
Tiber Valley near Rome and (c) entire Musone River in the region of Marche. Classes are given in the legend.

these municipalities from the discussion if the non-simulated
area is 100 % (gray municipalities in the figures). In all the
other cases, where only a fraction of the municipality area is
not simulated, the risk (in terms of EAD or EAPA) in that
municipality is generally underestimated. This is visible in
the maps because the non-simulated area within the munici-
pality boundary is in gray. The gray areas are concentrated in
the coastal areas, where the catchments are generally small.
In general Rn increases with increasing Manning roughness
because greater roughness leads to deeper water depth. The

water depth increases monotonically with the damage in the
damage model adopted.

From the analysis conducted, it emerges that the median
EAD in the CAD is approximately EUR 137 million, with
an average exposed population of around 5350 individuals
annually. When the 90th quantile of the total EAD and EAPA
distributions is assessed, these values increase by 34 % and
27 %, respectively.

The values in Figs. 5 and 6 show a wide range of annual
losses in terms of EAD and EAPA. As expected, the high-
est risk values are found in the major economic and pop-
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Figure 4.Rn empirical cumulative distribution function (ECDF): (a) zoom of the RESCUE-FR median risk map of the Aterno-Pescara River,
(b) local distribution in a cell near the main channel (commercial/residential land cover), (c) local distribution in a cell far from the channel
(agricultural land cover) and (d) local distribution of the risk that a cell is very unlikely to get wet (commercial/residential land cover). For a
description of the CORINE Land Cover (CLC) classes see, e.g., Büttner et al. (2002).

Figure 5. Expected annual damage Rn distribution at the municipality scale: (a) median quantile and (b) 90th quantile. N/D: no data.
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Figure 6. Distribution of the expected annual population affected 2n (hab, inhabitants) at the municipality scale: (a) median quantile and
(b) 90th quantile.

ulated cities (as reported in Sect. 3), where there are more
developed economic activities and a larger resident popu-
lation. In particular Fig. 5a shows that 63 % of the CAD
exhibits a median risk of less than EUR 1000 per year or
even null. For another 27 %, the risk appears to be less than
EUR 100 000 per year, while for the remaining 10 %, it ex-
ceeds EUR 100 000 per year. The reason for this large per-
centage at low risk is that the highest risks are in cities pass-
ing through main rivers, which have larger discharges than
tributaries.

Moreover, by comparing Fig. 5a and Fig. 5b, it emerges
that a different number of areas have a significant increase
in EAD at the 90th quantile compared to the median. This
allows for quickly identifying areas of high uncertainty and
carefully deciding where to focus for further assessment or
for risk management actions. This provides an immediate in-
dication of areas that may require priority action to reduce
the impact of potential flood-related disasters.

As expected being the largest city in the area, the mu-
nicipality of Rome stands out as having the highest median
risk, estimated at around EUR 82 million per year. This cor-
responds to 60 % of the total risk in the CAD. This value
is in line with the results of a previous study (Fiori et al.,
2023), which provided an estimated risk of EUR 24.3 mil-
lion per year, the same order of magnitude. The difference
is justified considering that the risk estimate of Fiori et al.
(2023) results from the implementation of a detailed 2D hy-
drodynamic model, limited to the historic center of the city
of Rome rather than the entire municipality. For the same
study area mentioned above, our model has an average value
of around EUR 43 million. Despite a simplified representa-
tion of the phenomenon, the model is able to provide reliable

estimates, also enabling the assessment of parametric uncer-
tainty.

As for the population at risk, Fig. 6a shows that 93 % of
the CAD has an average population affected of fewer than
10 persons per year or no risk at all. For another 6 %, the risk
appears to be fewer than 50 persons exposed per year, while
for the remaining 1 % it exceeds 2500 persons exposed per
year. Furthermore, it is interesting to note that in almost 50 %
of the simulated area the population at risk is equal to zero
(light-green areas). This can be explained by the fact that in
the catchments that do not cross large urban centers, such as
cities shown in Fig. 1, the population is concentrated in the
mountainous areas, at high altitudes above the rivers and not
affected by floods. Finally, the 90th quantile does not show
significant variability in the population exposed at the mu-
nicipal level, since this varies only in relation to the flooded
area and the intersection of this area with the population dis-
tribution, without taking into account the variation in water
depth.

5 Conclusions

In this study, we present and discuss the assessment of the
parametric uncertainty in flood risk estimation performed
with the large-scale risk model named RESCUE-FR. The
model couples hazard assessment with economic damage es-
timation through widely recognized methodologies and can
be easily extended to the entire European continent. More
importantly, thanks to its simplicity, RESCUE-FR allows for
investigating uncertainty without excessive computational
efforts. We analyze here the effect of the variability of the
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Manning parameter, being representative of most of the dif-
ferent sources of uncertainty related to hydraulic modeling.
Further, we demonstrate how the resulting distribution of risk
can be used effectively for risk assessment and management.
In fact, the methodology provides the distribution risk/dam-
age values in economic terms and not a deterministic value
of risk/damage, as is often the case with existing risk maps
that are based on detailed models and provide deterministic
outputs. The proposed approach takes into account paramet-
ric uncertainty and uses a large-scale hydrologic–hydraulic
analysis that ensures a comprehensive and homogeneous,
albeit simplified, representation of processes across the re-
gion. This provides more informed results for stakeholders
and decision-makers and allows for expanding to other areas
where these maps are lacking. The risk analysis was carried
out for the CAD region (Central Italy). From this analysis we
draw the following main conclusions.

– The RESCUE-FR model shows consistent agreement
with the qualitative risk maps provided by the CAD Au-
thority. There are areas of discrepancy, where we gen-
erally observe an underestimation of the risk, which are
mainly due to the accuracy of the DTM and the limita-
tions in the detailed mapping of land use changes given
by the coarse resolution of the CORINE Land Cover.

– Through the uncertainty analysis, the RESCUE-FR
model provides a range of estimated flood risk (the ex-
pected annual damage), revealing significant variability
in risk values depending on the land use considered.

– We identified three different patterns of risk distribution
at the cell scale, depending on the distance from the
canal, the orography and the different land use types.
These patterns are useful to identify the critical points
across the area of interest, where a single-value estimate
of risk could significantly underestimate risk.

– In terms of the affected population, the variability is
lower as it depends mainly on the extent of flooding,
which is less influenced by the Manning parameter with
respect to water depth. In this case, the median value
could be sufficient for the assessment of the expected
annual population affected. Conversely, the expected
annual damage has a higher variability being directly
linked to water depth, requiring a thorough examination
of the distribution quantiles for a comprehensive risk as-
sessment of the whole area.

– Aggregating risk values at the municipal level provides
a comprehensive overview of flood risk across the CAD
region. This approach identifies areas of vulnerability
and variability in risk levels, helping to prioritize risk
reduction efforts.

– The comparison with a previous study for the mu-
nicipality of Rome demonstrates the reliability of the

RESCUE-FR model in providing valuable information
on flood risk, despite its simplified representation com-
pared to more detailed hydrodynamic models.

We recall that the accuracy of RESCUE-FR estimates
might be limited by the simplifying assumptions that, on the
other hand, allow for an easy implementation of the uncer-
tainty analysis. These include the spatial resolution of the
maps used in the input (DTM and CLC). Although these
maps allow for consistent use of information at a larger scale,
the accuracy of the maps could be improved by a finer resolu-
tion at the cost of an increased computational load. Further-
more, the use of open databases containing the distribution
of major defense structures, such as levees and dams, could
improve the accuracy of risk estimates.

Finally, by assessing the uncertainty associated with indi-
vidual parameters, we gain valuable insight into interpreting
flood risk and understanding map results over large areas.
However, it is important to recognize that uncertainty comes
from multiple sources beyond hydraulic parameters. There-
fore, extending our analysis to assess different sources of
uncertainty, including those related to hydrologic and socio-
economic modeling, will make the analysis more complete,
as it would take into account and compare different phenom-
ena. This is far beyond the scope of this work and will be the
subject of future analyses.

Data availability. The hydrologically conditioned MERIT Hy-
dro DTM is freely available at https://hydro.iis.u-tokyo.ac.jp/
~yamadai/MERIT_Hydro/ (MERIT Hydro, 2024). For damage
estimation we used the CORINE Land Cover (CLC) map from
https://land.copernicus.eu/en/products/corine-land-cover/clc-2000
(EEA, 2000), the vulnerability curves for Europe available at
https://doi.org/10.2760/16510 (Huizinga et al., 2017) and the CPI
at https://data.worldbank.org/indicator/FP.CPI.TOTL?locations=IT
(World Bank, 2024). The NUTS 3 region boundaries are avail-
able at https://ec.europa.eu/eurostat/web/nuts (Eurostat, 2024a),
and the GDP of the corresponding NUTS 3 regions at cur-
rent market prices is available at https://ec.europa.eu/eurostat/
databrowser/view/nama_10r_3gdp/default/table?lang=en (Euro-
stat, 2024b). The municipality boundaries are currently accessible
at https://www.istat.it/it/archivio/222527 (Istat, 2024), while the
population dataset HANZE 2.0 is freely available at (Paprotny,
2022). Finally, the PGRAAC data that support the findings of this
study are available at https://aubac.it/ (AUBAC, 2024).
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