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Abstract. Natural hazards have serious impacts worldwide
on society, economy, and environment. In Vietnam, through-
out the years, natural hazards have caused significant loss of
lives as well as severe devastation to houses, crops, and trans-
portation. This research presents a new approach to multi-
hazard (floods and wildfires) exposure estimates using ma-
chine learning models, Google Earth Engine, and spatial
analysis tools for a typical case study in the province of
Quang Nam in Central Vietnam. A geospatial database is
built for multiple-hazard modeling, including an inventory
of climate-related hazards (floods and wildfires), topography,
geology, hydrology, climate features (temperature, rainfall,
wind), land use, and building data for exposure assessment.
The susceptibility of each hazard is first modeled and then in-
tegrated into a multi-hazard exposure matrix to demonstrate
a hazard profiling approach to multi-hazard risk assessment.
The results are explicitly illustrated for flood and wildfire
hazards and the exposure of buildings. Susceptibility mod-
els using the random forest approach provide model accu-
racy of AUC (area under the receiver operating characteristic
curve) = 0.882 and 0.884 for floods and wildfires, respec-
tively. The flood and wildfire hazards are combined within
a semi-quantitative matrix to assess the building exposure

to different hazards. Digital multi-hazard exposure maps of
floods and wildfires aid the identification of areas exposed
to climate-related hazards and the potential impacts of haz-
ards. This approach can be used to inform communities and
regulatory authorities on where to develop and implement
long-term adaptation solutions.

1 Introduction

Different geographic areas worldwide, including mountain-
ous, delta, and coastal regions, are facing distinct hazards
and combinations of hazards (Rentschler et al., 2022). These
challenges are intensified by population growth, urbaniza-
tion, globalization, and climate change-induced shifts in
extreme weather patterns, amplifying their adverse effects
(Khatakho et al., 2021; Bangalore et al., 2018). While floods
and storms represent the main hazards affecting Asian coun-
tries, risks from other hazards, such as landslides and wild-
fires, are also exacerbated by more extreme climate patterns,
land use changes, and population expansion in these nations
(IPCC, 2022). People who depend on natural resources lose
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their livelihoods and become more vulnerable (Balica et al.,
2015).

Due to its geographical location and unique natural condi-
tions, Vietnam is exposed to various natural hazards: floods,
landslides, droughts, and wildfires, which are further exacer-
bated by human activities combined with extreme weather
conditions (Gan et al., 2021). The central region of Viet-
nam, particularly the province of Quang Nam, is highly vul-
nerable to natural hazards, making sustainable development
tasks very challenging (Nguyen et al., 2023). Floods associ-
ated with tropical storms during the monsoon season (Luu
et al., 2021) and wildfires exacerbated by dry seasons and
high temperatures pose frequent threats and require compre-
hensive assessments of multi-hazard susceptibility and ex-
posure in Quang Nam (Du et al., 2018). The impacts of
these natural hazards hinder local development initiatives
and exacerbate socioeconomic disparities (Khan et al., 2020).
Disrupted agricultural activities, damaged infrastructure, and
compromised access to essential services hinder the region’s
progress, while the loss of lives and properties deepens
the social and economic burdens (Skilodimou et al., 2019).
Notwithstanding these long-standing issues with floods and
wildfires in the province of Quang Nam in Vietnam, limited
studies have focused on multi-hazard susceptibility and ex-
posure assessments.

The province of Quang Nam is characterized by a coastal
region with low-lying topography, facing high flood risks
due to heavy rainfall, typhoons, and potential breaches of
dams and levees (Chau et al., 2014). The province has two
large river catchments: the Vu Gia–Thu Bon and Tam Ky
rivers. Away from the coast, the province is characterized
by steep terrains and a dense river network. The prolonged
heavy rainfall of the monsoon season in this dissected land-
scape results in yearly riverine floods in the lowland area
and along the coast. This issue holds particular significance
for the province of Quang Nam because flood events pose
a direct threat to human lives and cause significant damage
to its infrastructure, education, economic development, and
health-related services (Lee et al., 2020).

Wildfires are also a natural hazard with devastating conse-
quences, posing a severe threat to the environment and hu-
man communities (Tedim et al., 2015). Wildfires often occur
due to a complex interplay of dry weather conditions, high
temperatures, low humidity, flammable vegetation, and other
geoenvironmental factors (Kalantar et al., 2020). Vietnam is
particularly prone to fire events, especially in the northern
part (Trang et al., 2022) and the central region (Nguyen et al.,
2023). According to the statistical data from the Global For-
est Watch, Vietnam has had a total of 674 612 wildfire alerts
since 2012 and has ranked sixth in Southeast Asia regarding
wildfires in the last 2 decades (Ansori, 2021).

The term “multi-hazard” refers to the fact that hazards
often interact in complex ways, and their combined impact
might be greater than the sum of individual hazards (Wing
et al., 2018). The dynamic interplay between flood probabil-

ity in wet seasons and wildfire likelihood in dry seasons can
be influenced by various factors, including environmental
conditions, climatic patterns, topography, vegetation cover,
and land use patterns (Skilodimou et al., 2021; Bountzouk-
lis et al., 2022). Wildfires can significantly impact landscape
hydrology by destroying vegetation cover and disrupting soil
structure, reducing infiltration rates and heightening surface
runoff during subsequent rain events (Mueller et al., 2018).
Floods can reduce the formation and expansion of wildfire
risks by wetting vegetation and soil, temporarily mitigating
the likelihood of ignition and fire spread (Papaioannou et al.,
2023). However, flood events can disrupt natural drainage
patterns, saturate soils, and promote vegetation development,
fueling wildfires in dry seasons (Eisenbies et al., 2007). In
general, the formation of multi-hazard events often results
from dynamic spatial and temporal interactions among vari-
ous factors (De Angeli et al., 2022); significantly, floods and
wildfires can exacerbate or mitigate each other’s impacts de-
pending on seasonal fluctuations, environmental conditions,
or extreme climatic variability (Yu et al., 2023). Broaden-
ing the assessment framework for these spatial and dynamic
interactions can lead to a more comprehensive and accurate
risk evaluation (De Angeli et al., 2022). Thus, multi-hazard
susceptibility and exposure assessments are required for effi-
cient disaster risk management (Zhou et al., 2015). Multi-
hazard susceptibility assessment provides insights into the
spatial co-occurrence of different hazard types (Rusk et al.,
2022). Multi-hazard exposure assessment enables the eval-
uation of the potential impact of multi-hazards on people,
buildings, and critical facilities, which supports disaster man-
agement activities (De Angeli et al., 2022).

Advanced technologies, such as machine learning (ML),
remote sensing, and big data analytics, play a critical role in
predicting, monitoring, and mitigating the impact of hazards
(Velev and Zlateva, 2023). Currently, Google Earth Engine
(GEE), a cloud-based geospatial processing platform devel-
oped by Google in 2010, offers an extensive and up-to-date
archive of satellite imagery, robust analysis tools, custom ML
algorithm development, and the capacity to integrate multi-
ple data sources (Tamiminia et al., 2020).

Various studies have applied ML algorithms, including
classification and regression trees (CART) and random for-
est (RF), in modeling natural hazard susceptibility and have
proven the high performance and accuracy of these models
(Chen et al., 2018; Kim et al., 2017). CART and RF have
been used to build susceptibility maps for single hazards,
e.g., forest fires (Pourtaghi et al., 2016) or landslides (Wu
et al., 2022); to develop the multi-hazard (forest fires and
droughts) susceptibility maps for the Gangwon-do region in
South Korea (Piao et al., 2022); and to construct multi-hazard
(flood, landslides, forest fire, and earthquake) susceptibility
maps in Khuzestan Province, Iran (Pourghasemi et al., 2023).
Most of these studies have indicated that ML models perform
well in estimating multi-hazard susceptibility but have not
mentioned multi-hazard exposure assessment. Meanwhile,
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Figure 1. Elevation map of the study area: the province of Quang Nam in Vietnam (source: Shuttle Radar Topographic Mission digital
elevation model).

multi-hazard exposure assessment can help recognize over-
lapping exposures and comprehend the intricate relationships
between several hazards (Wang et al., 2020).

Therefore, the study aims are (i) to present and apply a
methodological approach to assess and map susceptibility of
multiple hazards for the province of Quang Nam; (ii) to uti-
lize two ML models, CART and RF, that have been imple-
mented on the GEE platform to build the susceptibility maps
of flood and wildfire hazards for the province of Quang Nam;
and (iii) to integrate the hazard-specific susceptibility maps
with built-environment data to assess the multi-hazard expo-
sure.

2 Study area

The province of Quang Nam is located in the central region
of Vietnam, which has significant economic growth and huge
tourism potential. Since the “economic reforms” and opening
to foreign investment in 1986, the province of Quang Nam
has seen significant socioeconomic transformations, such as
the development of industrial zones and tourism. However,
this fast development presents several issues for the province
in pursuing sustainable development, necessitating optimal
use of natural and sociocultural resources (Chau et al., 2014).
Quang Nam had a total population of 1.84 million in 2019,
with over 73 % of the population residing in the coastal plain,
comprising just 25 % of the total geographical area. The
Kinh ethnic group comprises 92.3 % of the population; the

remainder consists of many ethnic minorities, including the
Co Tu, Xo Dang, M’nong, Co, and Gie Trieng. Agriculture,
forestry, and fisheries accounted for 56 % of the total labor
force, although their contribution to the GDP is only 21.4 %
(https://quangnam.gov.vn/, last access: 1 September 2024).

Quang Nam encompasses a large topographic gradient,
from a coastal plain to steep mountains, with a total area
of 10 438 km2 (Fig. 1). The complex topography due to the
Annamite Range leads to strong separation in climate condi-
tions and landscape characteristics. Terrain elevation gradu-
ally lowers from west to east, with mountainous areas (slope
of 15° or more) concentrated mainly in the west following
the Annamite Range and the flood plains running along the
coastline. The tropical monsoon climate is characterized by
two distinct weather seasons in a year: the dry season from
March to August, associated with water shortages, leading
to droughts, and the rainy season from September to Febru-
ary, often bringing excess water and leading to floods. Quang
Nam has the highest annual rainfall in Vietnam, averaging
2200 to 2700 mm, with 70 % falling during the rainy sea-
son. The main hazards in the province of Quang Nam are
floods, landslides, droughts, and wildfires (Du et al., 2018).
This study focuses on assessing and mapping flood and wild-
fire hazards in the province.
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Figure 2. Methodology flowchart for multi-hazard exposure assessment and mapping in this study.

3 Methodology

3.1 Methodology flowchart

The multi-hazard exposure assessment process comprises
seven main stages:

1. Inventory maps of each hazard were created based on
historical data collection.

2. Factors potentially influencing the spatial distribution of
floods and wildfires were collected, including topogra-
phy, geology, hydrology, climate (temperature, wetness,
wind), and land use based on their relevance and data
availability (Luu et al., 2018).

3. The influencing factors of each hazard were tested for
multicollinearity to enhance the reliability and stability
of the model’s predictions.

4. CART and RF models were developed on the GEE
cloud computing platform to construct susceptibility
maps of floods and wildfires separately.

5. The area under the ROC (receiver operating charac-
teristic) curve (hereafter, AUC) was utilized to assess
the predictive performance of the susceptibility maps to
choose the best model for each hazard and validate it.

6. The flood susceptibility map and the wildfire suscepti-
bility map were combined to build a susceptibility map
for multi-hazard co-occurrence.

7. This multi-hazard susceptibility map was overlaid with
the building data to create a multi-hazard exposure map
for the study area (Fig. 2).

3.2 Data used

3.2.1 Inventories of floods and wildfires

Developing accurate hazard inventories is crucial for suscep-
tibility mapping (Bui et al., 2023a). In this study, the flood
marker points recorded for all flood events from 2007 to 2023
were considered, as reported by the Quang Nam Provincial
Steering Committee of Natural Disaster Prevention and Con-
trol. We removed duplicate flood points. A total of 847 his-
torical flood marks were obtained from this database — these
correspond mainly to the 2007, 2009, and 2013 flood events
with the largest spatial extent. Each flood mark comprises
a unique identifier, geographical coordinates (longitude and
latitude), flood depth, and provider information. A second
source of information was derived from mapping flood ex-
tent on synthetic aperture radar data from Sentinel 1 for
2017 to 2023, which we compare with official reports from
the provincial committee. The flood detection algorithm de-
scribed in Mai Sy et al. (2023) was implemented in Google

Nat. Hazards Earth Syst. Sci., 24, 4385–4408, 2024 https://doi.org/10.5194/nhess-24-4385-2024



C. Luu et al.: Integrating susceptibility maps of multiple hazards and building exposure distribution 4389

Earth Engine. Inundation areas detected on the different Sen-
tinel 1 scenes were overlaid and compared with the flood
mark locations to avoid duplicates. A total of 47 new flood
sites were detected and integrated as additional points (using
the centroid of the flood site), with 847 historical flood marks
for the inventory data.

The final flood inventory includes 894 flood locations:
70 % of them (626 locations) were randomly selected to
calibrate the flood susceptibility model, and the remaining
30 % (268 locations) were designated for validating purposes
(Fig. 3). In addition, 894 non-flood locations were randomly
selected across the study area using the “create random point
tool” in ArcGIS software. Non-flood points were chosen only
in zones outside the flood-affected zones in our inventory.
Additionally, we excluded steep slopes (> 10°) or areas of
positive relief (such as hilltops) from the selection of non-
flood points, as these locations that cannot be associated with
floods would artificially increase the accuracy of the suscep-
tibility model. The non-flood points were then classified in a
ratio of 70/30, mirroring the classification of the flood loca-
tions. This process was undertaken to create a comprehensive
database for input into the GEE platform, which was utilized
for modeling and validation.

For the wildfire inventory, this study involved the collec-
tion of 1911 wildfire locations recorded during the dry sea-
son (March to August) from 2020 to 2023 (Fig. 3) from
the National Forest Protection Department’s website (avail-
able at https://watch.pcccr.vn/thongKe/diemChay, last ac-
cess: 1 September 2024). This agency utilizes data from
many satellites (Aqua, J1, Suomi, and Terra) that are regu-
larly received at the TerraScan receiving station located at
the National Forest Protection Department. The use of near-
infrared bands from many satellites helps to identify the pres-
ence of heat associated with active wildfires on the ground
(Giglio et al., 2008). The website database was checked
and filtered to avoid duplicated wildfire locations, dates, and
commune data field conditions. The wildfire location data
(points) represent the specific fire sites captured by one type
of satellite inside a particular commune at a given time. We
filtered the database of the National Forest Protection De-
partment to retain only wildfire spots exceeding a minimum
size threshold of 2 ha, as smaller fire areas should be con-
sidered human-induced. To determine the non-fire points, we
randomly selected points within the zones with forested and
natural vegetation land cover, which were not identified as
wildfires in the inventory. We excluded residential areas, wa-
ter, and crop areas from the selection of non-fire points, as
these cannot be associated with wildfires corresponding to
the criteria selected in this study and would artificially in-
crease the accuracy of our susceptibility model.

3.2.2 Influencing factors

Several factors significantly influence flood and wildfire oc-
currences. Low-lying areas are prone to flooding, while el-

evated regions can hinder fires (Pourtaghi et al., 2016; Bui
et al., 2023a). Slope, slope aspect, and curvature affect wa-
ter flow, erosion, and fire spread, with steeper slopes mit-
igating or accelerating these hazards (Dottori et al., 2018;
Trang et al., 2022). The topographic wetness index (TWI)
and stream power index (SPI) help quantify water accumu-
lation and erosion risks. Vegetation density, assessed using
the normalized difference vegetation index (NDVI), impacts
both flood absorption and fire fuel availability (Abedi Ghesh-
laghi et al., 2021; Gonzalez-Arqueros et al., 2018). Road and
river proximity also influence flood and fire dynamics, while
land cover, lithology, and geohydrology influence water re-
tention and fire susceptibility (Ha et al., 2023; Hosseini and
Lim, 2022). Rainfall patterns and temperatures, particularly
during dry seasons, further contribute to both flood and wild-
fire risks (Abram et al., 2021; Ahmadlou et al., 2018). These
factors are modeled using data from satellite imagery, DEMs,
and long-term climate records (in Appendix A).

3.2.3 Built-environment data

In this study, we use the building data to assess the
potential impact of flood and wildfire hazards on
building infrastructure, considering housing/building
a key livelihood asset. Spatial data on the building
infrastructure of the province of Quang Nam are ex-
tracted from the Open Buildings dataset of Google
(https://developers.google.com/earth-engine/datasets/
catalog/GOOGLE_Research_open-buildings_v3_polygons,
last access: 1 September 2024). The collection contains
information about each building, including a polygon rep-
resentation of its footprint on the ground and a confidence
score showing the level of certainty about its classification
as a building (Sirko et al., 2021). We filtered the data with
a confidence level of more than 80 % and an area larger
than 30 m for accurate data on buildings (assuming the
minimum size for a residential building). The data are
created by high-resolution satellite photography with a
resolution of 50 cm. The selected data were checked visually
against Google Earth and were shown to represent the large
majority of buildings properly.

This study focuses on buildings in terms of elements ex-
posed to hazards, considering their importance as critical
economic assets and reflections of population distribution
(Askar et al., 2021). Buildings are essential components of
community infrastructure, and damage to them may have big
social and economic effects, making them a crucial expo-
sure indicator for risk assessment (Carreño et al., 2007). In
addition, buildings often accommodate individuals and vital
services; thus, their exposure to hazards and susceptibility
to damage directly control the possibility of human fatalities
and disturbance to everyday activities. In terms of vulnera-
bility, buildings are not equally at risk from all hazards; their
susceptibility varies depending on the hazard type and the
structural characteristics of the building, although vulnerabil-
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Figure 3. Inventory maps of flood (a) and wildfire (b) points in the province of Quang Nam.

ity is not considered explicitly in this study (Schneiderbauer
and Ehrlich, 2004).

3.3 Methods

3.3.1 Multicollinearity

The variance inflation factor (VIF) and tolerance values are
critical statistical measures in detecting the presence of mul-
ticollinearity among input variables (Arabameri et al., 2018).
The VIF values quantify how much the variance of an esti-
mated regression coefficient increases due to multicollinear-
ity (Ma et al., 2020). Tolerance is the reciprocal of VIF val-
ues and reflects the proportion of variance in a predictor
that is not forecasted by a combination of other predictors
(Bui et al., 2023b). Significant multicollinearity among in-
put variables is detected if the VIF value surpasses 10 or the
tolerance value drops below 0.1 (Miao et al., 2023). Vari-
ables found to be multicollinear will be deleted from the
model, and the model will be run to check for multicollinear-
ity again.

3.3.2 Machine learning approach for hazard
susceptibility modeling

This study has developed two ML models, including CART
and RF, on the GEE workspace to construct hazard (flood
and wildfire) susceptibility maps for the province of Quang
Nam.

The CART was first introduced by Breiman et al. (1984).
It is an algorithm used for both classification and regression
tasks. CART builds binary trees recursively by splitting the
dataset into subsets based on the feature values (Tang and
Zhang, 2020). Mathematically, this algorithm can be sum-
marized as follows (Ahmadlou et al., 2022):

1. A training dataset D = (Xs,Y ) is inputted, where
Xs denotes the feature variable and Y is the target vari-
able (class labels for classification, numerical values for
regression).

2. For the classification issue, the CART algorithm uses
the Gini impurity coefficient on these subsets to mea-
sure the disorder or impurity of an input dataset. The
Gini impurity coefficient is determined using the fol-
lowing equation:

Gini(D)=

J∑
i=1

Pi(1−Pi)=

J∑
i=1

Pi −

J∑
i=1

P 2
i

= 1−
J∑

i=1
P 2

i , (1)

where Gini(D) is the Gini impurity coefficient of the in-
put dataset D, J represents the number of classes in the
input dataset, and Pi denotes the probability of class i

in dataset D.

The CART continues seeking the best feature and thresh-
old recursively until a stopping criterion is met, such as max-
imum tree depth (max_depth) or minimum samples in a leaf
(min_samples_leaf). After that, the resulting tree can be used
to classify new datasets.

Like all decision tree algorithms, CART is prone to overfit-
ting, especially when the tree becomes too deep. To mitigate
this, pruning techniques and hyperparameter tuning are often
applied to optimize the tree’s structure, ensuring generaliz-
ability to unseen data (Ahmadlou et al., 2022).

The RF is a widely used ML algorithm developed by
Breiman (2001), which combines the output of multiple de-
cision trees to reach a single result (Naghibi et al., 2016). It
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is used for both classification and regression tasks (Genuer
et al., 2010). The content of this technique can be described
as follows (Breiman, 2001):

1. A training dataset D of N bootstrap samples D =

(Xs,Y ) is inputted, where Xs is the feature variable
and Y is the target variable (class labels for classifica-
tion, numerical values for regression). The RF technique
creates multiple decision trees using bootstrapped sub-
sets of the training data D. Each tree is constructed us-
ing N samples drawn with replacement (bootstrap sam-
pling).

2. For each tree and at each split, a subset of features (m)
is randomly selected from the total number of features
in the training dataset (M) to ensure diversity among the
trees.

3. Each tree in the RF algorithm is built using the selected
bootstrap sample and features in the first and second
steps. The tree is developed by recursively dividing the
dataset based on the selected features and splitting cri-
teria.

4. The RF technique combines these predictions (multiple
decision trees) due to the specific tasks. The prediction
mode from individual trees is the final classification task
prediction.

3.3.3 Model validation and comparison

This study used the ROC curve and AUC to validate the
predictive performance of each hazard susceptibility model,
including CART and RF models. The ROC curve is gener-
ated by plotting the true-positive rate (sensitivity) against the
false-positive rate (1 – specificity) for different threshold val-
ues (Carter et al., 2016). Sensitivity quantifies the ability of
the model to correctly identify susceptible areas, while speci-
ficity measures the capability to identify non-susceptible ar-
eas correctly (Meghanadh et al., 2022). The AUC is calcu-
lated to quantify the quality of the predictive model. The
AUC values vary from 0 to 1, where AUC values of 0.5–0.6
reflect a low predictive performance, 0.7–0.8 is interpreted
as a medium predictive performance, 0.8–0.9 indicates good
predictive performance, and 0.9–1.0 denotes excellent pre-
dictive performance.

3.4 Experimental process

This study employed the GEE cloud computing platform for
the pixel-based CART and RF algorithms to build suscep-
tibility maps for flood and wildfire hazards separately. The
input data were collected from various sources and formats.
First, we pre-processed and converted these data into raster
format with 30 m spatial resolution in a GIS environment.

Then, these data were uploaded into the GEE platform. Hy-
perparameter tuning technique was used to optimize the per-
formance of ML algorithms, as they significantly affect the
accuracy, efficiency, and generalization ability of ML models
(Schratz et al., 2019). Various hyperparameter tuning meth-
ods include grid search, random search, gradient-based op-
timization, and Bayesian optimization. This hyperparameter
tuning process of grid search was used for the modeling in
this study, including the following steps:

– Setup of the environment. Install Python packages in the
Google Earth Engine (GEE) application programming
interface (API) to handle geospatial data and scikit-
learn to develop ML models.

– Data preparation. Upload 15 landslide-affecting factors
to the GEE environment to build the flood and wildfire
susceptibility maps. The training and testing datasets
have also been uploaded to this platform.

– Hyperparameter tuning. Use scikit-learn to develop
various ML models (CART and RF) and define the
hyperparameter search spaces for a grid search. This
step involves setting reasonable value ranges for each
hyperparameter in each model, for the CART model
(max_Nodes, minLeafPopulation) and the RF model
(numberOfTrees, bagFraction, seed), described in Ta-
ble 1. Then, scikit-optimize’s grid search performs itera-
tive assessments using the training data to select the hy-
perparameter combination that optimizes a chosen per-
formance metric (ROC and AUC) on the testing data.
The best hyperparameter combinations for each model
are determined based on these performance metrics.

– Model assessment. Optionally, the final evaluation in-
volves retraining the predictive models with the cho-
sen hyperparameters on the training data. The perfor-
mance of these retrained models is then assessed using
the ROC curve and AUC value on the validation dataset
to gauge their effectiveness.

4 Results

4.1 Assessment of multicollinearity and variable
importance

In this research, the VIF and tolerance values of influencing
factors for flood and wildfire susceptibility modeling are sat-
isfactory, so all input factors are selected to develop hazard
susceptibility maps (Table 2). In natural hazard susceptibility
modeling, each input variable may influence the occurrences
of each hazard in various ways (Pourghasemi et al., 2020).
Variable importance assessment can identify which factors
have the most significant impact on the hazard formations
(Javidan et al., 2021). RF is one of the most popular ML
algorithms for evaluating variable importance by measuring
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Table 1. The hyperparameter values in the optimization process.

Model Optimized Explanation Lower and upper Optimal
hyperparameter limits value

CART max_Nodes The maximum number of leaf nodes in each tree 2–500 150

minLeafPopulation Only create nodes whose training set contains at least this many points. 1–10 2

RF numberOfTrees The number of decision trees to create 100–1000 200

minLeafPopulation Only create nodes whose training set contains at least this many points 1–10 1
bagFraction The fraction of input to bag per tree 0.1–1.0 0.7

seed The randomization seed 0–42 23

Table 2. Assessment of multicollinearity and variable importance
to flood-influencing factors.

Factors Flood

Tolerance VIF Variable Rank
importance

Rainfall 0.832 1.225 0.1742 1
Distance from rivers 0.945 1.204 0.1620 2
NDVI 0.759 1.774 0.1330 3
Land use/land cover 0.582 2.160 0.1159 4
Aspect 0.98 1.019 0.1095 5
TWI 0.725 1.676 0.0753 6
Distance from roads 0.600 3.241 0.0709 7
Plan curvature 0.798 3.669 0.0695 8
Profile curvature 0.876 1.418 0.0320 9
Elevation 0.777 1.259 0.0300 10
Slope 0.748 2.106 0.0270 11
SPI 0.948 1.117 0.0007 12

how much they contribute to the model’s accuracy (Fox et al.,
2017). Thus, this technique was applied to assess the signif-
icance of all input variables. The results show that rainfall
(weight= 0.1742), distance from rivers (weight= 0.1620),
NDVI (weight= 0.1330), and land cover (weight= 0.1159)
are the indicators that significantly contribute to the control
of the spatial distribution of flood events within the study
area.

The results presented in Table 3 demonstrate that
temperature (weight= 0.1784), distance from rivers
(weight= 0.1112), NDVI (weight= 0.1089), and distance
from roads (weight= 0.1065) are the parameters that have a
significant impact on the formation of wildfire events within
the study area.

4.2 Flood susceptibility map and model validation

For flood susceptibility models, the ROC curve analysis on
the training dataset signifies that the CART model has the
highest value of AUC (0.934), and the RF model has a lower
AUC (0.921). The ROC curve analysis on the validation
dataset reveals that the AUC value of the RF model (0.882)

Table 3. Assessment of multicollinearity and variable importance
to wildfire-influencing factors.

Factors Wildfire

Tolerance VIF Variable Rank
importance

Temperature 0.643 1.555 0.1784 1
Distance from rivers 0.697 1.435 0.1112 2
NDVI 0.835 1.198 0.1089 3
Distance from roads 0.472 2.118 0.1065 4
Slope 0.512 1.954 0.0953 5
Rainfall in dry season 0.384 2.603 0.0739 6
Land use/land cover 0.737 1.356 0.0613 7
Profile curvature 0.786 1.273 0.0538 8
Elevation 0.524 1.909 0.0500 9
Plan curvature 0.715 1.398 0.0481 10
Aspect 0.513 1.948 0.0473 11
Lithology 0.551 1.816 0.0420 12
Geohydrology 0.636 1.572 0.0233 13

is higher than that of the CART model (0.845). This result
demonstrates that the RF model has the best predictive per-
formance for flood susceptibility mapping (Fig. 4).

Since the RF shows good predictive performance, it is se-
lected to generate the flood susceptibility map for the re-
search area with the training dataset. The flood susceptibility
map delineates the different geographical zones with increas-
ing levels of susceptibility to flood events. We use the quan-
tile method for classifying the susceptibility values with low
(0 %–40 %), moderate (40–70), high (70 %–90 %), and very
high (90 %–100 %) classes and set the green–blue–yellow
color scheme for flood susceptibility (Fig. 5). The high and
very high susceptibility areas are along the main river and
the coastal zone, consistent with the flood inventory shown
in Fig. 3.

4.3 Wildfire susceptibility map and model validation

The ROC curve analysis on the training dataset for wild-
fire susceptibility models denotes that both the CART and
RF models have the same AUC value (0.905). In contrast, the
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Figure 4. ROC curve and AUC analysis result from flood susceptibility modeling with training and validation datasets. Note: Se stands for
standard error.

Figure 5. The flood susceptibility map derived using the RF model for the province of Quang Nam.

ROC curve analysis on the validation dataset reveals that the
AUC value of the CART model (0.846) is lower than that of
the RF model (0.884). This result reflects that the RF model
is the best forecast model for wildfire susceptibility mapping
(Fig. 6).

Given the satisfactory predictive performance shown by
the RF model, it has been chosen as the preferred method
for generating fire susceptibility maps for the study area us-
ing the provided training dataset. The wildfire susceptibil-
ity map demarcates the diverse levels of susceptibility to fire
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Figure 6. ROC curve and AUC analysis results from wildfire susceptibility modeling with training and testing datasets. Note: Se stands for
standard error.

Figure 7. The wildfire susceptibility map was derived using the RF model for the province of Quang Nam.

occurrences. The same quantile approach is used to catego-
rize susceptibility values. A green–yellow–red color scheme
represents wildfire susceptibility (Fig. 7). The areas highly
prone to wildfire hazards are in the mid-elevation areas, not
the high mountainous or lowland areas, and agree with the
wildfire distribution mapped in Fig. 3.

4.4 Multi-hazard susceptibility and exposure mapping

The susceptibility map for hazard co-occurrence for the
province of Quang Nam was generated by examining the
spatial interplay between wildfires and floods. The map de-
picts a matrix-based classification that enables the definition
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Figure 8. Integrated multi-hazard susceptibility classification combining floods and wildfires using the random forest algorithm for the
province of Quang Nam.

of new susceptibility classes (low, moderate, high, very high)
of combined hazards and provides a unique multi-hazard pro-
file for each location (Fig. 8). In the matrix, not all combina-
tions of hazards are represented, as there is no area with high
susceptibility to floods and high susceptibility to wildfires.
Combining the multi-hazards through a matrix gives a good
visual overview of multi-hazards for the large scale of the
whole province. The multi-hazard susceptibility map shows
that the areas with very high wildfire susceptibility have low
flood susceptibility and vice versa. The lowland coastal area
is characterized by moderate to very high flood hazards but
limited fire hazards (categories 2, 3, 4). The mid-altitude
slopes are categorized by low flood but high to very high
fire hazards (categories 9–10, 13), except for possible floods
along the main valleys, and the upland slopes are associated
with moderate to low levels of the two hazards (categories 1,
2, 5).

Our analysis examines the optimal sequence for integrat-
ing the two hazards, followed by assessing the exposure of
buildings. The matrix of the number of buildings and area af-
fected by each hazard level is converted into the percentage

of total buildings in each cell of multi-hazard levels. We can
compare the two in Table 4. It is highlighted that the propor-
tion of buildings in the category of very high flood and low
fire susceptibility is much larger than the area of this cate-
gory. In contrast, the proportion of buildings in category 13
(low flood and very high fire susceptibility) is much smaller
than the area fraction. This highlights that measures to limit
the impact on buildings (and so on people) to limit flood are
much more important than for fire.

5 Discussion

Assessing susceptibility and exposure to several spatially co-
occurring hazards is crucial and multifaceted in disaster man-
agement and community resilience (Menoni et al., 2012). In
this study, floods and wildfires are examples of two hazards
with different spatial patterns but quite similar spatial extent
and frequency: assessment of the combined exposure to both
hazards highlights that they have a very different impact on
built-up infrastructure. Additional hazards, such as landslides
or droughts, should be added to the scheme, with a multi-
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Table 4. Statistics of the percentage of buildings affected and the
percentage of area represented in each cell by flood and wildfire
hazards in the province of Quang Nam.

dimension hazard matrix and profiling of each zone. This
would help define the hazard profile for each zone and iden-
tify which areas are indeed affected by multiple and maybe
combined hazards (Yousefi et al., 2020).

ML models have been extensively used in diverse hazard
evaluations, such as flood, landslide, and wildfire susceptibil-
ity (Bui et al., 2023a; Ha et al., 2022; Pourtaghi et al., 2016).
These techniques are advantageous in evaluating the efficacy
of different models under comparable circumstances, con-
sidering similar influencing elements. This approach ensures
a fair and unbiased determination of the most appropriate
model for addressing a specific danger within a particular lo-
cation. The modeling and mapping of multi-hazard suscepti-
bility often rely on a system of multifaceted and multi-scaled
natural factors, encompassing topography, geohydrology, en-
vironment, and hydrometeorology conditions within the re-
search area (Tavakkoli Piralilou et al., 2022).

Our research analyzed the combined exposure of build-
ings to flood and wildfire hazards in the province of Quang
Nam, Vietnam. Utilizing ML models (CART and RF) to
assess the susceptibility of multiple hazards, we can show
that the RF model exhibited comparable levels of accuracy
for both flood and wildfire hazards. Additionally, both mod-
els demonstrated good performance for flood and wildfire
susceptibility maps, aligning with earlier research findings
(Hasanzadeh Nafari et al., 2016; Nachappa et al., 2020). The
accuracy of a model is dependent on the selection of the in-
fluencing elements used in mapping natural hazard suscepti-
bility (Pourtaghi et al., 2016). This study carefully checked
multicollinearity for influential factors, and variable impor-
tance was measured to find the most suitable factors for the
modeling input. In addition, the selection of the non-hazard
points is also thoroughly carried out with the specific stan-
dards, contributing to better modeling performance.

The integration of the susceptibility maps of flood and
wildfire hazards into a multi-hazard susceptibility matrix
highlights that flood and wildfire events threaten different ar-
eas and proportions of the entire province of Quang Nam.

The multi-hazard map is built upon a susceptibility class ma-
trix for flood and wildfire events instead of a simple summa-
tion of both susceptibility maps. Indeed, the matrix enables
the identification of regions with different combinations of
hazard susceptibility for floods and wildfires. The exposure
maps generated by combining the susceptibility map with
the built-environment data exhibit the total exposed housing
for different susceptibility levels of each hazard and multi-
hazards. Creating a multi-hazard exposure map that effec-
tively delineates regions susceptible to floods and wildfires
via the implementation of a matrix-based approach and com-
bining the map with built-environment data to assess the ex-
posure elements of the hazards has not previously been at-
tempted by other researchers. The combination with expo-
sure highlights that different districts have to deal with dif-
ferent combinations of hazard susceptibility and that expo-
sure to fire is much lower than flood hazards despite the
broad spatial distribution of the wildfire susceptibility. This
combination is an important step towards an integrated risk
assessment of spatially co-occurring hazards; however, the
contrasted vulnerability of buildings relative to different haz-
ards, taking into account the specific attributes of the build-
ing, is also important in controlling the potential damage
(Šakić Trogrlić et al., 2024). Such hazard-specific vulnera-
bility functions for different building types still need to be
constrained for the study area before a fully quantitative risk
assessment can be completed.

Verifying multi-hazard exposure assessments is essential
for ensuring the accuracy and reliability of the analysis, as
well as for facilitating effective risk management strategies
(Skilodimou et al., 2019). The multi-hazard exposure can
be verified by analyzing historical damage data or examin-
ing the observed damage to vulnerable assets such as build-
ings, infrastructure, and natural resources (Khan et al., 2020).
The 2020 flood and storm events caused 46 deaths; more
than 117 000 properties to be flooded and damaged; and
widespread damage to farmland, roads, irrigation works, and
other infrastructure (VDMA, 2020). In addition, according
to statistics from the Quang Nam Forest Protection Depart-
ment, over the past 5 years in Quang Nam, there have been
136 forest fires that caused damage to more than 618 ha of
various types of forests (available at https://chicuckiemlam.
snnptnt.quangnam.gov.vn/, last access: 1 September 2024).
These available statistics confirmed the larger exposure of
buildings to floods than to wildfires, as highlighted in Ta-
ble 4. However the lack of damage statistics per hazard type
at a fine spatial resolution prevents the comparison of our
multi-hazard exposure map with actual recorded damage.

Considering the spatial occurrence of hazards and the as-
sociated exposure to built-up environments enables high-
lighting which areas and which proportion of buildings are
exposed to one specific hazard or both, which can be relevant
for risk management. The consideration of temporal relation-
ships between hazards (i.e., fire during the dry season induc-
ing flood in the next rain season) or non-local dynamic inter-
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actions (i.e., wildfire in upper catchment increasing flood oc-
currence downstream) would require more process-oriented
hazard modeling at a more local scale. A more complex phys-
ically based model, typically at the scale of a smaller river
catchment, would be required to investigate how the occur-
rence of one hazard influences the probability of occurrence
of another hazard later in time and/or in the same or nearby
location (Jenkins et al., 2023). Another significant limitation
of this research is the absence of the consideration of stake-
holder engagement and feedback while developing and ap-
plying the multi-hazard exposure estimation model. Interac-
tion with stakeholders in charge of risk management would
help to identify further the challenges posed by exposure to
multi-hazard, validate the modeling approach proposed in
this research, and specify how the results of such models can
best contribute to strengthening the effectiveness of risk man-
agement strategies.

6 Conclusion

This study produced an integrated approach to assess the cli-
mate hazards of floods and wildfires. We explored the as-
sessment of several spatially co-occurring hazards and as-
sociated building exposure through an ML modeling ap-
proach. Through investigation of the flood and wildfire haz-
ards and the impacts of those hazards on the built envi-
ronment, our modeling approach consisted of collating a
database of recorded hazard footprints, topography, climate,
geology, and environment data to input into our model. The
approach also consisted of developing ML models for hazard
modeling and coding in GEE to produce credible susceptibil-
ity and exposure maps. The susceptibility evaluation incorpo-
rated a matrix that combined hazards associated with flood-
ing and wildfires. The integration of built-environment data
with the multi-hazard map facilitated an assessment of the
potential exposure to multi-hazards across the region. Going
forward, the potential for digitally generated, multi-hazard,
and exposure maps for other climate-related hazards, such as
landslides or drought, would further aid the identification of
regions susceptible to these disasters and facilitate a rapid as-
sessment of the consequences of these events. This research
has demonstrated that effective maps can be developed us-
ing readily available and accessible data and ML tools that
should help inform communities and regulatory authorities
in Vietnam and beyond about the likelihood of risk and im-
pacts from climate-related hazards. This research has the po-
tential to provide clear information that will inform the devel-
opment and implementation of long-term risk reduction and
adaptation strategies. Our findings suggest that ML models
such as CART and RF could be used to analyze multi-hazard
exposure for various geographical areas particularly suscep-
tible to recurring incidents of wildfires and floods. Our data
have shown that these tools can model risk and exposure ef-
fectively. However, the applied methods in this study did not

account for the changes in the physical system induced by
either floods or wildfires. The multi-hazard exposure maps
for the province of Quang Nam offer valuable insights for
planners, disaster management specialists, and regional au-
thorities, enabling them to adopt more effective management
strategies for minimizing the many hazards present in the
area. This approach may also facilitate the development of
comprehensive strategies that address areas of high exposure
to both hazards rather than focusing on individual hazards.

Appendix A: Influencing factors

Influencing factors related to floods and wildfires are sum-
marized in Table A1, and thematic maps are presented in
Fig. A1.

(i) Elevation

Low-lying areas act as natural drainage basins and are prone
to flood occurrences as streams and rivers flow from higher
to lower elevations (Komolafe et al., 2020). High areas can
act as natural barriers that slow the spread of fire events (Si-
bold et al., 2006). In this study, the elevation data were de-
rived from the Shuttle Radar Topographic Mission (SRTM)
digital elevation model (DEM) with a 30 m spatial resolu-
tion (https://earthexplorer.usgs.gov/, last access: 1 Septem-
ber 2024). The altitude of the study area varies from 0 to
2573 m.

(ii) Slope

Slope is another important terrain characteristic significantly
influencing flood and wildfire occurrences (Pourghasemi
et al., 2020). Steep slopes and increased flow velocity can
lead to riverbank erosion and subsequent flooding down-
stream (Guo et al., 2022). In addition, flat slopes can lead
to concentrated floods where water may stagnate or flow less
rapidly (Zaharia et al., 2017). On the other hand, steep slopes
can either mitigate or accelerate the spread of wildfires under
the impact of wind (Eftekharian et al., 2019). The slope data
are calculated from the DEM data.

(iii) Slope aspect

Slope aspect provides information about the direction of a
slope face and may play a significant role in flood and fire
formations (Vasilakos et al., 2009). In forestry, south-facing
slopes in many areas are often drier and more susceptible to
wildfires due to increased sunlight exposure and lower mois-
ture levels (Adab et al., 2013). The aspect data are also cal-
culated from the DEM.

(iv) Slope curvature

Slope curvature refers to the rate of slope change along the
land’s surface and contributes actively to flood and wildfire
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Figure A1.
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Figure A1.

https://doi.org/10.5194/nhess-24-4385-2024 Nat. Hazards Earth Syst. Sci., 24, 4385–4408, 2024



4400 C. Luu et al.: Integrating susceptibility maps of multiple hazards and building exposure distribution

Figure A1. Factors influencing flood and wildfire: (a) elevation, (b) slope, (c) aspect, (d) plan curvature, (e) profile curvature, (f) TWI,
(g) SPI, (h) NDVI in dry season, (i) NDVI in rainy season, (j) distance from roads, (k) distance from rivers, (l) lithology, (m) rainfall in rainy
season, (n) rainfall in dry season, (o) temperature, (p) geohydrology, and (q) land cover.

Nat. Hazards Earth Syst. Sci., 24, 4385–4408, 2024 https://doi.org/10.5194/nhess-24-4385-2024



C. Luu et al.: Integrating susceptibility maps of multiple hazards and building exposure distribution 4401

Table A1. Potential factors affecting flood and forest fire in the
province of Quang Nam (where X indicates a potential influencing
factor, and 0 indicates no influence).

No. Used factors Flood Wildfire
influencing influencing

factors factors

1 Elevation X X

2 Slope X X

3 Aspect X X

4 Plan curvature X X

5 Profile curvature X X

6 TWI X O

7 SPI X O

8 NDVI
– In rainy season X O
– In dry season O X

9 Distance from roads X X

10 Distance from rivers X X

11 Land cover X X

12 Average rainfall
– In rainy season X O
– In dry season O X

13 Average temperature O X

14 Lithology X X

15 Geohydrology X X

formations (Minár et al., 2020). Concave or depressional ter-
rains (negative curvature) can trap water during heavy rain-
fall, leading to temporary ponding or small-scale flooding in
these regions (Mohamed, 2020). Concave curvature can ac-
cumulate dead plant material, creating a higher fuel load and
increasing the hazard of forest fires (Banerjee, 2021). This
study calculates the plan curvature and profile curvature from
the DEM.

(v) TWI and SPI

The topographic wetness index (TWI) is a topographic pa-
rameter used to quantify the propensity of accumulated wa-
ter in a specific area (Meles et al., 2020). TWI helps identify
low-lying areas in the landscape of accumulated water, mak-
ing it valuable for flood hazard mapping (Nandi et al., 2016).
Areas with higher TWI values generally indicate higher ac-
cumulated water locations and higher moisture content in the
soil and vegetation (Berhanu and Bisrat, 2018). The TWI
can be calculated using the following equation (Beven and
Kirkby, 1979):

TWI= ln
(

AS

tanε

)
, (A1)

where ε represents the slope angle in degrees, and AS signi-
fies the specific basin area in square meters per meter.

The stream power index (SPI) quantifies the erosive power
of flowing water in a stream network. SPI helps assess the po-
tential for erosion and sediment transport within river chan-
nels (Zakerinejad and Maerker, 2015). The SPI is identified
as follows (Moore et al., 1991):

SPI= AS× tanε. (A2)

This study calculates TWIs and SPIs from the DEM.

(vi) NDVI

The normalized difference vegetation index (NDVI) assesses
the density of vegetation by calculating the disparity between
near-infrared and red-light wavelengths (Bhandari et al.,
2012). The sudden decrease in NDVI values could signify
changes in current vegetation health due to natural hazards
(flood, fire, drought, landslide) or human activities (Teodoro
and Duarte, 2022). Areas with high NDVI values may indi-
cate dense vegetation, especially during dry seasons, which
can act as significant material for forest fires (Lambert et al.,
2015). The NDVI can be calculated as follows:

NDVI=
NIR− red
NIR+ red

, (A3)

where NIR denotes the near-infrared segment of the elec-
tromagnetic spectrum (750–1100 nm), and red corresponds
to the red segment of the electromagnetic spectrum (600–
750 nm).

This study calculated the spatial distribution of NDVI from
the Landsat 8 imagery. The NDVI is the average value for the
rainy and dry seasons separately from 2020 to 2023.

(vii) Distance from roads and distance from rivers

Distance from roads is a potential controlling factor in flood
and wildfire occurrences. They can exacerbate both flood and
forest fire events because roads may serve as pathways for
water runoff during heavy rainfall and for fire spread in dry
conditions (Yousefi et al., 2020). Distance from roads and as-
sociated embankments can hamper natural floodplains, caus-
ing accumulated water during heavy rains (Douven and Bu-
urman, 2013). Moreover, roads with impermeable surfaces
can increase surface runoff by preventing water from infil-
trating the ground (Yu et al., 2021). Distance from roads can
generate potential ignition sources and facilitate firefighting
movement (Wang et al., 2015). The 1 : 50000 study area road
network map was created from the 2019 national road net-
work map from the Department of Survey, Mapping, and Ge-
ographic Information.

https://doi.org/10.5194/nhess-24-4385-2024 Nat. Hazards Earth Syst. Sci., 24, 4385–4408, 2024



4402 C. Luu et al.: Integrating susceptibility maps of multiple hazards and building exposure distribution

Distance from rivers may influence flood and fire occur-
rences due to their dynamic relationships with topography,
hydrology, and vegetation (Pouyan et al., 2021). Rivers natu-
rally overflow during heavy rainfall, making neighboring ar-
eas and floodplains highly susceptible to flooding (Desalegn
and Mulu, 2021). Rivers attract human settlements and recre-
ational activities (Gibeau et al., 2002), so areas near rivers
are prone to ignition from human-induced sources, espe-
cially during dry seasons (Ye et al., 2017). However, distance
from rivers also ensures a readily available water supply and
makes the ground and vegetation wet due to shallow ground-
water, reducing wildfire susceptibility. The study area’s river
network map on a 1 : 50000 scale was also collected from
the Department of Survey, Mapping, and Geographic Infor-
mation in 2019.

(viii) Land cover

Different land cover types have varying abilities to absorb
water, so they may also contribute to the occurrence of floods
and wildfires (Agus et al., 2020). Natural land cover features
such as floodplains and wetlands act as natural buffers dur-
ing floods (Fasching et al., 2019). Loss of these areas due
to urbanization or deforestation increases the occurrence fre-
quency of flood events (Cirella and Iyalomhe, 2018). Differ-
ent land cover types, such as dense forests, grasslands, shrub-
lands, and dead vegetation, contribute to accumulating mate-
rials for fires (Agus et al., 2020). This study extracted the
land cover data from Sentinel-2 optical imagery for 2021 us-
ing the deep learning method (https://livingatlas.arcgis.com/
landcover/, last access: 1 September 2024).

(ix) Lithology and geohydrology

Lithology is concerned with bedrock types and their min-
eralogical properties, significantly influencing soil composi-
tion (Gray et al., 2016). The lithological characteristics of an
area can indirectly influence wildfire behavior (Pourghasemi
et al., 2020). Some rock types, such as shale or coal, can af-
fect the spreading rate of wildfire events (Lu et al., 2021).
Lithology also affects the permeability of geological forma-
tions and directly contributes to flood occurrences (Jansen,
2006). Impermeable rocks, like crystalline rock or bedrock,
can facilitate increased surface runoff during heavy rain-
fall, resulting in the formation of floods or flash floods
(Langston and Temme, 2019). The 1 : 50000 lithological
map of the province of Quang Nam was provided by the Min-
istry of Natural Resources and Environment of Vietnam for
the 2021 data, including nine classes: magma neutral intru-
sive rocks, aluminosilicate metamorphic rocks, detrital sed-
imentary rocks, quartz-rich greenstone metamorphic rocks,
ultramafic volcanic eruption rocks, carbonate rocks, mafic–
ultramafic intrusive rocks, neutral volcanic eruption rocks,
and quartz-rich metamorphic and volcaniclastic rocks.

Geohydrology is the study of the movement and avail-
ability of groundwater and plays a vital role in influenc-
ing vegetation development (Orellana et al., 2012). Geohy-
drology plays a crucial role in understanding and predicting
flood formations based on the presence of aquifers (Lauber
et al., 2014). The movement and distribution of groundwater
directly impact the behavior of surface water during heavy
rainfall (Chen and Hu, 2004). In addition, geohydrology in-
directly influences forest fire occurrences because of its im-
pact on soil moisture, land subsidence, and aquifer character-
istics (Wösten et al., 2008). Low groundwater levels due to
geological formations may lead to dead vegetation, leading
to a higher susceptibility to ignition and fire spread (Hasan
et al., 2023). The geohydrological map at a 1 : 50000 scale
was provided by the Ministry of Natural Resources and En-
vironment of Vietnam in 2020.

(x) Rainfall

In both flood and wildfire occurrences, the amount, intensity,
and duration of rainfall may play a role (Stoof et al., 2012).
Heavy and prolonged rainfall can lead to increased water
flow into rivers and streams and can contribute to the com-
plex dynamics of flood distribution (Khan, 2013). In contrast,
insufficient rainfall over an extended period leads to drought
conditions, drying out forests and creating ideal conditions
for wildfires (Cochrane and Barber, 2009). Daily rainfall data
were recorded from 2003 to 2023 and collected from 33 rain
gauge stations in the province of Quang Nam. This study
used the inverse distance weighting technique to separately
generate average yearly cumulated rainfall maps for the rainy
and dry seasons.

(xi) Temperature

The average monthly temperature in the dry months is often
closely related to wildfire occurrences (Kumari and Pandey,
2020). In a climate change context, higher average tempera-
tures can increase evaporation and transpiration rates, drying
out vegetation that can facilitate fires to ignite and spread
rapidly (Houston, 2006). Rising high temperatures can ex-
tend the duration of fire events (Sun et al., 2019). The daily
temperature data were collected from March to August be-
tween 2020 and 2023 (dry seasons) at https://power.larc.nasa.
gov/data-access-viewer/ (last access: 1 September 2024).
This research used the inverse distance weighting approach
to produce a temperature map for dry seasons (March to Au-
gust).

Code availability. The code will be provided by contacting corre-
sponding author.
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Data availability. The datasets used in the article are open to the
public without restrictions:

– Wildfire locations were accessed via the National Forest
Protection Department’s website at https://watch.pcccr.vn/
thongKe/diemChay/. (National Forest Protection Department,
2024)

– The building dataset was accessed via https://developers.
google.com/earth-engine/datasets/catalog/GOOGLE_
Research_open-buildings_v3_polygons (Earth Engine
Data Catalog, 2024).

– Daily temperature data were collected at https://power.larc.
nasa.gov/data-access-viewer/ (NASA, 2024).

– Land cover data from Sentinel-2 optical imagery for 2021 were
accessed via https://livingatlas.arcgis.com/landcover/ (Esri,
2024).

– The digital elevation model (DEM) with a 30 m spatial resolu-
tion was extracted from https://earthexplorer.usgs.gov/ (USGS,
2024).
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