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Abstract. In coastal regions, compound flooding can arise
from a combination of different drivers, such as storm surges,
high tides, excess river discharge, and rainfall. Compound
flood potential is often assessed by quantifying the depen-
dence and joint probabilities of flood drivers using multivari-
ate models. However, most of these studies assume that all
extreme events originate from a single population. This as-
sumption may not be valid for regions where flooding can
arise from different generation processes, e.g., tropical cy-
clones (TCs) and extratropical cyclones (ETCs). Here we
present a flexible copula-based statistical framework to as-
sess compound flood potential from multiple flood drivers
while explicitly accounting for different storm types. The
proposed framework is applied to Gloucester City, New Jer-
sey, and St. Petersburg, Florida, as case studies. Our results
highlight the importance of characterizing the contributions
from TCs and non-TCs separately to avoid potential under-
estimation of the compound flood potential. In both study re-
gions, TCs modulate the tails of the joint distributions (events
with higher return periods), while non-TC events have a
strong effect on events with low to moderate joint return pe-
riods. We show that relying solely on TCs may be inadequate
when estimating compound flood risk in coastal catchments
that are also exposed to other storm types. We also assess the
impact of non-classified storms that are not linked to either
TCs or ETCs in the region (such as locally generated convec-
tive rainfall events and remotely forced storm surges). The

presented study utilizes historical data and analyzes two pop-
ulations, but the framework is flexible and can be extended
to account for additional storm types (e.g., storms with cer-
tain tracks or other characteristics) or can be used with model
output data including hindcasts or future projections.

1 Introduction

Growing attention in scientific research has been directed to-
wards compound extreme events resulting from various hy-
drometeorological drivers, as their impacts are often more
severe than those caused by univariate events (e.g., Wahl
et al., 2015). Recent studies have highlighted the threat of
compound flooding in low-lying coastal and riverine regions
that is generally driven by the combination of precipitation,
wind-generated storm surge, and streamflow (Hendry et al.,
2019; Nasr et al., 2023; Wahl et al., 2015; Ward et al.,
2018). Given the potentially devastating consequences of
such events, the ability to quantify their likelihoods is cru-
cial for flood risk assessments, infrastructure design, urban
planning, (re-)insurance markets, and emergency response,
among others.

There are two general methods that have been used in
the literature to study compound flooding. The first one fo-
cuses on quantifying the compound flood potential by ana-
lyzing the dependencies and joint probabilities among com-
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pound flood drivers (Couasnon et al., 2020; Hendry et al.,
2019; Moftakhari et al., 2017; Ward et al., 2018; Zheng
et al., 2013). The second one focuses on quantifying com-
pound flood hazard by employing physics-based models to
obtain flood depths and spatial extents of historic flood events
(Kumbier et al., 2018; Silva-Araya et al., 2018; Torres et al.,
2015; Nederhoff et al., 2024) or for large sets of synthetic
events, where flood models are forced with boundary condi-
tions of multiple flood sources (Bass and Bedient, 2018; Gori
et al., 2020; Gori and Lin, 2022). Those boundary conditions
can come from physics-based models (e.g., Gori et al., 2020)
or statistical models (e.g., Jane et al., 2020). In either case,
due to the requirement of numerous numerical model simu-
lations, this approach is associated with large computational
costs.

Calculating the probabilities of compound flood events is
crucial and can be done either by applying extreme value
analysis to flood depth information (Bass and Bedient, 2018;
Gori et al., 2020; Gori and Lin, 2022; Nederhoff et al., 2024)
or by using multivariate models to quantify joint probabili-
ties of the flooding drivers (e.g., Chen et al., 2012; Couasnon
et al., 2020; Jane et al., 2020; Lian et al., 2013; Moftakhari
et al., 2017; Sebastian et al., 2017; Zheng et al., 2014).
For the latter, statistical techniques that have been used in-
clude Bayesian networks (Sebastian et al., 2017), bivari-
ate threshold-excess models (Zheng et al., 2014), a bivari-
ate point process method (Zheng et al., 2014), and copulas
(Chen et al., 2012; Couasnon et al., 2020; Jane et al., 2020;
Lian et al., 2013; Moftakhari et al., 2017; Xu et al., 2018).
Copulas have been extensively used to characterize the joint
distribution of flood drivers due to their ability to model the
dependence structure independently of the marginal distribu-
tions. However, most of these studies assume that all extreme
events originate from a single population, which refers to a
set of events or observations that share common characteris-
tics and are generated by similar underlying processes. This
assumption may not be valid for regions where flood drivers
can arise from different generation processes and mecha-
nisms (e.g., Barth et al., 2019; Smith et al., 2011; Kim et al.,
2023). For example, both tropical cyclones (TCs) and ex-
tratropical cyclones (ETCs) can create extreme precipitation
and extreme storm surges in the same coastal region, lead-
ing to compound flooding. Lai et al. (2021) estimated that
TCs and ETCs are the major triggers of compound flood-
ing. They found that more than 80 % of compound flood
potential in East Asia and more than 50 % in the Gulf of
Mexico is associated with TCs, while ETCs contribute the
most in Europe. TCs generally create more intense winds and
rainfall (RF) compared to ETCs, while ETCs generally have
greater spatial extents and can create RF over longer dura-
tions (e.g., Orton et al., 2016; Sinclair et al., 2020). There-
fore, the flood drivers generated by these two storm types
have different characteristics that may not be well captured
by fitting them into a single probability distribution. Further-
more, Kim et al. (2023) highlighted that extreme events gen-

erated by TCs have a stronger correlation between RF and
storm surge compared to the rest of the events they stud-
ied in the Dickinson Bayou watershed in Texas. This im-
plies that the above-mentioned assumption of data coming
from a single population could lead to a mischaracterization
of the compound flood potential and/or compound flood haz-
ard (from hereon we use compound flood potential since the
focus is on the statistical framework, but it can also be used
as a starting point to assess compound flood hazard when
coupled with a flood model).

Nederhoff et al. (2024) addressed this aspect by employ-
ing a compound flood model for the coast of the US, from
Virginia to Florida. They separately simulated the total wa-
ter levels induced by TCs and ETCs to assess their relative
contributions and followed the approach outlined by Dullaart
et al. (2021) to calculate the combined return water levels.
Additionally, a few studies addressed this aspect from the
standpoint of coastal sea levels (i.e., univariate). For exam-
ple, Orton et al. (2016) and Dullaart et al. (2021) quantified
storm tide return periods by separately analyzing TCs and
ETCs. In contrast, Lai et al. (2021) utilized copulas to model
joint probabilities of flood drivers (RF and storm surge) for
TCs and ETCs separately. Their study provides insights into
the relative contribution of each storm type for joint proba-
bilities but does not quantify the combined hazard. While Lai
et al. (2021) and Kim et al. (2023) provided a starting point
toward separating compound flood drivers by storm types, a
comprehensive multivariate statistical framework for assess-
ing compound flood potential from mixed populations does
not currently exist.

An additional key aspect is analyzing compound flooding
for future climate conditions where it will likely be ampli-
fied due to global warming (Bates et al., 2021). This is typ-
ically achieved by incorporating future sea level rise (SLR)
projections and future storm climatologies derived from gen-
eral circulation models (Bates et al., 2021; Bermúdez et al.,
2021; Bevacqua et al., 2019; Gori and Lin, 2022; Khanam
et al., 2021). However, the low resolution of available gen-
eral circulation models presents a challenge in capturing lo-
cally generated RF events, especially those related to con-
vection (Imada and Kawase, 2021). Heavy precipitation can
be caused by convection without being influenced by any
cyclonic activity in the near atmosphere (Pfahl and Wernli,
2012). When combined even with small storm surges or just
high astronomical tides, such events can lead to compound
flooding where gravity-fed drainage is impeded by higher-
than-normal coastal water levels. Therefore, it is important to
understand the role of these types of events in driving com-
pound flood potential, especially when including future pro-
jections from general circulation models that are not capable
of capturing them.

Prior studies employing synthetic TCs for compound flood
analyses have typically selected events that either crossed a
specific search radius (e.g., Gori et al., 2020) or were gener-
ated in the study region (e.g., Bass and Bedient, 2018). How-
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Figure 1. Study site locations; selected catchment boundaries; and locations of the rainfall gauges, tide gauges, and grid points of the Analysis
of Record for Calibration (AORC) data for Gloucester City (a, b) and St. Petersburg (c, d).

ever, cyclonic activity from distant systems can also gener-
ate moderate storm surges that propagate into the study re-
gion and, when combined with high tides and locally gen-
erated RF, can contribute to compound flooding. Hence, it
is important to evaluate the potential mischaracterization of
compound flood potential by neglecting such distant cyclonic
events. Both of these questions regarding the role of local RF
and remotely forced storm surge events have not been ad-
dressed in the literature.

This paper fills the above-mentioned gaps by introducing a
copula-based statistical framework to estimate the compound
flood potential at the catchment scale while accounting for
mixed storm populations. We estimate the combined joint
exceedance probabilities for different storm types and ana-
lyze the contribution of TCs, ETCs, and non-classified events
(i.e., local RF and remotely forced storm surges). The frame-
work is applied to Gloucester City, New Jersey, and St. Pe-
tersburg, Florida, as case studies.

2 Case study site and data

2.1 Study sites

Gloucester City is located in Camden County, New Jersey,
along the Delaware River (Fig. 1a) where it accommodates
approximately 11 400 residents (City of Gloucester, 2024,
New Jersey). The city was affected by several major flood
events in the recent past generated by hurricanes and severe
storms (Hurricane Floyd 1999, Hurricane Irene 2011, Hurri-
cane Sandy 2012, and an unnamed storm in 2015). Its geo-
graphical location bounded by three rivers, the Delaware in
the west, Newton Creek in the north, and Little Timber Creek
in the south, makes the area susceptible to flooding from vari-
ous sources. Our study area for Gloucester City encompasses
two 14-digit hydrologic units (see Fig. 1b for the combined
area) (Jones et al., 2022).

Located in Tampa Bay, Florida, and near the Gulf of Mex-
ico (Fig. 1c), St. Petersburg is also exposed to coastal, flu-
vial, and pluvial flooding. The city was ranked among the
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top 10 US cities in terms of the highest asset value exposed
to sea level rise by 2070 (Nicholls et al., 2008). The average
annual economic loss of St. Petersburg due to flooding was
estimated as USD 244 million in 2005 and it is expected to
increase to up to USD 763 million by 2050 under 20 cm sea
level rise (Hallegatte et al., 2013). Our selected study area en-
compasses St. Petersburg and combines four 10-digit hydro-
logic units (see Fig. 1d for the combined area) (Jones et al.,
2022).

2.2 Data

The proposed methodology is based on historical data. We
consider non-tidal residual (NTR) and RF as flood drivers.
We use hourly water level data from the National Oceanic
and Atmospheric Administration at the nearest tide gauge lo-
cation of the study sites to obtain the NTR time series. For
Gloucester City, we combine the data records of the Philadel-
phia (station ID 8545240) and Philadelphia Pier 11 north
(station ID 8545530) tide gauges by adjusting for a 1 cm con-
stant offset between records for the overlapping period to
construct a 122-year-long data set from 1901 to 2021. The fi-
nal record is nearly complete, with only 3 % of missing data.
The hourly water level data of the St. Petersburg tide gauge
(station ID 8726520) from 1948 to 2021 were used for the
St. Petersburg study area; missing data are less than 3 %.

The water level time series are detrended using a 30 d mov-
ing average to remove the effects of relative mean sea level
rise and variability. Then, we perform a year-by-year har-
monic tidal analysis using the Unified Tidal Analysis and
Prediction (UTide) package in MATLAB to obtain the tidal
constituents and tidal levels (Codiga, 2011, 2023). Years with
more than 25 % of missing data are omitted from the analysis
(Philadelphia: 1903, 1921, 1922, and 1959; St. Petersburg:
1952 and 1964). Hourly time series of NTR are obtained by
subtracting the predicted tidal levels from the observed water
levels.

For RF, we use hourly gauge data from the longest records
near each study site and combine them with gridded data
from the Analysis of Record for Calibration (AORC) (Fall et
al., 2023) in order to obtain spatial rainfall information and
basin-averaged values (see Methods). The measured hourly
RF gauge data records of Philadelphia International Air-
port and St. Petersburg start in 1900 and 1946, respectively.
AORC RF data are constructed from different individual ob-
served RF data sets and are available with an hourly tem-
poral resolution and ∼ 4 km spatial resolution covering the
period from 1979 to the near present. The data have been
shown to have higher accuracy than other available gridded
data sets when compared to in situ observations (e.g., Hong
et al., 2022; Kim and Villarini, 2022).

We identify TC events using the HURDAT2 TC track data
set from the National Hurricane Center to obtain the location
of the center of circulation, which is available in 6 h intervals
(Landsea and Franklin, 2013). To obtain the best tracks of

ETCs, we use the Modeling, Analysis, and Prediction (MAP)
Climatology of Midlatitude Storminess (MCMS) tracking al-
gorithm (Bauer et al., 2016) on ERA5 (fifth major global re-
analysis produced by ECMWF data) (Hersbach et al., 2020).
Considering the overlapping periods of available data sets
(after combining gauge and AORC rainfall data), we perform
the analysis for Gloucester City for the period of 1901 to
2021 and St. Petersburg from 1948 to 2021.

3 Methods

3.1 Bias correction of RF data

Following Kim et al. (2023), we use basin-averaged RF de-
rived from all AORC grid points within the selected catch-
ment areas. In addition, we want to leverage the long in situ
observations to obtain more robust results from the statistical
analysis. Rain gauges measure very local weather conditions.
However, the assumption that such point RF quantities are
uniformly distributed over the entire catchment could lead
to mischaracterization of the flood hazard potential. There-
fore, we apply a bias correction to the hourly RF gauge data
to match the hourly basin-averaged RF quantities calculated
from AORC. The quantile mapping method is used for the
bias correction, fitting both hourly measured gauge data and
hourly AORC basin-averaged data to gamma distributions.
We follow the approach outlined in Smitha et al. (2018),
which can be mathematically expressed as

RFMod,x = F
−1
γ (Fγ (RFMS,x |αMS,βMS), |αAORC,βAORC), (1)

where RFMod,x is the bias-corrected measured value of the
original value RFMS,x , and Fγ is the gamma distribution with
α and β being scale and shape parameters. Figure 2 shows
the quantile plots before and after the bias correction for the
two study sites. The bias-corrected hourly measured RF data
are then aggregated to obtain RF accumulation time series
ranging from 1 to 48 h.

3.2 Extreme-event sampling and stratification

We define extreme events that can potentially cause com-
pound flooding using the peak-over-threshold (POT) ap-
proach. The threshold selection is a subjective process. The
threshold needs to be high enough to lead to a good fit of
marginal distributions and low enough to capture a suffi-
ciently large number of events to obtain robust estimates
of the distribution parameters (i.e., bias-variance trade-off).
Here, we set thresholds for NTR and RF time series such that
we obtain five exceedances per year on average while using
a 5 d declustering window (2.5 d before and after the event
peaks) to ensure independence (Camus et al., 2021). We use
the two-sided conditional sampling method outlined in Jane
et al. (2020) and adopted in Kim et al. (2023). When condi-
tioned on NTR, the maximum RF value within a 3 d window
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Figure 2. Quantile plots between basin-averaged AORC data and measured RF gauge data of (a) Gloucester City and (b) St. Petersburg. The
red circles show the quantiles before the bias correction and the blue circles after the bias correction.

is selected, and the same procedure is followed when condi-
tioning on RF. The sampling process is applied for all the RF
accumulation time series from 1 to 48 h.

The identified POT events are stratified into two sets:
events caused by TCs and events not caused by TCs. An
event is assumed to have been caused by a TC if the center of
circulation of a TC passed through a 350 km search distance
from the center of the selected catchment within a time win-
dow of 3 d (2 d before and 1 d after) of a POT event. All other
events are categorized as non-TC events. For Gloucester City,
the threshold for NTR is set to 0.63 m, resulting in a total
number of 580 POT events (that is consistent with five events
per year on average). For RF, thresholds are set to obtain 580
POT events for each RF accumulation time from 1 to 48 h.
After stratifying the POT events, 38 events are identified as
TCs when conditioned on NTR and 43 when conditioned on
RF, while the rest are non-TCs. For St. Petersburg, a thresh-
old of 0.34 m is used for NTR to obtain 355 POT events, and
the same number of POT events is obtained for each RF ac-
cumulation time. When conditioning on NTR (RF), 37 (47)
events are identified as TC related.

To further sub-classify the non-TC events, we follow the
same method using ETC track data but with a larger search
radius of 1000 km in Gloucester City and 1200 km in St. Pe-
tersburg, reflecting the larger size of ETCs compared to TCs.
The use of a 350 km radius for the TCs is likely to capture
the large majority of TC-influenced events that generate ex-
tremes (Towey et al., 2022). The use of a 1000 or 1200 km ra-
dius for ETCs is likely to capture nearly all cases where
ETCs are involved (e.g., Towey et al., 2018). This gives three
classes of events: TC, ETC, and non-classified events. When
conditioned on RF, the non-classified sample mainly includes
convective RF events that are not related to cyclonic activ-
ity in the near atmosphere. When conditioned on NTR, the
non-classified sample includes, for example, NTR events that
could have still been induced by TCs or ETCs which passed

outside the search radiuses. In the subsequent analysis, we
first focus on the TC and non-TC events. We then quan-
tify changes in the joint probabilities when excluding non-
classified events.

3.3 Dependence analysis

We calculate Kendall’s τ between NTR and RF for all RF
accumulation times from 1 to 48 h to assess the sensitivity of
the correlation to varying RF accumulation times (Kim et al.,
2023). This is done in three ways: (a) all the POT events with-
out stratification, (b) TC events, and (c) non-TC events. We
find the RF accumulation time corresponding to the maxi-
mum correlation and use it for the bivariate analysis. To be
consistent with the annual exceedance probability estimation
process, a single RF accumulation time is selected in all strat-
ified samples of a given study site.

Some regions along the US coast have experienced an in-
crease in the correlation between RF and NTR since the mid-
20th century (Wahl et al., 2015). Therefore, to assess tempo-
ral changes in the dependence, Kendall’s τ is calculated for
30-year moving windows, shifted 1 year each time step (see
Fig. 4). We assess the significance of temporal changes us-
ing the range of natural variability. The range is calculated as
the 5th and 95th percentiles of Kendall’s τ values obtained
from randomly sampling 30 years of data for 10 000 iter-
ations (Wahl et al., 2015). When a calculated τ value falls
outside this range, the change is considered significant. The
non-stationarity analysis is conducted using the selected RF
accumulation time for each case study location.

3.4 Marginal distributions and joint probability
analysis

Next, we identify the best-fitting marginal distributions for
each set of stratified POT samples (TC and non-TC). The
conditioning variables (both NTR and RF) are fit to the gen-
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eralized Pareto distribution (GPD), which is most suitable for
modeling POT extremes. When conditioning on NTR, the
corresponding maximum RF sample is fit to various distri-
butions with a lower bound at zero, and the best model is se-
lected using the Akaike information criterion (Akaike, 1974).
Here, the Birnbaum–Saunders, exponential, two-parameter
gamma, three-parameter gamma, inverse Gaussian, lognor-
mal, Tweedie, Weibull, two-parameter mixed gamma, and
three-parameter mixed gamma distributions are tested. When
conditioned on RF, the corresponding maximum NTR sam-
ple is fit to logistic and Gaussian distributions.

We use copulas to model the joint dependence between
NTR and RF. According to Sklar’s theorem (Sklar, 1959),
the bivariate cumulative distribution FXY (xy) of the vari-
ables X and Y , with univariate marginal distributions FX(x)
and FY (y) for all (x,y) ∈ R2, can be written as

FXY (x,y)= C[FX(x)FY (y)], (2)

where function C represents the bivariate copula on [0,1].
Annual exceedance probabilities (AEPs) can refer to dif-
ferent hazard scenarios (e.g., AND, OR, survival Kendall,
structural) that define different geometries of upper sets
that contain the events perceived as “dangerous” (Salvadori
et al., 2016). Considering the recommendations of Mof-
takhari et al. (2019) for compound flood assessments, we
use the AND scenario, which represents the exceedance of
both X and Y . The joint AEP of a given pair of (x,y) is cal-
culated as
AEP(x,y) = P(X > x ∩Y > y)/λ

= (1−FX(x)−FY (y)+CXY (xy))/λ, (3)
CXY (xy)= C[FX(x),FY (y)], (4)

where λ is the average inter-arrival time between thresh-
old exceedances. We consider 40 possible copula families
and the independent copula using the VineCopula R package
(Nagler et al., 2023) to identify the best-fitting copula family
for each pair of samples. The most appropriate copulas are
selected based on the Akaike information criterion.

After fitting the selected copulas to the stratified two-sided
POT samples, the joint AEP of a given pair of (NTR, RF) can
be calculated as follows:

AEPTC,con.NTR
(NTR,RF) = (1−F

TC,con.NTR
(NTR) −F

TC,con.NTR
(RF)

+C
TC,con.NTR
(NTR,RF) )/λTC,con.NTR, (5)

AEPTC,con.RF
(NTR,RF) = (1−F

TC,con.RF
(NTR) −F

TC,con.RF
(RF)

+C
TC,con.RF
(NTR,RF) )/λ

TC,con.RF, (6)

AEPnon-TC,con.NTR
(NTR,RF) = (1−F non-TC,con.NTR

(NTR)

−F
non-TC,con.NTR
(RF)

+C
non-TC,con.NTR
(NTR,RF) )/λnon-TC,con.NTR, (7)

AEPnon-TC,con.RF
(NTR,RF) = (1−F non-TC,con.RF

(NTR) −F
non-TC,con.RF
(RF)

+C
non-TC,con.RF
(NTR,RF) )/λnon-TC,con.RF, (8)

where F is the marginal distribution, and C is the cop-
ula function. Following Bender et al. (2016) (and many
other studies since then), we derive the combined AEP of
a selected population (TC or non-TC) for a given pair of
(NTR,RF) by taking the maximum AEP from the two con-
ditioned samples.

AEPTC
(NTR,RF) =max

{
AEPTC,con.NTR

(NTR,RF) ,AEPTC,con.RF
(NTR,RF)

}
(9)

AEPnon-TC
(NTR,RF)

=max
{

AEPnon-TC,con.NTR
(NTR,RF) ,AEPnon-TC,con.RF

(NTR,RF)

}
(10)

3.5 Combining joint exceedance probabilities of two
populations

The calculated AEPs from Eqs. (9) and (10) provide the joint
AEPs for NTR and RF associated with the two populations,
TC and non-TC, separately. However, both TC and non-TC
events can create compound flooding in the same catchment.
In the stratification process, a given POT event was catego-
rized as caused by either TC events or non-TC events, thus
making the probability distributions of these two populations
independent of each other. Accordingly, the total annual non-
exceedance probability (ANEP) of a given pair of (NTR,RF)
can be calculated as follows:

ANEP(NTR,RF) = ANEPTC
(NTR,RF)×ANEPnon-TC

(NTR,RF), (11)

ANEP(NTR,RF) =
(

1−AEPTC
(NTR,RF)

)
× (1−AEPnon-TC

(NTR,RF)). (12)

The associated return period (RP) is calculated as

RP(NTR,RF) =
1

1−ANEP(NTR,RF)
. (13)

To perform the above calculations to gener-
ate joint probability isolines, the parametric space
is discretized into small intervals along both
NTR (NTR1,NTR2, . . . ,NTRi, . . . ,NTRn) and RF
(RF1,RF2, . . . ,RFj , . . . ,RFm) axes, creating a mesh.
AEPs on each point on this mesh are calculated for all pairs
of (NTRi,RFj ).

Although any combinations of NTR and RF along a given
joint probability isoline have the same return probability,
most hydrology-related engineering design approaches still
rely on a single design event. Therefore, the “most-likely-
event” strategy, introduced by Salvadori et al. (2011) and uti-
lized in subsequent studies (e.g., Jane et al., 2020), is em-
ployed here. To quantify the relative probabilities of events
along specific quantile isolines, we obtain 106 combinations
of NTR and RF by sampling from the fitted copulas, ensur-
ing that the relative proportion of extremes is consistent with
the empirical distribution. The relative probability along the
isolines is then calculated by the kernel density function of
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the simulated sample. The location of the most likely event
is assigned to the point with the highest relative probability
density on an isoline (Salvadori and Michele, 2013).

3.6 Role of non-classified events

To assess the contribution of events that are non-classified,
we repeat the same steps outlined above, stratifying the POT
samples in four ways:

1. Both conditional samples are stratified as TCs and non-
TCs.

2. The sample conditioned on RF is stratified as TC and
ETC, and the sample conditioned on NTR is stratified
as TC and non-TC.

3. The sample conditioned on RF is stratified as TC and
non-TC, and the sample conditioned on NTR is strati-
fied as TC and ETC.

4. Both conditional samples are stratified as TC and ETC.

More specifically, in (2) we omit the non-classified POT
RF events (77 in Gloucester City and 192 in St. Petersburg),
assuming that those are mainly convective events that are not
captured, for example, by coarse general circulation models,
and hence missing from compound flood assessments for fu-
ture climates. In (3) we omit the non-classified POT NTR
events (43 in Gloucester City and 105 in St. Petersburg),
which could be caused by distant storms outside our search
radius or, in the case of Gloucester City, could be influenced
by high discharge in the Delaware River. In (4) we omit both
types of non-classified events mentioned in (2) and (3).

To assess the impact of omitting different types of non-
classified events in (2)–(4), we keep the calculated joint prob-
ability distribution of (1) as a reference and calculate the rel-
ative change in AEP along the probability isolines of (1). We
also keep the copula family from (1) fixed for (2)–(4) to iso-
late effects unrelated to switching to a different copula; re-
sults for the same analysis but allowing for different copula
families to be selected are shown in the supplementary ma-
terial. We perform this analysis for the period from 1950 to
2021 where ETC tracks are available and both ETC and TC
track data are more reliable.

4 Results

4.1 Dependence analysis

We use Kendall’s rank correlation coefficient τ to calculate
the strength of dependence between NTR and RF for dif-
ferent RF accumulation times. For both study sites, NTR
and RF exhibit a weak but statistically significant correlation
when considering all the POT events without any stratifica-
tion (Fig. 3). However, when the events are caused by TCs,

the correlation is stronger and varies with the RF accumu-
lation time. Considering both conditioned samples, 18 and
16 h RF accumulation times are selected for the bivariate sta-
tistical modeling in Gloucester City and St. Petersburg, re-
spectively.

When testing for non-stationarity in the dependence, we
focus on the selected RF accumulation times. Figure 4 shows
the changes in Kendall’s τ between NTR and RF derived
from a 30-year moving time window and the range of the nat-
ural variability of the correlation. We define the natural vari-
ability by randomly sampling 30 years many times (10 000
iterations were used) and calculating Kendall’s τ for each
sample. Figure 4a shows a significant change in τ during the
last 3 decades in Gloucester City. A similar change is not de-
tected for St. Petersburg, but the correlation values are more
frequently significant during the late 20th and early 21st cen-
tury (Fig. 4b). Therefore, to reflect current climate conditions
and avoid underestimation of compounding effects, we use
only the last 30 years of data to model the dependence struc-
ture at both study sites.

4.2 Bivariate statistical analysis

As described in Sect. 3.4, the conditioning variable is fit by
a GPD, and for the conditioned variable several parametric
distributions are tested. Selected distributions for each sam-
ple are indicated in Figs. 5 and 6 for the two study sites. The
confidence interval of the empirical cumulative distribution
function (CDF) is calculated using the Dvoretzky–Kiefer–
Wolfowitz inequality (Dvoretzky et al., 1956).

The quantile isolines of 5-, 10-, 20-, 50-, and 100-year re-
turn periods are obtained for each conditional sample for the
two study locations (Figs. 7 and 8). The number of events
in the stratified samples and the selected copula models are
shown in Table S1 in the Supplement. A relatively lower
number of TC events are captured in both conditional sam-
ples compared to non-TC events (Table S1). The return pe-
riods of events with extreme NTR and non-extreme RF are
relatively lower (the AEP is higher) when they are caused
by TCs compared to non-TCs. When the samples are con-
ditioned on RF, events with extreme RF and non-extreme
NTR show nearly the same return periods in both popula-
tions (Figs. 7c, d and 8c, d).

The quantile isolines after combining the joint proba-
bility distributions of the two storm type populations (TC
and non-TC) are shown in Fig. 9. To quantify the relative
contribution from each of them, we calculate the ratio of
AEP contributed by TCs to the total AEP along the isolines
(Fig. 10). In Gloucester City, more than 60 % of the AEP of
low-probability events (i.e., events with return periods above
50 years) is associated with TC events, while more than 70 %
of the AEP of high-probability events (i.e., events with re-
turn periods below 20 years) is associated with non-TCs. In
St. Petersburg, when both NTR and RF are extreme, TCs
mainly drive the joint AEP. For example, TCs contribute over
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Figure 3. Kendall’s τ between NTR and RF for different RF accumulation times for all events (purple), TCs (orange), and non-TCs (green)
for samples conditioned on NTR (a, b) and RF (c, d). The filled markers indicate values that are significant at a 5 % level. The black circles
with vertical dashed lines show the selected RF accumulation for each location.

Figure 4. Changes in Kendall’s τ between NTR and RF derived from a 30-year moving time window for (a) Gloucester City (18 h accu-
mulation) and (b) St. Petersburg (16 h accumulation). Each circle represents the midpoint of the 30-year window. The red circles indicate
significant correlation (α= 0.05). The horizontal grey bands represent the range between the 5th and 95th percentiles of natural variability.

90 % to the AEP of events with more than 100 mm 16 h RF
and 0.8 m NTR. Closer to the axes (either extreme NTR or
extreme RF), both types of events contribute approximately
evenly to the joint AEP for rare events. For both locations,
the region with extreme RF and non-extreme NTR shows a
major contribution of non-TCs to the AEP.

4.3 Role of non-classified events

To assess the role of non-classified events, such as convec-
tive RF events and surge events caused by remote cyclones,
we repeat the above analysis as outlined in Sect. 3.6. The
calculated relative changes in AEP along the joint probabil-
ity isolines after combining the AEPs of the two populations
are shown in Fig. 11. When removing non-classified POT
RF events (those are mainly convective events), the AEP de-
creases for events where RF is extreme and NTR is small
to moderate (Fig. 11a and b). This becomes more noticeable
for events with higher AEPs (i.e., events with return peri-

ods below 10 years), especially in St. Petersburg where they
reach up to 25 % reduction. However, in Gloucester City,
this impact becomes negligible for rare events (i.e., events
with return periods above 50 years). When the non-classified
POT NTR events (e.g., caused by remote cyclones) are re-
moved from the analysis, the AEP decreases slightly for
events where NTR is extreme and RF is small, while the AEP
increases slightly when NTR is extreme and RF is moderate
(Fig. 11c and d).

As mentioned in Sect. 3.6, we assume that the copula
types that are used for the previous analysis (with events
stratified as TC and non-TC) remain the same after remov-
ing non-classified events. We also conducted the analysis
while allowing the selected copulas for the different con-
ditional samples to change (see Fig. S1 in the Supplement
and Table S2 in the Supplement). When allowing copulas to
change, the changes in the AEPs along the isolines become
more pronounced in Gloucester City when removing the non-
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Figure 5. Selected parametric distributions compared to the empirical distributions of Gloucester City for TC events (left) and non-TC
events (right). (a, b) NTR POT events when conditioned on NTR. (c, d) Maximum-RF events corresponding to NTR POT events when
conditioned on NTR. (e, f) Maximum-NTR events corresponding to RF POT events when conditioned on RF. (g, h) RF POT events when
conditioned on RF. The red dots represent the empirical cumulative distribution function (CDF) of the observations. The dashed lines denote
the 95 % confidence intervals of the empirical CDF calculated using the Dvoretzky–Kiefer–Wolfowitz inequality.

classified POT NTR events. For example, they increase up to
35 % for the events where NTR is extreme and RF is moder-
ate (Fig. S1e).

5 Discussion

5.1 Dependence analysis

The strong correlation between NTR and RF when the events
are caused by TCs (see Fig. 3) suggests that there is a higher
potential for compound flooding by TCs in both study sites.
This can be attributed to the nature of TCs, notably their

propensity for extreme-RF potential combined with strong
winds. The non-TC samples in our analysis contain all events
that are not directly linked to a TC (e.g., ETCs or convec-
tive events) and show weak but stable (over different rainfall
accumulation times) correlation between NTR and RF. The
stronger TC correlation is in line, for example, with findings
reported by Kim et al. (2023) for the Dickinson Bayou water-
shed in Texas. However, they reported weak and insignificant
correlation throughout all RF accumulation times (1 to 48 h)
for non-TC events when conditioning on NTR. For Glouces-
ter City the same conditional sample shows a slightly higher
and significant correlation for all RF accumulation times (see
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Figure 6. The same as Fig. 5 but for St. Petersburg.

Fig. 3). When the events are not stratified and treated as a
single population, the correlation is similar to the one found
for non-TCs, leading to an underestimation of the compound
flood potential. These results highlight the importance of dif-
ferentiating between storm types associated with different
physical processes and characterizing their individual con-
tributions to compound flood potential. By selecting an RF
accumulation time that leads to the maximum correlation, we
account for the sensitivity of correlation to RF accumulation
time while following a conservative approach that avoids un-
derestimating the dependence and compound flood potential.

5.2 Combining joint exceedance probabilities of two
populations

Prior studies have only focused on merging the AEPs of two
populations within a univariate framework (e.g., Orton et al.,
2020). Our proposed methodology combines the AEPs of
two populations in a bivariate framework that also has the
flexibility to be further expanded to account for three or more
populations. The joint probability distributions (Fig. 9), as
determined by combining the AEPs of two populations, pro-
vide insights into the compound flood potential at each of the
study sites. The framework derives a single isoline for each
return period, which can be used, for example, to derive a sin-
gle most likely design event (Salvadori et al., 2011, 2013).
For Gloucester City, for instance, the most likely 100-year
design event (i.e., the event with the highest relative prob-
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Figure 7. Results of bivariate statistical analysis for Gloucester City
for TC events (left) and non-TC events (right) (a, b) when condi-
tioning on NTR, (c, d) when conditioning on RF, and (e, f) when
two conditioning samples are combined. Quantile isolines of the 5-
, 10-, 20-, 50-, and 100-year joint return periods are shown where
the color scale indicates the relative probability of events along the
isolines. Note the different x- and y-axis scales for better clarity.

ability along the 100-year isoline) is given by 1.60 m NTR
and 87 mm 18 h RF. Under the assumption of independence
between NTR and RF, the same event has a return period
of 196 years. It should be noted that the Philadelphia tide
gauge is located along the Delaware River (see Fig. 1), and
the recorded water levels are influenced by both wind-driven
storm surge and river discharge. In this study, we do not ex-
plicitly account for wind-driven surge and river discharge
separately (NTR incorporates both), but the framework pre-
sented here is flexible enough to be extended for this purpose,
e.g., by including NTR from an open-coast tide gauge near
the Delaware River mouth and an upstream stream gauge.
The most likely 100-year design event for St. Petersburg is
comprised of 1.02 m NTR and 117 mm 16 h RF under the

Figure 8. The same as Fig. 7 but for St. Petersburg, Florida.

independence assumption that the return period of the same
event increases to 156 years.

The magnitude of the univariate 100-year 18 h RF event is
(after combining the AEPs of the two populations) 139 mm
for Gloucester City and 180 mm for St. Petersburg (see
Fig. 9). This is approximately an 11 % increase compared
to the univariate 100-year 18 h RF of the TC samples at each
site (125 and 163 mm). For the univariate 5-year 18 h RF the
increase is 49 % in Gloucester City (from 53 to 79 mm) and
34 % in St. Petersburg (from 78 to 99 mm) (Fig. 9).

The return levels for RF are similar for the TC and non-TC
samples, but TCs lead to higher NTR return levels, particu-
larly in Gloucester City (see Fig. 10). This implies that the
most extreme surges are caused by TCs, but both TC and
non-TC events can produce similar rainfall totals. These re-
sults indicate that relying solely on TCs may be inadequate
when analyzing compound flood risk in coastal catchments
that are also exposed to other storm types. TCs are most
relevant for events with low AEPs, which are important for
flood zoning and critical infrastructure design. ETCs, on the
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Figure 9. Joint probability isolines for the two study sites after combining the AEPs of the two populations (TC and non-TC). The color scale
indicates the relative probability of events along the isolines. The location of the most likely event is assigned to the point with the highest
relative probability density on an isoline.

Figure 10. Relative contribution of TCs to the AEP along the joint probability isolines for the two study locations. The color scale indicates
the ratio of AEP associated with TCs to the combined AEP of both populations.

other hand, mainly drive compound flood potential for events
with higher AEPs, which are most relevant, for example, for
stormwater management and design.

5.3 Role of non-classified events

As described in Sect. 3.6, the analysis was repeated to as-
sess the impact of non-classified events. This includes, for
example, NTR events caused by remote storms outside our
pre-defined search radiuses, NTR in Gloucester City that is
caused by high river discharge, and convective RF events.
This is important because when studying future compound
flooding, we typically rely on general circulation models,
which do not capture convective RF events. Similarly, re-
motely triggered NTR events may be missed in assessments
where only cyclones that pass through a defined region are
included. Our analysis sheds light on the relative importance
of those types of events in addition to TCs and ETCs that
directly affect the area of interest.

Neglecting RF events that are likely locally generated can
lead to an underestimation of the overall AEP (or overesti-
mation of the return period), particularly for more frequent
events (i.e., events with return periods below 10 years) (see
Fig. 11a and b). This can be attributed to the nature of lo-
cally generated convective RF events since they are generally
less intense in magnitude but occur with a greater frequency
compared with TCs and ETCs. The reduction in AEP is also
higher in St. Petersburg where 55 % (192 events) of the RF
events exceeding the threshold are not linked to ETCs or
TCs. This highlights the importance of convective RF events
in St. Petersburg and thus the need for high-resolution mod-
els to characterize future flood hazard potential.

Removing non-classified events where NTR exceeded the
threshold from the analysis leads to a slight reduction in AEP
for events where NTR is extreme and RF is small and to a
slight increase in AEP where NTR is extreme and RF is mod-
erate (see Fig. 11c and d). This increase in AEP is potentially
caused by the fact that the non-classified events have weaker
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Figure 11. Change in AEP of the combined populations in Gloucester City (a, c, e) and St. Petersburg (b, d, f) (a, b) when omitting the
non-classified POT RF events, (c, d) when omitting the non-classified POT NTR events, and (e, f) when omitting all non-classified events.
The change in AEP was calculated along the joint probability isolines derived for the analysis where events are stratified as TC and non-TC.

correlation between NTR and RF compared to ETCs and
TCs; hence, excluding them leads to larger joint AEPs. In the
specific case of Gloucester City, those non-classified events
can also include high-discharge events in the Delaware River,
leading to high water levels (and hence high NTR) at the
Philadelphia tide gauge.

Overall, excluding non-classified events leads to smaller
changes in the joint probabilities in Gloucester City com-
pared to St. Petersburg, especially when focusing on rare
events (i.e., events with return periods above 50 years) (see
Fig. 11e and f). This is likely because of the proximity of
Gloucester City to the US East Coast where ETCs are more

frequent and the overall number of non-classified events is
lower (77 when conditioned on RF, 43 when conditioned
on NTR).

One limitation of the proposed framework is the identifi-
cation of compound events based on extreme flood drivers.
In some locations, none of the flood drivers need to be ex-
treme to cause compound flooding, as geographical expo-
sure and other factors (e.g., elevation, drainage, permeability)
play dominant roles. Therefore, the focus here is on assess-
ing the compound flood potential and how the joint proba-
bilities of different flood drivers are linked to various storm
types. To extend the proposed framework to fully character-
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ize the compound flood risk, the statistical approach can be
combined with hydrodynamic numerical models (so-called
hybrid modeling, e.g., Moftakhari et al., 2019) to estimate
flood inundation. However, analyzing only the most likely
event (even though it may be the most plausible given the
observations) does not capture the range of flood levels that
could be generated by different combinations of flood drivers
(NTR and RF) along an isoline. One way to address this
limitation is to sample an ensemble of events (peak NTR–
RF combinations) along the isoline and run them through
flood models. Alternatively, a response-based approach can
be employed, which involves simulating flood hazard for a
large number of synthetic events from the multivariate stati-
cal model and then performing the statistical analysis on the
response variable of interest (e.g., flood depth at a given lo-
cation). The latter is computationally demanding, possibly
necessitating the use of a surrogate model; however the re-
turn level estimates are likely to be more robust than when
adopting an event-based approach (Jane et al., 2022a). The
simulated probabilistic flood depths and extents can then be
incorporated with exposure and vulnerability data to perform
a comprehensive flood risk assessment.

Additionally, despite the long data records used (Glouces-
ter City, 1901 to 2021, and St. Petersburg, 1948 to 2021),
the stratified TC samples contain a relatively small number
of events due to their rare occurrence in historical observa-
tions. When the framework is applied to a different site with
less data, the smaller sample size may result in higher uncer-
tainty in modeling the upper tail of the NTR and RF distri-
butions. This limitation can be addressed by combining the
proposed framework with synthetic flood driver information
derived from physics-based models (e.g., Gori et al., 2020).

6 Conclusions

This paper introduces a flexible copula-based statistical
framework to assess compound flood potential from multiple
drivers while explicitly accounting for different storm types.
Here we apply the method to two case study sites, Gloucester
City, New Jersey, and St. Petersburg, Florida, which are ex-
posed to different storm climatologies. Our study highlights
the importance of differentiating between storm types with
different physical processes and characterizing their individ-
ual contributions to compound flood potential. Overall, we
find that TCs modulate the tails of the joint distributions
(events with higher return periods), while non-TC events
have a strong effect on events with low to moderate joint re-
turn periods. While the most extreme events and associated
probabilities are most relevant for flood zoning and critical
infrastructure design, more moderate events are crucial, for
example, for stormwater management and design. We also
quantify how non-classified storms that are not linked to ei-
ther TCs or ETCs in the region impact the compound flood
potential. The results differ across study sites with the effects

being overall smaller in Gloucester City than in St. Peters-
burg, and they also affect different parts of the joint distri-
bution differently. This is important because assessments of
future compound flood hazard (and flood hazard in general)
typically rely on the output from general circulation models
that may not capture such events due to their coarse reso-
lution. This can in turn lead to a misrepresentation of flood
hazard and risk. Our results provide insights into how large
(or small) the effect is of not capturing all relevant storm
types when studying compound flooding. The method is flex-
ible so that additional storm types (e.g., storms with certain
tracks or other characteristics) can be identified and their ef-
fect on compound flood potential can be quantified. Finally,
while we focus on observed data and their derivative prod-
ucts, the framework can be used with model output data in-
cluding hindcasts or future projections.

The focus here is on the compound flood potential and how
the joint probabilities of different flood drivers are linked
to different storm types. However, the combined probabil-
ity distributions of the different populations can also be used
to generate a large number of synthetic events that can act
as boundary conditions for hydrodynamic numerical models
to fully characterize compound flood hazard, including flood
depths and extent. This will be demonstrated in a separate
study.

Code availability. The marginal distribution fitting and
copula selection were done using the MultiHazard
R package, which can be downloaded from Zenodo at
https://doi.org/10.5281/zenodo.6772478 (Jane et al., 2022b).
The other codes are available in GitHub at https://github.com/
CoRE-Lab-UCF/MACH-Compound-Flooding (last access: 13
September 2024) (https://doi.org/10.5281/zenodo.13755288,
Maduwantha, 2024).

Data availability. The measured rainfall data used in this pa-
per can be downloaded through the National Oceanic and At-
mospheric Administration (NOAA) National Climatic Data Cen-
ter (NCDC) archive of global historical weather and climate data
at https://www.ncdc.noaa.gov/cdo-web (National Oceanic and At-
mospheric Administration, National Climatic Data Center, 2023).
The AORC (4 km) version 1.1 data sets can be obtained from the
NOAA computer system and are available at https://hydrology.nws.
noaa.gov/pub/AORC/V1.1/ (National Oceanic and Atmospheric
Administration, National Weather Service, 2023). The hourly wa-
ter level data in Philadelphia (station ID 8545240, station ID
8545530) and St. Petersburg (station ID 8726520) can be ac-
cessed through NOAA (https://tidesandcurrents.noaa.gov/, National
Oceanic and Atmospheric Administration, Center for Operational
Oceanographic Products and Services, 2023). The HURDAT2 data
are available from https://www.nhc.noaa.gov/data/hurdat (National
Oceanic and Atmospheric Administration, National Hurricane Cen-
ter, 2024). The ETC track data set is available upon request from the
authors.
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