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Abstract. Flooding associated with Hurricane Maria in 2017
had devastating consequences for lives and livelihoods in
Puerto Rico. Yet, an understanding of current and future
flood risk on small islands like Puerto Rico is limited. Thus,
efforts to build resilience to flooding associated with hurri-
canes remain constrained. Here, we take an event set of hur-
ricane rainfall estimates from a synthetic hurricane rainfall
simulator as the input to an event-based rainfall-driven flood
inundation model using the hydrodynamic code LISFLOOD-
FP. Validation of our model against high-water-mark data for
Hurricane Maria demonstrates the suitability of this model
for estimating flood hazard in Puerto Rico. We produce
event-based flood hazard and population exposure estimates
for the present day and the future under the 1.5 and 2°C
Paris Agreement goals. Population exposure to flooding from
hurricane rainfall in Puerto Rico for the present-day climate
is approximately 8 %—10 % of the current population for a
5-year return period, with an increase in population expo-
sure to flooding by 2 %—15 % and 1 %—20 % under 1.5 and
2°C futures (5-year return period). This research demon-
strates the significance of the 1.5 °C Paris Agreement goal
for Small Island Developing States, providing the first event-
based estimates of flooding from hurricane rainfall under cli-
mate change for a small island.

1 Introduction

Climate change is amplifying the probability of high-
intensity tropical cyclone events globally (Patricola and
Wehner, 2018; Kossin et al., 2020; Mei and Xie, 2016; Knut-

son et al., 2020), compounding the rising social and eco-
nomic costs associated with disasters due to increasing pop-
ulation and asset exposure (Jiménez Cisneros et al., 2014).
The adoption of the Paris Agreement in 2015 aimed to limit
global warming to well below 2 °C above pre-industrial lev-
els and if possible to 1.5°C (United Nations Framework
Convention on Climate Change, 2015). Following this, nu-
merous studies have investigated how these global tempera-
ture changes could impact societies, ecosystems, and places
(IPCC, 2018; Mitchell et al., 2016). Under the Paris Agree-
ment goal of 2°C, there will likely be a higher proportion
of tropical cyclones that become the most intense storms
(i.e. Categories 4 and 5 hurricanes), with an increase in pre-
cipitation intensity (Knutson et al., 2020). Whilst flooding
accounts for the largest proportion of loss of life and eco-
nomic damages from tropical cyclones (Rappaport, 2014;
Czajkowski et al., 2017), there is a lack of literature explor-
ing how flooding might be affected by changes in tropical
cyclone characteristics under climate change. This is partic-
ularly pertinent for Small Island Developing States where the
difference between the 1.5 and 2 °C temperature goals may
be critically important (Hoegh-Guldberg et al., 2018).

Small Island Developing States (SIDS) are a group of
small island nations and territories with an acute risk of dis-
asters and the impacts of climate change and were an in-
strumental force in the implementation of the 1.5 °C goal in
the Paris Agreement (Ourbak and Magnan, 2018). Consider-
ing risk as a function of hazard, exposure, and vulnerability
(United Nations Office for Disaster Risk Reduction, 2024),
high hazard frequency, high exposure in relation to size, and
underlying vulnerabilities drive the risk of hydrometeorolog-
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ical disasters and climate change in SIDS (Nurse et al., 2014;
Mycoo et al., 2022). Climate change is likely to exacerbate
current flood risk in SIDS (Joyette et al., 2014; Thomas et al.,
2017) based on projected changes in tropical cyclone precip-
itation (Vosper et al., 2020), increased coastal storm surge
heights (Knutson et al., 2020; Monioudi et al., 2018), and
sea level rise (Storlazzi et al., 2018; Nicholls et al., 2018;
Rasmussen et al., 2018). Yet, very little island-scale quanti-
tative assessment of flood risk has been conducted in SIDS.
This is largely due to the inadequacy of existing methods as
well as insufficient data resolution and quality suitable for
the scale of small island modelling (typically < 10000 km?)
(Thomas et al., 2019).

Recent work by Vosper et al. (2020) demonstrates that to-
tal rainfall associated with tropical cyclones (also known as
hurricanes) in the Caribbean will increase under both the 1.5
and the 2°C Paris Agreement goals in comparison to the
present-day climate. They also estimate that a 100-year re-
turn period event similar to Hurricane Maria in Puerto Rico
would be twice as likely to occur under the 2 °C scenario
than under the 1.5 °C scenario (Vosper et al., 2020). Puerto
Rico is an unincorporated territory of the US, located in the
Greater Antilles islands of the Caribbean (see Fig. 1). The
urgent need to understand both current and future flood risk
was recently reinforced following Hurricane Maria in 2017,
which made landfall as a high-end Category 4 hurricane,
causing catastrophic wind and flood damage (Pasch et al.,
2018). Hurricane Maria was the strongest hurricane to hit
Puerto Rico since Hurricane San Felipe II in 1928, result-
ing in at least 2975 deaths (Audi et al., 2018). The estimated
economic loss of USD 90 billion made it the third costli-
est disaster in US history (Pasch et al., 2018). Despite the
underlying structural failures and inadequate emergency re-
sponse that also contributed to the scale of the disaster in
Puerto Rico (Towe et al., 2020; Rivera, 2020; Caban, 2019;
Willison et al., 2019), the volume and intensity of the rain-
fall associated with Hurricane Maria were unprecedented
and exacerbated the scale of the impact on communities on
the island (Keellings and Herndndez Ayala, 2019; Ramos-
Scharrén and Arima, 2019). Historically, hurricane rainfall
has been the key cause of flooding in Puerto Rico (Hernan-
dez Ayala et al., 2017; Smith et al., 2005). Consequently, it is
pertinent that estimates of current and future rainfall-driven
flood risk associated with these hurricane rainfall events are
developed to assist disaster risk management in Puerto Rico.
Yet, there are currently no complete estimates of flooding
associated with Hurricane Maria or indeed for any other
events in Puerto Rico. Dated Federal Emergency Manage-
ment Agency (FEMA) flood zone maps do exist for larger
river systems in Puerto Rico, but these do not include pluvial
flooding, which is a key focus of this paper. They are there-
fore likely to provide a considerable underestimate of risk
(Wing et al., 2017).

Tropical cyclones can generate pluvial, fluvial, and coastal
floods, all of which interact. Of these, pluvial flooding is
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a comparatively lesser modelled phenomenon (Blanc et al.,
2012; Rozer et al., 2019; Tanaka et al., 2020). Pluvial flood-
ing is defined here as “flooding resulting from rainfall-
generated overland flow and ponding before the runoff enters
any watercourse or drainage system, or cannot enter it be-
cause the network is full to capacity” (Falconer et al., 2009,
p- 199). There has been a historical split between the mod-
elling and assessment of pluvial and fluvial — or river — flood-
ing. However, in reality both of these inland flood types are
in a continuum, and both are driven by rainfall. Thus, the dis-
tinction between the two is unhelpful in many cases. This is
particularly true for small islands where much of the inland
flooding is primarily driven by heavy rainfall (Jetten, 2016;
Burgess et al., 2015). Pluvial flooding is also a contested
term, with some defining it as including small river chan-
nels (Wing et al., 2018) and others defining it as completely
independent of rivers (Rosenzweig et al., 2018; Hankin et al.,
2008). The rain-on-grid approach documented here therefore
overcomes this pluvial-fluvial distinction by explicitly mod-
elling both flood types and their interactions. Here we define
the flooding modelled in this approach as “rainfall-driven
flooding™.

Rainfall-driven flood events can often occur with a high
frequency but low magnitude. This can lead to a signifi-
cant cumulative impact on a community’s resilience over
time, which can undermine efforts to reach the UN’s Sus-
tainable Development Goals (Moftakhari et al., 2017; Ham-
dan, 2015; United Nations Office for Disaster Risk Re-
duction, 2019). However, most studies investigating flood-
ing under climate change focus on changes in the 100-year
flood extent because this is often used as a design standard
(Hirabayashi et al., 2013; Arnell and Gosling, 2016; Lehner
et al., 2006). This means a gap remains with respect to un-
derstanding how smaller, more frequent events might vary
under climate change, which is crucially important for im-
proving resilience-building and climate change adaptation
needed in local communities (Moftakhari et al., 2017). This
paper aims to address this gap by investigating how chang-
ing hurricane rainfall characteristics influence rainfall-driven
flood risk estimates in the Small Island Developing State of
Puerto Rico, with an emphasis on understanding changes in
lower-magnitude, higher-frequency events (< 30-year return
period).

Currently, the predominant method for understanding
changes in flooding on small islands under climate change
uses changes in precipitation as a proxy for changes in flood
hazard, leading to uncertainty in flood hazard changes un-
der climate change (Seneviratne et al., 2021; Ranasinghe
et al., 2021). Examples of pluvial hydraulic flood modelling
on small islands have previously relied on spatially uniform
rainfall estimates derived from historical data for a set of de-
sign return period events (World Bank, 2015; Pratomo et al.,
2016; Lumbroso et al., 2011). This approach takes a set of
rainfall intensity estimates for a given duration and return
period, often derived from an intensity—duration—frequency
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Figure 1. Map showing the island of Puerto Rico within the Caribbean region.

(IDF) curve, using historical rainfall data. Rainfall is typi-
cally applied uniformly across a model domain to produce
design event flood extents (World Bank, 2015). Yet, this
approach does not necessarily represent flooding at a par-
ticular return period, as a flood is a signature of the rain-
fall, the topography, and the topology of a catchment (Guer-
reiro et al., 2017; Skougaard Kaspersen et al., 2017). More
recently, studies have highlighted the importance of repre-
senting rainfall spatially and temporally for a more realis-
tic representation of flooding (Aldridge et al., 2020; Bernet
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et al., 2019; Guerreiro et al., 2017; Schaller et al., 2020).
One way of incorporating these features is through an “event
set approach”, which involves utilizing an event set of syn-
thetic rainfall events (Nuswantoro et al., 2016; Tanaka et al.,
2020). Nonetheless, data such as these are still limited or
non-existent — particularly for small islands — and thus the
aforementioned traditional approach has, until now, been the
only way to represent flood hazards for small islands. Cli-
mate change is often assessed by applying an uplift factor
to account for changes in rainfall associated with climate
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Figure 2. Diagram outlining the modelling steps involved in simulating the synthetic hurricane rainfall event set and its application in the

event-based rainfall-driven flood model.

change projections (Sayers et al., 2020). However, this ap-
proach also fails to account for non-stationary effects of cli-
mate change on flooding, including changes to the different
spatial and temporal characteristics of rainfall that are impor-
tant for flood generation (Rosenzweig et al., 2018).

This paper details the first example of an event-based as-
sessment of flood hazard on a small island under current and
future climate change. We utilize a synthetic hurricane rain-
fall dataset (Vosper et al., 2020) as the input to an event-
based rainfall-driven hydrodynamic flood model of Puerto
Rico. We model rainfall-driven flood hazard and population
exposure at the island scale in Puerto Rico (9100 km?), at
20 m resolution under present-day as well as 1.5 and 2°C
climate change. As part of this work, we also include novel
methodological developments, including the representation
of rainfall and river channels in the model. The model is vali-
dated against flood hazard simulations using two estimates of
Hurricane Maria-observed rainfall (Integrated Multi-satellitE
Retrievals for GPM (IMERG) and NCEP Stage I'V) and high-
water-mark data collected from the event. To our knowledge,
these are the first published estimates of rainfall-driven flood-
ing from Hurricane Maria. This work thus demonstrates a
step change in the capacity to estimate flood hazard on a
small island, superseding the information available using the
traditional approaches. Within this, two key questions are in-
vestigated:

1. What is the current rainfall-driven flood hazard and pop-
ulation exposure associated with hurricanes in Puerto
Rico?
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2. How does population exposure to flooding change from
the present day to 1.5 and 2 °C climate change scenar-
ios?

2 Methods

To address these questions, we first describe the application
of the hurricane rainfall event set in Sect. 2.1. We explain
how the event-based model was set up (Sect. 2.2), includ-
ing the novel methodological applications of spatially vary-
ing rainfall in the hydrodynamic model (Sect. 2.2.1) and the
parameterization of river channel bathymetry using the in-
put rainfall event set climatology (Sect. 2.2.2). In Sect. 2.3,
we describe the combination of population estimates with the
flood hazard data to derive population exposure estimates un-
der present-day as well as 1.5 and 2 °C climate change sce-
narios. The method for validating the model is described in
Sect. 2.4.

2.1 Hurricane rainfall data

The synthetic hurricane rainfall event set was developed to
estimate hurricane rainfall in the Caribbean under present-
day (2005-2016) as well as 1.5 and 2°C equilibrated cli-
mate change, using a physics-based tropical cyclone rain-
fall model (Vosper et al., 2020) — see Fig. 2. The model
produces spatial (10 km resolution) and temporal (2-hourly)
rainfall estimates along a synthetic hurricane track, consid-
ering four key rainfall-generating mechanisms: wind shear,
topography, vortex stretching, and surface frictional conver-
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gence. Inputs to the tropical cyclone rainfall model were at-
mospheric temperature, specific humidity, sea surface tem-
perature, and wind vectors, which are typically taken from
global climate models (GCMs) or reanalysis products. This
model has been validated against gauge-based and radar ob-
servations in several studies in the US — including in Puerto
Rico — showing good agreement (Feldmann et al., 2019; Lu
et al., 2018; Zhu et al., 2013).

To provide driving climate model data to the synthetic
hurricane rainfall events under current as well as 1.5 and
2°C climate change, four climate models from the Half a
degree Additional warming, Prognosis and Projected Im-
pacts (HAPPI) ensemble were utilized (CanAM4, CAMS5-1-
2-025degree, NorESM1-HAPPI, ECHAMG6-3-LR; Mitchell
et al., 2017) — see Table 1. Representative Concentration
Pathway (RCP) 2.6 was used for model boundary condi-
tions at 1.5 °C, using a weighted combination of RCP2.6 and
RCP4.5 at 2°C. These were selected based on the availabil-
ity of variables at the required atmospheric levels with at least
daily temporal resolution for input into the hurricane rainfall
model, which are described in Fig. 2. HAPPI was developed
to document climate change impacts under 1.5 and 2 °C cli-
mate change above pre-industrial levels and has been a key
source of climate data for such studies, including the IPCC
Special Report on 1.5 °C (IPCC, 2018).

The hurricane rainfall event set consists of 59 000 events,
with each climate model scenario equivalent to between 332—
427 simulated years of data depending on the climate model
(Vosper et al., 2020). A total of 59000 events were gener-
ated, corresponding to approximately 5000 events per cli-
mate model and climate scenario. For each climate model,
the number of simulated years was calculated as the sum of
the number of simulated events per year divided by the sim-
ulated annual frequency of events in the climate model data
(see Table 1). The simulated time period for the present day
is 2005-2016, representing a global average temperature of
around 0.9 °C higher than a pre-industrial climate. The 1.5
and 2 °C time periods are for 2106-2115. This future time
period was selected in the HAPPI climate ensemble as the
future time slice, chosen to represent a 1.5 and 2 °C world
at around 2100 (which was the generally accepted time pe-
riod for these temperature scenarios in the IPCC Special Re-
port on 1.5 °C; IPCC, 2018), whilst also providing 100 years
of simulated GCM data following the present-day time slice
(2006-2015) (Mitchell et al., 2017). Each synthetic hurri-
cane rainfall event was simulated at a 2 h time step and 10 km
spatial resolution before being employed as the input to the
event-based rainfall-driven flood model.

2.2 Event-based rainfall-driven flood model
LISFLOOD-FP is the hydraulic engine used to simulate
channel and floodplain flow in two dimensions in our

rainfall-driven hydrodynamic model (Bates et al., 2010;
LISFLOOD-FP Developers, 2020). Rainfall is the key input
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to the model, and water flow is routed in one of two ways.
Firstly, very shallow (< 1 cm) overland flows are routed us-
ing a constant-velocity rain-on-grid routing scheme (Samp-
son et al., 2013). Rain falls directly onto the cells and is
routed through the model using a slope-dependent fixed-
velocity algorithm. Secondly, flow above 1 cm deep (i.e. the
majority) is routed hydraulically using the inertial form of
the shallow-water equations (Bates et al., 2010), with river
and drainage channels represented using a subgrid approach
(Neal et al., 2012). Typical channel (0.035) and floodplain
(0.040) Manning’s coefficient friction values were applied.
As Puerto Rico is an island, all downstream boundaries
are the ocean. The downstream boundary conditions in the
model are set to sea level, and this could be used in future
work to simulate sea level rise and storm surge.

As digital elevation data are the most important input
to a hydrodynamic model (Hawker et al., 2018), lidar data
were used as the digital elevation model (DEM). Lidar cov-
erage for Puerto Rico is almost complete (> 99 %) (United
States Geological Survey, 2017) and was resampled from its
native 1 m resolution to 20 m, reprojected to WGS84 and
hydrologically conditioned using the priority-flood method
(Zhou et al., 2016). The ~ 55km? of Puerto Rico not cov-
ered by lidar was patched with the globally available MERIT
DEM (Yamazaki et al., 2017). This area is mountainous and
sparsely populated, meaning the use of MERIT here does not
affect the exposure results.

Whilst high-resolution DEMs are important for simulat-
ing floods, halving the model grid resolution leads to an in-
crease in simulation time by an order of magnitude (Sav-
age et al., 2016). For example, run on a 2 x 2.6 GHz 8-core
Intel E5-2670, one example model in this event set for the
9100 km? domain, covering the entire island of Puerto Rico,
takes 3min to run at 90m, 77 min at 20 m, approximately
770 min (12.8 h) at 10 m, and 7700 min (5.3 d) at 1 m resolu-
tion. As a result, and given the fact that we had thousands of
events to simulate, the event set was run at 20 m. This resolu-
tion balances the need for high-resolution flood hazard out-
puts with the computational costs associated with employing
a high-resolution event-based model at the island scale and
also reflects state-of-the-art model resolutions used in other
locations, such as the UK (Bates et al., 2023). Our study is
the first known study to employ an event set approach at such
a high hydrodynamic model resolution over such a large do-
main.

Infiltration was not included in this model approach for
several reasons. As hurricanes take place during the hur-
ricane season (North Atlantic: June-November), soils in
Puerto Rico are often saturated, meaning infiltration is low
(Smith et al., 2005). Many pluvial modelling studies do not
include infiltration, as the appropriate parameter values are
highly uncertain and vary widely across space and time (Ber-
net et al., 2018; Guerreiro et al., 2017; Hall, 2015). Although
antecedent conditions are expected to vary, the infiltration
is likely to be of lower importance relative to other fac-
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Table 1. Table outlining the resolution of the global climate models used to drive the synthetic hurricane rainfall model from the HAPPI

climate ensemble.

HAPPI climate model  Horizontal resolution ‘ Number of simulated years of climate model data ‘ Reference

‘ Presentday 1.5°C 2°C ‘
CanAM4 2.81° x 2.81° 332 346 332 Wehner et al. (2014)
CAMS5-1-2-025degree 0.31° x 0.23° 409 365 396 Von Salzen et al. (2013)
ECHAMG6-3-LR 1.88° x 1.88° 427 378 383 Stevens et al. (2013)
NorESM1-HAPPI 1.25° x 0.94° 423 382 351 Bentsen et al. (2013)

Iversen et al. (2013)
Kirkevag et al. (2013)

tors, since infiltration will be minimal under extreme rainfall
events — such as those associated with hurricanes (Wehner
and Sampson, 2021).

To improve the representation of islands and hurricane
rainfall in the model, two novel model developments were
incorporated into the model set-up.

2.2.1 Spatially varying rainfall

Spatiotemporal representation of rainfall is important for ac-
curate simulation of pluvial flood events (Blanc et al., 2012).
Previous pluvial models using LISFLOOD-FP covered only
small domains and relied on time-varying but spatially con-
stant rainfall input (Sampson et al., 2013, 2015; Wing et al.,
2019). This study demonstrates the first use of spatially and
time-varying rainfall in a LISFLOOD-FP rainfall-driven hy-
drodynamic model, using a new routine to read spatiotem-
poral rainfall in NetCDF format. For each hurricane, a grid
of rainfall at ~ 10km resolution across the island was in-
put to the model domain at each time step (2-hourly), al-
though the hydrodynamic model calculations are simulated
with much shorter time steps (order of seconds). To model
all 59 000 hurricane rainfall events would be computationally
intractable and was not necessary considering many of the
hurricane rainfall events produced no or very little rainfall.
Thus, to select events to simulate in the model, all hurricane
rainfall events above a threshold of 3.75mmh~! peak rain-
fall intensity were simulated — a total of 4909 events (8.3 %
of the total). Within this, 1464 events were in the present
day, 1801 events were at 1.5°C, and 1644 events were at
2 °C. This threshold was selected as the minimum number of
events necessary to calculate a robust estimate of the 2-year
return period flood hazard, which is used as the lowest mod-
elled return period event in the event set. Events below this
threshold were not considered significant enough in terms
of rainfall to run. An additional 8 h of simulation time was
added to the end of each simulation based on our inspection
of the time it took for the rainfall to move through the model
and reach either the ocean or the lowest points of the DEM.
These decisions were based on trial and error and inspection
of the rainfall and resulting flood hazard events.
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2.2.2 River channels

Including river channels in flood models is necessary to pro-
duce accurate estimates of flood hazard (Hall, 2015; Neal
et al., 2021), but most pluvial flood models do not explic-
itly include river channels or drainage networks (Blanc et al.,
2012). Here, a subgrid approach was used to represent river
channels and drainage networks in the rainfall-driven mod-
elling framework (Neal et al., 2012). Rivers and drainage
channels were represented using the US National Hydrog-
raphy Dataset v2.1 (Simley and Carswell Jr, 2010). River
widths in Puerto Rico are inadequately represented in global
hydrographic datasets such as MERIT Hydro (Yamazaki
et al., 2019), as most channels are smaller than the resolution
of the DEM data used to create such products (e.g. MERIT
at 90m in the case of MERIT Hydro). As a result, width
was estimated using a power law regression with upstream-
accumulated area (Leopold and Maddock, 1953). Widths
used here were sampled using satellite imagery along the
13 main rivers across the island. The upstream-accumulated
area was calculated using the lidar DEM at 20 m resolution
by first generating a flow direction map and then using the
RichDEM algorithm outlined in Barnes (2017).

River depth estimates are also unavailable for Puerto Rico,
as is typical for most locations globally (Sampson et al.,
2015). To parametrize the river channel depths, the present-
day synthetic hurricane rainfall events for each climate
model (total: 1464) were first simulated through a model with
arbitrarily deep river channels (—10m) to get estimates of
the channel water depth for each event. Using these, the wa-
ter depth at a given return period was calculated empirically.
Information on flood defences was also not available, so in
this study we parametrize bankfull river depth by calculat-
ing the bed elevation to ensure that each channel conveyed
the present-day 1-in-2-year discharge (Pickup and Warner,
1976; Williams, 1978; Wolman and Miller, 1960) generated
by the present-day hurricane ensemble and subtracted from
the bank height derived from the DEM to get a calibrated
estimate of the channel depth value. Inevitably this means
that in locations where rivers do have defences, the model is
likely to overpredict flood hazard. If defence standard infor-
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mation was to become available, it would be a simple matter
to retrospectively apply these to the output flood hazard lay-
ers.

2.3 Population exposure estimates

Population exposure was calculated for each flood event as
the total number of people exposed to flood depths above
10cm. The WorldPop 90 m top-down constrained popula-
tion dataset (2020) was used to estimate the number of peo-
ple per 90m grid cell (Tatem, 2017; Bondarenko et al.,
2020). WorldPop was chosen because total population esti-
mates are adjusted to 2020 UN population estimates, mean-
ing out-migration trends following Hurricane Maria in 2017
are accounted for. The WorldPop data were downscaled
from 90m to 20 m to match the flood hazard data, using
nearest-neighbour resampling and assignment to 20 m cells
based on a proportional cell method, following Lloyd et al.
(2017). WorldPop has been extensively validated and com-
pared to other datasets (Reed et al., 2018; Leyk et al., 2019;
Tuholske et al., 2021), including for flood exposure appli-
cations (Mazzoleni et al., 2020; Smith et al., 2019). Smith
et al. (2019) found that WorldPop produces larger exposure
estimates in comparison to the High Resolution Settlement
Layer (HRSL) (Tiecke et al., 2017), likely due to a combi-
nation of coarser resolution and assignment of populations
to buildings. Recently, Tuholske et al. (2021) identified the
importance of conducting a sensitivity assessment of grid-
ded population products to capture the inherent uncertain-
ties in the use of gridded population estimates. However,
HRSL, high-resolution population density maps (HRPDMs)
(Bonafilia, 2019), and WorldPop are likely to give differ-
ent estimates in our case, not least due to the different dates
of the datasets before and after Hurricane Maria, where ap-
proximately 8 % (230 000) of the population is estimated to
have emigrated following the event (Audi et al., 2018). To-
tal population estimates for the main island using HRPDM
and HRSL are 4.87 million and 3.66 million, which is con-
siderably higher than the UN-adjusted WorldPop estimate
of 2.70 million, resulting in higher population exposure val-
ues. The future population was not considered due to a lack
of available high-resolution datasets (< 100 m grid size) es-
timating changes in the future population. For consistency,
population exposure exceedance was calculated for each
event using the same method as the hurricane rainfall as 1
divided by the annual exceedance probability (Emanuel and
Jagger, 2010; Feldmann et al., 2019; Vosper et al., 2020).

2.4 Model validation

To determine the skill of our flood hazard estimation,
we assessed the model performance using high-water-
mark (HWM) data collected by USGS following Hur-
ricane Maria (available at https://stn.wim.usgs.gov/FEV/
{#}MariaSeptember2017, last access: 24 October 2023). For
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more information about the suitability assessment of the
HWM data for validation, see Sect. S1 and Table S2 in the
Supplement. See Fig. S1 in the Supplement for the HWM
locations used in this study. Ideally it would be better to val-
idate the event set with a lower-magnitude flood consider-
ing the focus of this work is primarily on low-magnitude,
high-frequency events. However, there is no known valida-
tion data for small hurricane-rainfall-driven flood events in
Puerto Rico. As a result, Hurricane Maria was chosen as the
event to validate against, despite its high magnitude.

Firstly, to produce flood hazard estimates of Hurricane
Maria for validating the model and event set, we ran the
hydrodynamic model using two observational rainfall prod-
ucts (IMERG and NCEP Stage IV) that provide space- and
time-varying estimates of Hurricane Maria rainfall through
the flood inundation model. We use an identical hydrody-
namic model set-up to the event set, only changing the input
rainfall data. IMERG (NASA Global Precipitation Measure-
ment Mission, 2023) was run at ~ 10 km spatial resolution
and in 30 min intervals, whilst NCEP Stage IV (NCEP/EMC
4KM Gridded Data (GRIB) Stage IV Data, 2023; Du, 2011)
was run at ~ 4 km spatial resolution, with an hourly temporal
resolution. NCEP Stage IV was used instead of the higher-
resolution Multi-Radar Multi-Sensor (MRMS) rainfall prod-
uct as the landfall year of Hurricane Maria (2017) falls out-
side of the MRMS archive period (2020—onwards) (Univer-
sity of Oklahoma Cooperative Institute for Mesoscale Mete-
orological Studies et al., 2023).

We compare the flood hazard produced using IMERG and
NCEP Stage IV to understand the uncertainty in flood hazard
estimates using the different observation inputs.

IMERG has been widely compared to gauge-based rain-
fall data over many locations globally, demonstrating good
performance in the estimation of total rainfall (Freitas et al.,
2020; Pradhan et al., 2022), as well as good representa-
tion of temporal (Yu et al., 2021) and spatial event struc-
tures (Omranian et al., 2018; Rios Gaona et al., 2018; Prad-
han et al., 2022). For example, Rios Gaona et al. (2017)
show IMERG has a low relative bias over the Netherlands
(—1.51 %), and Tan et al. (2017) report a correlation coef-
ficient of 0.78 against radar and gauge-based observations
in the US. IMERG has also been shown to perform well at
capturing rainfall from tropical cyclones (Rios Gaona et al.,
2018; Yu et al., 2021). For example, Omranian et al. (2018)
found IMERG correctly predicted 62 % of rainfall from Hur-
ricane Harvey. Nonetheless, some studies have identified a
tendency for IMERG data to underpredict rainfall intensity
during extreme rainfall events (Freitas et al., 2020; Mazza
and Chen, 2023; Tian et al., 2018; Yu et al., 2021). For ex-
ample, Yu et al. (2021) found that extreme precipitation rates
from IMERG were 7.53 % lower than those of gauge data for
Typhoon Lekima in 2019.

NCEP Stage IV is a ground-based gauge and radar obser-
vation product that is often used in multi-product comparison
studies as the baseline observed dataset (Nelson et al., 2016).
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These studies have demonstrated that NCEP Stage IV pro-
duces good representation of overall rainfall rates across the
US (Nelson et al., 2016; Prat and Nelson, 2015), as well as
the spatial and temporal structures of rainfall (Habib et al.,
2009), including for tropical cyclones (Gao et al., 2020; Vil-
larini et al., 2011). Prat and Nelson (2015) compare annual
rain rates for the conterminous US using NCEP Stage IV
against gauge data, finding a correlation coefficient of 0.93
(R?). Gao et al. (2020) show that NCEP Stage IV only over-
estimated rainfall from Hurricane Harvey by 2 %. However,
underestimation of extreme rainfall has been shown in some
studies to be due to an increase in the number of missed
events as the rain rate increases (Habib et al., 2009; Prat and
Nelson, 2015). For example, Prat and Nelson (2015) report
that NCEP Stage IV has a tendency to underestimate rainfall
in comparison to surface observations across the contermi-
nous US (—14 % to +1 %, depending on the location). This
is likely a product of the inherent limitations of radar-based
precipitation products (see Nelson et al., 2016).

The model used to produce the synthetic hurricane rain-
fall event set utilized in this study has previously been com-
pared to NCEP Stage IV data over Puerto Rico, showing very
good agreement (Feldmann et al., 2019). This demonstrates
the suitability of the use of NCEP Stage IV as an observa-
tion dataset for comparison against in this study. Omranian
et al. (2018) showed IMERG was able to represent 62 %
of rainfall from Hurricane Harvey in comparison to NCEP
Stage IV, thus suggesting that IMERG is also likely capable
of adequately representing extreme rainfall associated with
Hurricane Maria. However, the performance of IMERG and
NCEP Stage IV data can be dependent on the number of
gauge-based observations available (Tang et al., 2018; Tian
et al., 2018). A total of 14 out of 24 USGS gauges were dam-
aged during Hurricane Maria in Puerto Rico (Bessette-Kirton
et al., 2020). As a result, this is a key limitation of using ob-
served data products to estimate tropical cyclone rainfall that
should be considered when drawing conclusions about the
accuracy of flood hazard associated with these rainfall prod-
ucts.

Next, we compared the performance of the event set with
the HWM data and the estimates from the observed rain-
fall products to sense check the model. Hurricane Maria-like
events were identified across all model scenarios, first by the
maximum total rainfall and then by the spatial characteris-
tics of the hurricane track. Maximum total rainfall is defined
as the highest total rainfall accumulation at a point on the
island. This metric was used as opposed to mean total rain-
fall, as studies that have investigated Hurricane Maria rainfall
describe the maximum total rainfall as the most significant
anomaly in the historical record associated with the event
(Ramos-Scharrén and Arima, 2019; Keellings and Hernén-
dez Ayala, 2019; Pokhrel et al., 2021). Maximum total rain-
fall is also the metric used to estimate the return period of
Hurricane Maria rainfall: at least a 1-in-115-year rainfall
event (Keellings and Herndndez Ayala, 2019). Studies use
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different metrics to derive maximum total rainfall, includ-
ing interpolation of rain gauge data and observation products
such as NCEP Stage IV. This means that the maximum to-
tal rainfall for Hurricane Maria varies between studies, rang-
ing between 733-1029 mm (Pasch et al., 2018; Keellings
and Herndndez Ayala, 2019; Ramos-Scharrén and Arima,
2019; Pokhrel et al., 2021). There is a limited number of
events in our event set with a > 100-year return period mag-
nitude maximum total rainfall (mean: 3.46 samples per cli-
mate model scenario) due to the comparatively short simu-
lated time record of our event set (range: 332427 years).
However, Puerto Rico experiences on average one hurricane
each year and has a mean annual rainfall of over 4000 mm in
some locations (Herndndez Ayala and Matyas, 2016). There
are therefore many events in the event set with a total mean
rainfall (total accumulated rainfall averaged across the is-
land) in the range of Hurricane Maria (range: 375-380 mm;
Pokhrel et al., 2021; Keellings and Herndndez Ayala, 2019;
Ramos-Scharrén and Arima, 2019). However, these events
have widely varying spatial characteristics and associated
flood hazard and are therefore not all Maria-like. Thus, it is
also important to consider the spatial characteristics of the
hurricane rainfall events so that events with similar rainfall
and spatial characteristics to Hurricane Maria can be identi-
fied. Similarity to Hurricane Maria based on track location
was assessed based on four criteria: (i) direct landfall on
the main island; (ii) south-western trajectory; (iii) whether
it makes landfall on the eastern portion of the main island;
and (iv) a similar track trajectory across the island, whereby
the event track and Hurricane Maria track intersect at at least
one point on the island.

3 Results
3.1 Hurricane Maria model validation

Figure 3 shows the flood hazard estimates produced by simu-
lating the IMERG and NCEP Stage IV rainfall products spa-
tiotemporally through the flood inundation model from the
island to local scale. The RMSE between the modelled flood
hazard and the HWM is 1.18 m for IMERG and 1.22 m for
NCEP Stage IV (see Fig. 4). This is comparable to post-event
HWM validation done in other locations (Wing et al., 2021)
(see Sect. 4.1 for a discussion of this). There is a signifi-
cant difference in the flood extents produced using IMERG
and NCEP Stage IV, with larger areas flooded using NCEP
Stage IV than IMERG. This highlights the uncertainty in so-
called “observed” flooding from Hurricane Maria.

In the event set, when the spatial characteristics of the hur-
ricane rainfall events are considered in addition to the maxi-
mum total rainfall, events we select as Hurricane Maria-like
events have some of the lowest RMSEs between the observed
and modelled water surface elevations (range: 1.13—1.33 m),
as demonstrated in Fig. 4. The track locations of these events
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Figure 3. Map showing the differences between flood hazard estimates of Hurricane Maria produced using IMERG and NCEP Stage IV

precipitation data from the island to local scale.

are shown in Fig. S2. The relationship between maximum to-
tal rainfall and RMSE for all events is expected, whereby as
the intensity of the event increases, the sensitivity to the flood
depths decreases as the floodplain fills and thus becomes less
responsive to additional increases in rainfall (Wing et al.,
2021). However, there are events in the event set with both
much higher and much lower rainfalls than Hurricane Maria
that have RMSEs that are both similar to and very different
from those of the Maria-like events. This demonstrates the
importance of the spatial characteristics of the events beyond
just the rainfall.

When comparing the flood estimates using IMERG and
NCEP Stage IV against the high-water-mark data, the Maria-
like events have similar RMSE scores (Fig. 4). However, both
observational rainfall products have different maximum total
rainfalls than those found in the literature. In particular, the
IMERG maximum total rainfall is considerably lower. This
is likely because satellite products such as IMERG often un-
derestimate orographic rainfall such as that exhibited over
Puerto Rico (Dinku et al., 2008).
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3.2 Design return period flood hazard maps

The probability of inundation was calculated for each pixel
in the model domain, calculating how many times each pixel
would be inundated above a 10cm depth in each climate
model temperature scenario. The return period of inundation
in each pixel was then determined by calculating how many
times we expect a pixel to flood based on the number of years
of data simulated (range: 332427 years, depending on the
climate model). Using this, we derived a set of return period
flood hazard maps, which provide a spatially explicit repre-
sentation of a given return period flood event under present-
day as well as 1.5 and 2°C warming. This supersedes any
currently available hurricane-rainfall-driven flood risk infor-
mation in Puerto Rico, both under current and future climate
change. This approach also moves beyond the traditional up-
lift approach often used in flood risk assessment under cli-
mate change, as it provides spatially explicit flood hazard in-
formation for a given return period at the island scale and at
high resolution.

Figure 5 highlights the scale and detail of flood hazard in-
formation using this approach, from the island scale (Fig. 5a)
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Figure 4. Graph showing the relationship between the root mean
square error (RMSE) and maximum total rainfall for all simulated
events under all climate scenarios (4909 events in total). All sim-
ulated events are indicated in blue. Events identified with Hur-
ricane Maria maximum rainfall totals and spatial characteristics
(20 events) are shown in red. The range of reported Hurricane
Maria rainfall is indicated with the red band. The orange square
is the NCEP Stage IV model estimate, and the brown triangle is the
IMERG model estimate.

to the local scale (Fig. 5¢). For example, Fig. 5¢ shows flood-
ing at the street level in Levittown, Toa Baja — a town signif-
icantly impacted by flooding from Hurricane Maria in 2017
(National Weather Service, 2017).

Based on this example for a 20-year return period flood
hazard event using the ECHAMG6-3-LR climate model, sev-
eral schools and hospitals would likely be impacted un-
der present-day and 1.5°C climate change. The estimated
flooded area of the 20-year return period flood increases un-
der 1.5 °C climate change in comparison to present-day cli-
mate change (2006-2015) (Fig. 5c), meaning areas currently
not at risk are affected at 1.5 °C climate change. Changes at
2 °C are similar to 1.5 °C but are not shown in Fig. 5 for pre-
sentation purposes.

Flooding in the northwest of the island shown in Fig. 5a
(latitude—longitude location: 18.3, —67.0 to 18.4, —66.5) is
a feature of the topography and model structure, not data
error. This area is dominated by karst hydrology (Hughes
and Schulz, 2020). Therefore, these areas of pooled water
would likely not feature if karst processes were explicitly
represented in the model set-up. The inclusion of karst pro-
cesses was beyond the scope of this study, and as this area
is sparsely populated it is unlikely to impact the presented
estimates of population exposure.

3.3 Characterizing changes in population exposure
under present-day as well as 1.5 and 2 °C climate

change

This research estimates changes in population exposure to
hurricane-rainfall-driven flooding for the island of Puerto
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Figure 5. Map showing the 20-year return period flood based on
the probability of inundation under present-day and 1.5 °C climate
change for the ECHAMG6-3-LR climate model. (a) Flooding at the
island scale. (b) Flooding in the Toa Baja and Catafio districts.
(¢) Flooding in Levittown, Toa Baja. For presentation purposes,
only inundation probabilities under present-day and 1.5 °C climate
change are shown here.

Rico under present-day as well as 1.5 and 2°C climate
change. The climate change scenarios are analysed for each
individual climate model, as opposed to the aggregate results,
as there are important differences between models that are
obscured when using the mean. This is a way of investigating
uncertainty explicitly, by understanding the differences be-
tween models. Studies such as Daron et al. (2021) have high-
lighted the importance of assessing individual model perfor-
mance when climate models give a wide range of projections.

Figure 6 shows the return period of a given exceedance
of population exposure from hurricane-rainfall-driven flood-
ing in Puerto Rico under present-day as well as 1.5 and 2°C
climate change. Return periods of population exposure ex-
ceedance above the 30-year return period are not considered
and are thus faded in Fig. 6. The number of samples for each
climate model scenario above the 30-year return period is
too small (mean: 12.7 samples) to determine accurate esti-
mates of population exposure above the 30-year return pe-
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Figure 6. Graph showing population exposure exceedance for present-day, 1.5 °C, and 2 °C climate change, as well as the number of samples
in each climate model at a given return period (dotted line). Population exposure above the 30-year return period is faded to represent the
uncertainty associated with the limited number of samples at these return periods.

riod (see Fig. 6). Thus, changes in population exposure above
the 30-year return period in this event set are subject to sig-
nificant uncertainty resulting from limited samples at these
event magnitudes and are therefore not considered further
in this analysis. A much longer event set would be required
to simulate robust changes in population exposure at higher-
magnitude return periods.

Three of the four climate models show agreement in the di-
rection of change between present and future climate change,
with increases in population exposure associated with a given
return period at 1.5 and 2 °C compared to the present day.
However, one climate model (CanAM4) shows the opposite
trend above the 10-year return period (see Fig. 7). One key
reason for this is likely to be the differences in the resolu-
tion of the underlying global climate model (GCM) data: the
CanAM4 GCM has a coarser resolution (2.81° x 2.81°) than
the next most coarse GCM, ECHAMG6-3-LR (1.88° x 1.88°)
(see Table 1). As a result, the underlying variables driving ex-
treme hurricane rainfall are less likely to be well represented
in CanAM4 compared to the other three climate models. It is
well understood that higher-resolution GCMs are better able
to simulate the underlying conditions important for the de-
velopment of extreme rainfall and tropical cyclones (Knutson
et al., 2020).

Present-day population exposure to flooding from hurri-
cane rainfall in Puerto Rico is approximately 2 %-5 % at the
2-year return period, rising to 8 %—10 % at the 5-year, 9 %—
12 % at the 10-year, and 11 %—14 % at the 20-year return pe-
riods (see Fig. 6). These are the first published estimates of
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present-day population exposure to flooding in Puerto Rico.
It is difficult to corroborate the population exposure estimates
with those for previous events in Puerto Rico due to a lack
of data; however these estimates are plausible in light of the
universal islandwide flash flood warning given to Puerto Rico
during Hurricane Maria (Pasch et al., 2018).

As shown in Fig. 7, the estimated number of people ex-
posed to flooding from hurricane rainfall on average every
2 years would increase by the largest percentage across the
different return periods (20 %—140 % at 1.5°C; —3 %—85 %
at 2°C). The lower bound here represents the results from
the CanAM4 model, which has the lowest GCM resolution
(see Table 1). The reason for the widest range at the 2-year
return period could be because of the different bed elevation
sizes at the historical 2-year return period for each climate
model. For a return period population exposure of 5 years as
shown in Fig. 8, the percentage increase in population ex-
posure at 1.5 and 2 °C ranges from 2 %—15 % and 1 %—-20 %,
respectively. This is a considerably lower range than the pop-
ulation exposure exceedance at the 2-year return period but
also shows more agreement between the climate models.

As shown in Fig. 7, there is a notable difference in pop-
ulation exposure exceedance between the present day and
1.5°C in three of the four climate models but a less clear
difference between 1.5 and 2°C. In two of the four cli-
mate models (CAMS-1-2-025degree and ECHAM®6-3-LR),
the percentage of the population exposed at a given return
period is higher at 1.5 °C compared to 2 °C and in one cli-
mate model (NorESM1-HAPPI) higher at 2 °C compared to
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Figure 8. Bar graph showing the number of people exposed to
flooding under present-day as well as 1.5 and 2 °C climate change
for the 5-year population exposure exceedance for each HAPPI cli-
mate model.

1.5°C. In the CanAM4 climate model, depending on the re-
turn period, the percentage of population exposure varies be-
tween the three climate scenarios, and no consistent pattern
is shown between the three across different return periods.
Figure 8 demonstrates that the range in the absolute pop-
ulation exposure numbers estimated for a given return pe-
riod between the four climate models is the same as or
greater than the percentage uplift in population exposure as-
sociated with 1.5 and 2°C, highlighting the range of pos-
sible absolute population exposure estimates. For the 5-
year return period, present-day absolute population exposure
ranges from 217 000 (ECHAMO6-3-LR) to 264 000 (CAMS-
1-2-025degree). This is a 21 % difference, whereas the high-
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est population exposure increase is 22 % between the present
day and 2 °C for the NorESM1-HAPPI climate model. This
underlines the difficulty in estimating current population ex-
posure to flooding. This is not only the case in data-sparse ar-
eas such as Puerto Rico, but also in data-rich areas such as the
conterminous US (Bates et al., 2021). However, the direction
of change between present-day and future climate change
(1.5 and 2 °C) is robust across three of the four climate mod-
els, meaning the signal in population exposure to flooding is
observable when comparing present-day and future climate
change, despite the uncertainty in absolute terms.

4 Discussion

Our estimates of flood hazard and population exposure driven
by hurricane rainfall under current and future climate change
supersede previous efforts to estimate hurricane-rainfall-
driven flood risk in Puerto Rico. Previous estimates rely on
local-scale FEMA fluvial assessments or global large-scale
assessments that most often neglect small islands through
the choice of scale, although the FEMA models will likely
be more accurate locally where they exist, depending on the
local river channel and flood defence information that was
available to the model developers. This study is one of the
first known published studies which propagates spatially and
temporally explicit hurricane rainfall data to the impact mod-
elling of flood hazard and population exposure estimates and
is the first to do so for a small island. Utilizing hydrody-
namic flood models to understand changes in flooding un-
der climate change is a critical gap in the literature, despite
the widespread use of hydrodynamic models to assess cur-
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rent flood risk. The latest IPCC AR6 Working Group I re-
port has demonstrated that changes in rainfall were still the
dominant method used to assess changes in pluvial flood-
ing under climate change (Seneviratne et al., 2021). How-
ever, here we find that the changes in population exposure
between present-day as well as 1.5 and 2 °C climate change
do not correspond linearly with changes in hurricane rainfall
using the HAPPI climate models (Vosper et al., 2020) anal-
ysed here, and therefore this rainfall proxy method may not
be appropriate when investigating changes in flooding from
hurricane rainfall.

4.1 Validating an event-based model

We present the first estimates of rainfall-driven flooding from
Hurricane Maria using IMERG and NCEP Stage IV precip-
itation data. Comparison against HWM data from Hurricane
Maria showed that the RMSE of these estimates was rea-
sonable given the typical uncertainties in data of this type
(IMERG: 1.18 m, NCEP Stage IV: 1.22m). There is uncer-
tainty associated with the HWM vertical datum transforma-
tion using VDatum (4-0.92 m), which is likely to impact the
RMSE. However, these RMSEs have a similar magnitude to
studies conducted in data-rich regions with similar-quality
HWM data, such as the conterminous US (~1m) (Wing
et al., 2021). This shows that the model is capable of realis-
tically simulating flood depths, demonstrating the suitability
of the model for estimating flood hazard under current and
future climate change. Inevitably, this finding should be con-
sidered alongside the inherent limitations when comparing
flood estimates to high-water-mark data. For example, RM-
SEs in this study are higher than in studies such as Neal et al.
(2009) (RMSE: 0.28 m). Yet, the HWM data in this study are
arguably lower-quality data due to the catastrophic nature of
the hurricane, which limited accessibility for post-event as-
sessment due to widescale infrastructure failure (Main et al.,
2021). HWMs in this study are concentrated in populated ar-
eas and were probably constrained to where it was safe to
travel immediately post-event. The performance of the model
is likely biased towards these coastal, more populated areas.
However, this is also where a considerable portion of the risk
is on the island, as this is where the majority of the popula-
tion resides.

Moreover, there are limitations of the observation pre-
cipitation datasets used, which propagate into the flood es-
timates. Many studies have compared the performance of
NCEP Stage IV and IMERG rainfall data (Li et al., 2022;
Mazza and Chen, 2023; Omranian et al., 2018; Villarini et al.,
2011). Tropical cyclone precipitation in the conterminous US
between 2002-2019 was much higher in NCEP Stage IV
than in satellite products such as IMERG (Mazza and Chen,
2023). Other studies support this conclusion and find that the
explanation for this difference is more likely an underesti-
mation of other products and not an overestimation bias in
NCEP Stage IV itself (Villarini et al., 2011). For example,
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IMERG is likely to underestimate orographic rainfall, which
could explain why the flood extent using IMERG is lower
than that using NCEP Stage IV (see Fig. 3). This provides
an incentive for the event set approach outlined in this study,
as it allows for a consideration of a wider range of plausible
events to get a greater understanding of uncertainty than just
the observations.

Based on the events selected as Hurricane Maria-like,
highlighted in Fig. 4, we find that our event set contains
events like Hurricane Maria and that these events have
amongst the lowest RMSEs in comparison to observed
HWMs from Hurricane Maria (range: 1.13—1.33 m). It was
expected that given the extreme magnitude of Hurricane
Maria (~ 115-year return period hurricane rainfall event;
Keellings and Herndndez Ayala, 2019), there would be a
limited number of events in our event set with this magni-
tude due to the comparatively short simulated time record of
our event set (range: 332-427 years per climate model sce-
nario). In our event set across all climate model scenarios, we
find 20 events that we classify as Hurricane Maria-like based
on maximum total rainfall and spatial characteristics. This
finding firstly reinforces just how extreme Hurricane Maria
was, following the devastating impact on both the population
and the infrastructure (Audi et al., 2018; Michaud and Kates,
2017; Main et al., 2021), as well as the literature examining
the event in the context of the historical record (Keellings and
Hernandez Ayala, 2019; Ramos-Scharrén and Arima, 2019).
This also indicates that the model has the capacity to repli-
cate events such as Hurricane Maria when both maximum
total rainfall and spatial characteristics are considered. Two
key conclusions can be taken from this. Firstly, this high-
lights the importance of variables other than rainfall when
estimating rainfall-driven flooding, such as the spatial char-
acteristics of the hurricane, including landfall location and
trajectory. Just considering the rainfall was not sufficient to
identify Maria-like events. As a result, simulating the spa-
tial and temporal distributions of the rainfall in an event set
is a crucial step needed to accurately represent the relation-
ship between hurricane rainfall and flood hazard in Puerto
Rico. This finding reinforces previous research, which has
identified the importance of hurricane landfall and spatial lo-
cation for the generation of floods in Puerto Rico (Herndn-
dez Ayala et al., 2017; Herndndez Ayala and Matyas, 2016;
Smith et al., 2005). Secondly, considering that there is uncer-
tainty in so-called observed flooding from Hurricane Maria
(see Fig. 3), the event set provides the opportunity to assess
many more realizations of events with similar characteristics
to Hurricane Maria than those available just using observa-
tions. This may allow for a better understanding of uncer-
tainty in rainfall-driven flooding for a given event and thus
a greater understanding of risk. Future research investigating
changes in flooding from hurricane rainfall should thus take
an event-based approach as outlined in this study.
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4.2 Current population exposure to flooding from
hurricane rainfall

Our results highlight the first published estimates of popula-
tion exposure to flooding in Puerto Rico under the present-
day climate, with approximately 8 %—10 % of the population
currently exposed to flooding from hurricane rainfall at the
5-year recurrence interval. This level of population exposure
has important implications for resilience to floods. It also
underlines the exposure to hydrometeorological hazards al-
ready experienced in SIDS, which is a key reason for their
high risk to climate change and disasters (Thomas et al.,
2020). It is also worth noting that these population expo-
sure estimates are for the present-day (2005-2016) climate
at around 0.9 °C of global mean warming and therefore do
not represent a pre-industrial climate. This means popula-
tion exposure estimates for the present day identified in this
study are likely to be already influenced by climate change,
given the significant impact of climate change on recent hur-
ricane rainfall events, such as Hurricane Maria, in Puerto
Rico (Keellings and Herndndez Ayala, 2019; Patricola and
Wehner, 2018).

4.3 Population exposure to flooding from hurricane
rainfall under 1.5 and 2 °C climate change

The results presented in this research estimate that popula-
tion exposure to flooding from hurricane rainfall will be am-
plified under 1.5 and 2 °C in all but one of the four HAPPI
climate models analysed. The Paris Agreement includes the
1.5°C target as the higher ambition goal and is often touted
as our best chance to limit the impacts of climate change to
within a “safe limit”. However, our analysis contributes to
the discourse SIDS have been highlighting for some time
now, which is that even a 1.5°C temperature rise above
pre-industrial levels leads to a serious threat to adaptive ca-
pacity (Ourbak and Magnan, 2018; Mycoo, 2018; Hoegh-
Guldberg et al., 2018; Mycoo et al., 2022). Here, we find
that even at 1.5 °C, the increase in population exposure asso-
ciated with hurricane-rainfall-driven flooding in Puerto Rico
is enhanced for events with a return period below 30 years.
This may have wide-reaching implications for the resilience
of Puerto Rico’s population. Moreover, although the 1.5°C
goal is technically feasible (IPCC, 2018, 2021), it is not cur-
rently the most likely temperature rise based on existing pol-
icy pledges. At the time of writing, global temperature in-
crease had already reached ~ 1.1 °C above pre-industrial lev-
els (World Meteorological Organization, 2021). Based on our
analysis, it is likely that flood hazard and population expo-
sure would increase further under higher-warming scenarios.
These changes are likely to vary between GCMs.

Due to the range in both absolute population numbers and
the relative changes in population exposure between present-
day as well as 1.5 and 2 °C across the four climate models in
this event set, there is uncertainty in both how many people
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might be exposed to a particular flood event and how much
this may change in the future. Moreover, the range in present-
day absolute population numbers is often larger than the cli-
mate signal, which underlines the difficulty in understanding
current population exposure (Bates et al., 2021). This demon-
strates the importance of assessing a range of different cli-
mate model projections to understand the range in uncertain-
ties, which taking an event set approach enables because it al-
lows for many more realizations of a given event magnitude
than is likely to have occurred in the historical record to be
considered. Overall, three of the four climate models utilized
in this study show that there is a difference in the percentage
of the population exposed at a given return period under 1.5
or 2 °C climate change in comparison to the present day. It is
likely that the difference between 1.5 and 2 °C is too small to
determine a robust directional change above variability, par-
ticularly as only 4 of the > 50 HAPPI ensemble members
are utilized in this analysis. Other studies have also shown a
spread around the median in precipitation, flood hazard, and
population exposure estimates under future scenarios (Bates
et al., 2021; Swain et al., 2020; Lopez-Cantu et al., 2020), as
well as uncertain differences between 1.5 and 2 °C given the
influence of underlying uncertainty in the GCM and precipi-
tation data (Uhe et al., 2019).

Other reasons for uncertainty in absolute population expo-
sures likely stems from the choice of population data and the
corresponding methodology used to assign population to pix-
els, as well as the underlying population data used to inform
the population totals. This is evidenced by the differences in
total population among WorldPop, HRSL, and HRPDM, as
discussed in Sect. 2.3. Moreover, flood defences are not in-
cluded in the model due to a lack of available data, meaning
the absolute population exposure numbers — particularly for
the lower return periods where flood defences are most likely
to provide protection — will probably be an overestimate in
some locations. If flood defence information was available,
the standards of protection could be applied to the exposure
estimates provided in this dataset to estimate population ex-
posure when flood defences are included. On the other hand,
as this study does not include estimates of coastal flooding,
the population exposure estimates may also be an underesti-
mate. This means that it is important to consider that the ex-
posure estimates outlined in this study are for inland rainfall-
driven flooding only.

4.4 Limitations of event set size

Population exposure estimates above the 30-year return pe-
riod are subject to significant uncertainty due to the lim-
ited number of samples (mean of < 12.7 samples across the
four climate models) available in the event set with these re-
turn periods. As a result, the changes in population expo-
sure between current as well as 1.5 and 2 °C above the 30-
year return period were not considered in this study. This
was an acceptable trade-off based on the current work, as
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this study was mostly focused on understanding changes
in lower-magnitude, higher-frequency events. Flood events
with a > 30-year return period are often valley-filling, and
therefore the impact of such events is already likely to be
very significant for the population, as demonstrated during
Hurricane Maria (Pasch et al., 2018). Larger events also of-
ten lead to a greater domestic and international response.
However, smaller, more frequent events lead to the erosion
of resilience in communities over time and do not receive
the same level of relief or response (Hamdan, 2015; Bull-
Kamanga et al., 2003; Allen et al., 2017; United Nations Of-
fice for Disaster Risk Reduction, 2019). Research to date has
also mostly focused on changes in the 100-year return pe-
riod event (Arnell and Gosling, 2016; Lehner et al., 2006;
Hirabayashi et al., 2013). Therefore, assessing changes in
lower-magnitude, higher-frequency events was a key aim of
this study. To detect changes in the 100-year return period
population exposure, a much longer event set would be re-
quired to detect a significant change between 1.5 and 2 °C.
Although we have shown that 20 events like Hurricane Maria
do occur in the event set overall, preferably there would be at
least 30-50 events to have confidence in relative changes, as
is shown in Fig. 6. This would require at least 1000 years of
synthetic data per climate model as a minimum. This should
be considered in the future when producing event sets de-
rived from GCMs with the intention to utilize these in flood
impact modelling. Inevitably, running a much larger ensem-
ble comes at the expense of computational cost; therefore a
trade-off, particularly with inundation model resolution, is
likely to be necessary.

5 Conclusions

We present the most detailed estimates of present-day and
future (1.5 and 2 °C) hurricane-rainfall-driven flood hazard
and population exposure estimates in Puerto Rico to date.
This analysis quantifies present-day population exposure to
flooding in Puerto Rico for small- to medium-sized events
(< 30-year return period). Population exposure to flooding is
likely to increase under both 1.5 and 2 °C climate change.
Estimates here suggest that for the present-day, 8 %—10 %
of the total population of Puerto Rico would be exposed
to flooding (defined as residing at a location with inunda-
tion depth > 10cm) from hurricane rainfall every 5 years,
increasing by 2 %—-15% and 1 %-20% at 1.5 and 2 °C, re-
spectively. Increases in the number of people exposed to
small- to medium-sized flood events (< 30-year return pe-
riod) could have a cumulative negative impact on the long-
term resilience of the Puerto Rican population without ap-
propriate adaptation. Uncertainty in absolute population ex-
posure estimates, as well as the range in estimated percentage
increases in flooding under 1.5 and 2 °C, should be consid-
ered when using these estimates to inform appropriate adap-
tation.
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Through validation of our model in comparison with ob-
served high-water-mark data for Hurricane Maria (~ 115-
year return period rainfall event), we find that our model
is able to replicate similar levels of flooding to that which
occurred and that there are events like Hurricane Maria in
the event set when events with both similar maximum total
rainfall and similar spatial track characteristics are consid-
ered. This has important implications for future research, as
an event-based approach allows for the assessment of many
more plausible scenarios than is available in the observed his-
torical record.

Puerto Rico is predicted to experience increased popu-
lation exposure to flooding associated with hurricane rain-
fall in the future under 1.5 and 2 °C climate change. These
findings add to the growing body of research that highlights
the critical and disproportionate risk climate change poses
to Small Island Developing States, amidst the uncomfortable
irony that they are among the lowest contributors to green-
house gas emissions responsible for anthropogenic climate
change (Hoegh-Guldberg et al., 2018; Thomas et al., 2020).
This simultaneously highlights the impact of every incre-
ment of global temperature increase on Small Island Devel-
oping States and thus the importance of high-ambition miti-
gation efforts, as well as the urgent need for increased climate
change adaptation and disaster risk reduction in the region.

Data availability. The HAPPI climate model data described
in  Mitchell et al. (2017), https://doi.org/10.5194/gmd-
10-571-2017, can be found and downloaded under an
Attribution-NonCommercial-ShareAlike 2.0  generic  license
at https://www.happimip.org/happi_data/ (HAPPI, 2024). The
lidar data can be found on the USGS Data Access Viewer: https:
/[coast.noaa.gov/dataviewer/#/lidar/search/where:ID=8630 (USGS,
2024). The LISFLOOD-FP 8.0 hydrodynamic model (version 8.0)
(software) is available at https://doi.org/10.5281/zenodo.4073011
(LISFLOOD-FP Developers, 2020). The WorldPop popu-
lation data can be found in Bondarenko et al. (2020),
https://doi.org/10.5258/SOTON/WP00684, under a Creative
Commons Attribution 4.0 international license. The high-water-
mark data can be found on the USGS Flood Event Viewer:
https://stn.wim.usgs.gov/FEV/#MariaSeptember2017 (USGS,
2024). IMERG data can be downloaded from the Global Precipi-
tation Measurement database at https://gpm.nasa.gov/data/imerg
(NASA, 2024). NCEP Stage IV data can be downloaded from
Du (2011). The probability-of-inundation (event set) flood hazard
maps from Archer et al. (2023) are available via data.bris at
https://doi.org/10.5523/bris.2qtinf51w52u52snylSruwekef under a
Creative Commons CC BY-NC 4.0 license.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-24-375-2024-supplement.
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