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Abstract. Monitoring deep-seated landslides via borehole
instrumentation can be an expensive and labor-intensive task.
This work focuses on assessing the fidelity of interferometric
synthetic-aperture radar (InSAR) as it relates to sub-surface
ground motion monitoring, as well as understanding uncer-
tainty in modeling active landslide displacement for the case
study of the in situ monitored deep-seated El Forn landslide
in Canillo, Andorra. We used the available Sentinel-1 data
to create a velocity map from deformation time series from
2019–2021. We investigated the performance of InSAR data
from the recently launched European Ground Motion Service
(EGMS) platform and the Alaska Satellite Facility (ASF) On
Demand InSAR processing tools in a time series compari-
son of displacement in the direction of landslide motion with
in situ borehole-based measurements from 2019–2021, sug-
gesting that ground motion detected through InSAR can be
used in tandem with field monitoring to provide optimal in-
formation with minimum in situ deployment. While identifi-
cation of active landslides may be possible via the use of the
high-accuracy data processed through the EGMS platform,
the intent and purpose of this work are the assessment of In-
SAR as a monitoring tool. Based on that, geospatial interpo-
lation with statistical analysis was conducted to better under-
stand the necessary number of in situ observations needed to
lower error in a remote sensing re-creation of ground motion
over the entirety of a landslide, suggesting between 20–25
total observations provide the optimal normalized root mean
square error for an ordinarily kriged model of the El Forn
landslide surface.

1 Introduction

Deep-seated landslides represent one of the most devastat-
ing natural hazards on earth, many creeping at inapprecia-
ble velocities over several years before suddenly collapsing,
usually with catastrophic velocities (Smalley, 1978; Voight,
1988). While there is a range of landslide sizes, several deep-
seated landslides include sizable earth slides involving mil-
lions of cubic meters of soil moving as a rigid block on
top of a deep (below the roots of the trees and the ground-
water level) basal layer of heavily deformed minerals (Pet-
ley and Allison, 1997; Frattini and Crosta, 2013). Their col-
lapse is usually very sudden, happening within minutes and
without a clear warning, reaching high velocities, as high as
the 20 ms−1 reported at the 1963 Vaiont landslide in Italy
(Voight, 1988; Smalley, 1978; Veveakis et al., 2007). The
catastrophic and fast collapse of this kind of landslide makes
the evacuation of the area that could be affected a cumber-
some task, thereby increasing the risk of fatalities and in-
frastructure damage (Reid, 1994; USG; Huang et al., 2015;
Guzzetti, 2000). Moreover, the complex physical nature of
the landslides induces high uncertainty in the number of in
situ observations required for a high-fidelity monitoring sys-
tem. That, in combination with the challenging and expen-
sive methods of in situ monitoring, makes the development
of reliable, data-driven, early warning systems (or tools/pro-
tocols to stop the acceleration of the landslide) an appealing
proposition.

Before the use of satellites, initial approaches in predict-
ing the catastrophic collapse of a landslide relied on physi-
cal access to the area with in situ (extensometer) or ex situ
(lidar, UAV) displacement data, whereby an assessment is
made using the inverse-velocity method (Jaboyedoff et al.,
2012; Saito, 1969; Carlà et al., 2017; Zhou et al., 2020).
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Considerable work has since been done in developing remote
sensing methods for landslide identification (Handwerger et
al., 2019; Zhong et al., 2020; Mohan et al., 2020; Casagli
et al., 2023; Chi et al., 2002; Zhao and Lu, 2018) and cre-
ating predictive models of deep-seated landslides based on
identifying different mechanisms involved as triggering fac-
tors of the acceleration like rainfall (Reid, 1994), temperature
(Mitchell et al., 1968; Veveakis et al., 2007), and chemical al-
terations (Hueckel and Pellegrini, 2002). Both developments
are now at a stage where they can be used in conjunction
with high-fidelity field data (piezometers, extensometers, and
thermometers) to obtain forecasting and mitigation protocols
(Seguí and Veveakis, 2021, 2022). However, the installation
of such in situ instrumentation is a costly operation, requiring
the transportation of heavy equipment often in remote areas
and the installation of sensors in deep boreholes that cannot
be deployed readily across the world.

To overcome these constraints, the use of remote sens-
ing has become a more available tool for landslide moni-
toring over the last several decades. Several techniques for
mapping and assessing slope movements have been devel-
oped, thus allowing for a more reliable and fast investiga-
tion (Cigna et al., 2013; Fiorucci et al., 2011; Guzzetti et al.,
2009; Michoud et al., 2012). Among the remote sensing op-
tions, the use of synthetic-aperture radar (SAR) sensors has
gained significant popularity for measuring surface deforma-
tions and constructing their time series, since this approach
requires no access to the site to install borehole instrumenta-
tion or handle UAV and lidar devices. Remote monitoring
approaches for deep-seated landslides are limited by their
frequent inability to provide information for the body of the
landslide when the moving mass is deep-seated in steep val-
leys or densely vegetated mountain ranges, as well as their
nature as surface-only measurements. This work builds on
the existing literature concerning the assessment of how re-
liable remote surface measurement tools could be for deep-
seated landslides (Bayer et al., 2017; Fobert et al., 2021; Bel-
lotti et al., 2014; Casagli et al., 2023; S and Kanungo, 2004;
Lissak et al., 2020; Scaioni et al., 2014; Wang et al., 2019),
providing a case study from the El Forn landslide in terms
of the data quality needed to identify and monitor a land-
slide and extending this body of literature using interfero-
metric synthetic-aperture radar (InSAR) data to decide the
minimum number of in situ observations needed for that.

2 Material and methods

2.1 Description of the El Forn landslide and in situ data

The El Forn landslide is a large deep-seated landslide lo-
cated southeast of the town of Canillo, Andorra, nestled in
the Pyrenees (see Fig. 1) that is triggered by snowmelt and
season rainfall that collect into an aquifer located below the
sliding surface. This landslide has a sliding mass of approxi-

mately 300 Mm3 that creeps at an average rate of 1.2 cmyr−1

(Seguí and Veveakis, 2021). Within the main sliding mass
of the landslide, there is a faster-moving lobe (Cal Ponet–
Cal Borronet lobe) that slides at a maximum velocity of 2–
4 cmyr−1 (EuroConsult, 2023; Seguí and Veveakis, 2021;
Zhao and Lu, 2018). At present, this lobe is equipped with
12 boreholes dispersed between the top and bottom of the
landslide collecting continuous in situ data. However, S10 is
the only continuously monitored borehole on the landslide,
with measurements every 20 min. Other boreholes are mon-
itored via analog non-continuous measurements (irregularly,
approximately once per month), which is why we chose to
work exclusively with S10. It is important to note that, while
there are available analog data over the landslide, only one
point is a viable option for comparison with InSAR, given
the no-snow period of 2019. In order to not reduce the fi-
delity of the continuous time series from S10, the authors
choose to not include these data in the body of this text. The
authors have made these data available upon request.

The sliding surface is located at 29 m depth, and the land-
slide moves as a rigid block (Seguí and Veveakis, 2021) on
top of it, creeping into the town of Canillo, as shown in
Fig. 1, with the periods of greatest acceleration during the
no-snow periods (May–August) each year. The shear band
is comprised of 80 % Silurian shales rich in phyllosilicates
(muscovite, paragonite, and chlorite) and 20 % quartz (Seguí
et al., 2020). A more detailed explanation of the geological
makeup of the shear band can be found in Seguí et al. (2020).
The terrain of the landslide can be seen in Fig. 1.

The primary instrumentation and data considered in this
study are housed within the S10 borehole, noted as the yellow
marker in Fig. 1. Data from S10 are sampled continuously
every 20 min via instrumentation including an extensometer,
three piezometers, and a thermometer within the shear band,
which measure horizontal displacement, water pressure, and
temperature changes in the material, respectively. The data
considered in this study for El Forn are displacement mea-
surements gathered from the extensometer. Detailed infor-
mation about the location of S10 and the depth profile of the
landslide with S10 borehole readings can be found in Seguí
and Veveakis (2021).

2.2 Remote data collection and processing

One of the key objectives of this work is to com-
pare InSAR to sub-surface ground measurements. This is
achieved through interferograms obtained by Sentinel-1A
and Sentinel-1B over a period of 6 months in 2019 with a
6 d acquisition interval. It is important to note that the land-
slide was arrested at the end of 2019, so 2019 remains the
year of focus for the intent and purpose of this work. Ad-
ditionally, a 6-month InSAR time interval is chosen in or-
der to avoid snow cover seasons on El Forn since backscat-
ter from snow cover makes use of InSAR particularly diffi-
cult due to low coherence (Kumar and Venkataraman, 2011;
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Figure 1. (a) Overview of the El Forn landslide with the Cal Ponet–Cal Borronet lobe, noted with the EGMS observation (see Sect. 2.2.2)
and S10 borehole location. White arrow shows the direction of the landslide into the town of Canillo, marked with a star. (b) Cal Ponet–Cal
Borronet lobe with the S10 borehole. (c) Localization of the landslide in Andorra. Images © 2024 Airbus.

PBC, 2022). Interferograms are then processed to obtain dis-
placement time series over the landslide’s surface using two
different approaches.

1. A high-precision (fine-spatial-resolution), low-accuracy
(noisy) approach was employed, whereby Sentinel-1
data are retrieved and pre-processed with a low coher-
ence threshold to obtain high-spatial-resolution (40m×
40m grid) displacement data so that geospatial analy-
sis can be conducted to determine the minimum number
and location of observations required for landslide mon-
itoring and reconstruction with quantified uncertainty.
This approach was deployed using the Alaska Satel-
lite Facility (ASF) On Demand InSAR processing tools
from the Vertex platform and will be hereinafter referred
to as ASF.

2. A low-precision (sparse-spatial-resolution), high-
accuracy (de-noised) approach was employed, whereby
Sentinel-1 data are filtered to reduce the noise so that
landslide identification can be achieved from high-
accuracy data on a 100m× 100m grid. This approach
was performed via immediate download through the
newly launched European Ground Motion Service
(EGMS) platform from Copernicus (EGM, 2023) and
will be hereinafter referred to as EGMS.

Note that the SAR imagery for both the data retrieved
via the ASF On Demand InSAR processing tools and the
Copernicus EGMS portal was taken from the Sentinel-1A
and Sentinel-1B satellites on a descending track with a 270°

angle of incidence from the vertical. Using the slope of the
ground at S10, the data for the EGMS displacement and
ASF–MintPy (Miami INsar Time-Series software in Python)
readings were translated into the displacement along the di-
rection of the landslide movement so they could be compared
to S10’s strain gauge readings.

While displacement data from EGMS are readily avail-
able, data retrieval from ASF requires a more hands-on ap-
proach, going through a short baseline subset pre-processing
step via ASF On Demand InSAR processing tools, followed
by an interferogram time series inversion via MintPy that al-
lows us to generate mean deformation velocity maps and de-
formation time series (Berardino et al., 2002; Handwerger
et al., 2019; Yunjun et al., 2019). Subsequent displacement
data from this time series inversion, alongside displacement
data pulled from the EGMS platform, are compared with in
situ displacement data from S10 to understand the correla-
tion between InSAR and in situ data. The other key objective
of this work is to understand how InSAR can be used for a
general uncertainty quantification for planning future bore-
hole placement, should the first objective prove InSAR can
be correlated with sub-surface measurements. This will be
done via iterative ordinary kriging, with the normalized root
mean square error (RMSE) being used as the statistical pa-
rameter of interest for confidence. The next paragraphs out-
line the technical details of data retrieval and processing for
each of these approaches.
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2.2.1 ASF InSAR data retrieval and time series
inversion

Open-access descending-track SAR acquisitions from the
Sentinel-1 C-band (radar wavelength of approximately
5.66 cm) were pulled from the Alaska Satellite Facility
(ASF) Vertex portal and processed automatically through this
portal via the Advanced Rapid Imaging Analysis (ARIA)
natural hazards project (Bekaert et al., 2019).

InSAR data retrieved for the purposes of this work were re-
trieved by selecting single-look complex (SLC) scenes with
a beam mode of interferometric wide (IW) covering the El
Forn landslide. Using the Alaska Satellite Facility On De-
mand tool, scenes were selected and pre-processed using the
short baseline subset (SBAS) tool, making it easier to order
the best interferograms for SBAS. However, MintPy’s default
time series tool was ultimately used. From there, all 619 in-
terferograms covering El Forn were downloaded via a Python
script from the ASF Vertex platform. Interferograms with
visible discontinuities were manually identified once down-
loaded and removed from the stack for time series analysis.
From there, the ASF Hybrid Pluggable Processing Pipeline
(HyP3) service allowed for each interferogram to be clipped
to the same size of overlap to standardize each interferogram.
Using MintPy (see Yunjun et al., 2019, for more information
on the time series inversion process), clipped interferograms
were then inverted to create a deformation time series using a
weighted least-squares inversion with a coherence threshold
value of 0.4. This approach creates velocity and deformation
maps on a 40m× 40m grid, as shown in Fig. 2a. It is to be
noted that the low coherence threshold used provides high-
spatial-resolution maps that can be used for geospatial anal-
ysis; however this increased resolution is accompanied by
increased noise, which makes landslide identification cum-
bersome, as seen in Fig. 2a and discussed in Results. For this
reason, a second approach is pursued in parallel, focusing on
the accuracy of the data as detailed below.

2.2.2 EGMS InSAR data retrieval and time series
inversion

A second set of InSAR data was taken from the European
Union’s Copernicus project via the European Ground Mo-
tion Service (EGMS) portal, available for immediate retrieval
as vertical and east–west displacement series per point. This
platform provides already processed displacement data over
parts of El Forn at a grid of around 100m×100m resolution
as seen in Fig. 2b, with the location of data points apparent
as dots over the topography of the El Forn landslide.

As already mentioned, there are key differences between
the data retrieved via the ASF On Demand InSAR process-
ing tools and the data retrieved from the EGMS portal for
the intent and purpose of this work – the key trade-off being
between precision and accuracy. More specifically, the ASF
On Demand data inverted via MintPy used a minimum co-

herence threshold of 0.4, whereas EGMS Ortho data only vi-
sualized individual measurement points greater than or equal
to 0.8. It is to be noted that the EGMS results could have also
been obtained by applying a higher threshold value to the
ASF approach, making the choice between the tool used sci-
entifically immaterial. The reasons for utilizing both in par-
allel are the ability to showcase and cross-validate the two
approaches.

2.3 Spatial interpolation and ordinary kriging

Ordinary kriging was conducted by first creating a grid of x
and y coordinates and corresponding velocity values at these
points. Distances between the random observations and each
individual grid point were calculated such that

d1 =

√(
xg− x

T
obs
)2
+
(
yg− y

T
obs
)2
, (1)

where xg and yg are the grid coordinates and xobs and yobs are
the random observation coordinates. The covariance matrix
was determined using the range τ and variance σ 2 from the
semivariogram such that

C= σ 2(e(−d1/τ)
T

). (2)

The Euclidean distances between the random observations
and each other were calculated, as well as the corresponding
covariance matrix 6, such that

d2 =

√(
xobs− x

T
obs
)2
+
(
yobs− y

T
obs
)2
, (3)

6 = σ 2(e(−d2/τ)
T

). (4)

The covariance matrices were appended into two matrices
that would be used Lagrange multipliers, matrices 6′ and C′,
respectively. The weights were calculated by solving the lin-
ear equations created by the 6 and C matrices. From there,
we calculate predictions Z∗ by taking the velocity values at
the random observations zt , multiplying them by the corre-
sponding weights W such that

Z∗ =6(W · zt ). (5)

The mean square error is then solved such that

MSE= σ 2
−6(W ·C′)−W. (6)

As a result, fidelity was assessed via the root mean square
error (RMSE=

√
MSE) of a kriged landslide surface via ran-

dom sampling without replacement per iteration.

3 Results

3.1 Landslide identification

As previously noted, ASF and EGMS data showcase a key
trade-off between precision and accuracy for the purposes
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Figure 2. Depiction of the El Forn landslide using InSAR. (a) Overview of the velocity of the El Forn landslide using data retrieved and
inverted using ASF against the field observation of the landslide boundary (green line). Colored dots indicative of total borehole locations,
delineated by color due to separate monitoring agencies in partnership with the government of Andorra. (b) InSAR detection of the El Forn
landslide by the Copernicus EGMS platform (highlighted in blue; retrieved on 28 September 2023), indicative of the possible use of EGMS
as a tool for active landslide detection.

of landslide monitoring. Figure 2a demonstrates that with
a lower coherence value, more, albeit noisy, data are avail-
able. In a separate vein, the EGMS data (pictured in Fig. 2b)
demonstrate the utility of an increased coherence value in
reducing noise and producing high-accuracy data usable for
landslide detection.

3.2 Correlating InSAR with in situ data for seasonal
ground motion

Upon data retrieval, both ASF and EGMS InSAR displace-
ments were compared along the direction of sliding in situ
strain gauge data from the S10 borehole in order to under-
stand the fidelity of InSAR in monitoring sub-surface ground
motion. This direct comparison of InSAR readings from ASF
and EGMS over the S10 borehole can be seen in Fig. 3.
Retrieval of InSAR displacement data from EGMS required
manual comparison of a couple of neighboring points with
S10’s in situ data in order to find points with a signal strong
enough to use for comparison since there was no individual
measurement point at the location of S10 after the increased
threshold was applied (see Fig. 1).

Indeed, the increased sparsity from EGMS resulted in a
lack of precision of the individual measurement points in
comparison with in situ measurements, as seen in Fig. 3c,
as compared to data retrieved via ASF On Demand tools
(as seen in Fig. 3b). Since data for the exact location of the
S10 borehole on the landslide were not immediately avail-
able on the EGMS platform, two coordinates neighboring the
WGS84 coordinate of S10 were pulled and compared to the
S10 data and InSAR data. Heterogeneity within the landslide
prevented selecting just one point as close to the S10 point as

possible without properly examining other neighbors. Fig-
ure 1 details which point was examined, with “EGMS” be-
ing the point in the EGMS database that was ultimately used
because of its close alignment with S10’s raw displacement
data. Figure 3 directly compares data retrieved with ASF
On Demand processing tools (and inverted via MintPy) and
EGMS with in situ displacement measurements. We observe
that while InSAR displacement measurements pulled from
EGMS are helpful in detection, the higher accuracy creates
data that lack the precision necessary for in situ comparison.

In order to justify this claim and quantify the performance
of the two approaches in time, a measure of linear indepen-
dence (correlation) was conducted with data with in situ mea-
surements from EGMS and ASF, respectively. The equation
used for the calculation of the correlation coefficient ρ(A,B)
of datasets A (in this case EGMS or ASF) and B (in this case
the in situ data) is

ρ(A,B)=
1

N − 1

N∑
i=1

(
Ai −µA

σA

)(
Bi −µB

σB

)
, (7)

where µ and σ are the mean and standard deviation of
the datasets, respectively. The results of the performance of
ASF and EGMS against the in situ data are detailed in Ta-
ble 1, where we see that the ASF dataset (ρ(ASF, in situ)=
0.6957) performs considerably better against in situ data
than EGMS (ρ(EGMS, in situ)= 0.0761). This is presum-
ably due to the spatial heterogeneity of the landslide’s dis-
placement around the point of measurement, which is not ex-
actly on S10 (see Fig. 1), and is not reflective of the overall
quality of the EGMS data.
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Figure 3. Comparison of in situ displacement data with displacement data retrieved via EGMS and ASF On Demand processing tools. (a) In
situ displacement readings from the S10 borehole. (b) The 7 d cumulative moving average of InSAR displacement readings over S10 with
data retrieved via ASF On Demand processing tools. (c) The 7 d cumulative moving average of InSAR displacement readings with data
retrieved from EGMS.

Table 1. Comparison of correlation coefficients (Eq. 7) of displace-
ment data retrieved from ASF and EGMS with in situ measure-
ments.

In situ ASF EGMS

In situ 1.000 0.6957 0.0761
ASF 0.6957 1.000 –
EGMS 0.0761 – 1.000

3.3 Ordinary kriging: determining necessary number
of remote observations

Having shown the correlation between ASF and in situ mea-
surements in the previous section, we move forward with the
densely populated ASF mapping to carry out ordinary krig-
ing. In order to best understand how many observations (i.e.,
boreholes) impact the ability to remotely model ground mo-
tion of a deep-seated landslide, 200 iterations of randomly se-
lected samples (with sizes ranging from 5–100 points) along
the main landslide surface were selected and had ordinary
kriging performed on them to assess the RMSE in predicting
ground motion over the surface of the landslide, with sum-
maries of RMSE for each number of iterations visible in the
box-and-whisker plot in Fig. 4. Similarly, single-iteration or-

dinary kriging was conducted over the sliding mass to assess
how various sample sizes (ranging from 10–2000) were in-
volved in re-creating velocities of the sliding mass and where
possible areas of interest for further investigation were.

More specifically, 200 iterations were conducted per num-
ber of random observations of the average velocity in 2019
(pulled from a uniform distribution, as seen in Fig. 4b), re-
sults of which can be seen in Fig. 4c. Figure 4c, the dia-
gram of the normalized root mean square error (RMSE), indi-
cates a marked drop in the interquartile range (IQR) between
20 and 25 observations. Also important to notice is that the
range of outliers is significantly lower, starting from n= 25
observations and going forward. Note that the dots outside
of the whiskers are outliers, meaning they lie outside of the
whiskers defined by Q1− 1.5 · IQR and Q3+ 1.5 · IQR.

Figure 5 reflects how n samples re-create the average land-
slide velocity movement over the no-snow periods in 2019 in
the line of sight (LOS) and the fidelity (RMSE) of doing so.
For example, n= 30 random samples re-create certain parts
of the landslide better than others for one iteration. Figure 5
shows the evolution of how increased random samples that
go through the process of ordinary kriging then re-create cer-
tain parts of the landslide surface faster or better than others.
In the case of n= 30, the top and bottom of the landslide are
better developed than the middle of the landslide, which in-
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Figure 4. (a) InSAR velocity map of the 2019 snow-free period in Andorra via ASF-processed InSAR. (b) Uniform distribution probability
density function (red line) and occurrence histogram (blue) of velocities pulled from panel (a). (c) Boxplot of normalized RMSE of 200
iterations for various numbers of random observations of velocities from panel (a) pulled from the uniform distribution in panel (b).

dicates where further investigation may be necessary. More
specifically, the center of the landslide is the least developed
throughout the iterations of ordinary kriging – for modeling
purposes then, further investigation would be required on this
part of the sliding mass (either further instrumentation or a
more narrow scope of InSAR).

4 Discussion

The application of interferometric synthetic-aperture radar
(InSAR) for deep-seated landslide monitoring represents a
significant advancement in geohazard assessment and man-
agement. The use of InSAR and its comparison to traditional
in situ approaches for sub-surface ground motion serve as
important next steps in assessing the viability of the remote
sensing tool for large-scale deep-seated landslide monitor-
ing. However, there are known limitations in this approach,
including limited sub-surface in situ borehole readings to di-
rectly compare with InSAR. Additionally, as seen in Fig. 3,
there is a trade-off between accuracy and precision when it
comes to the use of InSAR for landslide detection versus
monitoring. However, for considering the use of InSAR as
a monitoring tool, this approach is limited in the assump-
tion that the deep-seated landslide moves as a rigid block,
as opposed to other deep-seated landslides that may move
sequentially and not as uniformly. In the latter case, other
sub-surface in situ measurements may be necessary to verify
the movement of the landslide. There are, conversely, sev-
eral advantages to the use of InSAR as a sub-surface moni-
toring tool, including its possibility of being linked with ex-
isting deep-seated landslide models (Veveakis et al., 2007;

Seguí and Veveakis, 2022; Lau and Veveakis, 2024). The
ability to correlate InSAR displacement readings with sub-
surface ground motion, as addressed in this work, lends itself
to be applied to well-developed models in which displace-
ment from InSAR and in situ borehole readings can tune sta-
bility models for deep-seated landslides that use temperature
in the landslide (frictional heating) as the primary driver for
tertiary creep and catastrophic collapse of these large mass
movements. With that in mind, there is an opportunity to ap-
ply InSAR as a forecasting tool. This opportunity, explored
more in-depth in Lau and Veveakis (2024), has the potential
to lead to a majority or, in some cases, completely remote ap-
proach to deep-seated landslide forecasting, utilizing InSAR
and existing borehole data to develop and tune existing mod-
els for deep-seated landslide stability (Veveakis et al., 2007).

It is important to note, however, that the authors acknowl-
edge that the best landslide-monitoring options often derive
data from a variety of sources – remote sensing, in situ instru-
mentation, and narrative accounts. However, unlike ground-
based methods, such as borehole instrumentation, which can
be labor-intensive and expensive, InSAR provides compre-
hensive spatial coverage, with the capability of being applied
to monitor remote or inaccessible regions. This is particu-
larly beneficial for rural mountain communities who con-
stantly face some degree of exposure to deep-seated land-
slides and who often reside in rugged terrains where in-
stalling and maintaining ground-based instruments can be
challenging, costly, or financially inaccessible.

Of course, the results completed in this work could always
be enhanced by the addition of more in situ monitoring op-
tions for the El Forn landslide to offer more direct compar-
ison between InSAR and borehole displacement readings.
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Figure 5. Results of ordinary kriging of various random samples
(n= 10–2000) via 1 iteration (as opposed to the 200 iterations of
average velocity values; during the no-snow months of 2019 in the
direction of the line of sight (LOS) in Fig. 3c), reflecting gaps in
predictive capabilities on the surface of the landslide for further in-
vestigation. Normalized RMSE for each process of ordinary kriging
indicating error for each sample size. The town of Canillo is marked
with a star, and cardinal directions have been added for context.

Similarly, this work could be enhanced by more landslide
case studies, perhaps with slopes facing other directions in
order to better understand the sensitivity of in situ and InSAR
data regarding the way the InSAR data were taken. Both of
these possibilities for improvement are considered by the au-
thors for future works.

5 Conclusions

In this paper, the use of InSAR for landslide monitoring was
assessed for two key objectives: (1) correlation with in situ
data to test the accuracy of InSAR in monitoring seasonal
and off-seasonal sub-surface movement and (2) spacial inter-
polation across the landslide surface with various numbers of
InSAR points to help us understand the use of InSAR for es-

tablishing areas on a scarp that need monitoring (i.e., further
instrumentation), as well as understanding how many remote
observations would allow us to minimize error in re-creating
the scarp without using the full dataset. Correlation of the In-
SAR data with extensometer data in the S10 borehole on the
El Forn scarp indicates that InSAR can be used to understand
seasonal sub-surface ground motion.

The spatial interpolation, as well as the subsequent error
assessment, conducted on the El Forn landslide using solely
InSAR data helped determine the necessary number of ob-
servations to adequately monitor the general movement of
the landslide. Based off of 200 iterations of random samples
going through a process of ordinary kriging on the landslide,
the outliers of the normalized root mean square error dropped
significantly between 20 and 25 remote observations, as in-
dicated in Fig. 4. Based off of Fig. 5, the most uncertainty,
coupled with the most movement, though even an increased
number of random samples are in the middle of the landslide,
can be seen in the middle of the top left lobe, in the northeast-
ern corner of the landslide. In future studies, we could look to
perform regression kriging with 20–25 remote observations,
focused solely on this region to understand how uncertainty
propagates for this part of the landslide on a finer timescale.
Overall, InSAR has many purposes when considering the
monitoring of deep-seated landslides, with several options to
build on our existing knowledge for studies to come.

Appendix A: Alaska Satellite Facility (ASF) InSAR
workflow

The user-friendly interface of the Alaska Satellite Facility
Vertex platform allows for easily specifying an InSAR pair.
For this work, an interferometric-wide single-look complex
(IW SLC) pair was selected, with SLC meaning that the SAR
data have been compiled to an image but have not been multi-
looked yet. Once the reference and dates of interest are se-
lected, ASF begins multi-looking through various pairs of
images. Note that for continuity purposes, the older SLC im-
age is always used as the reference image.

In order to prepare a digital elevation model (DEM) file for
subsequent geocoding and corrections, a topographic phase
is subtracted from the interferogram by replicating an exist-
ing DEM to account for the actual topographic phase. In this
case, Hyp3 takes the DEM from the publicly available 2021
release of the Copernicus GLO-30 DEM library. Removing
this topographic phase from the interferogram, the deforma-
tion signal is all that remains (Hogenson et al., 2024).

Left with a stack of wrapped interferograms, phase un-
wrapping uses a minimum-cost flow (MCF) triangulation
method to assign multiples of 2π to each pixel, which re-
stricts the number of 2π jumps in phases to regions where
they may occur. Note that thermal noise and interferometric
decorrelation can result in 2π phase discontinuities, which
are known as “residues” – these can be reduced via filtering.
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Filtering reduces phase noise and increases the accuracy of
the interferometric phase by reducing the number of interfer-
ogram residues (Hogenson et al., 2024).

After filtering, a validity mask directs the unwrapping pro-
cess by applying thresholds for coherence and amplitude
(backscatter intensity) values for each image pair. For this
work, this amplitude threshold is kept at 0.0, so coherence
thresholds drive the masks. Coherence is estimated from a
normalized interferogram, with a range from 0.0 to 1.0, with
1.0 being perfectly coherent. Once coherent thresholds are
applied, unwrapping will proceed relative to a fixed pixel
point. For this work, this point was selected as a rooftop in
the town of Canillo at the foot of the landslide. This reference
point is assigned an unwrapped phase value of 0 at this point,
and every other pixel around it is then assigned a multiple of
2π with respect to that point.

Lastly, these pixels are reprojected from SAR slant range
space into a map-projected ground range space and exported
from the GAMMA internal format to the GeoTIFF format.
These unwrapped interferograms are ready to be go through
a time series inversion (Hogenson et al., 2024).

Data availability. Datasets are open-access and retrievable
from the Alaska Satellite Facility Vertex platform, with
a repository of interferogram pair files and dates used
(https://doi.org/10.5281/zenodo.11067825, Lau, 2024), and
the European Ground Motion Service Copernicus platform (https:
//egms.land.copernicus.eu/, Lau 2023). In situ sample data for S10
are available at https://doi.org/10.5281/ZENODO.10971186 (Lau
et al., 2024). Additional data are available upon request of the
corresponding author.
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