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Abstract. Developing an effective and reliable integrated
drought index is crucial for tracking and identifying
droughts. The study employs game theory to create a spa-
tially variable weight drought index (game-theory-based
drought index, GTDI) by combining two single-type indices:
an agricultural drought index (standardized soil moisture
index, SSMI), which implies drought hazard-bearing con-
ditions, and a meteorological drought index (standardized
precipitation evapotranspiration index, SPEI), which implies
drought hazard-causing conditions. In addition, the entropy-
theory-based drought index (ETDI) is introduced to incorpo-
rate a spatial comparison with GTDI to illustrate the rational-
ity of gaming weight integration, as both entropy theory and
game theory belong to linear combination methods in the de-
velopment of the integrated drought index and entropy theory
has been applied in related research. Leaf area index (LAI)
data are employed to confirm the reliability of GTDI in iden-
tifying drought by comparing it with SPEI, SSMI, and ETDI.
Furthermore, a comparative analysis is conducted on the tem-
poral trajectories and spatial evolution of the GTDI-identified
drought to discuss GTDI’s level of advancement in monitor-
ing changes in hazard-causing and hazard-bearing impacts.
The results show that GTDI has a very high correlation with
single-type drought indices (SPEI and SSMI), and its gaming
weight integration is more logical and trustworthy than that
of ETDI. As a result, it outperforms ETDI, SPEI, and SSMI
in recognizing drought spatiotemporally and is projected to
replace single-type drought indices to provide a more accu-

rate picture of actual drought. Additionally, GTDI exhibits
the gaming feature, indicating a distinct benefit in monitoring
changes in hazard-causing and hazard-bearing impacts. The
case studies show that drought events in the Wei River basin
are dominated by a lack of precipitation. The hazard-causing
index, SPEI, dominates the early stages of a drought event,
whereas the hazard-bearing index, SSMI, dominates the later
stages. This study surely serves as a helpful reference for the
development of integrated drought indices as well as regional
drought prevention and monitoring.

1 Introduction

Drought is one of the most widespread and frequent natu-
ral hazards, commonly associated with inadequate rainfall,
a deficit in soil moisture, and reduced streamflow (Berg and
Sheffield, 2018; Q. Zhang et al., 2022; AghaKouchak et al.,
2023). Due to the combined pressures of climate change and
human activities, the intensity of global drought and the area
of arid land have expanded dramatically since the 21st cen-
tury (Dai, 2013; Huang et al., 2016), severely constraining
socioeconomic development and human livelihoods. More-
over, global warming is projected to increase the frequency
and severity of future drought occurrences (Trenberth et al.,
2014; Vicente-Serrano et al., 2020).

China, with its complex terrain and diverse climate types,
is one of the countries that is suffering the most severe
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drought-related losses worldwide (Dai, 2011; Y. Zhang et
al., 2021). Drought is responsible for more than half of
the economic losses caused by climatic hazards in China
(Wang et al., 2023). According to the Ministry of Water Re-
sources of China (2023), the average annual impacted area of
crops and grain loss due to drought was 19.51× 106 ha and
15.8× 109 kg, respectively, from 1950 to 2022. The loss has
become increasingly severe, particularly after 2006, result-
ing in direct economic losses of more than USD 160 billion
in China. For example, the severe drought event that occurred
in southern China from autumn 2009 to spring 2010 deprived
almost 21 million people of drinking water, with direct eco-
nomic losses of nearly USD 3 billion (Yang et al., 2012). Fur-
thermore, the ongoing drought in China may worsen in the
future (Leng et al., 2015; Wang et al., 2018), with drought
becoming more frequent, intense, and extended. As a result,
scientifically identifying regional drought risks and clarify-
ing regional drought development and evolution patterns can
assist in actively developing drought mitigation and disaster
reduction strategies, assuring the security of food supply and
water use.

Drought is currently categorized into four types based on
distinct description objects: meteorological, agricultural, hy-
drological, and socioeconomic droughts (Wilhite and Glantz,
1985; Shah and Mishra, 2020; Ding et al., 2011). Despite
differing definitions and emphasis, meteorological drought
is always regarded as the root cause of the other three types
of drought (Ma et al., 2020). In terms of the driving mech-
anism of drought occurrences, meteorological drought indi-
cates the causative attribute of drought (Zhang et al., 2023),
whereas the other three types primarily reflect the state of
hazard-bearing entities. Concurrently examining the hazard-
causing and hazard-bearing components of drought is essen-
tial for effective estimation and management of drought risk.

Drought is frequently identified using drought indices. The
standardized precipitation index (SPI; McKee et al., 1993)
for meteorological drought, the standardized soil moisture
index (SSMI; Hao and AghaKouchak, 2013) for agricul-
tural drought, and the standardized runoff index (SRI; Shukla
and Wood, 2008) for hydrological drought are currently the
most commonly used drought indices. These single-type
drought indices are primarily used for one-dimensional(-
type) drought measurement and evaluation. However, due
to the complex causes and wide-ranging impacts of drought
events, a single-type drought index usually cannot fully and
effectively reflect the spatiotemporal development process of
drought events (Chang et al., 2016; Wei et al., 2023). As a
result, much effort has been expended in developing compre-
hensive drought indices, such as the Palmer drought severity
index (PDSI; Palmer, 1965). However, these indices are not
very successful at distinguishing between meteorological and
agricultural drought influences and evaluating changes in re-
gional patterns. Because of this, some works refer to con-
structing a composite or integrated drought index in two or
more dimensions (Chang et al., 2016; Won et al., 2020; Wei

et al., 2023), employing both linear and nonlinear combina-
tion approaches.

The copula function is commonly employed in the non-
linear approach. Won et al. (2020) proposed a copula-based
joint drought index (CJDI) by combining SPI and the evap-
orative demand drought index (EDDI); Wei et al. (2023)
used the copula function to connect precipitation, the nor-
malized difference vegetation index (NDVI), and runoff and
then constructed the standardized comprehensive drought in-
dex (SCDI), which had been applied to drought assessment in
China’s Yangtze River basin. It should be noted that copula
functions are possibly reliant on the assumption that sam-
ples follow a specific probability density function (Zhang
et al., 2019). However, due to the complicated interactions
between the atmosphere, vegetation, soil, and groundwater,
this assumption is not generally valid for the drought. If the
copula function is used to estimate drought quantiles, signifi-
cant biases may be introduced, affecting the reliability of the
copula-based integrated drought indices (Huang et al., 2015).

An integrated drought index can also be generated by lin-
early mixing single-type drought indices, such as the entropy
weight method (Huang et al., 2015) and the method of princi-
pal component analysis (Liu et al., 2019). In the relevant re-
search, it is highly emphasized that the weighting of different
types of drought indices is critical, since it has a significant
impact on the reliability of drought monitoring results (Liu et
al., 2019; Wei et al., 2023). Furthermore, it has been revealed
that the impacts of different factors on drought (Blauhut et
al., 2016; X. Zhang et al., 2022), such as hazard-causing and
hazard-bearing factors, are changing spatially and confronta-
tional, necessitating the development of effective linear com-
bination methods for measuring their spatial heterogeneity in
contribution to drought. Therefore, game theory is suggested
for the integration of drought indices because it can com-
prehensively consider the opinions of each party to achieve
a distribution pattern that satisfies each participant (Lai et
al., 2015; Jato-Espino and Ruiz-Puente, 2021); it is superior
to the entropy weight method in weight allocation, and its
calculation process is simpler than copula functions. It has
been widely applied in water resource management (Madani,
2010; Khorshidi et al., 2019; Batabyal and Beladi, 2021).

This study proposes a game-theory-based drought in-
dex (GTDI), which integrates a meteorological drought
index (standardized precipitation evapotranspiration index,
SPEI), implying a hazard-causing impact, and an agricultural
drought index (standardized soil moisture index, SSMI), im-
plying a hazard-bearing impact, through the game theory
method. The structure of this study is as follows: Sect. 2 in-
troduces the research topic and data sources. Section 3 de-
scribes the SPEI, SSMI, GTDI, and ETDI (entropy-theory-
based drought index) calculation procedures, as well as the
verification and analysis methodologies. Section 4 investi-
gates the evolutionary features of GTDI, examines its ra-
tionality of integrated weight in comparison to ETDI, and
validates its usefulness in identifying drought occurrences
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using leaf area index (LAI) data. Furthermore, the impact
of hazard-causing and hazard-bearing indices on GTDI’s
spatiotemporal evolution is explored through the synergistic
analysis of GTDI, SPEI, and SSMI. Finally, Sect. 5 high-
lights the study’s significant findings.

2 Study area and data

2.1 Study area

The Wei River is the largest tributary of the Yellow River,
with a drainage area of 134 800 km2 (Fig. 1). It rises to
the north of Niaoshu Mountain in Gansu Province, at about
33.5–37.5° N in latitude and 103.5–110.5° E in longitude,
and runs primarily through Shaanxi, Gansu, and Ningxia
provinces. The Wei River basin (WRB) is high in the west
and low in the east, with a geographical elevation ranging
from 322 to 3777 m. The WRB has a continental monsoon
climate with large seasonal fluctuations, with average annual
temperatures and precipitation ranging from 7.8 to 13.5 °C
and 500 to 800 mm, respectively (T. Zhang et al., 2022). Pre-
cipitation in the WRB accounts for over 60 % of the total
annual amount, and its spatial distribution shows a steady
decrease from southeast to northwest. Furthermore, evapo-
ration is significant in the WRB, with annual water surface
evaporation ranging from 660 to 1600 mm. As a result of its
specific climate characteristics, the WRB is a typical place
for drought research.

2.2 Data source

The data used in this study comprise (1) DEM data (Zhang,
2021) with a grid size of 30 m; (2) monthly precipitation and
temperature datasets (Peng et al., 2019) from 1950 to 2020
with a grid size of 1 km; (3) the GLDAS_NOAH025_3H_2.0
and GLDAS_NOAH025_3H_2.1 soil moisture dataset for 0
to 10 cm of the soil surface layer, with a spatial resolution
of 0.25° and data period from 1950 to 2020; and (4) the
GLOBMAP leaf area index dataset (Version 3) with a pe-
riod of 1981 to 2019 and a spatial resolution of 0.08° (Liu et
al., 2012). Additionally, in order to facilitate calculation and
analysis, precipitation, air temperature, soil moisture, and
leaf area index (LAI) data were all resampled to the same
spatial resolution of 0.125° using the bilinear interpolation
method in this study. The data source is shown in Table 1.

3 Methodology

3.1 Calculation of single-type drought indices

3.1.1 SPEI

The standardized precipitation evapotranspiration index
(SPEI) was first introduced by Vicente Serrano et al. (2010).

Table 1. Data sources.

Name Source

DEM data http://www.ncdc.ac.cn/
Precipitation dataset http://www.geodata.cn/
Temperature dataset http://www.geodata.cn/
Soil moisture dataset https://disc.gsfc.nasa.gov/datasets/
LAI dataset https://www.resdc.cn/

All links were accessed on 14 November 2023.

As a meteorological drought index, SPEI primarily charac-
terizes the hazard-causing attribute of drought (Zhang et al.,
2023). On the basis of the standardized precipitation index
(SPI), SPEI takes potential evapotranspiration (PET) into ac-
count and demonstrates superior effectiveness and applica-
bility (Labudová et al., 2017; Li et al., 2020; Tan et al., 2023).
The Thornthwaite method, which can better reflect the poten-
tial surface evapotranspiration, is employed to calculate PET
in this paper. As is well known, drought indices on different
timescales can reflect the dry and wet conditions of the study
area during different periods. The 3-month drought index can
reflect short- and medium-term dry and wet conditions and is
more sensitive to seasonal drought, which helps us identify
and analyze seasonal drought in the Wei River basin. There-
fore, we calculated the SPEI series over a 3-month timescale
in this study. The detailed calculation method of SPEI can be
found in Sect. S1 in the Supplement.

3.1.2 SSMI

Drought can have a direct impact on the growth state of
hazard-bearing bodies such as crops (Zhang et al., 2023),
making agricultural drought hazard-bearing. The standard-
ized soil moisture index (SSMI) is one of the most effective
indices for predicting agricultural drought (Hao and AghaK-
ouchak, 2013), and its calculation method is comparable to
that of SPI (Xu et al., 2021; You et al., 2022). Meanwhile, it
has been revealed that the log-logistic probability distribution
function with three parameters is better suited to soil mois-
ture data series than the original gamma probability distribu-
tion function (Oertel et al., 2018). As a result, in this study,
we employed the calculation method proposed by Oertel et
al. (2018) for the agricultural drought index, SSMI, with a 3-
month timescale, just like SPEI. The calculation method of
SSMI is detailed in Sect. S2.

3.2 Construction of integrated drought indices

In this study, two integrated drought indices, GTDI and
ETDI, are built utilizing game theory and the entropy weight
method for index weight allocation, respectively, and both
combine SPEI and SSMI. ETDI serves as a comparison with
GTDI in this study, and Sect. S3 introduces the calculation
process of ETDI.
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Figure 1. A map of the Wei River basin. Panel (a) shows the geographical location of the Wei River basin in China, panel (b) displays
the spatial distribution of elevation (Zhang, 2021) in the Wei River basin, and panels (c) and (d) demonstrate the annual precipitation and
temperature (Peng et al., 2019) of the WRB.

As a subset of optimality modeling, game theory (GT) in-
vestigates the interacting outcomes of resource conflicts and
cooperation between two or more entities (Lai et al., 2015). It
attempts to follow an optimal allocation approach that maxi-
mizes the interests of each participant through mathematical
analysis (Jato-Espino and Ruiz-Puente, 2021). To date, GT
has been widely applied in the fields of hydrology and wa-
ter resources, such as water price equilibrium (Batabyal and
Beladi, 2021), reservoir scheduling policy (Khorshidi et al.,
2019), and subjective–objective weighting issues (Liu et al.,
2020). In this study, the hazard-causing index (SPEI) and the
hazard-bearing index (SSMI) are regarded as two opponents
in the game. Through confrontation, the GT technique ob-
tains the ideal weight allocation for both sides and then uses
this to produce the integrated drought index (GTDI) at each
grid point. The following text outlines the methods for creat-
ing GTDI using game theory.

Step 1. A possible weight set is combined by SPEI and
SSMI in the form of an arbitrary linear combination as fol-

lows:

V = αspeiV
T
spei+αssmiV

T
ssmi, (αspei,αssmi > 0), (1)

where V is a possible combined vector, V spei and V ssmi are
the weight vectors of SPEI and SSMI, and αspei and αssmi are
the weight coefficients.

Step 2. Minimize the deviation between V and V k using
the following formula:

Min‖V −V k‖2, (k = spei,ssmi). (2)

Step 3. According to the differentiation property of the ma-
trix, transform formula (2) into a first-order system of linear
equations:[

V speiV
T
spei V speiV

T
ssmi

V ssmiV
T
spei V ssmiV

T
ssmi

][
αspei

αssmi

]
=

[
V speiV

T
spei

V ssmiV
T
ssmi

]
. (3)

Step 4. Solve the weight coefficients αspei and αssmi in
Eq. (3) and normalize them:{
α∗spei = αspei/(αspei+αssmi),

α∗ssmi = αssmi/(αspei+αssmi).
(4)
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Table 2. Drought classification criteria for SPEI, SSMI, GTDI and
ETDI (Huang et al., 2023).

Grade Classification Values

1 No drought −0.5< index
2 Mild drought −1.0< index≤−0.5
3 Moderate drought −1.5< index≤−1.0
4 Severe drought −2.0< index≤−1.5
5 Extreme drought Index≤−2.0

Step 5. Calculate GTDI:

V gtdi = α
∗

speiV
T
spei+α

∗

ssmiV
T
ssmi, (5)

where V gtdi is the combined vector of GTDI and α∗spei and
α∗ssmi are the normalized weight coefficients of SPEI and
SSMI, respectively.

3.3 Classification criteria for drought

The calculating approach of SSMI in this study is compara-
ble to that of SPEI, while GTDI and ETDI are built on SSMI
and SPEI. As a result, as indicated in Table 2, SSMI, GTDI,
and ETDI use the same grading criteria as SPEI.

3.4 Reliability verification

3.4.1 Evaluation of correlation

A correlation analysis of the integrated drought index with
two single-type drought indices is necessary to assess the
consistency of indicators before and after coupling. Thus,
Pearson’s correlation coefficients (PCCs) (Panda et al., 2018)
between GTDI or ETDI and SPEI or SSMI are calculated for
each grid (Eq. 6), and their correlation in different locations
is explored. Table 3 shows the correlation levels and corre-
sponding absolute value range of PCCs.

PCCx,y =
∑n
i=1 (xi − x)(yi − y)√∑n

i=1(xi − x)
2∑n

i=1(yi − y)
2
, (6)

where n denotes the sample size; xi and yi are data samples
of x and y, respectively; and x and y are arithmetic average
of x and y, respectively.

3.4.2 Efficacy verification in identifying drought

Because surface vegetation is highly sensitive to soil mois-
ture (Li et al., 2022), drought usually leads to a decrease
in the vegetation leaf area index (LAI; Fang et al., 2019;
Bock et al., 2023). In light of this, LAI data are used to
evaluate the drought recognition capabilities of various in-
dices to further validate their dependability. The leaf area in-
dex dataset used is the GLOBMAP leaf area index product
(https://www.resdc.cn/, last access: 14 November 2023).

Table 3. The absolute value range of PCCs and correlation levels
(Yang and He, 2022).

Correlation levels Absolute values of PCC

Very low or none [0,0.2]
Low (0.2,0.4]
Moderate (0.4,0.6]
High (0.6,0.8]
Very high (0.8,1.0]

Significant disparities in LAI trends can be identified in the
WRB around 1999, as illustrated in Fig. 2a. Prior to 1999, the
average annual growth rate of LAI was only 0.21 a−1, but it
skyrocketed to 1.93 a−1 after 1999, owing mostly to “Grain
for Green” (Li et al., 2019; Tian et al., 2022). In order to
mitigate the potential inaccuracy resulting from the regional
LAI trend change, we selected the validation years of 1981
to 1999, during which the growth trend was relatively weak.
In addition, LAI in the WRB rises significantly from March
to August, falls fast from September to November, and then
remains low from December to January of the following year
(Fig. 2b). It can be discovered that LAI’s trend change in au-
tumn and winter is the result of vegetation’s natural growth
cycle, resulting in a reduced sensitivity of LAI to soil mois-
ture and its further failure to identify drought. As a result, the
autumn and winter months (September to January) should
also be excluded from the validation period.

In summary, LAI raster data from March to August (spring
and summer) of the period from 1981 to 1999 were selected
to verify the drought identification efficacy of drought in-
dices. Meanwhile, the image from the mid-month of each
month is regarded as the representative data of the month. If
the occurrence of drought has been discovered, it can be de-
termined by comparing the mean values of LAI during arid
months with non-arid months. The specific process is as fol-
lows:Md,i =

∑m
j=1Ii,j
m

,

Mn,i =
∑n
l=1Ii,l
n

,
(7)

Ri =

{
1, Md,i <Mn,i,

0, Md,i ≥Mn,i,
(8)

where Md,i and Mn,i represent the average values of LAI in
the ith grid during arid and non-arid months, respectively;
m and n are the number of arid and non-arid months, re-
spectively; Ii,j and Ii,l represent the value of LAI of the ith
grid during the j th arid month and the lth non-arid month,
respectively; and Ri represents the drought recognition per-
formance of the drought index in the ith grid, with a value of
1 indicating fine and 0 indicating poor.
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Figure 2. The plot graphs of the leaf area index (LAI) in the Wei River basin with an interannual trend spanning 1981 to 2019 (a) and the
average monthly allocation from 1981 to 1999 (b).

3.5 Analysis methods for drought characteristics

3.5.1 Mann–Kendall test

The Mann–Kendall (M–K) test is a non-parametric statistical
test method with a simple computational process (Yue and
Wang, 2002). It has been extensively utilized for the analy-
sis of hydrological and meteorological sequences (F. Zhang
et al., 2021; Agbo et al., 2023). In this study, the M–K test
method is used to perform trend testing on the drought index
sequences, and Cai et al. (2022) can be referred to for the
calculation principle.

3.5.2 Drought identification

Drought is often identified by two factors: the drought index
threshold and the drought area threshold. In this study, we
used −1 as the drought index threshold, which is compatible
with current research (Deng et al., 2021; Feng et al., 2023),
and 1.6 % as the area threshold (Wang et al., 2011). Further-
more, a spatiotemporal continuity technique is used to de-
tect drought occurrences, with specific procedures available
in Deng et al. (2021). Briefly, as long as the drought index
value at a grid point is lower than the drought index thresh-
old of −1, we determine it as a drought grid point. When
the total area of drought grid points in a certain month ex-
ceeds the drought area threshold, we determine that month
to be a drought month. Furthermore, when multiple consecu-
tive months are determined to be drought months, if the over-
lapping area of drought areas in space between two adjacent
consecutive drought months exceeds the drought area thresh-
old, we determine these two months as belonging to the same
drought event; otherwise, they belong to different drought
events.

3.5.3 Spatiotemporal characteristics of drought

The spatiotemporal characteristics of drought mostly man-
ifest in variables such as drought intensity, drought area,

drought duration, and the drought centroid (Wen et al., 2020).
Based on the current research methods for studying the spa-
tiotemporal characteristics of drought, we divided the vari-
ables representing drought characteristics into two scales:
grid point and monthly, in order to systematically analyze
and describe the drought characteristics of the WRB.

1. The grid point’s drought characteristic variable.

The drought intensity Si of the grid point is calculated
by

Si = S0− Ii, (9)

where Ii is the value of the ith drought grid point and
S0 is the threshold of the drought index.

2. Monthly drought characteristic variables.

The monthly drought characteristic variables consist of
the monthly drought intensity Sam, the monthly drought
areaAam, and the monthly drought centroid (Xam, Yam),
as shown in Table 4.

4 Results and discussion

4.1 Evolutionary characteristics of the integrated
drought index (GTDI)

Using the game theory method, the monthly GTDI of the
WRB was calculated based on SPEI and SSMI. Meanwhile,
considering the WRB’s seasonal characteristics, GTDI se-
quences from May, August, November, and February of the
next year were chosen to represent the drought conditions of
spring, summer, autumn, and winter, respectively.

Nat. Hazards Earth Syst. Sci., 24, 3479–3495, 2024 https://doi.org/10.5194/nhess-24-3479-2024



X. Zhao et al.: GTDI: a gaming integrated drought index 3485

Table 4. Monthly drought characteristic variables.

Variables Formula Notes Number

Monthly drought intensity
Sam

Sam =
1
k

∑k
i=1Si Here k is the number of drought grids and Si

is the intensity value of the ith drought grid.
Eq. (10)

Monthly drought area
Aam (104 km2)

Aam = kA Here A is the spatial range of a single grid,
and its unit is 104 km2.

Eq. (11)

Monthly drought centroid
(Xam, Yam)

{
Xam =

∑k
i=1Sixi

/∑k
i=1Si

Yam =
∑k
i=1Siyi

/∑k
i=1Si

Here Si is the drought intensity value of the
ith drought grid and xi and yi are the longitude
and latitude coordinates of the ith drought grid,
respectively.

Eq. (12)

Figure 3a demonstrates the temporal evolution character-
istics of the monthly GTDI in the WRB from 1950 to 2020.
Therein, the linear tendency rate of GTDI is −0.024 per
10 a, illustrating that the drought in the WRB is aggravat-
ing, which is also mentioned in Wang et al. (2020). Particu-
larly since the 1990s, the frequency of moderate and severe
drought months and their average drought intensity have in-
creased by 5.1 percentage points (from 34.1 % to 39.2 %)
and 0.043 (from 0.242 to 0.285), respectively. In terms of
seasonal change, drought in the WRB showed an increas-
ing trend in spring, summer, and autumn (Fig. 3b–d). In
the eastern half of the WRB, the significantly aggravated
area of spring drought accounts for 29.98 % of the overall
basin, while most places in summer and autumn show a non-
significant aggravation in drought severity. Winter is an ex-
ception, as most areas experience a reduction in drought,
especially in the eastern and northern regions of the WRB
(Fig. 3e).

4.2 Reliability verification of GTDI

4.2.1 The evaluation of correlation

Table 5 illustrates the grid proportions of different correla-
tion levels between the integrated drought indices (GTDI and
ETDI) and the single-type drought indices (SPEI and SSMI),
whereas Fig. 5 depicts the spatial distribution of their corre-
lation coefficients in different seasons.

As shown in Table 5 and Fig. 4, the correlation between
GTDI and SPEI or SSMI in the entire WRB is quite signif-
icant, and the correlation coefficients (PCCs) are close to 1
in spring, summer, and autumn but slightly lower in winter
(Fig. 4a–h). The correlation coefficients in the western and
northern areas of the WRB are lower in winter (Fig. 4d, h,
l, and p), but the minimal correlation coefficients between
GTDI and SPEI or SSMI are still above 0.83 and 0.67, re-
spectively (Fig. 4d and h). It is worth noting that GTDI and
SPEI have a very high correlation across the WRB over all
four seasons, whereas 45.2 % of locations only have a good
correlation between GTDI and SSMI in winter (Table 5). As

a result, the correlation between GTDI and SPEI is stronger
than that of SSMI, especially during the winter season.

The graph also shows that the integrated drought index
(ETDI) demonstrates spatially opposite correlations to SPEI
and SSMI. For instance, in the southeastern area of the Wei
River basin, there is the worst association between ETDI
and SPEI, but the correlation between ETDI and SSMI is
the strongest (Fig. 4i–p). Similarly to GTDI, the correla-
tion between ETDI and SPEI or SSMI is slightly higher in
spring, summer, and autumn than in winter. However, as
compared to GTDI, the geographical variability in the cor-
relation coefficients between ETDI and SPEI or SSMI is
more pronounced in the same season (Fig. 4). As seen in
winter (Fig. 4p), the highest correlation coefficient between
ETDI and SSMI is approximately 1, while the lowest value
is around 0.34. In terms of grid proportions at various lev-
els of correlation, the correlations between ETDI and SPEI
or SSMI do not achieve a very high level in certain regions
over the four seasons (Table 5), resulting in its performance
falling short compared to GTDI.

Overall, GTDI exhibits superior performance to ETDI,
particularly in terms of the homogeneity of the spatial dis-
tribution of correlation coefficients, indicating that the inte-
grated drought index (GTDI) constructed in this study has
more reliable consistency with single-type drought indices
(SPEI and SSMI).

4.2.2 Comparison of the integrated weight of GTDI
and ETDI

To contrast the weight allocation of SPEI and SSMI in cre-
ating the integrated drought indices (GTDI and ETDI), the
spatial distribution of their weight ratios (SPEI /SSMI) in
the WRB is plotted, as shown in Fig. 5.

GTDI, an integrated drought index constructed using the
game theory method, exhibits a spatial distribution of the
weight ratio (SPEI /SSMI) that gradually decreases from
northwest to southeast (Fig. 5a). Furthermore, the weight ra-
tio in GTDI ranges from 1.02 to 1.18, showing a substantially
balanced weight allocation between the hazard-causing index
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Figure 3. Temporal evolution characteristics of integrated drought in the Wei River basin from 1950 to 2020 (a) and spatial distribution of
drought trends in different seasons (b–e). The symbol “**” denotes the change is significant, and the percentage means the area proportion
of different trend types.

Table 5. Grid proportions of integrated drought indices (GTDI, ETDI) and single-type drought indices (SPEI, SSMI) at different correlation
levels.

Correlation levels GTDI vs. SPEI GTDI vs. SSMI

Spring Summer Autumn Winter Spring Summer Autumn Winter

Very high 100 % 100 % 100 % 100 % 100 % 100 % 100 % 54.8 %
High 0 0 0 0 0 0 0 45.2 %

Correlation levels ETDI vs. SPEI ETDI vs. SSMI

Spring Summer Autumn Winter Spring Summer Autumn Winter

Very high 83.6 % 89.5 % 88.4 % 66.2 % 89.7 % 95.6 % 98.2 % 68.3 %
High 16.4 % 10.5 % 11.6 % 33.3 % 10.3 % 4.4 % 1.8 % 25.8 %
Moderate 0 0 0 0.5 % 0 0 0 5.4 %
Low 0 0 0 0 0 0 0 0.5 %
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Figure 4. Spatial distribution of correlation coefficients in different seasons. The color bar on the right denotes Pearson’s correlation coeffi-
cients.

Figure 5. Comparison of the integrated weights of GTDI and ETDI. Panels (a) and (c) demonstrate the spatial distribution of weight ratio
(SPEI /SSMI) in the construction process of GTDI and ETDI, respectively, and panel (b) is a spatial distribution map of the average annual
precipitation in the Wei River basin.

(SPEI) and the hazard-bearing index (SSMI). Meanwhile, the
weight ratio of SPEI to SSMI is closer to 1 in places with
greater precipitation (Fig. 5a and b). It is noteworthy that the
change in weight ratio (SPEI /SSMI) in GTDI closely re-
sembles the spatial distribution pattern of the average annual
precipitation in the WRB, as evidenced by a correlation co-
efficient of −0.88, indicating a significant negative relation-
ship.

The entropy-theory-based drought index (ETDI), on the
other hand, does not show a distinct spatial distribution pat-
tern for the weight ratio of SPEI to SSMI. Its weight ratio
greatly fluctuates between locations, ranging from 0.22 to
5.95 (Fig. 5c), implying that entropy theory fails to estab-
lish a consistently stable allocation of weights in the inte-
grated drought index (ETDI) development process. Further-
more, the weight ratio (SPEI,/SSMI) in ETDI has only a
minor relationship with annual average precipitation, as evi-
denced by a correlation coefficient of only −0.04.

As a consequence of comparing GTDI and ETDI, it was
discovered that the game theory approach gives an inte-
grated weight geographic distribution compatible with the
precipitation-dominated natural drought pattern, which is es-
sentially congruent with the drought generation mechanism
in this basin. As a result, it is thought that the weighting of
SPEI and SSMI in GTDI is more reasonable and reliable.

4.2.3 Efficacy verification in identifying drought

To further investigate the reliability of the integrated drought
index (GTDI), the leaf area index (LAI) data are used to
assess its efficacy in identifying drought, and the drought
recognition performance of GTDI is evaluated by Eq. (8) and
presented in Fig. 6. To compare, Fig. 7 depicts the spatial
distribution of efficacy in recognizing drought using ETDI,
SPEI, and SSMI, and Table 6 provides a statistical list of the
efficacy ratios of four drought indices in different validation
months.
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Figure 6. The spatial distribution of GTDI’s efficacy in identifying drought in the Wei River basin. Panels (a)–(f) depict the findings from
March to August, and panel (g) displays a satellite image of the Wei River basin. “Fine” means that the drought index accurately captured
the occurrence of drought, while “Poor” means that the drought index did not capture the occurrence of drought.

Figure 7. The spatial distribution of efficacy in identifying drought of ETDI, SPEI and SSMI. “Fine” means that the drought index accurately
captured the occurrence of drought, while “Poor” means that the drought index did not capture the occurrence of drought.

During the validation period from March to August, GTDI
performs well in recognizing drought (Fig. 6), particularly in
May, when it captures 90.28 % of the drought in the WRB
(Table 6). GTDI, on the other hand, performs relatively badly
in June (Fig. 6d) and August (Fig. 6f), with only 71.8 %
and 76.3 % of effective recognition grid points, respectively
(Table 6). In conjunction with Fig. 6g, it is discovered that
the grid points with poor performance in June and August
are concentrated in the forest area, which is the dark-green
area in the WRB’s northeast hinterland. As is widely known,
forests have more access to deeper soil moisture than farm-
ing land and grassland (Xu et al., 2018; Bai et al., 2023), re-
sulting in forests having higher drought tolerance than other
terrestrial vegetation types (Jiang et al., 2020; Chen et al.,
2022). However, the soil moisture data used in this study are
only from 0 to 10 cm of the soil surface layer, which could ex-
plain why GTDI’s drought diagnosis ability in the forest re-
gion is skewed. Even with the defect in forest regions, GTDI
has exhibited strong drought monitoring capabilities in the
WRB and can effectively capture the occurrence of drought.

In contrast to GTDI, the effectiveness of drought detec-
tion by ETDI, SPEI, and SSMI is geographically random and

chaotic, as illustrated in Fig. 7. Furthermore, in all validation
months, ETDI, SPEI, and SSMI only provide efficacy ratios
of around 50 %, indicating a lack of significant usefulness in
identifying drought (Table 6). As a result, when compared
to ETDI, SPEI, and SSMI, it is clear that GTDI provides
significant advantages in the field of drought monitoring.
To summarize, GTDI does not simply combine the hazard-
causing index (SPEI) and the hazard-bearing index (SSMI)
like ETDI, but it can indeed capture drought occurrence in
most areas, addressing the issue of single-type drought in-
dices’ insufficient responsiveness to actual drought events.

4.3 Comparison of temporal trajectories of drought
identified by GTDI, SPEI, and SSMI

The drought identification trajectories of the integrated
drought index (GTDI) and single-type drought indices (SPEI
and SSMI) during the study period are depicted in Fig. 8.
Out of the 850 months spanning March 1950 to December
2020, merely 345 months are devoid of any drought, ac-
counting for approximately 40.6 % of the total, which con-
tradicts our common understanding of drought incidents.
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Table 6. The efficacy ratios of four drought indices in different validation months.

Drought March April May June July August
indices

GTDI 78.6 % 84.1 % 90.4 % 71.8 % 87.5 % 76.3 %
ETDI 48.4 % 49.6 % 50.7 % 50.5 % 49.2 % 48.6 %
SPEI 50.1 % 49.5 % 50.6 % 49.4 % 48.4 % 48.8 %
SSMI 49.1 % 50.4 % 52.8 % 49.9 % 49.5 % 48.9 %

Among the 505 dry months, 409 months experience agricul-
tural drought (SSMI, 48.1 %), 356 months experience mete-
orological drought (SPEI, 41.9 %), and 260 months (30.6 %)
experience both simultaneously. GTDI identifies just 308
arid months (36.2 %) out of 850 months, which is lower than
SSMI and SPEI. According to the data presented above, agri-
cultural drought has been the most common occurrence in
the WRB over the last 70 years, followed by meteorolog-
ical drought, with GTDI identifying the lowest number of
drought months.

Out of the GTDI-identified drought months, the proportion
of meteorological drought occurring alone is 6.5 % and the
proportion of agricultural drought occurring alone is 15.9 %,
possibly due to high temperatures, while the proportion of
meteorological drought and agricultural drought occurring
simultaneously is up to 77.6 %. Thus, it is clear that GTDI
is closely related to the hazard-causing index (SPEI) and the
hazard-bearing index (SSMI) and is caused by both in most
cases. It corresponds to the general public’s understanding of
drought incidents. Furthermore, because it is calculated by
weighting SPEI and SSMI, GTDI has an advantage in de-
picting the temporal gaming evolution of SPEI and SSMI.
From the perspective of seasonal distribution, meteorological
drought occurs most commonly in the summer and autumn,
with a frequency of more than 40 %, but less frequently in
the winter and spring. At the same time, agricultural drought
(SSMI) occurs at a frequency of over 45 % in all seasons,
with a very similar frequency in the four seasons. The sea-
sonal allocation mode of drought identified by GTDI is sim-
ilar to that of SPEI, with the similarity being that it occurs
more frequently in summer and autumn than in winter and
spring. However, the frequency of drought determined by
SPEI is slightly higher than that determined by GTDI in each
season.

The above explanation suggests that using SPEI, SSMI,
and GTDI for monthly-scale drought identification may re-
sult in various drought trajectories. Meanwhile, GTDI is a
hybrid of the hazard-causing index (SPEI) and the hazard-
bearing index (SSMI), as it has a higher overlap with SSMI in
terms of drought trajectory, implying changes in the hazard-
bearing body during the dry period, while being closer to
SPEI in terms of drought seasonal allocation, responding to
the fluctuation in hazard-causing factors. When paired with
the GTDI reliability analysis in Sect. 4.2, it is concluded that

the occurrence of drought events in the Wei River basin is
still dominated by precipitation deficiency, as the region is
located in a dry location with low rainfall.

4.4 Comparison of the spatial evolution of drought
events identified by GTDI, SPEI, and SSMI

To explore the spatial development process of drought oc-
currences recognized by GTDI, SPEI, and SSMI while elim-
inating the randomness of a single event, we selected three
drought events that lasted for a duration of 5 months for spa-
tial evolution analysis. Figure 9 shows the spatial evolution
processes of three drought events identified by GTDI, SPEI,
and SSMI, spanning June to October 1982, March to July
2000, and September 2018 to January 2019, respectively.
Table 7 shows the drought intensity and the percentage of
drought area for each month of the three drought events.

Taking the 1982 drought event as an example, the mete-
orological drought emerges initially, followed by a steady
decrease in its impact areas (Fig. 9c). However, the overall
drought intensity increases and subsequently decreases (Ta-
ble 7), and the drought centroid migrates from the WRB’s
center to the northwest. It is worth noting that concur-
rent agricultural drought lags behind meteorological drought.
When comparing the drought geographic evolution processes
identified by SSMI and SPEI (Fig. 9b and c), the lag pe-
riod is approximately 1 month, which is similarly observed
in the other two drought events (Fig. 9d–i). For the entire spa-
tial evolution process of a drought event identified by GTDI,
it is clear that its spatial pattern is the result of a compro-
mise between SPEI and SSMI, including the migration path
of the drought centroid (Fig. 9a–c), the evolution process of
drought area percentage, and drought intensity (Table 7).

From March to July 2000, the WRB experienced a fully
covered drought event (Fig. 9d–f), which began with a me-
teorological drought. The fusion description of SPEI and
SSMI produced by GTDI during this event, which incor-
porates the spatial evolution trends of SPEI and SSMI to
evaluate the current drought status at each grid point, may
be observed. The value of GTDI consistently falls between
SPEI and SSMI, regardless of whether it is evaluated by the
drought area ratio, drought intensity, or drought centroid.

The 2018 drought event is the mildest of the three, but
it most fully depicts the process of a drought event from
emergence to spread to eventual extinction (Fig. 9g–i). In
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Figure 8. Comparison of SPEI, SSMI, and GTDI in temporal drought trajectories. “SPEI-SSMI” means that it is recognized as a drought
month by SPEI and SSMI simultaneously, and the other drought types are denoted similarly.

the early stages of this drought event, in October 2018, the
meteorological drought in the southeastern part of the WRB
was the most severe, whilst the agricultural drought was
relatively negligible. In this case, the spatial drought pat-
tern determined by GTDI was closer to the development of
the hazard-causing index (SPEI). However, during the later
stages of the drought event, the situation reversed and the
spatial evolution of drought began to be dominated by the
hazard-bearing index (SSMI), illustrating GTDI possesses
more realistic and intelligent features for performing drought
identification. This also demonstrates the importance of in-
cluding game theory in this study, which has a distinct benefit
in monitoring changes in hazard-causing and hazard-bearing
impacts.

Based on the foregoing text, it is worth noting that the
GTDI-identified spatial drought process combines the evo-
lutionary features of hazard-causing and hazard-bearing in-
dices (SPEI and SSMI). Merging SPEI and SSMI via their
game relationship, rather than simply putting them together,
makes GTDI a superior technique for representing the spa-
tial and temporal evolution of droughts. Furthermore, it has
been discovered that GTDI exhibits the gaming feature of the
drought hazard-causing and hazard-bearing index. This is ev-
idenced by the fact that the hazard-causing index (SPEI) pri-
marily drives the early stages of drought events in the WRB,
while the hazard-bearing index (SSMI) primarily drives the
later stages.
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Figure 9. Comparison of SPEI, SSMI, and GTDI in terms of the spatial evolution of three drought events. The black circle denotes the
monthly drought centroid. The time format is given as the year followed by the month.

5 Conclusions

This study integrated the SPEI (meteorological index and
drought hazard-causing index) and SSMI (agricultural in-
dex and drought hazard-bearing index) to propose a game-
theory-based drought index (GTDI). The integration perfor-
mance and weight allocation of GTDI were demonstrated by

evaluating the correlations with SPEI and SSMI and com-
paring the integrated weight to ETDI (entropy-theory-based
drought index); the reliability of GTDI was confirmed by
the leaf area index (LAI) data; and the GTDI level of ad-
vancement was examined by contrasting the temporal trajec-
tories and spatial evolution characteristics of GTDI, SPEI,
and SSMI. The following text lists our primary conclusions.
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Table 7. Comparison of SPEI, SSMI, and GTDI in terms of drought intensity and percentage of drought area during three drought events.

Drought events Year/month Drought intensity Percentage of drought area

SPEI GTDI SSMI SPEI GTDI SSMI

1982 1982/6 0.47 0.31 0.28 100 % 85.9 % 55.7 %
1982/7 0.77 0.66 0.55 63.2 % 67.0 % 81.5 %
1982/8 0.52 0.57 0.71 42.5 % 49.3 % 58.5 %
1982/9 0.17 0.22 0.37 15.0 % 23.3 % 35.9 %
1982/10 0.15 0.13 0.22 17.4 % 14.1 % 22.4 %

2000 2000/3 0.49 0.32 0.29 74.1 % 61.2 % 32.3 %
2000/4 0.82 0.66 0.58 98.2 % 92.7 % 79.3 %
2000/5 1.29 1.17 1.03 100 % 100 % 100 %
2000/6 0.18 0.21 0.31 38.4 % 50.1 % 54.3 %
2000/7 0.76 0.41 0.11 87.0 % 66.6 % 15.5 %

2018 2018/9 0.23 0.10 0.33 35.9 % 5.3 % 3.0 %
2018/10 0.55 0.41 0.46 65.6 % 34.2 % 21.0 %
2018/11 0.20 0.31 0.55 46.5 % 32.4 % 28.7 %
2018/12 0.22 0.27 0.46 43.3 % 31.0 % 27.5 %
2019/1 0.11 0.06 0.22 5.3 % 1.8 % 7.5 %

The single-type drought indices (SPEI and SSMI) and the
integrated drought index (GTDI) exhibit dependable spatial
consistency. The entropy-theory-based drought index (ETDI)
performs worse than GTDI, particularly when it comes to
the regional distribution of correlation coefficient homogene-
ity. Specially, the game theory technique provides an inte-
grated weight geographic distribution in the integrated index
(GTDI) that is consistent with the precipitation-dominated
natural drought pattern, as there is a strong negative spa-
tial relationship between the weight ratio of SPEI to SSMI
and the average annual precipitation in the Wei River basin.
ETDI, on the other hand, has a very weak connection with the
annual mean precipitation. This indicates that GTDI’s weight
allocation of SPEI and SSMI is more logical and trustworthy.

GTDI has superior efficacy for identifying drought when
compared to ETDI, SPEI, and SSMI, as GTDI efficiently
captures drought with an efficacy ratio of over 70 % in all
validation months, whereas ETDI, SPEI, and SSMI catch it
with an efficacy ratio of approximately 50 %. Thus, GTDI is
expected to replace single-type drought indices to provide a
more accurate portrayal of actual drought.

GTDI merges SPEI and SSMI via their game relationship
rather than simply putting them together, making it a supe-
rior technique for representing the spatial and temporal evo-
lution of droughts. In particular, it has a higher overlap with
SSMI in terms of drought trajectory, implying changes in the
hazard-bearing body during the dry period, while it is closer
to SPEI in terms of drought seasonal allocation, responding
to the fluctuation in hazard-causing factors.

Additionally, it has been discovered that GTDI exhibits
the gaming feature of the drought hazard-causing and
hazard-bearing index, having a distinct benefit in monitoring
changes in their impacts. The hazard-causing index (SPEI)

dominates the early stages of a drought event, whereas the
hazard-bearing index (SSMI) dominates the later stages.
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and SPEI applicability for drought impact assessment on
crop production in the Danubian Lowland and the East
Slovakian Lowland, Theor. Appl. Climatol., 128, 491–506,
https://doi.org/10.1007/s00704-016-1870-2, 2017.

Lai, C., Chen, X., Chen, X., Chen, X., Wang, Z., Wu, X., and Zhao,
S.: A fuzzy comprehensive evaluation model for flood risk based
on the combination weight of game theory, Nat. Hazards, 77,
1243–1259, https://doi.org/10.1007/s11069-015-1645-6, 2015.

Leng, G., Tang, Q., and Rayburg, S.: Climate change im-
pacts on meteorological, agricultural and hydrological
droughts in China, Global Planet. Change, 126, 23–34,
https://doi.org/10.1016/j.gloplacha.2015.01.003, 2015.

Li, G., Sun, S., Han, J., Yan, J., Liu, W., Wei, Y., Lu,
N., and Sun, Y.: Impacts of Chinese Grain for Green
program and climate change on vegetation in the Loess
Plateau during 1982–2015, Sci. Total Environ., 660, 177–187,
https://doi.org/10.1016/j.scitotenv.2019.01.028, 2019.

Li, L., She, D., Zheng, H., Lin, P., and Yang, Z.: Elucidating di-
verse drought characteristics from two meteorological drought
indices (SPI and SPEI) in China, J. Hydrometeorol., 21, 1513–
1530, https://doi.org/10.1175/JHM-D-19-0290.1, 2020.

Li, W., Migliavacca, M., Forkel, M., Denissen, J. M. C., Reichstein,
M., Yang, H., Duveiller, G., Weber, U., and Orth, R.: Widespread
increasing vegetation sensitivity to soil moisture, Nat. Commun.,
13, 3959, https://doi.org/10.1038/s41467-022-31667-9, 2022.

Liu, B., Huang, J. J., McBean, E., and Li, Y.: Risk assess-
ment of hybrid rain harvesting system and other small
drinking water supply systems by game theory and
fuzzy logic modeling, Sci. Total Environ., 708, 134436,
https://doi.org/10.1016/j.scitotenv.2019.134436, 2020.

Liu, Y., Liu, R., and Chen, J. M.: Retrospective retrieval of long-
term consistent global leaf area index (1981–2011) from com-
bined AVHRR and MODIS data, J. Geophys. Res., 117, G04003,
https://doi.org/10.1029/2012JG002084, 2012.

Liu, Y., Zhu, Y., Ren, L., Yong, B., Singh, V. P., Yuan, F., Jiang, S.,
and Yang, X.: On the mechanisms of two composite methods for
construction of multivariate drought indices, Sci. Total Environ.,
647, 981–991, https://doi.org/10.1016/j.scitotenv.2018.07.273,
2019.

Ma, B., Zhang, B., Jia, L., and Huang, H.: Conditional distribution
selection for SPEI-daily and its revealed meteorological drought
characteristics in China from 1961 to 2017, Atmos. Res., 246,
105108, https://doi.org/10.1016/j.atmosres.2020.105108, 2020.

Madani, K.: Game theory and water resources, J. Hydrol., 381, 225–
238, https://doi.org/10.1016/j.jhydrol.2009.11.045, 2010.

McKee, T. B., Doesken, N. J., and Kleist, J.: The relation-
ship of drought frequency and duration to time scales, Paper
Presented at Proceedings of the 8th Conference on Applied
Climatology 1993 Jan 17 Anaheim California, 17, 179–183,
https://clima1.cptec.inpe.br/~rclima1/pdf/paper_spi.pdf (last ac-
cess: 27 September 2024), 1993.

McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of
drought frequency and duration to time scales, Paper Presented
at Proceedings of the 8th Conference on Applied Climatology,
17, 179–183, 2010.

Ministry of Water Resources of China: China Flood and Drought
Disaster Prevention Bulletin 2022, China Water Power Press,
Beijing, China, ISBN 9787522618418, 2023.

Oertel, M., Meza, F. J., Gironás, J., Scott, C. A., Rojas, F., and
Pineda-Pablos, N.: Drought propagation in semi-arid river basins
in Latin America: lessons from Mexico to the Southern Cone,
Water, 10, 1564, https://doi.org/10.3390/w10111564, 2018.

Palmer, W. C.: Meteorological drought, US Department of
Commerce, Weather Bureau, Washington, DC, https:
//scholar.google.com/scholar_lookup?title=Meteorological+
drought&author=W.+Palmer&publication_year=1965 (last
access: 27 September 2024), 1965.

Panda, P. K., Panda, R. B., and Dash, P. K.: The study of wa-
ter quality and pearson’s correlation coefficients among different
physico-chemical parameters of River Salandi, Bhadrak, Odisha,
India, Am. J. Water Resour., 6, 146–155, 2018.

Peng, S., Ding, Y., Liu, W., and Li, Z.: 1 km monthly temperature
and precipitation dataset for China from 1901 to 2017, Earth
Syst. Sci. Data, 11, 1931–1946, https://doi.org/10.5194/essd-11-
1931-2019, 2019.

Shah, D. and Mishra, V.: Integrated Drought Index (IDI) for
drought monitoring and assessment in India, Water Resour. Res.,
56, e2019WR026284, https://doi.org/10.1029/2019WR026284,
2020.

Shukla, S. and Wood, A. W.: Use of a standardized runoff index
for characterizing hydrologic drought, Geophys. Res. Lett., 35,
L02405, https://doi.org/10.1029/2007GL032487, 2008.

Tan, Y. X., Ng, J. L., and Huang, Y. F.: Quantitative analysis of
input data uncertainty for SPI and SPEI in Peninsular Malaysia
based on the bootstrap method, Hydrolog. Sci. J., 68, 1724–1737,
https://doi.org/10.1080/02626667.2023.2232348, 2023.

Tian, P., Liu, L., Tian, X., Zhao, G., Klik, A., Wang, R., Lu, X., Mu,
X., and Bai, Y.: Sediment yields variation and response to the
controlling factors in the Wei River Basin, China, Catena, 213,
106181, https://doi.org/10.1016/j.catena.2022.106181, 2022.

Trenberth, K. E., Dai, A., and van der Schrier, G.: Global warm-
ing and changes in drought, Nat. Clim. Change, 4, 17–22,
https://doi.org/10.1038/nclimate2067, 2014.

Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multiscalar drought index sensitive to global warming: the stan-
dardized precipitation evapotranspiration index, J. Climate, 23,
1696–1718, https://doi.org/10.1175/2009JCLI2909.1, 2010.

Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan,
S., and Domínguez-Castro, F.: A review of environmental
droughts: Increased risk under global warming?, Earth-Sci. Rev.,
201, 102953, https://doi.org/10.1016/j.earscirev.2019.102953,
2020.

Wang, A., Lettenmaier, D. P., and Sheffield, J.: Soil moisture
drought in China, 1950–2006, J. Climate, 24, 3257–3271,
https://doi.org/10.1175/2011JCLI3733.1, 2011.

Wang, F., Wang, Z., Yang, H., Di, D., Zhao, Y., Liang, Q.,
and Hussain, Z.: Comprehensive evaluation of hydrological
drought and its relationships with meteorological drought in
the Yellow River basin, China, J. Hydrol., 584, 124751,
https://doi.org/10.1016/j.jhydrol.2020.124751, 2020.

Wang, X., Luo, P., Zheng, Y., Duan, W., Wang, S., Zhu, W., Zhang,
Y., and Nover, D.: Drought Disasters in China from 1991 to 2018:
Analysis of Spatiotemporal Trends and Characteristics, Re-

Nat. Hazards Earth Syst. Sci., 24, 3479–3495, 2024 https://doi.org/10.5194/nhess-24-3479-2024

https://doi.org/10.1007/s11269-019-02223-w
https://doi.org/10.1007/s11269-019-02223-w
https://doi.org/10.1007/s00704-016-1870-2
https://doi.org/10.1007/s11069-015-1645-6
https://doi.org/10.1016/j.gloplacha.2015.01.003
https://doi.org/10.1016/j.scitotenv.2019.01.028
https://doi.org/10.1175/JHM-D-19-0290.1
https://doi.org/10.1038/s41467-022-31667-9
https://doi.org/10.1016/j.scitotenv.2019.134436
https://doi.org/10.1029/2012JG002084
https://doi.org/10.1016/j.scitotenv.2018.07.273
https://doi.org/10.1016/j.atmosres.2020.105108
https://doi.org/10.1016/j.jhydrol.2009.11.045
https://clima1.cptec.inpe.br/~rclima1/pdf/paper_spi.pdf
https://doi.org/10.3390/w10111564
https://scholar.google.com/scholar_lookup?title=Meteorological+drought&author=W.+Palmer&publication_year=1965
https://scholar.google.com/scholar_lookup?title=Meteorological+drought&author=W.+Palmer&publication_year=1965
https://scholar.google.com/scholar_lookup?title=Meteorological+drought&author=W.+Palmer&publication_year=1965
https://doi.org/10.5194/essd-11-1931-2019
https://doi.org/10.5194/essd-11-1931-2019
https://doi.org/10.1029/2019WR026284
https://doi.org/10.1029/2007GL032487
https://doi.org/10.1080/02626667.2023.2232348
https://doi.org/10.1016/j.catena.2022.106181
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1016/j.earscirev.2019.102953
https://doi.org/10.1175/2011JCLI3733.1
https://doi.org/10.1016/j.jhydrol.2020.124751


X. Zhao et al.: GTDI: a gaming integrated drought index 3495

mote Sens.-Basel, 15, 1708, https://doi.org/10.3390/rs15061708,
2023.

Wang, Z., Zhong, R., Lai, C., Zeng, Z., Lian, Y., and Bai,
X.: Climate change enhances the severity and variabil-
ity of drought in the Pearl River Basin in South China
in the 21st century, Agr. Forest Meteorol., 249, 149–162,
https://doi.org/10.1016/j.agrformet.2017.12.077, 2018.

Wei, H., Liu, X., Hua, W., Zhang, W., Ji, C., and Han,
S.: Copula-Based Joint Drought Index Using Precipi-
tation, NDVI, and Runoff and Its Application in the
Yangtze River Basin, China, Remote Sens.-Basel, 15, 4484,
https://doi.org/10.3390/rs15184484, 2023.

Wen, X., Tu, Y., Tan, Q., Li, W., Fang, G., Ding, Z., and
Wang, Z.: Construction of 3D drought structures of me-
teorological drought events and their spatio-temporal
evolution characteristics, J. Hydrol., 590, 125539,
https://doi.org/10.1016/j.jhydrol.2020.125539, 2020.

Wilhite, D. A. and Glantz, M. H.: Understanding: the drought phe-
nomenon: the role of definitions, Water Int., 10, 111–120, 1985.

Won, J., Choi, J., Lee, O., and Kim, S.: Copula-based
Joint Drought Index using SPI and EDDI and its applica-
tion to climate change, Sci. Total Environ., 744, 140701,
https://doi.org/10.1016/j.scitotenv.2020.140701, 2020.

Xu, H., Wang, X., Zhao, C., and Yang, X.: Diverse re-
sponses of vegetation growth to meteorological drought
across climate zones and land biomes in northern China
from 1981 to 2014, Agr. Forest Meteorol., 262, 1–13,
https://doi.org/10.1016/j.agrformet.2018.06.027, 2018.

Xu, Y., Zhang, X., Hao, Z., Singh, V. P., and Hao, F.: Characteri-
zation of agricultural drought propagation over China based on
bivariate probabilistic quantification, J. Hydrol., 598, 126194,
https://doi.org/10.1016/j.jhydrol.2021.126194, 2021.

Yang, J., Gong, D., Wang, W., Hu, M., and Mao, R.: Extreme
drought event of 2009/2010 over southwestern China, Meteorol.
Atmos. Phys., 115, 173–184, https://doi.org/10.1007/s00703-
011-0172-6, 2012.

Yang, Y. and He, Y.: A fault identification method based on an en-
semble deep neural network and a correlation coefficient, Soft
Comput., 26, 9199–9214, https://doi.org/10.1007/s00500-022-
07343-x, 2022.

You, M., He, Z. H., Zhang, L., Yang, M. K., and Pi, G. N.: Char-
acteristics of agricultural and meteorological drought in Guizhou
Province and their response relationship, J. Soil Water Conserv.,
36, 255–264, 2022.

Yue, S. and Wang, C. Y.: Applicability of prewhitening
to eliminate the influence of serial correlation on the
Mann-Kendall test, Water Resour. Res., 38, 4-1–4-7,
https://doi.org/10.1029/2001WR000861, 2002.

Zhang, F., Biederman, J. A., Dannenberg, M. P., Yan, D., Reed, S.
C., and Smith, W. K.: Five decades of observed daily precip-
itation reveal longer and more variable drought events across
much of the western United States, Geophys. Res. Lett., 48,
e2020GL092293, https://doi.org/10.1029/2020GL092293, 2021.

Zhang, J., Wang, J., Chen, S., Wang, M., Tang, S., and Zhao, W.:
Integrated Risk Assessment of Agricultural Drought Disasters in
the Major Grain-Producing Areas of Jilin Province, China, Land,
12, 160, https://doi.org/10.3390/land12010160, 2023.

Zhang, Q., Shi, R., Singh, V. P., Xu, C., Yu, H., Fan,
K., and Wu, Z.: Droughts across China: Drought factors,
prediction and impacts, Sci. Total Environ., 803, 150018,
https://doi.org/10.1016/j.scitotenv.2021.150018, 2022.

Zhang, T., Su, X., Zhang, G., Wu, H., Wang, G., and Chu, J.:
Evaluation of the impacts of human activities on propagation
from meteorological drought to hydrological drought in the
Weihe River Basin, China, Sci. Total Environ., 819, 153030,
https://doi.org/10.1016/j.scitotenv.2022.153030, 2022.

Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S.,
Xu, Y., and Hao, F.: Drought propagation under global
warming: Characteristics, approaches, processes, and
controlling factors, Sci. Total Environ., 838, 156021,
https://doi.org/10.1016/j.scitotenv.2022.156021, 2022.

Zhang, Y.: 30 m resolution digital elevation model (DEM) data of
Weihe River Basin, National Cryosphere Desert Data Center,
https://doi.org/10.12072/ncdc.WRiver.db0009.2021, 2021.

Zhang, Y., Huang, S., Huang, Q., Leng, G., Wang, H., and Wang, L.:
Assessment of drought evolution characteristics based on a non-
parametric and trivariate integrated drought index, J. Hydrol.,
579, 124230, https://doi.org/10.1016/j.jhydrol.2019.124230,
2019.

Zhang, Y., Hao, Z., Feng, S., Zhang, X., Xu, Y., and Hao, F.: Agri-
cultural drought prediction in China based on drought propaga-
tion and large-scale drivers, Agr. Water Manage., 255, 107028,
https://doi.org/10.1016/j.agwat.2021.107028, 2021.

https://doi.org/10.5194/nhess-24-3479-2024 Nat. Hazards Earth Syst. Sci., 24, 3479–3495, 2024

https://doi.org/10.3390/rs15061708
https://doi.org/10.1016/j.agrformet.2017.12.077
https://doi.org/10.3390/rs15184484
https://doi.org/10.1016/j.jhydrol.2020.125539
https://doi.org/10.1016/j.scitotenv.2020.140701
https://doi.org/10.1016/j.agrformet.2018.06.027
https://doi.org/10.1016/j.jhydrol.2021.126194
https://doi.org/10.1007/s00703-011-0172-6
https://doi.org/10.1007/s00703-011-0172-6
https://doi.org/10.1007/s00500-022-07343-x
https://doi.org/10.1007/s00500-022-07343-x
https://doi.org/10.1029/2001WR000861
https://doi.org/10.1029/2020GL092293
https://doi.org/10.3390/land12010160
https://doi.org/10.1016/j.scitotenv.2021.150018
https://doi.org/10.1016/j.scitotenv.2022.153030
https://doi.org/10.1016/j.scitotenv.2022.156021
https://doi.org/10.12072/ncdc.WRiver.db0009.2021
https://doi.org/10.1016/j.jhydrol.2019.124230
https://doi.org/10.1016/j.agwat.2021.107028

	Abstract
	Introduction
	Study area and data
	Study area
	Data source

	Methodology
	Calculation of single-type drought indices
	SPEI
	SSMI

	Construction of integrated drought indices
	Classification criteria for drought
	Reliability verification
	Evaluation of correlation
	Efficacy verification in identifying drought

	Analysis methods for drought characteristics
	Mann–Kendall test
	Drought identification
	Spatiotemporal characteristics of drought


	Results and discussion
	Evolutionary characteristics of the integrated drought index (GTDI)
	Reliability verification of GTDI
	The evaluation of correlation
	Comparison of the integrated weight of GTDI and ETDI
	Efficacy verification in identifying drought

	Comparison of temporal trajectories of drought identified by GTDI, SPEI, and SSMI
	Comparison of the spatial evolution of drought events identified by GTDI, SPEI, and SSMI

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

