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Abstract. Windstorms affecting Europe are among the natu-
ral hazards with the largest socio-economic impacts. There-
fore, many sectors like society, the economy, or the insurance
industry are highly interested in reliable information on as-
sociated impacts and losses. In this study, we compare – for
the first time – estimated windstorm losses using a simplified
meteorological loss index (LI) with losses obtained from a
complex insurance loss (catastrophe) model, namely the Eu-
ropean Windstorm Model of Aon Impact Forecasting. To test
the sensitivity of LI to different meteorological input data,
we furthermore contrast LI based on the reanalysis dataset
ERA5 and its predecessor ERA-Interim. We focus on simi-
larities and differences between the datasets in terms of loss
values and storm rank for specific historical storm events in
the common reanalysis period across 11 European countries.

Our results reveal higher LI values for ERA5 than for
ERA-Interim for all of Europe (by roughly a factor of 10),
coming mostly from the higher spatial resolution in ERA5.
The storm ranking is comparable for western and central
European countries for both reanalyses, confirmed by high
correlation values between 0.6 and 0.89. Compared to the
Aon Impact Forecasting model, LI ERA5 shows comparable
storm ranks, with correlation values ranging between 0.45
and 0.8. In terms of normalized loss, LI exhibits overall lower
values and smaller regional differences. Compared to the
market perspective represented by the insurance loss model,
LI seems to have particular difficulty in distinguishing be-
tween high-impact events at the tail of the wind gust distri-

bution and moderate-impact events. Thus, the loss distribu-
tion in LI is likely not steep enough, and the tail is probably
underestimated. Nevertheless, it is an effective index that is
suitable for estimating the impacts of storm events and rank-
ing storm events, precisely because of its simplicity.

1 Introduction

In central and western Europe, windstorms are among the
major natural hazards. They regularly lead to high economic
and insured losses (Munich Re, 2022), causing damage to
natural and human-made environments like infrastructure,
buildings, forestry and agriculture (Mitchell-Wallace et al.,
2017; Pinto et al., 2019; Gliksman et al., 2023). In 2022,
losses from European windstorms were well above average,
with insured losses of USD 5.7 billion and economic losses
of USD 7.5 billion (Aon, 2023a). In fact, European wind-
storms were among the five largest weather-related perils in
2022 (Swiss Re, 2023). The high losses were mainly caused
by the windstorm series Ylenia–Zeynep–Antonia1 (interna-
tional: Dudley–Eunice–Franklin) in February 2022, which
resulted in insured losses of USD 4.7 billion (Aon, 2023a).

1Storm names as given by the Freie Universität Berlin (https://
www.wetterpate.de/namenslisten/tiefdruckgebiete/index.html, last
access: 18 June 2024; in German) and used by the German Weather
Service (DWD).
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The storm series affected the British Isles and continen-
tal Europe (Mühr et al., 2022), with the highest losses in
Germany, the Benelux countries, the United Kingdom and
France (PERILS, 2023). While there have been a large num-
ber of impactful storms in recent decades from a market
perspective, in meteorological terms there is no clear trend,
with mostly decadal variability apparent over the last hun-
dred years (see review in Feser et al., 2015).

For the insurance industry, as well as for society and the
economy, it is crucial to assess wind-related risk, determine
the return periods of historical storms, and forecast the im-
pacts of extreme storms in order to adapt to and mitigate
windstorm losses (Mitchell-Wallace et al., 2017; Pinto et al.,
2019; Merz et al., 2020; Raschke, 2022; Gliksman et al.,
2023). In this context, risk is usually defined as the interac-
tion between hazard, exposure and vulnerability (e.g., IPCC,
2022). The hazard component is defined as the occurrence of
a natural event (in our case a windstorm), the exposure com-
ponent represents the presence of people/livelihoods/ecosys-
tems or economic/social assets, and the vulnerability compo-
nent describes the disposition to be affected (IPCC, 2022).
The information on windstorm risk and associated losses is
provided by various types of datasets (Gliksman et al., 2023;
Moemken et al., 2024), both for present and future climate
conditions. These datasets do not always account for all three
risk components. Meteorological indices/storm severity in-
dices (e.g., Klawa and Ulbrich, 2003) combine meteorolog-
ical variables and insurance aspects, usually only consider-
ing the hazard component. The more complex storm loss
models – developed, among others, by the insurance indus-
try (catastrophe modeling) – consider all three risk compo-
nents. These models relate meteorological wind data to ac-
tual building damage data, using so-called damage functions
that define the relationship between wind and damage (Prahl
et al., 2015; Gliksman et al., 2023). Commonly used damage
functions assume either a power law or an exponential form.

Moemken et al. (2024) recently compared several exam-
ples of loss datasets for windstorms across Europe, including
a natural hazard database, insurance loss reports and vari-
ous meteorological indices. Focusing on storm numbers and
the ranking of specific storm events, they conclude that the
datasets provide different perspectives on windstorm impacts
and suggest that a combination of different types of datasets
might be used to assign an uncertainty range to windstorm
losses. A recent review paper by Gliksman et al. (2023) dis-
cusses open research questions related to damage from Eu-
ropean windstorms. One issue raised is the lack of a clear
methodology to select the most suitable index to assess wind-
storm losses for both present and future climate conditions.
Moreover, loss calculations are affected by uncertainties, for
example related to the (meteorological) input data used. They
further point out that there is a need for a thorough com-
parison between meteorological loss indices and catastrophe
models (used in insurance) to better understand loss esti-
mates from different perspectives.

In this study, we try to answer two of these questions:

– How sensitive are the loss estimates of a meteorological
index to the meteorological input data?

– How comparable are windstorm loss estimates from this
meteorological index and an insurance loss model?

With this aim, we first calculate the loss index (LI)
by Pinto et al. (2012) in the adaptation of Karremann et
al. (2014a) using ERA5 (Hersbach et al., 2020) and its prede-
cessor ERA-Interim (Dee et al., 2011a). In a second step, we
compare the loss estimates from LI to the output of an insur-
ance loss (catastrophe) model for a set of historical European
windstorms. Here, we use, for the first time in a scientific
study, the European Windstorm Model of Aon Impact Fore-
casting (hereafter Aon’s IF Euro WS model). We analyze
the differences and similarities, focusing on loss values and
storm ranks of individual events. The study is restricted to 11
European countries covered by Aon’s IF Euro WS model (see
Sect. 3.2) and the extended winter season of October–March
(ONDJFM). For proprietary reasons, we only show country-
aggregated and normalized losses. Throughout this study, we
use the terms “extreme” and “severe” interchangeably when
referring to storm events with high losses.

The paper is organized as follows: Sect. 2 describes the
datasets, and Sect. 3 describes the methods/models. Sec-
tion 4 focuses on the sensitivity of LI to different reanaly-
sis datasets, while Sect. 5 presents the comparison between
LI and Aon’s IF Euro WS model. Section 6 concludes this
paper with a summary and discussion of results.

2 Data

2.1 Meteorological input data

For the calculation of LI (Sect. 3.1.1), gridded datasets are
needed. As we are interested in historical windstorms, we
use reanalysis data – namely ERA5 (Hersbach et al., 2020)
and its predecessor ERA-Interim (Dee et al., 2011a). ERA5
is the latest reanalysis product of the European Centre for
Medium-Range Weather Forecasts (ECMWF). Wind gust
data are available at hourly temporal and 30 km (0.25°) hor-
izontal resolution for the period of 1959–2021. For ERA-
Interim, wind gust data are available with 3-hourly tempo-
ral and 83 km (0.75°) horizontal resolution for the period
of 1979–2019. In both datasets, wind gusts are defined as
the maximum 3 s wind at 10 m height following the defini-
tion of the World Meteorological Organization (WMO). For
both datasets, ECMWF publishes post-processed wind gust,
which is the maximum gust computed in every time step fol-
lowing the standard parameterization approach by Panofsky
et al. (1977) and Bechthold and Bidlot (2009). We use the
datasets in their native resolutions in order to test the sensi-
tivity of LI to the resolution of the input data, considering
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only the common period of 1979–2019. Additionally, we re-
peated some of the analyses with ERA5 data regridded to the
coarser ERA-Interim grid using a conservative remapping.

2.2 Insurance data – PERILS

For the insurance perspective of the impacts of the wind-
storms, we use PERILS data (https://www.perils.org, last
access: 21 May 2024). PERILS is a joint-stock com-
pany owned by 10 shareholders from the insurance indus-
try, which collects, homogenizes and provides aggregated
anonymized insurance data for different weather-related per-
ils (see Moemken et al., 2024, for a detailed description).
The data provide for selected events with a sizable finan-
cial footprint, a market estimation for the loss per country
and CRESTA zone (a geographical data aggregation standard
used by the global insurance industry; https://www.cresta.
org, last access: 21 May 2024), property premium data per
country, and the exposure (total sum of insured property) per
country and CRESTA zone. For extratropical windstorms in
Europe, PERILS provides data for 12 countries, 11 of which
are also covered by Aon’s IF Euro WS model, namely Aus-
tria, Belgium, Denmark, France, Germany, Ireland, Luxem-
bourg, the Netherlands, Norway, the United Kingdom and
Sweden. Following Pinto et al. (2012), we additionally focus
on the region of Core Europe, which is of special interest for
the insurance industry in terms of windstorm risk and con-
sists of Belgium, Denmark, France, Germany, Ireland, Lux-
embourg, the Netherlands and the United Kingdom. The in-
surance data are supplied by PERILS on an annual subscrip-
tion basis. In our study, we use the exposure data of PERILS
for the exposure component in the Aon IF model (Sect. 3.2)
and the loss data as reference data for some of the analyses.

2.3 Storm names

We assign a name to each storm event based on
the date of its occurrence, referring to those given
by the Freie Universität Berlin and used by the Ger-
man Weather Service (DWD; https://www.wetterpate.de/
namenslisten/tiefdruckgebiete/index.html) (in German). For
events prior to 1999, we also refer to the Extreme Wind-
storms (XWS) catalogue described in Roberts et al. (2014)
and the windstorm documentation by Deutsche Rück for the
years 1997–2004 (Deutsche Rück, 2005).

3 Methods

3.1 Meteorological loss index

Meteorological loss indices, also referred to as storm sever-
ity indices, are typically used to identify severe windstorms,
study their magnitude and likelihood of occurrence, and esti-
mate the associated losses. There exists a wide variety of in-
dices, ranging from more general ones to those targeting spe-

cific sectors like forestry, agriculture or transport (see Gliks-
man et al., 2023, for a detailed overview). The key variable
for many of these indices is the daily maximum wind speed
or peak wind gust, which is regarded as relevant for storm
losses (Lamb, 1991; Klawa and Ulbrich, 2003; Leckebusch
et al., 2008; Pardowitz et al., 2016). The assumption behind
this is that the loss can be primarily attributed to the max-
imum gust, which causes damage by generating “pressure”
on the infrastructure (Klawa and Ulbrich, 2003).

3.1.1 Loss index (LI)

In our study, we use the loss index (LI) by Pinto et al. (2012)
in the extended version by Karremann et al. (2014a). LI is
built from the widely used storm loss model by Klawa and
Ulbrich (2003) and is based on the following assumptions.

– Losses increase with the cube of wind speed/gust (Palu-
tikof and Skellern, 1991; Lamb, 1991), which – from a
physical perspective – is proportional to the wind power
or the wind kinetic energy flux.

– Infrastructure and other assets are adapted to the local
wind conditions. Therefore, it can be assumed that only
the top 2 % of wind gusts (corresponding to beaufort
8, circa 17–20 m s−1) cause damage to buildings (Pa-
lutikof and Skellern, 1991). This is taken into account
by scaling the daily peak gust with the local 98th per-
centile.

– In the case that no insurance data are available, popula-
tion density can be used as a proxy for the insured value
(exposure component).

– The (re-)insurance clause for natural hazards is typically
72 h. This also corresponds to the period during which
an average storm crosses Europe and produces damag-
ing winds (Hewson and Neu, 2015).

Hence, LI is calculated as

LI =
∑N

i=1

∑M

j=1

(
vij

v98ij

)3

· I
(
vij , v98ij

)
· Pij · Lij , (1)

with I
(
vij , v98ij

)
=

{
0 for vij < v98ij

1 for vij > v98ij

,

Lij =

{
0 over sea
1 over land ,

where v is the maximum wind gust in 72 h at grid point ij ,
v98 is the local 98th percentile and P is the population den-
sity. Here, we use gridded population density data for the
year 2020 at a spatial resolution of 0.25° (see Fig. 1a), down-
loaded from the Center for International Earth Science Infor-
mation Network (CIESIN) at Columbia University, USA.
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Figure 1. (a) Population density for 2020 derived from CIESIN for the 11 countries covered in this study. (b) Wind gust footprint for Storm
Kyrill in January 2007 based on ERA5. Shown is the largest exceedance (in percent) of the 98th percentile of daily maximum wind gust
within 72 h. The red line and dots denote the cyclone track derived from ERA5 using the tracking algorithm of Pinto et al. (2005). Refer to
Sect. 3 for detailed information on the methods.

To separate individual events per extended winter season
(October–March, ONDJFM), overlapping 72 h sliding time
windows (shifted every 6 h) are used, and the temporal lo-
cal maximum of each 72 h time window is analyzed (Kar-
remann et al., 2014a). We are particularly interested in ex-
treme storm events. Therefore, we only consider events with
LI values above a certain threshold, which corresponds to
the selection of an average of five events per season (Pinto
et al., 2012; Karremann et al., 2014a). This results in 205
storm events (41 years× 5 events) per dataset (LI ERA5 and
LI ERA-Interim).

3.1.2 Windstorm footprints

For the hazard component, windstorm footprints are re-
quired. Following the WMO and Haylock (2011), the foot-
print is defined as the percentage of wind gust values that
exceed the local 98th percentile per 72 h period:

wind gust footprint=
(vmax− v98)

v98
· 100%, (2)

where vmax is the maximum wind gust in 72 h at each grid
point, and v98 is the local 98th percentile. We use the same
72 h periods as for the LI calculation. The corresponding cy-
clone tracks were derived following the tracking algorithm
by Murray and Simmonds (1991) and Pinto et al. (2005). As
an example, Fig. 1b shows the footprint and cyclone track for
windstorm Kyrill in January 2007 (Fink et al., 2009).

3.1.3 Original and normalized loss values

For the comparison between LI ERA5 and LI ERA-Interim,
we use both original loss estimates and normalized losses.

The normalization is done with a min–max scaling approach,
which scales the loss values between 0.0 and 1.0. The top
storm event corresponds to the value 1.0, and the event with
the lowest impact corresponds to the value 0.0. The normal-
ized losses of all other events relate to the top event (relative
ranking). We only focus on losses aggregated at country level
(cf. Sect. 3.2.1).

3.2 Insurance loss model

Storm loss (catastrophe) models determine the windstorm
risk to residential and commercial buildings by relating wind
speed to building damage (Palutikof and Skellern, 1991; Dor-
land et al., 1999; Gliksman et al., 2023), usually by imple-
menting statistical modeling. As for storm severity indices,
the maximum daily wind gust speed is assumed to be the
most relevant factor in these models (Dorland et al., 1999;
Klawa and Ulbrich, 2003; Donat et al., 2011; Koks and Haer,
2020) and is used as the basis for the hazard component.
The building damage data are usually represented using so-
called loss ratios, which are the amount of insured loss oc-
curring per district divided by the corresponding sum of the
insured value (Klawa and Ulbrich, 2003; Prahl et al., 2015).
For the relationship between wind and damage, also referred
to as damage functions, various formulations exist in the
literature (see Prahl et al., 2015, for a detailed overview).
These damage functions aim at describing the non-linear re-
lation between storm intensity and actual (monetary) dam-
age. Typically used damage functions range from exponen-
tial to power law to excess-over-threshold formulations.
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3.2.1 Aon Impact Forecasting European Windstorm
Model

In our study, we use the European Windstorm Model of
Aon Impact Forecasting (Aon’s IF Euro WS model), which
is implemented in ELEMENTS, Aon’s loss modeling plat-
form (Aon, 2023b). The model covers 22 countries in west-
ern, northern and central Europe. The aim of this catastrophe
model is to provide a quantification of financial losses from
windstorm risk in Europe. The model consists of three main
components, namely hazard, vulnerability and exposure, as
well as a financial part (see Supplement Sect. S1).

The hazard component has two parts: a historical and a
stochastic event set. The historical event set comprises 26
historical storms (see Supplement Table S1; Born et al.,
2012), based on wind gust footprints built from weather sta-
tion data. The stochastic event set covers 4731 years of simu-
lated events (Karremann et al., 2014a). The stochastic events
represent physically consistent storm events and are based
on outputs of the ECHAM5 global climate model (Jungclaus
et al., 2006). A combination of dynamical downscaling and
statistical downscaling (Haas and Pinto, 2012) is used to pro-
duce the final high-resolution stochastic event set that is im-
plemented in Aon’s IF Euro WS model.

The exposure component typically uses a combination
of Aon’s client data and the PERILS industry exposure
database. The component comprises five lines of business:
residential, commercial, industrial, agricultural, motor and
forestry (only Norway, Sweden and Finland). For our study,
we only use the PERILS data for 2022 for the exposure.

The vulnerability component is divided into chance of loss
(COL) and conditional mean damage ratio (CMDR), thereby
giving a more realistic view of loss than a single mean dam-
age ratio. The COL is applied first, rating the probability
of loss for a certain wind speed and a given building. If
the building is determined to have suffered a loss, then the
CMDR is applied. The vulnerability component of the model
applies IF’s proprietary damage curves to calculate the phys-
ical loss for each event at each insured location. Original lim-
its and other policy conditions are then applied per event to
calculate the gross loss and the net loss, thus obtaining the
value of insured loss in the financial component of the model.

The model is calibrated against insurance data, including
PERILS data as the primary benchmark. For this reason, we
assume that it represents a market perspective for the purpose
of our paper. A more detailed description of the model is
available in Sect. S1. For proprietary reasons, the comparison
to LI is restricted to losses at country level and normalized
loss values.

4 Comparison between ERA5 and ERA-Interim

We first analyze the sensitivity of LI to the meteorological
input data. To this end, we compare ERA5 and ERA-Interim

in terms of wind gust as the relevant input variable for LI.
We then use both datasets to derive LI for our study domain
and compare the results with respect to storm loss and storm
rank.

4.1 Wind gust climatology

We use the 98th and 99.9th percentiles of daily maximum
wind gust to compare ERA5 and ERA-Interim. The per-
centiles are calculated for the winter half year, ONDJFM,
for 1979–2019, the period common to both datasets. Fig-
ure 2 shows both percentiles for ERA5 (left) and ERA-
Interim (middle), as well as the absolute difference between
the datasets (right). For the 98th percentile (Fig. 2, upper
row), both datasets show a similar spatial pattern: for most of
Europe, the 98th percentile ranges between 16 and 30 m s−1,
with the highest values over the North and Baltic seas and
the British Isles. Except for Sweden and the Baltic region,
values are in general higher for ERA5 compared to ERA-
Interim. Differences reach the highest values (over 4 m s−1)
over mountainous regions like the Alps, the Pyrenees and
the Scandinavian mountains, while they are in the range of
2 m s−1 for Core Europe. This suggests a slight shift towards
higher gust speeds in the wind gust distribution of ERA5
compared to ERA-Interim for large parts of central Europe.
For the 99.9th percentile (Fig. 2, lower row), differences be-
tween the datasets are larger for all of Europe – not only
in terms of magnitude but also regarding the spatial pattern.
This not only confirms the overall shift in the wind gust dis-
tribution, but also indicates a longer tail of the wind gust
distribution for ERA5 over continental Europe. Differences
most likely result from the different ECMWF model version
used for the reanalysis and the overall better representation
of resolution and physical processes in the ERA5 setup (see
Hersbach et al., 2020, for detailed information).

4.2 Storm losses and storm ranking

In the next step, we compare the loss values and the storm
ranking for the common 20 most extreme storms (Top 20) in
the 1979–2019 period. The Top 20 storms are derived sep-
arately for each country as well as for Core Europe. The
storm list for Core Europe can be found in Tables S2 and
S3. Figure 3 presents the comparison of normalized loss val-
ues derived from LI ERA5 (x axis) and LI ERA-Interim (y
axis) for four different regions/countries, namely Core Eu-
rope, the United Kingdom, Germany and France. For most
events and countries, the datasets show comparable normal-
ized losses. Moreover, the ratio between extreme storms with
high losses to extreme storms with moderate losses is simi-
lar in both datasets. This is confirmed by the fact that most
events are grouped closely around the linear regression line.
Only Storm Irina (October 2002) is classified as an out-
lier for the United Kingdom, i.e., that the difference in loss
value is large, based on the interquartile range (IQR; Dodge,
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Figure 2. The 98th percentile (a, b, c) and 99.9th percentile (d, e, f) of daily maximum wind gust for the winter half year (October–March,
ONDJFM) for the 1979–2019 period derived from ERA5 (a, d) and ERA-Interim (b, e). Difference between ERA5 and ERA-Interim (c, f).

2008). The large difference between ERA5 and ERA-Interim
for Storm Irina can be explained by looking at the storm
footprint (Fig. S1 in the Supplement): it is flatter overall
in ERA5 compared to ERA-Interim. This is particularly the
case for the United Kingdom, where the mean wind gust
over land is 12.1 m s−1 for ERA5 and 24.6 m s−1 for ERA-
Interim. Therefore, the LI for Storm Irina is higher in ERA-
Interim due to the cumulative effect (summation of v/v98;
see Sect. 3.1.1).

When comparing the original loss values (Fig. S2), the
values based on ERA5 are approximately 10 times larger
than those for ERA-Interim. The most obvious reason is the
higher spatial resolution of ERA5 compared to ERA-Interim
(roughly 3 times higher): as LI sums over all grid points with
wind gusts above the 98th percentile, a higher number of grid
points results in an overall higher value of LI. This is con-
firmed by a sensitivity study, in which we regridded ERA5
data to the coarser ERA-Interim resolution before calculating
LI (Fig. S3). After regridding, LI ERA5 and LI ERA-Interim
are of the same order of magnitude, while the overall behav-
ior/order of storms does not change (cf. Figs. S2 and S3). The
main reason for the remaining differences between LI ERA5
and LI ERA-Interim is most likely the shift towards higher
gust speeds and the longer tail in the wind gust distribution
of ERA5 compared to ERA-Interim as discussed in Sect. 4.1.

The comparison of storm ranks between LI ERA5 and LI
ERA-Interim is presented in Fig. 4. Differences are generally
larger than for the loss values. This is confirmed both by a

higher number of outlier storms in individual countries such
as France and by an overall larger spread of events along the
linear regression line.

In general, LI ERA5 and LI ERA-Interim show good
agreement. This is supported by overall high Spearman’s
rank correlation coefficients (Spearman, 1904; Dodge,
2008), which we computed to quantify and map the differ-
ences between the datasets across countries. In addition to
the value of Spearman’s rank correlation, which measures the
strength and direction of the relationship, we use the R2 of
Spearman’s rank correlation that indicates the proportion of
variance in the ranks of one variable that is predictable from
the ranks of the other variable. For most countries, the cor-
relations between LI ERA5 and LI ERA-Interim exceed 0.5,
thereby confirming the good agreement between the datasets
(Fig. 5). Moreover, more than half of the countries have R2

values above 0.40, indicating that more than 40 % of the vari-
ance in the ranks of LI ERA5 is explained by the variance in
the ranks of the LI ERA-Interim (Table 1). Based on these
results, we focus only on LI ERA5 in the following section
in order to benefit from the higher spatial and temporal reso-
lution and the more recent data.
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Figure 3. Comparison of normalized loss values based on LI ERA5 (x axis) and LI ERA-Interim (y axis). Depicted are the common 20
most extreme storms in the 1979–2019 period for (a) Core Europe, (b) the United Kingdom, (c) Germany and (d) France. Storm names
corresponding to each data point are marked with a blue line. Storms without a formal name are named based on the region (e.g., CE for
Core Europe) and the loss value (starting from zero for the storm with the highest loss). The dashed red line denotes the linear regression
line. Outlier storms based on the IQR method (see Sect. 4.2) are marked in red.

5 Comparison of loss estimates from LI ERA5 and
Aon’s IF Euro WS model

In the second part of our study, we compare LI ERA5 to the
output from Aon’s IF Euro WS model, focusing on normal-
ized losses and storm ranks at country level. The analysis
is based on Aon’s historical event set of insured storms in
the 1990–2020 period (see Table S1). Thus, the number of
common storms between Aon’s IF Euro WS model and LI
ERA5 can differ in the individual countries (see Table 1 and
Fig. S4). Note that some events cannot be clearly separated
based on LI ERA5 (e.g., Lothar and Martin; see Fig. 3 and
Table S2), whereas they are single events in Aon’s IF Euro
WS model. In these cases, we assign the same LI value to
both storm events for the comparison between LI ERA5 and
Aon’s IF Euro WS model.

5.1 Case study – Storm Sabine

First, we analyze one case study in detail, namely Storm
Sabine, which hit Europe in February 2020. We compare the
normalized losses (relative ranking) and storm ranks (ordi-
nal ranking) at country level, additionally including PERILS
as a reference (Fig. 6). All three datasets agree with regard
to the region affected by the storm, which closely follows
Sabine’s cyclone track (black line and dots in the left column
of Fig. 6). However, the normalized loss values can differ
significantly in the three datasets. Values are generally higher
for LI ERA5 for all countries, except for Norway, where all
datasets show the same normalized loss. Aon’s IF Euro WS
model and PERILS show good agreement in terms of the rel-
ative ranking of Storm Sabine in the different countries. In
terms of the ordinal ranking (Fig. 6, lower row), Sabine is
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Figure 4. The same as Fig. 3 but for the comparison of storm ranks. The values in brackets indicate the rank (first value – ERA5, second
value – ERA-Interim).

Table 1. Explained variance (R2) of Spearman’s rank correlation coefficient between LI ERA5 and LI ERA-Interim (second column), LI
ERA5 and Aon’s IF Euro WS model (third column), LI ERA5 and PERILS (fourth column), and Aon’s IF Euro WS model and PERILS (last
column). The number of common storms per country is given in brackets.

LI ERA5 vs. LI ERA5 vs. LI ERA5 vs. Aon’s IF Euro WS vs.
LI ERA-Interim Aon’s IF Euro WS PERILS PERILS

Core Europe 0.65 [20] 0.52 [23] 0.26 [17] 0.57 [19]
Austria 0.43 [20] 0.75 [15] 1.0 [4] 1.0 [4]
Belgium 0.62 [20] 0.22 [21] 0.09 [11] 0.66 [11]
Denmark 0.25 [20] 0.41 [15] 0.49 [5] 0.14 [6]
France 0.79 [20] 0.6 [17] 0.56 [10] 0.54 [11]
Germany 0.5 [20] 0.57 [23] 0.33 [15] 0.47 [15]
Ireland 0.37 [20] 0.2 [19] 0.49 [5] 0.64 [5]
Luxembourg 0.64 [20] 0.26 [15] 0.07 [6] 0.43 [6]
The Netherlands 0.2 [20] 0.64 [21] 0.68 [11] 0.7 [11]
Norway 0.29 [20] 0.4 [9] 0.25 [3] 1.0 [3]
Sweden 0.51 [20] 0.23 [13] 1.0 [4] 0.16 [4]
United Kingdom 0.49 [20] 0.36 [20] 0.44 [13] 0.7 [13]
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Figure 5. Spearman’s rank correlation coefficient at country level
for LI ERA5 vs. LI ERA-Interim. The ranking is based on common
storms per country (see Table 1 and Fig. S4).

among the Top 6 storms in all three datasets. However, while
the ranking for Aon’s IF Euro WS model and PERILS dif-
fers by no more than one position, differences are larger be-
tween LI ERA5 and Aon’s IF Euro WS model/PERILS and
can reach up to five positions, e.g., for the United Kingdom.
In general, the agreement/disagreement between LI ERA5 on
the one hand and Aon’s IF Euro WS model/PERILS on the
other hand is different for each country, and systematic dif-
ferences are not apparent. Nevertheless, the results suggest
that LI ERA5 might have difficulties in clearly distinguish-
ing individual storms from one another, i.e., that the loss val-
ues of the most extreme events are too close together. This is
examined in more detail in the following sections.

5.2 Windstorm loss

In this section, we compare the normalized loss values de-
rived from Aon’s IF Euro WS model (x axis) and LI ERA5
(y axis) for all common storms for four different regions/-
countries: Core Europe, the United Kingdom, Germany and
France (Fig. 7). In general, the two datasets reveal large dif-
ferences. Only individual storm events like Daria in Jan-
uary 1990 or Kyrill in January 2007 show comparable nor-
malized losses. This is supported by a rather large spread of
storm events along the regression line (Fig. 7). Nevertheless,
only a small number of storms are identified as outliers based
on the IQR method – for example, Sabine in Core Europe or
Martin in France. For LI ERA5, the range of loss values is
quite similar between larger regions like Core Europe and
smaller regions (individual countries). Aon’s IF Euro WS
model, on the other hand, reveals a different range of loss val-
ues for different regions. Within individual regions, Aon’s IF
Euro WS model shows a clear distinction between extreme
high-loss storm events such as Daria and events with mod-
erate losses (e.g., Isaias). Normalized loss values between

those events can differ by a factor of up to 1000 for single
countries. This distinction is less pronounced in LI ERA5
(see, e.g., Fig. 7b), where the individual storm events are
closer together and usually differ by a factor of less than 100
in terms of their respective normalized loss. Such differences
are not uncommon when comparing loss datasets (Moemken
et al., 2024).

In a sensitivity study, we tested whether the differences
between LI ERA5 and Aon’s IF Euro WS model result from
the different event definitions – 72 h periods vs. 24 h periods.
With this aim, we calculated LI ERA5 for running 24 h win-
dows. The comparison of normalized loss values is shown
in Fig. S5 (see Fig. S6 for storm ranks). Overall, we find no
systematic reduction in the differences between LI ERA5 and
Aon’s IF Euro WS model when using 24 h windows instead
of 72 h windows. For some storms and/or countries, differ-
ences decrease with a shorter event definition (e.g., for Ger-
many), while for others they increase (e.g., Core Europe).
Moreover, the number of common storm events decreases
with a shorter event definition for LI ERA5 (not shown).

5.3 Storm ranking

We also compare LI ERA5 and Aon’s IF Euro WS model in
terms of storm ranks for the common most extreme storms
per country. Figure 8 shows this comparison for Core Eu-
rope, the United Kingdom, Germany and France. As for the
normalized losses, we see rather large differences between
the datasets, though less pronounced. Most events show rank
differences in the range of zero to three positions. Only in
the case of individual storms, such as Klaus in Core Europe
or Martin in Germany, can rank differences reach up to 16
positions. These events are also marked as outliers based on
the IQR method.

Finally, we compare Spearman’s rank correlation coeffi-
cients (Fig. 9) and the corresponding explained variance (R2;
Table 1), again including PERILS as a reference. Figure 9
displays the correlation coefficients for each country, provid-
ing a clear depiction of the agreement or disagreement be-
tween LI ERA5, Aon’s IF Euro WS model and PERILS. For
most parts of central Europe, LI ERA5 and Aon’s IF Euro
WS model show a high agreement, with correlation values
reaching up to 0.86 for Austria. Lower correlations with val-
ues below 0.5 and therefore larger differences can be found
for Ireland, Belgium and Sweden. The correlation pattern
between LI ERA5 and PERILS looks similar, with overall
lower values. Only the perfect anti-correlation for Sweden
and the perfect correlation for Austria are striking. However,
these values could be due to the small sample of common
storms (see Fig. S4) and should therefore be viewed with
caution. The comparison of Aon’s IF Euro WS model and
PERILS reveals mostly high correlation coefficients, rang-
ing between 0.69 for Germany and 1.0 for Austria and Nor-
way. In terms of the explained variance, Austria exhibits the
highest R2 value when comparing LI ERA5 against Aon’s
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Figure 6. Normalized losses (a–c) and storm ranking (d–f) at country level for Storm Sabine in February 2020. Losses are derived from LI
ERA5 (a, d), Aon’s IF Euro WS model (b, e) and PERILS (c, f). The black line and dots in the left column denote the cyclone track derived
from ERA5 using the tracking algorithm of Pinto et al. (2005). Losses are only shown for the 11 countries covered by Aon. The ranking is
based on common storms per country (see Table 1 and Fig. S4).

IF Euro WS model and PERILS (Table 1). This result sug-
gests that for Austria, over 70 % of the variation in the ranks
of loss from one dataset can be explained by the variation in
the ranks of the other loss values. Due to the small sample of
common events in some countries, some correlation values
in this comparison should also be treated with care.

6 Summary and discussion

In this study, we compared estimated windstorm losses over
Europe from the meteorological loss index (LI) and the catas-
trophe windstorm model of Aon Impact Forecasting, used in
insurance. Furthermore, we tested the sensitivity of LI to the
meteorological input data by using both ERA5 and its prede-
cessor ERA-Interim. The main results can be summarized as
follows.

– For all of Europe, LI values are higher for ERA5 than
for ERA-Interim (by roughly a factor of 10). The main
reason is the higher spatial resolution in ERA5. Addi-
tionally, the wind gust distribution in ERA5 is slightly
shifted towards higher values and has a longer tail. With
regard to normalized losses and storm ranks, LI ERA5
and LI ERA-Interim show a comparable behavior for

Core Europe, with Spearman’s rank correlation mostly
ranging between 0.61 (Ireland) and 0.89 (France).

– Compared to Aon’s IF Euro WS model, LI ERA5 shows
overall lower normalized loss values, while the storm
ranks are comparable for most of Core Europe (cor-
relations between 0.45 and 0.8). Moreover, Aon’s IF
Euro WS model reveals a clearer distinction between
high- and moderate-impact events. The difference be-
tween the highest and lowest insured loss, as given by
Aon’s IF Euro WS model (e.g., Daria vs. Isaias in the
United Kingdom; see Fig. 7b), is 3 orders of magnitude,
while the corresponding LI ERA5 difference is typically
1 to 1.5 orders of magnitude. In addition, the catastro-
phe model shows a clear regional dependency of loss
values. This regional dependence is less pronounced in
LI ERA5.

In previous studies, LI has been calculated and analyzed
for a variety of reanalysis datasets with different spatial and
temporal resolutions: ERA-40 with 1.125° and 6-hourly res-
olution in Pinto et al. (2012), NCEP with 1.875° and 6-hourly
resolution in Karremann et al. (2014a), or ERA-Interim with
0.75° and 6-hourly resolution in Priestley et al. (2018). In
line with our results, these studies show that the magnitude
of LI is sensitive to the spatial resolution of the underlying
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Figure 7. Comparison of normalized loss values between Aon’s IF Euro WS model (x axis) and LI ERA5 (y axis). Depicted are the common
most extreme storms for the 1990–2020 period for (a) Core Europe, (b) the United Kingdom, (c) Germany and (d) France. A logarithmic
scale is used for the axes. The dashed red line denotes the logarithmic regression. Outlier storms based on the IQR method are marked in red.
Please note the different scales.

dataset. Nevertheless, they all agree on the general (regional)
behavior of LI. Another reason for the different LI values
for ERA5 compared to ERA-Interim is a slight shift towards
higher gust speeds and a longer tail in the wind gust distri-
bution of ERA5. This is in line with Minola et al. (2020),
who compared wind gust data from ERA-Interim and ERA5
with observational data across Sweden. They find an overall
better agreement between observations and ERA5, although
some discrepancies persist in regions with complex topogra-
phy. We therefore conclude that it is adequate to use the re-
cent ERA5 dataset for the comparison to the insurance model
in the second part of our study.

One reason for the differences between the meteorological
index and the catastrophe model of Aon Impact Forecasting

is their different methodological design: first, Aon’s IF Euro
WS model uses a 1 d window for the loss calculation, while
LI ERA5 is based on 72 h windows. Thus, Aon’s IF Euro
WS model is better able to separate storm events in short
succession (like Lothar and Martin in December 1999). In a
sensitivity study, we could show that using a 24 h event def-
inition for LI ERA5 does not lead to a systematic reduction
in the differences between LI ERA5 and Aon’s IF Euro WS
model (Sect. 5.2). Therefore, we decided to stick to the 72 h
event definition in LI ERA5. This has several advantages:
we are able to capture the entire windstorm footprint (Hew-
son and Neu, 2015). Additionally, the 72 h event definition
corresponds to a definition often used in reinsurance treaties
(the so-called 72 h clause; Klawa and Ulbrich, 2003; Kar-
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Figure 8. The same as Fig. 7 but for the comparison of storm ranks. The values in brackets indicate the rank (first value – Aon’s model,
second value – ERA5).

Figure 9. Spearman’s rank correlation coefficient at country level for LI ERA5 vs. Aon’s IF Euro WS model (a), LI ERA5 vs. PERILS (b)
and Aon’s IF Euro WS model vs. PERILS (c). The ranking is based on common storms per country (see Table 1 and Fig. S4).
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remann et al., 2014a). Finally, the correlations between LI
ERA5 and Aon’s IF Euro WS model are higher when using
72 h windows, especially for Core Europe. Another method-
ological difference is the consideration of different risk com-
ponents. LI ERA5 only includes the hazard component and
an estimate for the exposure component, while Aon’s IF Euro
WS model additionally includes a sophisticated engineering-
based vulnerability component that takes, e.g., building resis-
tance, loss frequency due to quasi-random effects and local
societal adaptations into account.

Aside from that, our study reveals some shortcomings of
the two approaches. As with all meteorological indices, LI
relies upon the quality of both the underlying wind data and
the impact function used for the calculation of loss. In the
specific case of LI, the initial index was developed and eval-
uated for Germany by Klawa and Ulbrich (2003), employ-
ing insurance data of Munich Re and the Gesamtverband
der Deutschen Versicherer (GDV) e.V. In a follow-up study,
Karremann et al. (2014b) were able to demonstrate that the
chosen 98th percentile is an appropriate threshold to identify
extreme storm events over central and western Europe. Nev-
ertheless, they also point out that the 98th percentile might
be too low for southeastern Europe, the Mediterranean and
Scandinavia. For these regions, Karremann et al. (2014b)
suggest the use of a fixed, reasonable threshold below which
losses are improbable. Moreover, the usage of present-day
population density as a proxy for exposure levels might lead
to an overestimation of loss values (Koks and Haer, 2020).
Furthermore, LI depends on the gust data used. The ERA5
wind gust data we use here are based on the parameteriza-
tion approach by Panofsky et al. (1977). While this approach
performs well in flat terrain, it is sensitive to the local param-
eterization of the roughness length (Born et al., 2012; van den
Brink, 2019). Finally, the LI lacks a detailed damage compo-
nent. The applied cubic relation tries to mimic the non-linear
response of buildings to wind gusts. However, compared to
the market perspective of Aon’s IF Euro WS model, LI ERA5
seems to struggle with capturing this non-linearity, especially
for the high-impact events at the tail of the gust spectrum.
In some extreme cases, certain exposures (e.g., greenhouses,
timber building or agricultural buildings) may have vulnera-
bility functions approximating a step function. Various stud-
ies have tested different formulations of meteorological in-
dices, also considering different exponents (e.g., Klawa and
Ulbrich, 2003; Pinto et al., 2012; Prahl et al., 2015; Gliksman
et al., 2023). All these studies agree that the performance of
the different indices depends on the underlying event set. For
some events, formulations with higher exponents seem to es-
timate windstorm losses better, while for other events, the cu-
bic relationship provides results that are more realistic. In this
sense, no formulation clearly outperforms the others. Aon’s
IF Euro WS model, on the other hand, includes no informa-
tion on uninsured market loss. Additionally, insurance data
in general depend on the insurance coverage and policy in
single countries. Both factors might result in an overrepre-

sentation of windstorms that hit countries with high market
coverage (Moemken et al., 2024).

The current study is, to our knowledge, the first to com-
pare a full insurance windstorm model (which is not publicly
available) to a simplified meteorological loss index. For this
reason, and due to some proprietary restrictions, we decided
to focus on a straightforward comparison of the two methods.
Overall, our results suggest that the loss distribution in LI is
not steep enough, and accordingly the tail is too short, lead-
ing to an underestimation of high-impact windstorms com-
pared to the market perspective derived from the insurance
catastrophe model. Nonetheless, LI is an effective index pre-
cisely because of its simplicity since it only considers wind
gust and population density. Although it cannot be used to
estimate the cost of a storm (due to the missing vulnerabil-
ity information), it is suitable for estimating the impacts and
rank events. The first comparison between a meteorological
index and a full commercial windstorm model could serve
as a reference for future studies focusing on the development
and improvement of both storm loss models and storm sever-
ity indices.
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