

Supplement of

High-resolution projections of ambient heat for major European cities using different heat metrics

Clemens Schwingshackl et al.

Correspondence to: Clemens Schwingshackl (c.schwingshackl@lmu.de)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Tables

Table S1: Overview of the 36 cities, their coordinates, elevation of the city centre, and whether a city is located close to the sea.

Amsterdam52.3674.900-2yesAthens37.98423.728153yes	
Athens 37.984 23.728 153	
133 VES	
Barcelona 41.383 2.183 12 yes	
Belgrade 44.817 20.467 116 no	
Berlin 52.517 13.383 34 no	
Brussels 50.847 4.353 76 no	
Bucharest 44.433 26.104 70 no	
Budapest 47.493 19.051 102 no	
Copenhagen 55.676 12.568 5 ves	
Dublin 53.350 -6.267 8 ves	
Hamburg 53.565 10.001 6 no	
Helsinki 60.171 24.938 25 ves	
Istanbul 41.014 28.955 40 ves	
Kazan 55.790 49.135 116 no	
Kharkiv 50.004 36.231 152 no	
Kyiv 50.450 30.523 168 no	
Lisbon 38.725 -9.150 15 ves	
London 51.507 -0.128 14 no	
Madrid 40.383 -3.717 667 no	
Milan 45.467 9.183 152 no	
Minsk 53.900 27.567 198 no	
Moscow 55.750 37.617 124 no	
Munich 48.133 11.567 520 no	
Nizhny Novgorod 56.327 44.008 78 no	
Oslo 59.914 10.752 12 yes	
Paris 48.857 2.351 34 no	
Prague 50.083 14.417 244 no	
Riga 56.949 24.106 8 yes	
Rome 41.900 12.500 14 no	
Saint Petersburg 59.950 30.300 13 yes	
Sofia 42.700 23.330 580 no	
Stockholm 59.329 18.069 15 ves	
Vienna 48.200 16.367 170 no	
Vilnius 54.683 25.283 124 no	
Warsaw 52.233 21.017 93 no	
Zagreb 45.817 15.983 130 no	

Table S2: Overview of the EURO-CORDEX regional climate models (RCMs) used in this study and the respective driving general circulation models (GCM). All simulations are performed using the EUR-11 resolution.

GCM	RCM	Ensemble member
CCCma-CanESM2	CLMcom-CCLM4-8-17	rlilpl
CCCma-CanESM2	GERICS-REMO2015	rlilpl
CNRM-CERFACS-CNRM-CM5	CLMcom-CCLM4-8-17	rlilpl
CNRM-CERFACS-CNRM-CM5	CNRM-ALADIN53	rlilpl
CNRM-CERFACS-CNRM-CM5	CNRM-ALADIN63	rlilpl
CNRM-CERFACS-CNRM-CM5	DMI-HIRHAM5	rlilpl
CNRM-CERFACS-CNRM-CM5	GERICS-REMO2015	rlilpl
CNRM-CERFACS-CNRM-CM5	IPSL-WRF381P	rlilpl
CNRM-CERFACS-CNRM-CM5	KNMI-RACMO22E	rlilpl
CNRM-CERFACS-CNRM-CM5	SMHI-RCA4	rlilpl
CNRM-CERFACS-CNRM-CM5	CLMcom-ETH-COSMO-crCLIM-v1-1	rlilpl
CNRM-CERFACS-CNRM-CM5	ICTP-RegCM4-6	rlilpl
CNRM-CERFACS-CNRM-CM5	MOHC-HadREM3-GA7-05	rlilpl
ICHEC-EC-EARTH	CLMcom-CCLM4-8-17	r12i1p1
ICHEC-EC-EARTH	CLMcom-ETH-COSMO-crCLIM-v1-1	r12i1p1
ICHEC-EC-EARTH	CLMcom-ETH-COSMO-crCLIM-v1-1	rlilpl
ICHEC-EC-EARTH	CLMcom-ETH-COSMO-crCLIM-v1-1	r3i1p1
ICHEC-EC-EARTH	DMI-HIRHAM5	r12i1p1
ICHEC-EC-EARTH	DMI-HIRHAM5	rlilpl
ICHEC-EC-EARTH	DMI-HIRHAM5	r3i1p1
ICHEC-EC-EARTH	GERICS-REMO2015	r12i1p1
ICHEC-EC-EARTH	ICTP-RegCM4-6	r12i1p1
ICHEC-EC-EARTH	IPSL-WRF381P	r12i1p1
ICHEC-EC-EARTH	KNMI-RACMO22E	r12i1p1
ICHEC-EC-EARTH	KNMI-RACMO22E	rlilpl
ICHEC-EC-EARTH	KNMI-RACMO22E	r3i1p1
ICHEC-EC-EARTH	MOHC-HadREM3-GA7-05	r12i1p1
ICHEC-EC-EARTH	SMHI-RCA4	r12i1p1
ICHEC-EC-EARTH	SMHI-RCA4	rlilpl
ICHEC-EC-EARTH	SMHI-RCA4	r3i1p1
IPSL-IPSL-CM5A-MR	DMI-HIRHAM5	rlilpl
IPSL-IPSL-CM5A-MR	GERICS-REMO2015	rlilp1
IPSL-IPSL-CM5A-MR	IPSL-WRF381P	rlilp1
IPSL-IPSL-CM5A-MR	KNMI-RACMO22E	rlilp1
IPSL-IPSL-CM5A-MR	SMHI-RCA4	rlilpl
MIROC-MIROC5	CLMcom-CCLM4-8-17	rlilpl
MIROC-MIROC5	GERICS-REMO2015	rlilpl
MOHC-HadGEM2-ES	CLMcom-CCLM4-8-17	rlilpl
MOHC-HadGEM2-ES	CLMcom-ETH-COSMO-crCLIM-v1-1	rlilpl
MOHC-HadGEM2-ES	CNRM-ALADIN63	rlilpl
MOHC-HadGEM2-ES	DMI-HIRHAM5	rlilpl
MOHC-HadGEM2-ES	GERICS-REMO2015	rlilpl
MOHC-HadGEM2-ES	ICTP-RegCM4-6	rlilpl
MOHC-HadGEM2-ES	IPSL-WRF381P	rlilpl

GCM	RCM	Ensemble member
MOHC-HadGEM2-ES	KNMI-RACMO22E	rlilpl
MOHC-HadGEM2-ES	MOHC-HadREM3-GA7-05	rlilpl
MOHC-HadGEM2-ES	SMHI-RCA4	rlilpl
MPI-M-MPI-ESM-LR	CLMcom-CCLM4-8-17	rlilpl
MPI-M-MPI-ESM-LR	CLMcom-ETH-COSMO-crCLIM-v1-1	rlilpl
MPI-M-MPI-ESM-LR	CLMcom-ETH-COSMO-crCLIM-v1-1	r2i1p1
MPI-M-MPI-ESM-LR	CLMcom-ETH-COSMO-crCLIM-v1-1	r3i1p1
MPI-M-MPI-ESM-LR	CNRM-ALADIN63	rlilpl
MPI-M-MPI-ESM-LR	DMI-HIRHAM5	rlilpl
MPI-M-MPI-ESM-LR	GERICS-REMO2015	r3i1p1
MPI-M-MPI-ESM-LR	ICTP-RegCM4-6	rlilpl
MPI-M-MPI-ESM-LR	KNMI-RACMO22E	rlilpl
MPI-M-MPI-ESM-LR	MOHC-HadREM3-GA7-05	rlilpl
MPI-M-MPI-ESM-LR	MPI-CSC-REMO2009	rlilpl
MPI-M-MPI-ESM-LR	MPI-CSC-REMO2009	r2i1p1
MPI-M-MPI-ESM-LR	SMHI-RCA4	rlilpl
MPI-M-MPI-ESM-LR	SMHI-RCA4	r2i1p1
MPI-M-MPI-ESM-LR	SMHI-RCA4	r3i1p1
MPI-M-MPI-ESM-LR	IPSL-WRF381P	rlilpl
NCC-NorESM1-M	CLMcom-ETH-COSMO-crCLIM-v1-1	rlilpl
NCC-NorESM1-M	CNRM-ALADIN63	rlilpl
NCC-NorESM1-M	DMI-HIRHAM5	rlilpl
NCC-NorESM1-M	GERICS-REMO2015	rlilpl
NCC-NorESM1-M	IPSL-WRF381P	rlilpl
NCC-NorESM1-M	KNMI-RACMO22E	rlilpl
NCC-NorESM1-M	MOHC-HadREM3-GA7-05	r1i1p1
NCC-NorESM1-M	SMHI-RCA4	r1i1p1
NCC-NorESM1-M	ICTP-RegCM4-6	rlilpl

Table S3: Overview of the CMIP5 models used in this study. Models are only considered if they reach 3 °C European warming (20-year ESAT average relative to 1981-2010) before 2100 in RCP8.5. Models used for constructing the EURO-CORDEX GCM ensemble are marked with an asterisk (*). Ensemble members indicated in parentheses are only used for the EURO-CORDEX GCM ensemble. The member r3i1p1 for EC-EARTH, which is used to drive several EURO-CORDEX RCMs, is not available from the ESGF servers.

Model	Ensemble member
ACCESS1-0	rlplfl
ACCESS1-3	rlplfl
bcc-csm1-1	rlplfl
bcc-csm1-1-m	rlplfl
BNU-ESM	rlplfl
CanESM2*	rlplfl
CESM1-CAM5	rlplfl
CNRM-CM5*	rlplfl
CSIRO-Mk3-6-0	rlplfl
EC-EARTH*	rlilpl (rl2ilpl)
GFDL-CM3	rlplfl
GFDL-ESM2G	rlplfl
GFDL-ESM2M	rlplfl
HadGEM2-AO	rlplfl
HadGEM2-CC	rlplfl
HadGEM2-ES*	rlplfl
IPSL-CM5A-LR	rlplfl
IPSL-CM5A-MR*	rlplfl
IPSL-CM5B-LR	rlplfl
MIROC5*	rlplfl
MPI-ESM-LR*	rlplfl (r2plfl, r3plfl)
MRI-CGCM3	rlplfl
MRI-ESM1	rlplfl
NorESM1-M*	rlplfl

 Table S4:
 Overview of the CMIP6 models used in this study.

	Model	Ensemble member
A	CCESS-CM2	rlilplfl
A	CCESS-ESM1-5	rlilplfl
Cì	NRM-CM6-1	rlilplf2
Cì	NRM-CM6-1-HR	rlilplf2
Cì	NRM-ESM2-1	rlilplf2
Ca	anESM5	rlilplfl
EC	C-Earth3	rlilplfl
EC	C-Earth3-Veg	rlilplfl
FC	GOALS-g3	rlilplfl
Gl	FDL-CM4	rlilplfl
Gl	FDL-ESM4	rlilplfl
Ha	adGEM3-GC31-LL	rlilp1f3
Ha	adGEM3-GC31-MM	rlilp1f3
IN	M-CM4-8	rlilplfl
IN	M-CM5-0	rlilplfl
KA	ACE-1-0-G	rlilplfl
KI	IOST-ESM	rlilplfl
Μ	IROC-ES2L	rlilplf2
М	PI-ESM1-2-HR	rlilplfl
М	PI-ESM1-2-LR	rlilplfl
М	RI-ESM2-0	rlilplfl
No	prESM2-LM	rlilplfl
No	orESM2-MM	rlilplfl
UI	KESM1-0-LL	rlilp1f2

Supplementary Figures

Figure S1: Comparison of EURO-CORDEX with ERA5-Land and E-OBS for daily maximum near-surface air temperature (TX) in summer (June, July, August) during 1981-2010. Panels a) and b) show the comparison for the TX median; panels c) and d) for the 99th quantile of TX. Panels a) and c) show the distribution of EURO-CORDEX models (grey box plots) versus ERA5-Land (red circles) and E-OBS (blue circles). Panels b) and d) show the EURO-CORDEX bias against ERA5-Land (red box plots) and E-OBS (blue box plots). Lines in the box plots indicate the median, boxes the interquartile range, and whiskers the minimum-to-maximum range.

Figure S2: Maps of the multi-model median EURO-CORDEX bias relative to ERA5-Land and E-OBS for the median of daily maximum near-surface air temperature (TX) and the median of daily minimum near-surface air temperature (TN) in summer (June, July, August) during 1981-2010. For TX, the values correspond to the median values shown in Figure S1b.

Figure S3: As in Figure 3 but for daily minimum near-surface air temperature (TN).

Figure S4: As in Figure 4 b) but for exceedances above a) 25 °C, b) 27 °C, c) 30 °C, and d) 33 °C.

Figure S5: Comparison of ambient heat projections by the EURO-CORDEX ensemble for the grid cell closest to the centre of each city (grey bars; multi-model median) and variability in ambient heat projections within a box of 3x3 grid cells around the city centres (black whiskers and green bars) for a) change in yearly maximum near-surface air temperature (TXx) between 1981-2010 and 3 °C European warming, b) TX exceedances above 30 °C at 3 °C European warming, and c) Heat Wave Magnitude Index daily based on TX (HWMId-TX) at 3 °C European warming. Black whiskers denote the multi-model median of the minimum-to-maximum range across the 3x3 grid cells. Green bars also show the minimum-to-maximum range across grid cells, with the shading intensity indicating that only grid cells with varying degrees of minimum land fraction are considered (light green: all grid cells are considered; increasing shading intensity: only grid cells with at least 25%, 50%, and 75% land fraction are considered).

HWMId-TX at ∆EMT=3°C

Interannual variability of TXx (1981-2010)

Figure S6: Heat Wave Magnitude Index daily based on daily maximum near-surface air temperature (HWMId-TX) at 3°C European warming and interannual variability (interquartile range) of yearly maximum near-surface air temperature (TXx) in the reference period 1981-2010. Both maps show the multi-model median of the EURO-CORDEX ensemble. Small black circles indicate the location of the 36 cities analysed in this study.

Figure S7: Sensitivity analysis for TX exceedances above 30 °C at 3 °C European warming. Grey box plots show estimates based on the original EURO-CORDEX data, light blue box plots show estimates for EURO-CORDEX data with the mean adjusted to ERA5-Land, and dark blue box plots show estimates for EURO-CORDEX data with the mean and standard deviation adjusted to ERA5-Land. The reference period for the adjustment is 1981-2010. Boxes (whiskers) indicate the interquartile range (minimum-to-maximum range) across EURO-CORDEX models.

EURO-CORDEX

EURO-CORDEX GCM ensemble

Figure S8: Multi-model median change in yearly maximum near-surface air temperature (Δ TXx) at 3 °C European warming relative to 1981-2010 for the EURO-CORDEX ensemble, the EURO-CORDEX GCM ensemble, the CMIP5 ensemble, and the CMIP6 ensemble according to the RCP8.5 scenario (EURO-CORDEX, EURO-CORDEX GCM ensemble, CMIP5) and the SSP5-8.5 scenario (CMIP6). Data for CMIP5 and CMIP6 were interpolated bilinearly to 1° resolution before calculating the multi-model median.