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Abstract. Coastal and riverine floods are major concerns
worldwide as they can impact highly populated areas and
result in significant economic losses. In a river mouth envi-
ronment, interacting hydrological and oceanographical pro-
cesses can enhance the severity of floods. The compound
flood hazards from high sea levels and high river discharge
are often estimated using copulas, among other methods.
Here, we systematically investigate the influence of different
data sources coming from observations and models as well as
the choice of copula on extreme water level estimates. While
we focus on the river mouth at the city of Halmstad (Swe-
den), the approach presented is easily transferable to other
sites. Our results show that the choice of data sources can
considerably impact the results up to 10 % and 15 % for the
river time series and 3 % to 4.6 % for the sea level time se-
ries under the 5- and 30-year return periods, respectively. The
choice of copula can also strongly influence the outcome of
such analyses up to 13 % and 9.5 % for the 5-year and 30-
year return periods. Each percentage refers to the normal-
ized difference in return level results we can expect when
choosing a certain copula or input dataset. The copulas found
to statistically best fit our datasets are the Clayton, BB1,
and Gaussian (once) ones. We also show that the compound
occurrence of high sea levels and river runoff may lead to
heightened flood risks as opposed to considering them inde-
pendent processes and that, in the current study, this is dom-
inated by the hydrological driver. Our findings contribute to
framing existing studies, which typically only consider se-
lected copulas and datasets, by demonstrating the importance
of considering uncertainties.

1 Introduction

Floods can cause severe damage to infrastructure and disrupt
activities in harbours and coastal communities. Flooding can
result from meteorological, hydrological, and oceanographic
sources such as storm surges, extreme river runoff, or precip-
itation. Storm surges correspond to seawater being pushed
by the wind stress and the barometric pressure effect un-
der deep low-pressure weather systems. Heavy precipitation
can form under different conditions such as intense cyclonic
activity, sometimes during the same deep low-pressure sys-
tems that cause the storm surge or sometimes during convec-
tive weather conditions. River runoff can also have different
origins, such as snow melting upstream or intense precipi-
tation, related to the same large-scale weather system that
could cause the storm surge or separately. Hence, several
processes could contribute to compound effects and inde-
pendently cause damage and disruption to activities in the
coastal zone. River runoff and precipitation may take some
time to drain into the sea, and the flow from land to the sea
can therefore be slowed down or even momentarily become
blocked when storm surges happen (Wahl et al., 2015). This
process can be referred to as coastal backwater effects, while
the water level at the river mouth increases due to high river
discharge or high sea level or compounding effects (Feng et
al., 2022).

Settlements and infrastructure located in river mouth envi-
ronments are inherently susceptible to all of the above. The
combination of multiple factors, extreme or not, happening
at the same place simultaneously, successively, or consecu-
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Figure 1. Regional map of southern and central Sweden with a zoom around our study area and the city of Halmstad (Pawlowicz, 2020;
Sentinel-2 cloudless, 2021).

tively can potentially lead to larger compounded floods and
more severe impacts on the environment and society. Com-
pound flooding can also result when preceding conditions
amplify the impact of the event (Andrée et al., 2023; Zscheis-
chler et al., 2020; AghaKouchak et al., 2020). Even if trends
over the last 40 to 60 years are estimated with high uncer-
tainty, it is likely that extremes including compound events
will become more severe in northern Europe with the chang-
ing climate (Rutgersson et al., 2022).

Couasnon et al. (2020) highlight the importance of con-
sidering interactions, referring to their co-occurrence prob-
abilities between river discharge and storm surge extremes
in river mouth environments. They demonstrate that depen-
dencies between these drivers are not random and may re-
sult from relations between weather systems at the synop-
tic scale with local conditions such as the topography. Ward
et al. (2018) study the dependence between river discharge
and skew surge at the global scale, where significant depen-
dency is found in several stations in Europe, mainly located
around the UK coastline. Hendry et al. (2019) also high-
lighted those dependencies around the UK coast and linked
the spatial variability found with differences in storm char-
acteristics. In northwestern Europe, it has been shown that
the fluvial flood hazard increases with high sea levels and
stronger storms, and this may be critical in populated and
low-elevation coastal areas (Ganguli and Merz, 2019a). In-
creasing trends within the last decades in the magnitude and
frequency of coastal compound floods between river dis-
charge and sea levels are found for gauges between 47 and
60° N latitude, while decreasing trends are highlighted for
gauges > 60° N in northwestern Europe (Ganguli and Merz,
2019b), where rare occurrences of compound floods are re-
ported due to a decrease in relative sea level rise across
Nordic countries due to vertical crustal movement (Weisse et
al., 2021). For example, Eilander et al. (2020) find the Baltic
Sea and the Kattegat basin to be particularly susceptible to

compound flood hazards based on the dependency between
skew surge levels and river discharge. Without considering
the occurrence of storm surges, Eilander et al. (2020) further
show that flood depths are underestimated and subsequently
so is the estimated number of people exposed to river floods
in this area. Meanwhile, Moftakhari et al. (2017) demonstrate
that sea level rise (SLR) is likely to increase the impacts from
compound flooding by 2030 and 2050 under the represen-
tative concentration pathways (RCPs) 4.5 and 8.5 for eight
major cities around the US coastline.

Compound flooding in coastal areas can also be caused by
a combination of heavy precipitation inducing large runoff
and high sea levels (Bevacqua et al., 2019). Hence, the prob-
ability of compound flooding is expected to significantly in-
crease in the Baltic Sea and North Sea areas, where an event
with a current return period (RP) of around 60 years is pro-
jected to occur every 10 years in 2100 due to the combina-
tion of SLR and increased extreme precipitation (Bevacqua
et al., 2019). However, Ganguli et al. (2020), in a coupled
statistical–hydrodynamic modelling framework, showed that
projected changes in compound flood hazard are limited to
34 % of the sites with a substantial role of SLR in modulat-
ing compound flood hazard in northwestern Europe.

Not taking compound flooding effects into account may
result in an underestimation of the flood hazards in the
coastal zone, including river mouths (Ward et al., 2018).
Thus, analysing and understanding these events is of high
relevance to coastal communities. In this study, we evalu-
ate the potential impact of extreme hydrological and oceano-
graphic coastal events on the coastal city of Halmstad (Swe-
den), which is a port and industrial–recreational city at the
mouth of the river Nissan. Halmstad is located on the west
coast of Sweden (Fig. 1) and has been chosen as it is natu-
rally prone to coastal, fluvial, and pluvial flooding. The area
is subject to extratropical cyclones (Hoskins and Hodges,
2002; Dacre et al., 2012), resulting in rather high sea levels
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Figure 2. Workflow describing the methodology used in this paper, starting from the oceanographic and hydrological data (a) to the univariate
(in blue and dashed arrows) and bivariate (in orange and continuous arrows) approaches used for flood hazard analysis. Panel (b) represents
the selection sets; the analysis is then described (c), and the analysis results are shown (d).

by storm surges for the area (Wolski et al., 2014). Accord-
ing to the Swedish Meteorological and Hydrological Institute
(SMHI), Halmstad recorded the highest-ever sea level mea-
sured in Sweden of 235 cm on the 29 November 2015 during
the wind storm Gorm. Halmstad has also been severely im-
pacted by river floods. While Nissan is the main river cross-
ing the city of Halmstad, smaller rivers are also present and
can create floods, such as the river Fylleån. Finally, the west
coast of Sweden is found to be one of the areas in Sweden ex-
pecting the most significant impacts due to SLR during this
century (Hieronymus and Kalén, 2020). Thus, nearby stud-
ies have stressed the necessity to update coastal protection
measures along the Swedish (Hieronymus and Kalén, 2022)
and the German Baltic Sea shorelines (Kiesel et al., 2023).
To help guide and communicate with the local municipalities
about their continued work in protecting coastal areas from
flooding, we considered it useful to pick one site in this area
as an example to showcase the applied methods and their re-
sults.

The main goal of the current study is to investigate the im-
pact of different data sources, methodologies, and represen-
tations of compound extremes on estimates of extreme water
levels. Our main focus is to evaluate the sensitivity of com-
pound flood hazards from river discharge and sea level to data
sources, potential sources of uncertainties. Using Halmstad
as an example, we explore the potential influence on flood
hazard assessments related to compound effects from river
flooding within the coastal area.

2 Data and methods

In the following, compound effects are defined in terms of
the co-occurrence probabilities between coastal sea level and
river discharge when at least one of the two is subject to an
“extreme” value. An event is considered in the extreme range
when a studied variable reaches its annual maximum value.
The annual maximum values will differ between different
years in a range between 84 and 235 cm for sea level and 88
and 271 m3 s−1 for river discharge. The correlation between
co-occurring events has been studied as it provides insight
into the relationship between each set of two variables. The
exceedance probability of getting an extreme river discharge
associated with a high sea level and the opposite permits
the assessment of the potential compound effects between
those two processes, but it does not determine impacts from
compound flooding either in terms of estimating water level
or computing inundation depths. Hybrid statistical–hydraulic
modelling frameworks have been introduced to answer such
issues and study compound flood impacts (Jane et al., 2022;
Moftakhari et al., 2019; Gori et al., 2020; Olbert et al., 2023).

Figure 2 presents the main steps of the workflow describ-
ing the methodology; this is described in the following sub-
sections. Firstly, we analysed different time series records of
sea level and river Nissan discharge data from models and
observations at Halmstad using extreme value theory and a
generalized extreme value (GEV) distribution (Coles, 2001)
– hereby referred to as the “univariate approach” – to esti-
mate return levels (RLs) on every driver independently. Sec-
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ondly, we defined sets of coupled events based on single vari-
ables. Thirdly, we analysed the correlation between sea level
and river discharge events. If this analysis indicated poten-
tial for compound events, we studied the co-dependency be-
tween the two variables by fitting a copula distribution func-
tion (Sadegh et al., 2018). We finally performed a statistical
analysis of the compound events to study the differences be-
tween each data source and its associated uncertainties.

2.1 Data

An analysis of time series records of sea level and river dis-
charge at Halmstad was carried out. As mentioned above, a
univariate distribution was initially fitted based on the GEV
distribution and extreme value theory (Coles, 2001) for each
time series collected. The temporal differences in the lengths
of each dataset induce substantial differences and associated
uncertainties, which dominate in the case of extreme RPs.
Consequently, a moderately extreme 30-year RP event was
chosen as the maximum value considered. For comparison,
we also consider more frequent events with a 5-year RP.

2.1.1 Sea level data

Figure 3 displays the different sea level datasets used
(Fig. 3a) and their corresponding univariate extreme value
analysis (Fig. 3b).

Observations

Hourly sea level observation data were obtained from SMHI
at Halmstad’s tide gauge denoted as the station “HALM-
STAD SJÖV” with station number 35115 in the open
database provided by SMHI (Fig. 1). This hourly sea level
time series is transformed to a daily time series using the
maximum hourly data within the day. However, to carry out
this analysis, the period with sea level observations (titled
“obs sea level”) was insufficient as only a 13-year period
(from 2009 to 2021) is available. To extend this sea level
record, a set of reanalysis data and a machine learning ap-
proach have been investigated and used.

Reanalysis

Hourly sea surface variations (in metres) covering the period
from 1993 to 2020 with a spatial resolution of approximately
2 nmi have been provided by the Copernicus Marine Envi-
ronment Monitoring Service’s (CMEMS) Baltic Monitoring
and Forecasting Centre (BAL MFC) (CMEMS, 2022). This
reanalysis uses the ice–ocean model Nemo-Nordic (Pember-
ton et al., 2017), and the data are assimilated with the local-
ized singular evolutive interpolated Kalman (LSEIK) method
(Nerger et al., 2005). Data are extracted from the closest grid
point to Halmstad’s tide gauge, and the hourly data were
changed to a time series of daily maxima for our purpose to

focus on extremes. This sea level dataset is named “reanaly-
sis”.

Machine learning model

A probabilistic machine learning method, random forest
(RF), is used (Breiman, 2001). Sea level records from the
neighbouring station of Viken (station named “VIKEN”,
number 2228 in the SMHI database) are used to train the
RF model over an 8-year period, where it is correlated with
Halmstad’s observed sea level. The resulting sea level esti-
mates at Halmstad include both mean predictions and stan-
dard deviation to assess uncertainties and variability follow-
ing the methodology introduced by Dubois et al. (2024). The
last 3 years of available data at Halmstad is used to validate
the RF model, emphasizing extreme events predictions. The
RF model is used to produce a first dataset called “predicted
Halmstad” (“pred Halmstad”) and a second one named “re-
constructed Halmstad” (“rec Halmstad”).

The predicted Halmstad dataset provides daily sea level (in
centimetres) for the full period of available sea level obser-
vations from the station at Viken, here from 1977 to 2021.

The reconstructed Halmstad dataset provides daily sea
level (in centimetres). It joins both sets, i.e. combines obser-
vations from Halmstad from 2009 to 2021 and the predicted
Halmstad data from the RF model from 1977 to 2009. Thus,
it also covers the period from 1977 to 2021. Further attempts
to enrich the RF model by including reanalysis data (i.e. as
part of the training) did not improve the predicted sea lev-
els in the reconstructed datasets significantly, which empha-
sized the need for local observations. These were fortunately
available, even if not for the entire extended period. Similar
findings (i.e. significant improvements when using local ob-
servations as means to train a machine learning of sea level)
were previously found in this region (e.g. Hieronymus et al.,
2019).

It is not just the length of the observation period that is
short. The reanalysis dataset also exhibits a bias and does
not predict the observed extreme sea levels. Accordingly, the
uncertainties estimated from both univariate GEV analyses
are large (Fig. 3b). The predicted and reconstructed dataset
yields result in a smaller uncertainty range. Hence, the recon-
structed dataset, which is based on observations when avail-
able, was chosen as the best source of sea level information
for the bivariate analysis.

2.1.2 River runoff data

Figure 4 presents the different river discharge datasets ob-
tained (Fig. 4a) and their corresponding univariate extreme
value analysis (Fig. 4b).

Observations

River discharge data were obtained from SMHI at station
2471: Nissaström (Fig. 1), covering a basin of 2437 km2. Ob-
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Figure 3. Halmstad sea level time series and annual maxima from different sources: observations (“obs sea level”), reconstructed (“rec
Halmstad”), and predicted (“pred Halmstad”), derived from a machine learning model trained on data from the Viken station and reanalysis
(“reanalysis”) datasets (a). RLs estimated from corresponding GEV fits of each dataset and the associated 95th percentile confidence intervals
(background colours). The dots depict empirical data (b).

servations of daily river discharge in m3 s−1 (obs Nissan) are
provided from 1997 to 2021.

E-Hype model

Modelled river discharge data are taken from the Hydrolog-
ical Predictions for the Environment (HYPE) model, which
simulates water flows and quality at different spatial scales
(Lindström et al., 2010). A model detailed description can
be found at http://hype.smhi.net/wiki/doku.php (last access:
10 September 2023). Daily temperature and precipitation
values are used as dynamic forcing in this model. The
European HYPE model – E-Hype2016_version_16_g (E-
Hype) – provides daily river discharge (in m3 s−1) from 1989

to 2021 (https://vattenwebb.smhi.se/om-vattenwebb, last ac-
cess: 10 May 2023). The model performs better for annual
and seasonal flows compared with daily and extreme flows
(Donnelly et al., 2016).

S-Hype model

SMHI has set up the HYPE model for Sweden, now used
operationally to forecast hydrological conditions over Swe-
den, such as floods and droughts. It covers all of Sweden
(450 000 km2), where the country has been divided into sub-
basins of 28 km2 on average (Strömqvist et al., 2012). S-
Hype3 model’s data (S-Hype) of daily river discharge (in
m3 s−1) have been provided from 2004 to 2020 (Donnelly
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Figure 4. Nissan’s river time series and annual maxima from different sources: observations (“obs Nissan”), European HYPE model (“E-
Hype”), and Swedish HYPE model (“S-Hype”) from SMHI (a). RLs derived from GEV fits to each dataset are shown with 95th percentile
confidence intervals (background colours). The dots are the empirical data (b).

et al., 2016). The model seems to slightly underestimate
high-flow peaks with high-flow statistics, differing by around
±10 %, whereas the mean flow is highly reliable (Bergstrand
et al., 2014).

The available time series associated with the S-Hype
model is rather limited, leading to a wide uncertainty band
when carrying out the univariate analysis (Fig. 4). Con-
versely, the Nissan observations and E-Hype datasets lead
to RLs that are associated with more bounded uncertainty
estimates. In this light, we choose the E-Hype dataset for
the bivariate analyses as the data are available over a more
extended period. The largest RLs are seen for the E-Hype
dataset for RPs above 5 years.

2.1.3 Sets of coupled events

To study compound events in a river mouth environment
from both a river discharge and sea level perspective, we de-
fined two different sets of events based on the data discussed
above. The first one paired sea level annual maxima (Sn) and
associated daily maximum river discharge (qn) within a de-
fined time period centred on the date of Sn (±1 days). The
second one pairs river discharge annual maxima (Qn) and as-
sociated hourly maximum sea levels (sn) within a defined 3 d
window centred on the date of Qn (±1 d) (Couasnon et al.,
2020; Moftakhari et al., 2017; Sadegh et al., 2018). Each of
the four sea level time series observed and modelled records
were then correlated with each of the three river discharge
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ones, which makes up a total of 12 different datasets (Ta-
ble A2).

2.2 Statistical analysis

Univariate analysis

To estimate the extreme values of Nissan’s river runoff and
Halmstad sea levels, and their associated RPs, a GEV dis-
tribution was fitted to the annual extremes separately for
each time series record (Coles, 2001; Ahsanullah, 2016).
This was done using the MATLAB-based GEV-fitting algo-
rithm, which provides parameter estimates and 95 % confi-
dence bands. Here, we do not make any assumption concern-
ing the dependence between the two variables of interest, sea
level and river discharge; each variable is modelled indepen-
dently based on its own marginal distribution.

Bivariate analysis

Initially, the Pearson, Spearman, and Kendall correlation co-
efficients and the associated p values were calculated for
each of the 12 collated datasets to assess whether there was
a relationship between river runoff and sea level. The usual
threshold value of 5 % was defined as evidence for rejecting
the H0 null hypothesis; that is, the two variables are indepen-
dent. When p values were found to be lower than the thresh-
old, the null hypothesis could be rejected, and the two vari-
ables were similarly found to show significant dependency.
However, when p values are above 5 %, H0 cannot be re-
jected, so the two variables can be independent.

To represent the compound extremes, we apply copula
modelling, which has been found to be useful for represent-
ing a joint probability (Hao and Singh, 2016). The analyses
were carried out using the Multi-hazard Scenario Analysis
Toolbox (MhAST) Version 2.0 from Sadegh et al. (2018).
The copula method models the dependence structure of the
two random variables (Joe, 2014; Sadegh et al., 2017). It
links or joins individual univariate distributions into a joint
multivariate distribution that has a specified correlation struc-
ture (Tootoonchi et al., 2022). MhAST fits 25 different copu-
las to an input dataset. It first calculates the best possible fit-
ting marginal distribution for each univariate dataset. It then
proposes the best copula fit based on the maximum likeli-
hood, Akaike information criterion (AIC), and the Bayesian
information criterion (BIC). The root mean square error
(RMSE) and Nash–Sutcliffe efficiency (NSE) values are cal-
culated for each copula. Here, we evaluated the difference
between each of the copula fits. A joint RP can then be cal-
culated based on the copula but results in statistically simi-
lar infinite combinations of sea level and river discharge val-
ues for each RP event (Sadegh et al., 2018). The scenario
with the highest density along the closed-form joint proba-
bility density function of the copula permits the identifica-
tion of the most likely scenario. This scenario is based on

the copula fit parameters, which represent the statistical re-
lationships between the individual hazard components com-
ing from the input samples. An uncertainty analysis was
also carried out using MhAST with a “weighted average”
and a “maximum density” approach (Sadegh et al., 2018).
This first approach reproduces a distribution of potentially
compound hazards. Based on the determined joint probabil-
ity contours, random samples are weighted from the critical
joint RP; 1000 weighted samples are randomly drawn from
it. Therefore, a sample with a higher joint probability density
value has a higher chance of selection. This approach effec-
tively generates a distribution of potential compound hazards
while considering the underlying copula structure. This pro-
vides a comprehensive overview of the overall range of pos-
sible compound hazards. The second approach is based on
the most likely scenario and provides an uncertainty range
around it. A range of possible most likely scenarios can be
generated based on the different copulas issued from the
same copula family that best describes the input datasets,
allowing for the quantification of uncertainties around this
central scenario (Sadegh et al., 2018).

Two types of hazard scenarios (HSs) have commonly been
proposed to study the hazard of compound floods related to
sea level and river discharge (Salvadori et al., 2016; Mof-
takhari et al., 2019; Serinaldi, 2015). The “AND scenario”
corresponds to a scenario where both the river discharge and
the sea level are large enough to make a bivariate occurrence
hazardous, meaning that both high sea levels and river dis-
charge exceed the respective random variables concurrently.
The “OR scenario” corresponds to a scenario where either
the river discharge or the sea level or both are large enough
to make a bivariate occurrence troublesome, meaning that ei-
ther of the extremes exceeds the respective random variable
with a time offset within a limited time interval (Requena et
al., 2013).

2.3 Methodology

Firstly, a correlation analysis was carried out for each set, as
proposed in Sect. 2.2. This analysis investigated the signif-
icance of independence between the sea level and river dis-
charge during extreme occurrences. Then, each set was used
as input to MhAST, which performed the compound analy-
sis and returned 25 copula fits ranked depending on differ-
ent criteria (Sect. 2.2). Among the 25 copulas fitted, only the
ones presenting a closed-form joint probability density func-
tion (Sadegh et al., 2017) were further investigated since, in
these cases,‘most likely scenarios and their associated un-
certainties can be defined. Chosen RLs were calculated for
each copula, and their uncertainties were assessed. Adopting
the “AND scenario” (see above) permitted us to investigate
the hazard of compound events only, highlighting the depen-
dency between sea level and river discharge during extreme
events. Conversely, the “OR scenario” was finally preferred
when looking at RLs as this looks into the “total” flood haz-
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ard, whether originating from hydrological, coastal sources,
or both in combination.

To compare and evaluate the role of copulas and the role
played by sea level and river discharge, respectively, a notion
of normalized difference value (NDV) was introduced. We
defined it as the normalized difference between the RL values
of interest from the bivariate analyses. Here, we normalize
relative to the corresponding E-Hype univariate RL, which
yields a representative dimensionless quantity. It should be
pointed out that this quantity does not represent the “ampli-
fication” with respect to the univariate case since, as shown
by Serinaldi (2015), one cannot compare RLs of different
dimensionality. Suppose we investigate the resulting spread
from using different copulas (based on the most likely sce-
narios within one set under the 5-year RP); the NDV is calcu-
lated as the difference between the maximum and minimum
value of the most likely scenarios for any copula within a
specific set divided by univariate 5-year RL derived from the
E-Hype dataset (Sect. 3.2). When we look into the sensitivity
of river discharge datasets, the sea level dataset is fixed, and
the NDV is measured as the normalized difference between
the maximum and minimum values of the most likely scenar-
ios of best fits among the three sets of associated river dis-
charge divided by the corresponding E-Hype univariate RL
and, vice versa, when looking into the sensitivity of sea level
datasets. The NDV term indicates the magnitude of change or
difference in RL results we can expect when choosing a cer-
tain copula or input dataset. Very small NDVs suggest that
the corresponding choice of a variable of interest does not
strongly influence the results. In contrast, large NDVs indi-
cate that a particular choice results in significant differences.

3 Results and discussion

From the rank correlation analysis, the datasets based on
sea level annual maxima (Sn,qn) did not reveal any signif-
icant dependency (i.e. “compoundness”) between sea level
and river discharge; therefore, no copula analysis was done
(Table A1). In this case, the univariate analysis seemed to
fit best under the proposed conditions of this study. Con-
versely, the datasets based on river discharge annual max-
ima (Qn, sn) yielded significant dependencies, suggesting a
possible compound impact on river discharge. In Sects. 3.1
and 3.3.1, we look into the “AND scenario” as we investi-
gate the compound hazard only. In the Sects. 3.2 and 3.3.2,
we mainly focus on the “OR scenario” (see above) as we are
interested in the total flood hazard driven regardless of the
situation (oceanographic, hydrological, or compound). The
set rec Halmstad–E-Hype is chosen as our base case because
it has the longest co-occurring period (Table A2).

Figure 5. RLs for base case set rec Halmstad–E-Hype. Full lines
correspond to the return period (RP) isolines for joint probability
(AND scenario) of river discharge (y axis) annual maxima and as-
sociated sea level (x axis) maxima (Qn, sn). The dashed lines rep-
resent the distribution fit, assuming the independence between the
variables. Blue dots show observed data. The BB1 copula is used to
model the dependence of river discharge annual maxima and asso-
ciated sea level maxima calculated for each RPs visible in red text
(2, 5, 15, and 30 years).

3.1 Dependency/independency of the variables

Figure 5 and Table A1 show the dependency between the
river discharge annual maxima and associated sea level local
maxima (Qn, sn) event sets as expressed in Sect. 2.1. Figure 5
displays the best copula distribution fit: BB1 from the rec rec
Halmstad–E-Hype set under the “AND scenario” hypothe-
sis for the 2-, 5-, 15-, and 30-year RPs. The full lines depict
the RLs considering sea level and river discharge as depen-
dent variables (derived from the best copula distribution fit).
In contrast, the dashed lines show analogous results when as-
suming the two variables to be independent. The figure shows
that the lines do not overlap, highlighting a dependency be-
tween both variables. Also, for all RLs presented, each RL
from the independent hypothesis (dashed line) is placed be-
low each corresponding RL from the dependent hypothesis
(full line), supporting the hypothesis that compound events
lead to higher flood risks when considering compound ex-
tremes as also found in Bevacqua et al. (2017), where they
studied compound hydrological and oceanographic floods in
Ravenna (Italy). Therefore, for example, a 30-year RP, when
looking at the independent variables, would become a 13-
year RP when considering the variables’ dependency. This
frequency increase comes from the compound effects and
can be highlighted for each RP and copulas tested. Also, the
dependency between extreme hydrological conditions and
high oceanographic ones stresses the presence of compound
effects, which lead to higher levels of river discharge and sea
level during such events at the estuary. Joint probability con-
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tours are derived, which permits obtaining a probability of
co-occurrences for a possible event along each curve, which
is later used to carry out the uncertainty analysis (Sadegh et
al., 2018). For example, along the 5-year RP curve, the prob-
ability of getting a 5-year RL of 180 m3 s−1 river discharge
and 93 cm sea level is higher than getting one of 201 m3 s−1

and 20 cm or one of 101 m3 s−1 and 112 cm (Fig. A1).

3.2 Compound hazard potential on river floods

The focus is on river discharge RLs as a proxy for fluvial
flooding indicators. Figure 6 represents the 5- and 30-year
river discharge RLs from the set rec Halmstad–E-Hype un-
der the “OR scenario” hypothesis for each copula tested and
its associated uncertainties values from two approaches. The
best copula fit selected based on the different criteria as AIC
in this case (Sect. 2.2) is BB1 (red diamond). The stars and
diamonds represent the maximum density of the calculated
RL for each copula, which can be interpreted as the most
likely scenario under the bivariate analysis.

RP = 5 years

The 5-year RL from the E-Hype model is 201 m3 s−1 with a
95th percentile confidence interval of 167–246 m3 s−1 under
the univariate GEV distribution fit. The BB1 copula fit has
a 5-year RL most likely scenario of 220 m3 s−1. Among all
tested copulas, their 5-year RLs of most likely scenarios dif-
fer around 26 m3 s−1, all between 208 and 234 m3 s−1. The
RL copulas’ uncertainties are displayed with the boxplots
from two methods: the weighted average approach shown
with the outlined error bars and the maximum density ap-
proach shown with the filled error bars. The weighted aver-
age approach gives larger uncertainty ranges than the maxi-
mum density (Sect. 2.2). Indeed, for the best copula fit, the
maximum density approach looking at the uncertainty of the
most likely scenarios results in a narrow band of a maximum
of 19 m3 s−1 per copula against a more extensive range of
159 m3 s−1 going from 202 to 361 m3 s−1 with the weighted
average approach. All copulas present a similar pattern.

Moreover, the RL uncertainties for the maximum density
approach are all located within the 95th confidence inter-
val of the univariate RL. However, the weighted average ap-
proach gives a 75th percentile of around 255 to 269 m3 s−1

and a nonoutlier maximum of around 324 to 361 m3 s−1

above the 246 m3 s−1, corresponding to the 95th percentile of
the univariate GEV fit, indicating the importance of consid-
ering the bivariate analysis method. The BB1 copula chosen
as the best fit here by the different evaluation criteria men-
tioned in Sect. 2.2 presents neither the smallest nor largest
uncertainty band.

RP = 30 years

The 30-year RL from the E-Hype model is 263 m3 s−1 with
a 95th percentile confidence interval going from 189 to
431 m3 s−1 under the univariate GEV distribution fit. The
BB1 copula fit has a 30-year RL of 278 m3 s−1. The copu-
las’ 30-year RLs of most likely scenarios differ by around
25 m3 s−1, with all of them between 267 and 292 m3 s−1,
except for the Gaussian copula. For all copulas except the
Gaussian one, the weighted average approach gives a more
extensive uncertainty range than the maximum density one.
Indeed, for the best copula fit, the maximum density ap-
proach results in a relatively narrow band of 24 m3 s−1, going
from 272 to 296 m3 s−1, against a more extensive range of
92 m3 s−1 going from 261 to 353 m3 s−1 with the weighted
average one. All copulas except the Gaussian and the Tawn
ones present a similar pattern. Moreover, all RL uncertainties
for both uncertainty analysis approaches are within the 95th
confidence interval of the univariate RL for the 30-year RP.

Sensitivity to the choice of copula

For both 5- and 30-year RPs, the copulas and their associ-
ated uncertainties present a similar pattern. Depending on
the choice of copulas, the most likely scenarios differ up to
26 m3 s−1 for the 5-year RP and up to 25 m3 s−1 for the 30-
year RP, with the Tawn copula giving the minimum value and
the Fischer–Kock and Farlie–Gumbel–Morgenstern (FGM)
copulas giving the maximum value. When only looking at
the most likely scenarios values for each copula, they differ
in a range approximately equal to 13 % and 9.5 % for the 5-
and 30-year RPs, respectively (Table A3). For each copula,
the uncertainties’ relative errors based on the maximum den-
sity approach differ from 1 % (Gaussian) to 9.9 % (Fischer–
Kock) and from 2.3 % (Joe) to 52 % (Gaussian) for the 5-
and 30-year RPs, respectively, and from 63 % (Joe) to 75 %
(Fischer–Kock) and from 16 % (Joe) to 35 % (Fischer–Kock)
for the weighted average approach. For comparison, the rel-
ative errors for the univariate GEV fit are around 41 % and
92 % for the 5- and 30-year RPs, respectively. When con-
sidering the maximum density uncertainties, all RLs of all
copula are in the range of 208–234 m3 s−1 for the 5-year RL
and 262–398 m3 s−1 for the 30-year RL (Table A3; Fig. 6).

These differences in resulting RLs emphasize the impor-
tance of the role played by the choice of copulas and the
consideration of quantifying uncertainties.

3.3 Sensitivity analysis on compound flood hazard
potential: OR scenario

This section focuses on the impact of data sources on result-
ing RP statistics, aiming to compare copula analyses con-
sidering compound events. As seen in Sect. 2.1, we have 12
possible datasets to analyse for Halmstad city extracted from
models and observations. As mentioned in Sect. 2.1, the uni-
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Figure 6. Fluvial component in bivariate events with 5-year (a) and 30-year (b) return periods from copula fits for rec Halmstad–E-Hype.
Each column represents a copula distribution fit. Stars represent the most likely scenario return values from each copula for each set, and the
red diamond is the best copula fit. Two uncertainty approaches are displayed as boxplots, giving a statistical summary. Median and first and
third quartiles are represented in each box, whiskers represent minimum–maximum values, and dots represent outliers. Outlined boxplots
correspond to the “weighted average” approach, and filled ones to the “maximum density” approach.

variate analysis presents different results, including RL val-
ues and confidence intervals for each river runoff time series.

The 5-year and 30-year univariate RLs of river runoff, re-
spectively, differ by around 9 and 21 m3 s−1 with values of
202 and 241 m3 s−1 based on an observation gauge (red),
193 and 252 m3 s−1 based on the S-Hype model (blue), and
201 and 263 m3 s−1 based on the E-Hype model (green) as
displayed in Fig. 4b. However, uncertainties associated with
the 95th percentile confidence interval differ vastly from, re-
spectively, around 86 and 185 m3 s−1 (observation), 121 and
811 m3 s−1 (S-Hype), and 79 and 242 m3 s−1 (E-Hype) as
displayed by the background colours on the figure.

3.3.1 Dependency/independency of the variables

Figure 7 presents resulting RLs for combined ranges of each
variable set for the 5- and 30-year RPs as in Fig. 5 but with
results from six different data sources to study the resulting
impacts. The dependency is evident for each set, with each
full line moved away from its corresponding dashed line,
highlighting the dependency and compound effects for any
sets tested. The differences between solid and dashed lines
in Fig. 7 are typically contained within about 20 cm sea level
or 25 m3 s−1 river discharge based on the maximum distance
between the copula and independence cases on rays com-
ing from the origin, constituting about 10 %–15 % of the ex-
treme 5- and 30-year RLs for the site with a gap increasing
with higher RPs. At first glance, these differences may be
perceived as a reasonably small compound effect, but every
little increase in extreme situations can have a consequence
for society. It should be noted that switching data sources

may have a significant effect on estimated RLs; hence, both
method and choice of data are essential.

Some sets behave similarly, as their corresponding dashed
and full lines almost overlap, for instance obs Nissan–pred
Halmstad with obs Nissan–rec Halmstad or E-Hype–pred
Halmstad with E-Hype–rec Halmstad in both 5- and 30-year
RPs (Fig. 7). This similarity emphasizes that river discharge
dominates the co-occurrence probabilities of bivariate haz-
ardous events over sea level inputs.

3.3.2 Compound hazard potential on river floods

The most likely scenarios of 5- and 30-year RPs and their
associated uncertainties on the different sets are calculated
as described in Sect. 2.1. This study focuses on extreme hy-
drological events associated with oceanographic conditions
and, therefore, concentrates on the RLs of river discharge.
Figures A2 and A3 display those results for each set in the
same way as Fig. 6: Fig. A2 the results of the 5-year RP and
Fig. A3 those of the 30-year RP analysis.

Under the 5-year RP, lower RLs are found for all obs
sea level sets (Fig. A2), corresponding to the data available
and short duration of overlapping periods, with a maximum
of 13 years and limited by the extent of sea level observa-
tions. Under the 30-year RP, lower RLs are found for the
set E-Hype–obs sea level and all S-Hype sets except for S-
Hype–obs sea level, which presents the most extreme values
(Fig. A3).

For the 5- and 30-year RPs, the three sets associated with
the E-Hype model, which show statistical significance, lead
to similar and higher values, respectively, than all the other
sets. The last set showing statistical significance is associated
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Figure 7. The 5-year (a) and 30-year (b) return period isolines for joint probability (AND scenario) of river discharge (y axis) annual maxima
and associated sea level (x axis) maxima (Qn, sn) for Halmstad. Full lines implement the compound effect, and dashed lines represent fit,
assuming independence between both variables. Dots show observed data. The best copula fit is used to model the dependence of Qn, sn
calculated for each set visible in coloured text.

with the S-Hype model and leads to somewhat different re-
sults between the 5-year RP, with slightly lower RLs, and the
30-year RP, with generally higher RLs (Figs. A2 and A3). It
stresses that the dependence changes the RP results, as also
shown by Santos et al. (2021), who studied compound surge
and precipitation events in a case study in the Netherlands.

All most likely scenario values calculated from the cop-
ula analysis under both the 5- and 30-year RPs are within the
range of the 95th percentile confidence interval of the uni-
variate GEV distribution fit (Figs. A2 and A3).

Uncertainties associated with the copula analysis and fol-
lowing the maximum density approach do not extend too
much from the median values and stay within the confidence
interval of the univariate GEV distribution (Figs. A2 and A3)
for most of the copulas tested. Under this maximum density
approach and based on the best copula fits, they differ by
about 3–8 m3 s−1 for the 5-year RP and 2–9 m3 s−1 for the
30-year RP. Under those same conditions, the uncertainties
from the weighted average approach vary between 65 and
149 m3 s−1 for the 5-year RP and between 37 and 68 m3 s−1

for the 30-year RP. Therefore, uncertainties related to the
maximum density approach associated with the most likely
scenarios are relatively small, providing reasonable confi-
dence in such scenarios. Conversely, the weighted average
approach uncertainties provide a confidence interval on pos-
sibly more extreme scenarios, which is relevant when com-
municating RLs.

Input dataset selection

Depending on the choice of river time series as initial in-
put, the results of the copula analysis under the 5- and 30-
year RPs differ substantially around a maximum of 20 and
40 m3 s−1, respectively, with an NDV range of 6 %–10 %

and 8.4 %–15 % (Fig. 8). This contrasts with the choice of
sea level time series as initial input with a maximum differ-
ence of around 6 and 12 m3 s−1, equivalent to 1.5 %–3 % and
2.3 %–4.6 % NDV bounds for the 5- and 30-year RPs, re-
spectively, without considering the three sets associated with
obs sea level. Those results are based on the most likely sce-
narios from each best copula fit and did not consider the sets
associated with obs sea level. It emphasizes that the choice
of sea level records has a lower influence than the one of
river discharge within this study on compound hydrological
extreme events on our example study site (Halmstad). The
well-recognized issues from the reanalysis dataset support
this result as even a large difference in the sea level input
dataset does not get reflected in the NDV values when look-
ing at the choice of sea level. Similar findings could be ex-
pected for the surrounding area (west coast of Sweden).

Copula selection

To evaluate the role played by choice of the copula, we cal-
culated the NDV for each set between the maximum and the
minimum values returned by the 18 copulas tested without
considering the sets with obs sea level data input as it was too
short for bivariate analysis. Among all the different sets, the
BB1, the Gaussian, and the Clayton copulas are the best ones
based on the different statistical criteria (Sect. 2.2). More-
over, when only looking at the sets associated with the same
river runoff input, the best copula fit is the same: Clayton for
obs Nissan, BB1 for E-Hype except for S-Hype, which has
Gaussian as the best fit for S-Hype–rec Halmstad, and Clay-
ton for the two other sets. The tests of using multiple cop-
ulas have also been investigated in previous studies. Lucey
and Gallien (2022) looked at compound coastal events link-
ing precipitation and/or sea level in a tidal and semiarid area.
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Figure 8. Normalized difference values (%) for evaluating the importance of copula fit and forcing data for both 5- and 30-year return
periods, as mentioned in Sect. 3.3.2.

They noticed that, in their particular area, the Nelsen, BB1,
BB5, and Roch–Alegre copulas represented their datasets
best, and each of them provided similar results in almost all
cases. Bai et al. (2020) introduced a mixed copula, which is
a linear combination of Gumbel, Clayton, and Frank copu-
las, to statistically study coastal winds and waves. They ob-
served that the mixed copula can better describe the depen-
dency structure than the five single copulas tested (Gaussian,
t, Gumbel, Clayton, Frank), where the representation of rela-
tions between both drivers is complex.

For most of the sets, the “Fischer–Kock” and the “FGM”
copulas give the highest RLs, and the “Tawn” and “Joe” cop-
ulas give the smallest ones (Figs. A2 and A3). It results in
NDVs between 5.5 % and 13 % for the 5-year RP and be-
tween 3.8 % and 9.5 % for the 30-year RP. The base case E-
Hype–rec Halmstad presents the highest NDVs compared to
other sets NDVs, which emphasizes that the choice of copula
is relatively more important than in other sets (Fig. 8). Based
on our assumption that this is possibly the best set, in terms
of data sources, it stresses the idea that the choice of copula
becomes more and more critical when input datasets are long
enough and statistically significant.

Therefore, the choice of copula has a similar influence to
the choice of river discharge records for each of the nine sets
tested here, as the obs sea level has not been considered.
For both the 5- and 30-year RPs, the choice of sea level is
the least impactful. Under the 5-year RP, the choice of cop-
ula is overall the most important before the choice of river
discharge, but under the 30-year RP, the choice of river dis-
charge predominates. However, this differs when looking at
specific sets’ copula NDVs (Fig. 8).

4 Limitations

Observed time series datasets have a relatively short length,
leading to rather high uncertainties once the GEV analysis is
applied. Similarly, model time series datasets have inherent
uncertainties, which can be challenging to quantify. Various
data sources were assessed for their applicability in bivari-
ate analysis, and direct sea level observations available for
only 13 years were a limiting factor. We focus on longer re-
constructed time series and other data sources for the prin-
cipal analysis to explore uncertainties which are linked with
available datasets of different lengths and biases. For exam-
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ple, reanalysis-driven storm surge and different modelling
approaches such as S-Hype and E-Hype models present some
uncertainties due to the modelling nature of such datasets,
especially with regards to the extremes, where they are of-
ten underestimated. Moreover, assumed stationarity within
the datasets can be a limitation while performing the statisti-
cal analysis (Kudryavtseva et al., 2021) even though for the
neighbour station of Ringhals it has been shown that non-
stationary models were not statistically significant (Rydén,
2024). The choice of the sampling datasets based on an-
nual maxima can be a limitation. For instance, in their spe-
cific tide-dominated and semiarid area, Lucey and Gallien
(2022) stated that annual maximum sampling seems to un-
derestimate water levels at longer RPs. In this study, only the
compounding between sea level and river discharge has been
studied, but Latif and Simonovic (2023) showed that consid-
ering the three drivers storm surge, precipitation, and river
discharge to study compound coastal floods can provide a
better statistical approach and therefore better estimate joint
RPs in their study area located on the west coast of Canada.
However, after carrying out a brief sensitivity analysis on
defining extreme sea level events as sea level peaks above
the 95th or 99th percentile and comparing it with the annual
maxima sampling, no noticeable changes were found; a sim-
ilar conclusion was also drawn by Ward et al. (2018).

A compound analysis is seen as a relatively new approach
within this field of study, which also involves some limita-
tions, such as the quantification of uncertainties within a mul-
tivariate analysis that differ widely depending on the choice
of copula. The uncertainty resulting from the choice of cop-
ula can to some extent be constrained by adopting appro-
priate goodness-of-fit statistics for the selection of the best-
fitting copula. In this study, we choose to illustrate this indi-
rectly by presenting results from many different choices of
copula, despite having calculated such goodness-of-fit met-
rics (Sect. 2.2). Furthermore, we showed the normalized dif-
ference values for different data sources. As discussed in
Sect. 2.3 and Serinaldi (2015), a careful interpretation com-
paring return levels from different hazard scenarios is, how-
ever, always needed. In decision-making adapting a strategy
such as ours (to include results from all studied copulas and
also different data sources) has some limitations in the sense
that too much information can sometimes cause more confu-
sion than help the decision. Often it may be possible to argue
against some choices of copulas (e.g. the Gaussian copula
when the distributions are skewed), and the strategy of con-
straining the results to one copula or a set of “best-fitting”
copulas using some threshold on the goodness-of-fit metrics
may be appropriate. For the purpose of our study and the
conclusion drawn, we consider, however, that presenting the
results from multiple choices of data and multiple copulas is
appropriate.

5 Summary and conclusions

This study assesses the hydrological and oceanographic pro-
cesses that may lead to compound flood effects in Halmstad.
The method is easily transferable to other regions or sites.
In the paper, we stress the importance of the choice of data
sources and copulas for multivariate analysis. Based on our
analysis, we conclude the following:

– A dependency is found between the annual maxima of
river discharge and the corresponding sea level. The de-
pendency on annual sea level maxima and associated
river discharge was not considered significant at this
site.

– All values of the most likely scenarios and their uncer-
tainties resulting from the copula analysis are within the
range of the 95th percentile confidence interval of the
univariate GEV distribution fit.

– The choice of river time series as initial input influences
the results of the copula analysis to a higher degree than
the choice of sea level time series as initial input.

– Copula choice has a similar influence on return period
statistics to the river discharge input for most of the 12
sets tried.

– According to statistical criteria, the Clayton, BB1, and
Gaussian (once) copulas performed the best in this
study.

Uncertainties in compound flood hazard quantification are
essential to consider. They can come from different sources,
such as methodology and data sources. Each type of uncer-
tainty from the individual components due to the length of
the time series and the modelling ones is also propagated in
multivariate risk estimation. This study highlights the need
for careful data source selection, as it may give quite different
outputs if only looking at one data source, which inherently
is associated with some uncertainties. Therefore, this study
stresses the importance of the choice of data sources and of
copula.
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Appendix A

Table A1. Rank correlation (ρ) and p values of the 12 different sets based on Qn/sn in columns “/river” and qn/Sn in columns “/sea”. The
best set of study is displayed in bold; p values above 5 % are highlighted in italic.

River Sea level Rank correlation ρ/river p/river ρ/sea p/sea

E-Hype reanalysis Pearson 0.4532 0.0154 0.0443 0.8227
Kendall 0.3280 0.0141 0.0370 0.7992
Spearman 0.4532 0.0163 0.0443 0.8226

obs Nissan Pearson 0.2430 0.2478 0.6684 0.0922
Kendall 0.2896 0.1594 0.6410 0.0725
Spearman 0.2419 0.2478 0.6674 0.0922

S-Hype Pearson 0.3799 0.1325 –0.0760 0.7719
Kendall 0.3088 0.0914 –0.0588 0.7765
Spearman 0.3799 0.1333 –0.0760 0.7729

E-Hype observed Pearson 0.4725 0.1030 0.4056 0.1908
Kendall 0.3590 0.1000 0.2424 0.3108
Spearman 0.4725 0.1057 0.4056 0.1926

obs Nissan Pearson 0.4396 0.1329 –0.1049 0.7456
Kendall 0.3333 0.1289 –0.0606 0.8406
Spearman 0.4396 0.1350 –0.1049 0.7495

S-Hype Pearson 0.6273 0.0388 –0.0490 0.8799
Kendall 0.4909 0.0405 –0.0303 0.9466
Spearman 0.6273 0.0440 –0.0490 0.8863

E-Hype pred Viken Pearson 0.4439 0.0109 0.2438 0.1788
Kendall 0.3145 0.0111 0.1452 0.2518
Spearman 0.4439 0.0116 0.2438 0.1782

obs Nissan Pearson 0.3400 0.1040 0.2435 0.2516
Kendall 0.2319 0.1189 0.1522 0.3128
Spearman 0.3400 0.1044 0.2435 0.2505

S-Hype Pearson 0.3676 0.1466 0.2843 0.2687
Kendall 0.2794 0.1288 0.1912 0.3081
Spearman 0.3676 0.1471 0.2843 0.2678

E-Hype rec Viken Pearson 0.4836 0.0044 0.2753 0.1273
Kendall 0.3523 0.0036 0.1815 0.1500
Spearman 0.4836 0.0048 0.2753 0.1272

obs Nissan Pearson 0.3446 0.0916 0.1487 0.4880
Kendall 0.2333 0.1076 0.1014 0.5071
Spearman 0.3446 0.0921 0.1487 0.4863

S-Hype Pearson 0.4882 0.0550 0.1373 0.5994
Kendall 0.3833 0.0413 0.1029 0.5976
Spearman 0.4882 0.0572 0.1373 0.5986
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Table A2. Summary report of runs from the copula analysis for the 12 different sets; the best study set is highlighted in bold.

River Sea level Copula best fit Number of co-occurring years

obs Nissan reanalysis Clayton 24
obs sea level Galambos 13
pred Halmstad Clayton 24
rec Halmstad Clayton 25

E-Hype reanalysis BB1 28
obs sea level Gaussian 13
pred Halmstad BB1 32
rec Halmstad BB1 33

S-Hype reanalysis Clayton 17
obs sea level BB1 11
pred Halmstad Clayton 17
rec Halmstad Gaussian 16

Table A3. Summary report from the river discharge’s results and associated uncertainties from the copula analysis for the E-Hype–rec
Halmstad set; the results from the univariate method are highlighted in bold. The Gaussian copula has not been considered for the analysis
of the most likely scenarios row.

E-Hype–rec Halmstad Copula distribution fit 5-year RL 30-year RL

Univariate median 201 263
max 95 % 250 431
min 5 % 167 189
relative error 41.29 % 92.02 %

“Most likely scenarios” Fischer–Kock / FGM max copula 234 292
Tawn min copula 208 267

NDV 12.94 % 9.51 %

Uncertainties BB1 max without outliers 224 284
“maximum density” BB1 min without outliers 218 276
approach BB1 NDV 2.99 % 3.04 %

Joe max without outliers 217 274
Joe min without outliers 210 268
Joe NDV 3.48 % 2.28 %
Fischer–Kock max without outliers 235 296
Fischer–Kock min without outliers 215 272
Fischer–Kock NDV 9.95 % 9.13 %
Gaussian max without outliers 220 398
Gaussian min without outliers 218 262
Gaussian NDV 1.00 % 51.71 %

Uncertainties BB1 max without outliers 351 329
“weighted average” BB1 min without outliers 202 261
approach BB1 NDV 74.13 % 25.86 %

Joe max without outliers 328 303
Joe min without outliers 202 261
Joe NDV 62.69 % 15.97 %
Fischer–Kock max without outliers 353 353
Fischer–Kock min without outliers 202 261
Fischer–Kock NDV 75.12 % 34.98 %
Gaussian max without outliers 349 338
Gaussian min without outliers 202 261
Gaussian NDV 73.13 % 29.28 %
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Figure A1. Set E-Hype–rec Halmstad, best copula fit is BB1 displayed with the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year RPs
and associated densities. The left panel and lower panel correspond to marginal RPs curves of each univariate parameter individually, river
discharge, and sea level (extracted from MhAST software).
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Figure A2. Fluvial component in bivariate events with 5-year RP values from copula fits. Each subplot corresponds to a set of events from an
association of river discharge and sea level inputs displayed as a matrix and, in each column, a copula distribution fit where two uncertainty
approaches are displayed as error bars. Stars represent the most likely scenarios return values from each copula for each set, and each red
diamond is the best-fit copula. The two uncertainty approaches are displayed as boxplots that give a statistical summary. The median and
first and third quartiles are represented in each box. Whiskers represent minimum and maximum values, and dots represent outliers. Outlined
boxplots correspond to the “weighted average” approach and filled ones to the “maximum density” approach. The set E-Hype–rec Halmstad,
used as a base case, is highlighted by the red rectangles.
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Figure A3. Fluvial component in bivariate events with 30-year RP values from copula fits. Each subplot corresponds to a set of events from
an association of river discharge and sea level inputs displayed as a matrix and, in each column, a copula distribution fit where two uncertainty
approaches are displayed as error bars. Stars represent the most likely scenarios return values from each copula for each set, and each red
diamond is the best-fit copula. The two uncertainty approaches are displayed as boxplots that give a statistical summary. The median and
first and third quartiles are represented in each box. Whiskers represent minimum and maximum values, and dots represent outliers. Outlined
boxplots correspond to the “weighted average” approach and filled ones to the “maximum density” approach. The set E-Hype–rec Halmstad,
used as a base case, is highlighted by the red rectangles.
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