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Abstract. The rapidly expanding Himalayan road network
connects rural mountainous regions. However, the fragility
of the landscape and poor road construction practices lead
to frequent mass movements alongside roads. In this study,
we investigate fully or partially road-blocking landslides
along National Highway (NH-7) in Uttarakhand, India, be-
tween Rishikesh and Joshimath. Based on an inventory of
> 300 landslides along the ∼ 250 km long corridor follow-
ing exceptionally high rainfall during September and Octo-
ber 2022, we identify the main controls on the spatial oc-
currence of mass-movement events. Our analysis and model-
ing approach conceptualizes landslides as a network-attached
spatial point pattern. We evaluate different gridded rainfall
products and infer the controls on landslide occurrence us-
ing Bayesian analysis of an inhomogeneous Poisson process
model. Our results reveal that slope, rainfall amounts, lithol-
ogy and road widening are the main controls on landslide oc-
currence. The individual effects of aggregated lithozones are
consistent with previous assessments of landslide suscepti-
bilities of rock types in the Himalayas. Our model spatially
predicts landslide occurrences and can be adapted to other
rainfall scenarios, thus having potential applications for effi-
ciently allocating efforts for road maintenance. To this end,
our results highlight the vulnerability of the Himalayan road
network to landslides. Climate change and increasing expo-
sure along this pilgrimage route will likely exacerbate land-
slide risk along the NH-7 in the future.

1 Introduction

Roads weave across the Earth’s surface, with their number
and extent continually expanding. Compared to 2010, the to-
tal length of roads globally is expected to increase by 60 %
by 2050 (Laurance et al., 2014), increasingly dissecting and
fragmenting ecosystems. In mountainous regions, road con-
struction leads to profound changes in the stress distribution
of adjacent hillslopes, redistribution of rock and soil, and al-
terations of drainage patterns. If poorly implemented, road
construction, inapt slope protection and insufficient drainage
thus enhance slope instability and the frequency of land-
slides, with substantial economic damages and an increasing
number of fatalities (Bíl et al., 2014; Laimer, 2017; McAdoo
et al., 2018; Muenchow et al., 2012; Ozturk et al., 2022). A
worldwide surge in the proposals for new roads thus warrants
investigation of the link between road network expansion and
landslide risk (Laurance et al., 2014).

Roads are at the heart of the Himalayan transport infras-
tructure. They are vital for national and international trade
and passenger movement and are strategically important in
border areas. India has improved and expanded its road net-
work in mountainous states, e.g., under the national Bharat-
mala Pariyojana Road to Prosperity initiative established in
2015. Key objectives of this highway development program
are to improve the efficiency and connectivity of the transport
infrastructure and to provide road access to remote border
regions and rural areas (Boora and Karakunnel, 2024). Yet
in mountainous environments, roads are exposed to various

Published by Copernicus Publications on behalf of the European Geosciences Union.



3208 J. Mey et al.: Surveying and modeling mass movements along the Rishikesh–Joshimath highway

degradation processes. Among these processes, mass move-
ments in particular inflict severe structural damage and heav-
ily degrade road serviceability (Meyer et al., 2015). Traffic
disruptions due to mass movements can have severe conse-
quences if they impede accessibility and compromise rescue
operations during extreme events such as cloudbursts, floods
and earthquakes (Sharma et al., 2014). Ensuring accessibil-
ity and connectivity during such events is thus of live-saving
importance, yet requires considerable maintenance efforts
(Uniyal, 2021).

According to the National Crime Records Bureau (2022),
160 people died due to landslides in Uttarakhand in the pre-
ceding 4 years. These figures exclude other extreme events
like heavy rainfalls, floods, or the 2021 Chamoli rock and
ice avalanche with over 200 fatalities (Shugar et al., 2021).
Several studies have addressed mass movements and their re-
lation to transport infrastructure in the Indian and Nepalese
Himalayas. The studies range from purely phenomenolog-
ical descriptions (e.g., Bartarya and Valdiya, 1989; Sarkar
and Kanungo, 2006) to statistical (Das et al., 2012; Devkota
et al., 2013; Sur et al., 2020) and physically based model-
ing approaches (e.g., Kanungo et al., 2013; Prasad and Sid-
dique, 2020). In fact, the space limitation in steep terrain
often requires road construction to undercut slopes beyond
their angle of repose, reducing slope stability and increasing
landslide susceptibility (e.g., Barnard et al., 2001; Haigh and
Rawat, 2011; Li et al., 2020). The increase in mass wasting
due to road construction itself may be similar to the impact
of a large earthquake (Tanyaş et al., 2022). Therefore, partic-
ular attention has been focused on detailed stability assess-
ments of road cut slopes (e.g., Kundu et al., 2016; Siddique
et al., 2017; Siddique and Pradhan, 2018; Singh et al., 2014)
and the development of appropriate remedial measures (e.g.,
Adhikari et al., 2020; Asthana and Khare, 2022; Koushik
et al., 2016; Rawat et al., 2016), but fewer studies have at-
tempted to predict the spatial occurrence of mass movements
along roads (Huat and Jamaludin, 2005; Ching et al., 2011).
Knowledge about where and when landslides preferably de-
tach is important for early warning but also for efficiently al-
locating efforts of road maintenance and slope enforcement
(Haigh, 1984). Using data on occurrences of landslides, sus-
ceptibility studies aim to quantify the spatial propensity of
hillslopes to fail and to determine the controlling factors such
as terrain attributes, e.g., slope angle and aspect, and geo-
environmental variables, e.g., rainfall intensity and lithology.

In this study, we carry out an analysis of road exposure
to landslides for a ∼ 250 km long stretch of National High-
way 7 (NH-7) that connects the cities of Rishikesh and Joshi-
math, Uttarakhand, India (Fig. 1). We conducted a detailed
survey of partially or fully road-blocking landslides along
the road, following the monsoon season (May–August) and
a period of intense rainfalls during 5–12 October 2022. Lim-
iting the inventory to road-blocking landslides was required
to cope with the overwhelming number of landslides, and to
ensure that we account for the landslides that detached most

recently. In addition, construction work for road widening of-
ten stripped away the vegetation, so differentiating between
actual non-blocking landslides and excavated slopes was not
straightforward. In contrast to previous studies that focused
on the prediction of landslides in two spatial dimensions
(e.g., Das et al., 2012; Devkota et al., 2013), our analysis and
modeling approach conceptualizes landslides as a network-
attached spatial point pattern (Baddeley et al., 2021).

Landslide susceptibility analysis commonly relies on dis-
cretizing the study region into pixels, where each pixel in-
dicates either the presence or absence of landslides. Subse-
quently, techniques such as logistic regression are used to
predict the probability of a landslide as a function of a num-
ber of predictor variables. A pixel-based logistic regression
analysis is approximately equivalent to a Poisson point pro-
cess model if the landslides are originally stored as point
features (Baddeley et al., 2010). We take this approach to
modeling landslide susceptibility using point process mod-
els a step further by conceptualizing landslides as point fea-
tures that are located on or alongside the road network (Ok-
abe and Sugihara, 2012). This means that we do not analyze
road-attached landslides as events that occur on a continuous
and unbounded plane but rather as events that are alongside
roads. The term alongside indicates a somewhat broad spatial
relation but “implies that the physical unit of the event ... has
an access point on a network” (Okabe and Sugihara, 2012,
p. 7). In our case, this means that a landslide intersects with
the road and blocks it. These intersections are, at the scale
of our analysis, represented by point features, i.e., points on
a network. Our approach relies on the analysis of the spatial
arrangement of the points (the point pattern) along the line,
and we hope to reveal important features (e.g., trends in point
density) with respect to geo-environmental variables. An ad-
ditional objective of this study is to test whether such an ap-
proach would be particularly feasible to determine the inter-
relationship of linear infrastructure and landslides. One of the
critical covariates in our modeling approach is the spatial dis-
tribution of accumulated rainfall amounts. We thus evaluate
different rainfall products. Finally, we infer the controls on
landslide occurrence using Bayesian analysis of multivariate
log-linear models.

2 Study area

The NH-7 ascends from 400 m at Rishikesh to approximately
2000 m at Joshimath, crossing steep terrain with soil man-
tled slopes. Mean annual rainfall (1970–2019) varies from
1500 to 2000 mm around Rishikesh to 1000–1200 mm in
Joshimath, with 80 %–86 % and 60 %–70 % delivered by the
Indian summer monsoon (June to September), respectively
(Pai et al., 2014; Swarnkar et al., 2021). Air temperature in
Rishikesh is always above freezing and ranges between 4 and
40 °C, whereas the temperature in Joshimath varies between
−10 and 20 °C. This climatic gradient is evident in the grad-
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Figure 1. Map of the study site. Landslides, lithozones and major faults along NH-7 from Rishikesh to Joshimath. Lithozones were defined
according to their dominant lithology: (1) carbonate rocks, (2) phyllite and shale, (3) quartzite, (4) quartzite and igneous rocks, and (5) crys-
talline high-grade metamorphic rocks (Table 2). Note that lithozones 0 and 6 are not crossed by the road and are therefore omitted from
the description. We subdivided the landslides into new ones and reactivated ones. White stippled lines indicate the road segments that have
undergone widening (Sati et al., 2011). Lithozones and faults were modified from digital maps provided by the Geological Survey of India
(2022). Stars indicate locations of the 1999 Mw 6.6 Chamoli earthquake (Kayal et al., 2003; USGS, 2022) and the 2021 Chamoli rock and
ice avalanche (Shugar et al., 2021). MBT – Main Boundary Thrust; BIT – Bijni Thrust; NAT – North Almora Thrust; BT – Baijnat Thrust;
MCT – Main Central Thrust; and VT – Vaikrita Thrust.

ual transition of vegetation. In the lower-lying subtropical
region, dense deciduous forests dominate. As elevation in-
creases, these forests give way to temperate broadleaf mixed
forests and temperate shrub and grassland communities.

The geological framework of the study area is largely de-
termined by the ongoing Indo–Asian collision that causes
crustal thickening and exhumation along large-scale detach-
ment zones and thrust faults. Most of the study area lies
within the Lesser Himalaya, between the Main Boundary
Thrust in the south and the Main Central Thrust (MCT) in the
north, which are both splays of the root detachment, the Main
Himalayan Thrust (Fig. 1). As the present-day India–Eurasia
convergence is on the order of 36–40 mmyr−1 (e.g., Wang
et al., 2001) and approximately half of this is accommodated
within the Himalayas (e.g., Lavé and Avouac, 2000), the re-
gion is seismically active and bears the potential for large
earthquakes (e.g., Kayal et al., 2003; Bollinger et al., 2014;
Rajendran et al., 2017).

The highway runs perpendicular to the strike of the orogen
and crosses rocks of the Lesser Himalayan Sequence (LHS)
and the High Himalayan Crystalline (HHC). These units rep-
resent the ancient passive Indian margin and are separated by
the MCT. The LHS is mainly composed of sedimentary and
low-grade metasedimentary rocks, quartzite, shale, phyllites,
and slate with occasional limestone and dolomite, whereas
the HHC is characterized by high-grade schist, gneiss and

quartzite. These rocks feature a high density of disconti-
nuities like faults, fractures and joints that are important
seepage pathways. In locations where the road cuts through
weathered rocks and intersects with major faults, the hill-
slopes are particularly fragile (Prasad and Siddique, 2020).

During the week preceding our survey, large parts of north
India experienced a period of strong rainfall. The state of Ut-
tarakhand registered a departure of 1040 % from the long-
term (1961–2010) average. The districts of Tehri Garhwal,
Pauri Garhwal, Rudraprayag and Chamoli, through which
the NH-7 runs, recorded a weekly surplus of 419 %, 679 %,
218 % and 1855 %, respectively (Table S2). Given that the
average rainfall amount in October is around 35 mm, approx-
imately 3 times the monthly average rainfall occurred in only
1 week, which is close to the rate that prevails during the
monsoon.

The NH-7 is a lifeline for socioeconomic development,
which is mainly based on agriculture, trade, tourism, min-
ing and hydropower. Furthermore, the highway is vital for
the Indian military to transport personnel and equipment to
their outposts along the Indian and Chinese–Tibetan border.
Between May and October, more than 1 million pilgrims
travel the highway to visit the holy shrines of Badrinath and
Kedarnath. Moreover, the highway follows the course of the
Ganges and its tributary Alaknanda and thus passes the river
confluences known as the five Prayags, namely Devprayag,
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Rudraprayag, Karnaprayag, Nandaprayag and Vishnuprayag
(Fig. 1). In Hinduism, these confluences are considered sa-
cred, attracting pilgrims who bathe in the waters before wor-
shiping the rivers. Finally, there are 10 hydroelectric power
plants within 20 km distance to the road, and more projects
are planned or under construction, highlighting the road’s
significance for energy security and economic value.

3 Data and methods

Traveling to fieldwork in the Chamoli area (Uttarakhand) on
15 October 2022, we recognized numerous partially road-
blocking landslides along the road and decided to investigate
their occurrence using the following approach.

First, we started to record these landslides using handheld
GPS devices, as road workers had already begun to clean
the road of the debris, thus rapidly removing evidence of
smaller landslides that had detached in close vicinity to the
road. We registered landslides along the road on our way
from Rishikesh to Joshimath (Fig. 1) on 15 and 16 October,
as well as on our way back on 18 October 2022. We only
recorded landslides with runouts affecting the road, thus
partially or fully blocking it (Fig. 2). We classified the
landslides as partially blocking if the emplaced deposits
either substantially narrowed the road or debris ran over
marginal road markings. Very small landslides with an
area of less than ∼ 10 m2 were not considered. Secondly,
we cross-checked each recorded landslide with Google
Earth using the most recent and historic high-resolution
imagery. The images enabled us to identify the landslides
that occurred between January and October 2022, encom-
passing the entire annual monsoon season as well as the
heavy rainfall period at the beginning of October 2022. We
initially tried to attribute the landslides to the latter period by
matching our data with the acquisition dates of the images,
but the temporal resolution for many road sections was
insufficient. Moreover, historic imagery has become unavail-
able for India (https://www.thehindu.com/news/national/
google-historical-satellite-imagery-disappears-for-india/
article66834033.ece, last access: 25 June 2024). We also
identified reactivated landslides, where a slip surface and a
scar were visible in the imagery prior to January 2022. This
was not always straightforward since landslide scars cannot
always be clearly distinguished from bare, engineered slopes
and road widening. Landslides confidently determined
to have occurred before January 2022, as well as those
obscured by shadows in Google Earth images, were omitted
from the analysis.

Thirdly, we analyzed landslides along the road as a
network-attached spatial point process. A spatial point pro-
cess is a stochastic mechanism that controls the spatial dis-
tribution of events or occurrences (Baddeley et al., 2015). As
our mapped landslides are events that occur along the road
– and only these have been mapped – these events are con-

strained to lie on a network of lines (Baddeley et al., 2021;
Okabe et al., 2006). In our case, the network is rather simple
as it consists of only one polyline, but the approach can be
equally applied to more complicated network topologies.

We used the open-source MATLAB extension TopoTool-
box (Schwanghart and Scherler, 2014) and its numerical ob-
ject PPS (Schwanghart et al., 2021) to analyze, visualize and
model the density of landslides along the road. PPS means
point patterns on stream networks, but it can be used with
any type of dendritic, undirected network. The numerical ap-
proach consists of a fine-pixel approximation, which is con-
trolled by the geometry of the digital elevation model (DEM)
from which the data are retrieved. This means that the vector
shape of the road is pixelated with the same geometry as the
DEM (Schwanghart et al., 2021). We model landslide densi-
ties with an inhomogeneous Poisson process model, which is
defined by the intensity function λ(u), with u being the hori-
zontal distance along the road. A common parametric model
of the intensity is the log-linear model:

λ(u)= exp(β0+βX(u)) , (1)

where X is a matrix of predictor variables (covariates) that
vary along the road, β0 is an intercept and β is a vector of
model parameters. Our approach uses a spatial logistic re-
gression, where the relation between presence probabilities p
and explanatory variables X is controlled by the form of the
logistic link function logit p = ln(p/(1−p)). As pixel size
tends to zero, we have p→ 0 and ln(p/(1−p))→ ln(p).
The limiting Poisson intensity is thus a log-linear function
of the covariates (Baddeley et al., 2010). A key property of
the model is that the events are independent from each other;
i.e., the probability of landslide occurrence is independent
from landslides nearby. Spatial dependence of events can oc-
cur in different ways, leading to clustering, i.e., points tend
to occur close to other points, or inhibition, i.e., there is a
characteristic distance or regularity in the spacing between
the points. Spatial clustering of landslide events has previ-
ously been addressed by Lombardo et al. (2018, 2019) us-
ing a Cox process model to emulate the latent spatial effects
of unobserved variables, whereas inhibition can be observed,
for example, in data where areal non-overlapping phenom-
ena are represented as points (Evans, 2012; Schwanghart et
al., 2021). At this stage, we will not include these poten-
tial second-order effects on the density of landslides in our
model, but we will investigate their possibility using the in-
homogeneous K function defined by Ang et al. (2012) once
we have modeled first-order effects.

We used the following candidate predictor variables in the
log-linear model introduced above. First, we hypothesized
that steep hillslope gradients next to the road are more sus-
ceptible to mass wasting events. Therefore, we calculated
surface gradients based on the Copernicus 30 m DEM (Eu-
ropean Space Agency, 2021). We identified areas that lie
to the right or left of the road and that are higher than the
road itself within a buffer zone of ∼ 210 m (or 7 pixels). We
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Figure 2. Examples of partially road-blocking landslides along the highway NH-7. Panels (a) and (c) show locations where hillslopes parallel
the foliation and/or bedding. Panels (e) and (f) show a landslide that was reactivated in the observation period (Google, © 2024 Airbus).

then selected the nearest DEM pixels and mapped the mean
slopes of these nearest pixels to the road network. We chose
210 m (7× the spatial resolution of the DEM) to have suffi-
cient pixels to obtain robust estimates of the slope. These val-
ues still vary greatly over short distances along the road and
thus we smoothed them using the algorithms (with smooth-
ness penalty parameter K = 4) described by Schwanghart
and Scherler (2017).

Rainfall patterns exert a strong influence on the spatial oc-
currence of landslides (e.g., Ching et al., 2011; Joshi and Ku-
mar, 2006; Gariano and Guzzetti, 2016; Ozturk et al., 2021).
Thus, we chose five rainfall/precipitation products (see Ta-
ble 1) to characterize spatial patterns of accumulated rain-
fall between 1 January and 10 October 2022. Among the five
rainfall/precipitation products, IMD1 relies solely on the in-
terpolation of gauge-based measurements from a network of
stations provided by the Indian Meteorological Department
(Pai et al., 2014). In addition to gauge measurements, IMD2
is enhanced with estimates from the Integrated Multi-satellite
Retrievals for Global Precipitation Measurement (IMERG)
(Mitra et al., 2009). MSWEP v2 is another merged prod-
uct that incorporates reanalysis-based, gauge and satellite-
derived rainfall estimates (Beck et al., 2017). CHIRPS v2
provides a high-resolution record by combining gauge and

satellite data from the NOAA (National Oceanic and Atmo-
spheric Administration; Funk et al., 2015), and the IMERG
late run provides gridded multi-satellite precipitation esti-
mates with quasi-Lagrangian time interpolation from NASA
(National Aeronautics and Space Administration; Huffman
et al., 2019). We projected the geographic coordinates of the
rainfall/precipitation grids to UTM zone 44N and bilinearly
resampled the data to the resolution of the DEM before ex-
tracting the values of each road pixel.

Next, we incorporated information about road widening by
creating a logical mask that identifies the widened segments
of the highway. Due to the absence of more-detailed data,
we rely on the map by Sati et al. (2011), which shows the
locations of road widening completed before the 2010 mon-
soon season. Our envisioned strategy of compiling a more re-
cent database of road widening using historic imagery from
Google Earth was rendered impossible after most of the his-
toric images were removed from the public archive in April
2023.

Finally, we obtained a digitized version of the lithologi-
cal map of Uttarakhand (map scale 1 : 2000000) from the
Geological Survey of India (2022). The data contain both
stratigraphic and lithological information. Accordingly, the
NH-7 crosses 34 different lithologies between Rishikesh and
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Table 1. Overview of the rainfall products.

Product Product name Spatial resolution Link to source Reference

IMD1 Indian Meteorological
Department 1

0.25°× 0.25° https://doi.org/
10.54302/mausam.v65i1.851

Pai et al. (2014)

IMD2 Indian Meteorological
Department 2

0.25°× 0.25° https://doi.org/
10.2151/jmsj.87A.265

Mitra et al. (2009)

MSWEP v2 Multi-Source Weighted-
Ensemble Precipitation

0.1°× 0.1° https://doi.org/
10.5194/hess-21-6201-2017

Beck et al. (2017)

CHIRPS v2 Climate Hazards group
Infrared Precipitation
with Stations

0.05°× 0.05° https://doi.org/
10.1038/sdata.2015.66

Funk et al. (2015)

IMERG late run Integrated Multi-satellitE
Retrievals for GPM

0.1°× 0.1° https://doi.org/
10.5067/GPM/IMERGDL/DAY/06

Huffman et al. (2019)

Joshimath. To reduce the number of categories, we summa-
rized and aggregated the lithological information into litho-
zones with a lesser focus on the stratigraphic context. This
aggregation resulted in five lithozones that are dominated
by carbonate rocks (1), phyllite and shale (2), quartzite (3),
quartzite and igneous rocks (4), and crystalline high-grade
metamorphic rocks (5). The reclassification is shown in Ta-
ble 2. Again, we gridded these data and assigned correspond-
ing lithozones to each road pixel.

We adopt a Bayesian strategy to infer and identify pre-
dictor variables using the function bayesloglinear of the PPS
numerical class (Schwanghart et al., 2021). The function pro-
vides an interface to bayesreg (Makalic and Schmidt, 2016),
a MATLAB toolbox that enables efficient Bayesian mod-
eling and regularization of high-dimensional data. We use
a Bayesian lasso estimator with Laplace prior distributions
for the regression coefficients (Park and Casella, 2008). This
prior results in posterior-mode estimates that are similar to
estimates obtained with the lasso penalty (van Erp et al.,
2019). Before calculating 1000 samples of the posterior pa-
rameter distributions, we calculated 1000 burn-in samples.
These are calculated to ensure that the Gibbs sampler con-
verges to the target distribution. In addition, we used a level
of thinning of five samples. This means that only every fifth
sample was retained in the generated sequence to reduce au-
tocorrelation between the samples and to obtain more inde-
pendent and representative Bayesian posterior distributions.
To this end, we find that 1000 samples are sufficient to char-
acterize the posterior distributions.

Finally, we evaluate the model based on the receiver-
operating characteristics (ROC) area-under-the-curve (AUC)
approach (e.g., Hanley and McNeil, 1982). We visualize the
predictions and inspect and analyze spatial densities obtained
from random realizations of the fitted inhomogeneous Pois-
son process model. Moreover, we evaluate the predictive per-
formance of the model using a 5-fold cross-validation. In
this approach, we subdivide the road into 15 km segments,

which are then randomly partitioned into five groups. The
first group is used as test data while the remaining groups are
used to train the model. This step is then repeated for each
group and the performance summarized with the AUC. In
addition, we test whether additional covariates provide op-
portunities for further improving the model. The selected at-
tributes include terrain roughness and total curvature as well
as land cover derived from the Copernicus Global Land Op-
erations (CGLOPS-1; moderate dynamic land cover 100 m,
version 3; Buchhorn et al., 2020), which we reclassify ac-
cording to Table 3. We investigate these models using a fre-
quentist modeling approach (see the PPS function fitloglin-
ear) and compare models with additional covariates with the
Akaike information criterion (AIC, Akaike, 1974).

4 Results

We recorded 309 fully or partially road-blocking landslides
along the 247 km long road between Rishikesh and Joshi-
math, which amounts to an average landslide density of
1.25 landslides per kilometer. A two-sample Kolmogorov–
Smirnoff test between the road distance (uniform distribution
between start and end of the surveyed road) and the road dis-
tances measured at the landslides rejects the null hypothesis,
with p ≈ 0 that landslide locations follow a completely ran-
dom spatial distribution. Visually inspecting the landslide lo-
cations using Google Earth reveals that 80 % of the recorded
landslides with road blockages occurred after January 2022
(Fig. 1). Of these 250 landslides, 30 % were most likely reac-
tivated because they could not be identified as road blocking
before the rainy season (Fig. 2e and f).

The spatial distribution and amounts of accumulated rain-
fall between 1 January and 10 October differ between the
rainfall products (Fig. 3). Since independent measurements
based on rain gauges are unavailable, we investigate the per-
formance of the rainfall products to explain the spatial dis-
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Table 2. Definition of lithozones.

Lithozone Aggregated lithologies ID∗ Percentage
of road

1 Limestone, dolomitic limestone with shale 2072 17 %
Shale with lenticels of limestone 2073
Argillaceous limestone and clay 2074
Limestone, dolomite, shale, carb. phyllite/slate 2480
Limestone 2457
Dolomite 2456

2 Shale, quartzite, limestone and conglomerate 2109 33 %
Phyllite, quartz, shale, dolomite, tuff with dolerite 2108
Splintery shale with nodular limestone 746
Massive sandy limestone 1799
Limestone, dolomite, shale and cherty quartzite 2482
Quartzite, slate, lensoidal limestone and tuff 2486

3 Quartzite, limestone and occasional conglomerate 1943 6 %
Quartzite, siltstone, chert and phosphatic shale 1944
Diamictite, quartzite, slate and boulder bed 2081
Carbonaceous shale, slate, greywacke 2078

4 Quartzite and slate with basic metavolcanics 2464 30 %
Basic meta-volcanics 2458
Basic / intermediate intrusive 2453
Porphyritic nonfoliated granite 2452

5 Sericite quartz schist, chlorite schist 2463 14 %
Chlorite schist, hornblende–albite–zoisite schist 2461
Phyllite with chloritic, graphitic and carbonaceous 2462
Schist, augen gneiss, quartzite and amphibolite 3702
Quartz–sericite–chlorite schist and limestone 3701
Schist, gneiss, marble and basic intrusives 3747
Gneiss, kyanite schist, quartzite, calc–silicate 3752
Quartzite and quartz mica schist 3744
Calc–silicate, quartzite, schist, marble band 3743

∗ ID refers to the UID given in the original data (Geological Survey of India, 2022).

Table 3. Aggregation of land cover classes derived from CGLOPS-
1 (Buchhorn et al., 2020). The remaining map codes in the original
data were not present along the NH-7.

Aggregated land cover class Map codes

Closed forest 111–116
Open forest 121–126
Shrubland 20, 30
Cropland 40
Built-up area 50

tribution of landslides. The approach uses the AIC to iter-
atively evaluate five models that include hillslope gradient,
lithozones and road widening but each using a different rain-
fall product. AIC values vary between 1876 and 1913, with
CHIRPS v2 having the lowest AIC. CHIRPS v2 correlates
positively with landslide density, whereas all other rainfall

products show negative or no significant correlation (see Ta-
ble 1 and Figs. S1–S5). We thus use CHIRPS v2 in the de-
velopment of the subsequent models. We emphasize that in-
cluding different rainfall products in the model has no strong
effect on the remaining model parameters that determine the
influence of slope and lithozones and road widening (see Ta-
ble S1). In other words, while determining the overall per-
formance, the choice of rainfall product does not affect our
results and conclusions about the topographic and lithologic
controls on landslide occurrence.

Bayesian log-linear modeling of the landslide density
(Figs. 4 and 5a and b) reveals a credible influence of the co-
variates rainfall (Fig. 5c), slope (Fig. 5d), lithozones (Fig. 5e)
and road widening (Fig. 5f; see Fig. 4 for posterior means
and 95 % highest density intervals and Fig. 6 for individual
effects). A Bayesian feature rank algorithm based on the ab-
solute magnitude of the parameters in each posterior sample
(Makalic and Schmidt, 2011) ranks slope as the top covari-
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Figure 3. Accumulated rainfall/precipitation amounts from different gridded products between 1 January and 10 October 2023. The sources
of these data products are listed in Table 2. The black line indicates the road between Rishikesh and Joshimath (see Fig. 1).

ate in terms of explanatory power together with rainfall, fol-
lowed by road widening and lithozones (Table 4). Among the
lithozones, zones 2 and 4 stand out as categories improving
the explanatory power of the model. The individual effects
of the covariates reveal a positive influence of rainfall and
slope on landslides (Fig. 6a and b). Predictions of landslide
densities in lithozone 4 are credibly lower than in lithozone
2 (Fig. 6c). Also, our model suggests that road widening af-
fects the density of landslides. Corrected for the influence
of other parameters, average densities are twice as high in
widened road sections (Fig. 6d). The spatial pattern of pre-
dicted landslide density (Fig. 5g) is consistent with observed
spatial density variations, but the high small-scale variability
reflects the importance of slope as a predictor variable.

The AUC is an aggregated metric for a point pattern model
across thresholds and ranges between 0.5 and 1, with val-
ues close to 1 indicating high performance of the model. Our
log-linear model has an AUC value of 0.79 (Fig. 7a). The
inhomogeneous K function shown in Fig. 7b quantifies the
expected number of points as a function of distance from
each point, adjusted for the modeled inhomogeneous inten-
sity of the point pattern. Distances between individual land-
slides are calculated as the shortest-path distance along the
road rather than the direct Euclidean distance. Acceptance
intervals around the theoretical K function were derived from
repeated simulations of the inhomogeneous Bayesian log-
linear model. The actual point pattern’s K function is within
these acceptance intervals, suggesting that the landslide lo-
cations do not exhibit clustering. A comparison of 100 ran-
domly simulated and actual point densities (Fig. 7c) shows
that the modeled and observed spatial landslide densities are
consistent, although the second, smaller peak of landslide
densities close to Joshimath is not captured by the model

well. Moreover, 5-fold cross-validation based on 15 km long
road segments reveals AUC values between 0.77 and 0.78.

Can the model be improved by incorporating more ex-
planatory covariates? Our impression in the field was that
landslides detach independently of planform hillslope geom-
etry, as they occurred on spurs and in convex hollows. Never-
theless, we calculated total curvature and topographic rough-
ness as potential predictor candidates. In addition, we used
land cover (Table 3) and distance to faults (Fig. 1), as they
are commonly used in susceptibility studies (e.g., Stanley
and Kirschbaum, 2017; Li et al., 2020; Ozturk et al., 2021)
and potentially control the density of roadside slope failures.
Yet including these metrics in the model barely contributes to
improving the model fit, and their incorporation in the model
would, according to the constancy of the AIC, lead to over-
fitting (Fig. 8).

5 Discussion

We recorded more than one landslide per road kilometer
along the NH-7 between Rishikesh and Joshimath. The fact
that this road is strongly affected by landslides has been pre-
viously described and attributed to the region’s fragile slopes,
intense rainfall and frequent seismicity (Sati et al., 2011). In
addition to the environmental conditions, road construction
and widening have contributed to the occurrence of new land-
slides, which are often shallow and small, but nevertheless
lead to fatalities, inflict severe damage on infrastructure and
cause traffic disruption (Sati et al., 2011). We conducted a
systematic survey of roadside landslides and derived a statis-
tical model that quantifies landslide susceptibility along the
NH-7 at a high spatial resolution.
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Figure 4. Posterior parameter samples of the log-linear model of landslide occurrence along the NH-7. CHIRPS v2 is the gridded rainfall
product, gradient determines the slope within 210 m of the road and lithozones were aggregated from a geological map. Note that lithozone
1 is missing since the parameter is encapsulated in the intercept.

Table 4. Summary of posterior distributions of parameters fitted by the Bayesian log-linear point process model. Ranks in the model were
calculated according to Makalic and Schmidt (2011).

Parameter Mean Standard deviation 95 % credible interval t statistics Rank
(coefficient) (coefficient)

Rainfall (CHIRPS v2) 0.00356 0.00055 0.00251–0.00461 6.502 1
Hillslope gradient 0.04961 0.00531 0.03842–0.05925 9.314 1
Lithology (2) 0.57462 0.16180 0.26311–0.88471 3.557 3
Lithology (3) 0.04115 0.24679 −0.42837–0.52715 0.158 6
Lithology (4) −0.55397 0.26906 −1.06779–−0.02107 −2.057 4
Lithology (5) −0.11745 0.26646 −0.69276–0.38223 −0.524 6
Road widening 0.39155 0.17249 0.07137–0.73991 2.314 4
Intercept −9.66776 0.71529 −11.12997–−8.39594 – –

Our analysis relied on a GPS-based survey of landslides
while traveling from Rishikesh to Joshimath shortly after a
period of anomalously high rainfall. Using this approach, we
mapped landslides irrespective of cloud cover and without
acquiring high-resolution satellite imagery, which is usually
needed to reliably detect small landslides. A drawback, how-

ever, is that we may have missed landslides where debris had
already been removed by road work. Also, detailed mapping
of the areal extent of the landslides was not possible dur-
ing drive-by, so we did not quantify the size of landslides.
Thus, our analysis treats all landslides the same, irrespec-
tive of their areal extent and volume. To this end, however,
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Figure 5. Predictor and response variables used in the model. Panel (a) shows the occurrences of the fully and partially road-blocking
landslides together with the elevation profile of the road. (b) Landslide density along the road measured using histogram binning (bin width
is 9.8 km). (c) Accumulated rainfall between 1 January 1 and 10 October 2022 from CHIRPS v2. (d) Mean upslope gradient within a distance
of 210 m of the road. (e) Lithozones along the road (see also Fig. 1). (f) Widened road segments. (g) Predicted landslide density using a model
involving rainfall, slope, road widening and lithozones as covariates.

this enables us to adopt a modeling approach that conceptu-
alizes landslides as an unmarked network-attached point pat-
tern (Baddeley et al., 2021; Okabe and Sugihara, 2012). Rep-
resenting landslides as network-attached points and not as
areal features has advantages and disadvantages. Constrain-
ing landslide locations to lie on roads demands that all pre-
dictor variables also need to be mapped to the road network,
which entails some generalization and additional degrees of
freedom about the choice and aggregation of 2D variables.
For landslide susceptibility analysis, for example, this means
that spatial variables characterizing the source area (e.g., hill-
slope gradient) are projected onto the road. At the same time,
model development and fitting benefits from smaller sample
sizes so that data amounts are moderate and computational

demands during Bayesian posterior sampling remain man-
ageable.

We detected a profound difference between rainfall prod-
ucts, a detailed analysis of which is outside the scope of this
study. Several studies along the Himalayan orographic front
have previously detected these differences. They have been
attributed to the sparse network of rain gauges or, in cases
where rainfall estimates are based on remote sensing data, to
irregular acquisition times, which can result in missing in-
dividual rainfall events (Andermann et al., 2011; Hu et al.,
2016). To this end, these uncertainties are detrimental to ac-
curately capturing the spatial patterns of landslides (Ozturk
et al., 2021). We found that CHIRPS v2 performed best in
predicting the spatial landslide patterns along NH-7, but the
search strategy employed must be viewed critically as the re-
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Figure 6. Main effects of predictors in the log-linear model of road-blocking landslides along the NH-7. (a) Effect of accumulated rainfall
amount between 1 January and 10 October 2022 on the occurrence of landslides, averaging out the effects of the other predictors. The orange
lines indicate the occurrences of landslides. (b) Effect of hillslope gradient, (c) of lithozone and (d) of road widening.

Figure 7. Evaluation of the log-linear model including rainfall, slope, lithozones and road widening. (a) Receiver operating characteristics
(ROC) curve. The area-under-the-curve (AUC) metric is 0.79 (0.76–0.82, 95 % bootstrap confidence intervals). (b) The inhomogeneous
K function corrects for the influence of an inhomogeneous Poisson point process model and tests for second-order effects (e.g., spatial
clustering). Acceptance intervals of a theoretical model with independent point independence are shown in gray and were computed from
100 bootstrap samples. The red line is the empirical inhomogeneous K function. As the curve remains within the bootstrapped acceptance
intervals, we retain the null hypothesis of inter-point independence. (c) Comparison of observed landslide densities (black line) with densities
obtained from 100 random realizations (gray lines) from the model.

verse conclusion, that landslides are controlled by these pat-
terns, is not necessarily true. Indeed, studies come to differ-
ent conclusions about the performance of CHIRPS v2 and
other gridded rainfall products. For example, Kumar et al.
(2021) studied different gridded rainfall products in the east-
ern Himalayas and found that CHIRPS v2 overestimated the
monsoon but underestimated annual precipitation. Based on
the analysis of 18 extreme precipitation events during 2014–
2016 in the northwest Himalayas (including our study site),

however, Jena et al. (2020) concluded that CHIRPS v2 pro-
vides the most reliable precipitation estimates. Indeed, the
two-peaked rainfall pattern of CHIRPS v2 is most consistent
with long-term rainfall patterns obtained from the interpo-
lation of 44 rainfall gauge records averaged over the period
from 1901 to 1950, which show highest values along the Hi-
malayan front and along the physiographic transition to the
Higher Himalaya (Basistha et al., 2008; Bookhagen, 2010).
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Figure 8. Forward stepwise selection of additional explanatory co-
variates in the log-linear model of road-blocking landslides.

Lithozones derived from a geological map contributed to
the explanatory power of the model, thus highlighting the
role of rock properties in modulating landslide susceptibility.
As we did not measure the actual geotechnical and geome-
chanical properties or, e.g., bedding and foliation along our
route, we can only provide a first-order reasoning of the pre-
diction capacity of the lithozones. The high landslide density
in lithozone 2 is likely related to the pronounced fissility and
cleavage of the dominating shales and phyllites. Moreover,
material softening, percolation and weathering cause a gen-
eral decrease in rock strength. Tectonic activity adds to a gen-
eral decrease in rock strength by creating shear surfaces with
low friction angles (Stead, 2016). In addition, road segments
where the adjoining hillslopes parallel bedding, joints or fo-
liation planes are particularly vulnerable (e.g., Bartarya and
Valdiya, 1989). Conversely, lithozone 4 is characterized by
quartzite and igneous rocks. These have undergone low- to
high-grade metamorphism and are generally harder and have
a more irregular fabric that restrains the formation of planar
slide surfaces. Moreover, these rocks tend to develop more-
stable regolith mantles (Gerrard, 1994) and are thus less sus-
ceptible to landsliding. Our model shows that under the same
topographic conditions and rainfall amounts, the rock types
of lithozone 2 are 2–6 times more susceptible to landslides
than those in lithozone 4 (Fig. 6c). The remaining lithozones
are not credibly different from each other. In part, the lack of
differences can be attributed to the low number of samples,
as only a small fraction of the road traverses these lithozones
(Table 2). Notwithstanding, a general trend towards lower
landslide susceptibility from lithozones 1 to 5 is consistent
with a previous review study about lithological controls on
the occurrence of mass movements in the Himalayas (Ger-
rard, 1994).

Previous studies indicate that human activities have played
a crucial role in predisposing slopes to failure (Li et al.,
2020; van Westen et al., 2008; Tanyaş et al., 2022). Our

analysis underscores these findings and quantifies the occur-
rence of landslides as being twice as high along widened
sections of NH-7 if other predictor variables are held con-
stant. The process of cutting into mountain sides to create
wider pathways often creates unstable slopes that are prone
to failure (Barnard et al., 2001; Haigh and Rawat, 2011;
Sati et al., 2011; Li et al., 2020). Clearing trees and veg-
etation for road widening eliminates their stabilizing influ-
ence on slopes, thereby increasing landslide hazard (e.g.,
Guthrie, 2002). Additionally, widened roads can lead to in-
creased surface runoff during heavy rainfall or snowmelt, sat-
urating the soil and making it more susceptible to landslides
(e.g., Wadhawan et al., 2020). The rock blasting required dur-
ing the road widening process can lead to the fracturing and
weakening of rock masses, creating potential landslide-prone
zones along the road corridors (Sati et al., 2011). Moreover,
road widening alters natural drainage patterns and potentially
redirects water flow to adjacent slopes, thus causing water
saturation, erosion and instability. In fact, these disturbances
have previously led to frequent landslides along the NH-7:
Sati et al. (2011) also report about∼ 300 landslides occurring
along the road more than 10 years ago. Our data indicate that
30 % of the recorded landslides are reactivated slope failures,
which highlights the fact that slopes are recurrently unstable
during periods of intense rainfall (Joshi and Kumar, 2006).
During mapping, we also noticed that some slopes were en-
gineered during the last years with retaining walls, yet many
of these also failed.

Clearly, our model may miss important predictor variables
that control the occurrence of landslides. We included vari-
ables that characterize environmental conditions and found
that slope, rainfall, road widening and lithology largely ex-
plain the variability in landslide density. Variables such as
land use or topographic derivatives do not improve the per-
formance of the model as measured by the AIC, at least at the
spatial scale at which these variables were available. How-
ever, small-scale topographic changes due to construction
or land use changes (e.g., abandonment and degradation of
agricultural fields and terrace systems) may exacerbate road-
side slope failures (Jaquet et al., 2015; Mauri et al., 2022).
A more-up-to-date DEM with higher resolution may indeed
help to improve the spatial prediction of landslide, although
higher digital terrain model resolutions were shown to not
necessarily improve model performance, in particular along
roads (Penna et al., 2014). Moreover, the propensity for land-
slides along widened segments of the road may change over
time. Road widening and slope undercutting can be viewed
as a perturbation to which slopes will adjust. Timescales
of this adjustment may vary and depend on several factors.
Likewise, remedial measures such as slope enforcement, ar-
tificial drainage and retention walls will affect slope stabil-
ity. Including these activities of landslide mitigation was not
possible in our study but could support planning of structural
measures.
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Our model hindcasts the spatial pattern of road-blocking
landslides, and we posit that it can be used as a time-
predictive model as well. Rainfall is one of the main covari-
ates in the model and is also the one with the largest uncer-
tainties, as shown by the discrepancies between the gridded
rainfall products. A denser network of rain gauges and bet-
ter availability of these data would likely contribute, together
with weather forecasting, to more accurate estimates of land-
slide occurrences, which ultimately would facilitate more ef-
ficient allocation of resources for road maintenance. Also,
recurrent slope failures should be monitored more closely to
direct efforts for slope reinforcement. The land cover data,
which we included in the model, is too coarse to capture the
widespread lack of vegetation along the road. As many of the
landslides were shallow, revegetating slopes may contribute
to their stabilization (Vergani et al., 2017).

The NH-7 is a key arterial road, and landslides make
transport of goods and people difficult, thus causing serious
economic disruption. Moreover, slope failures along the road
have led to fatalities in places where roads were widened, and
recent heavy rainfall in July 2023 has caused several severe
landslides (https://www.hindustantimes.com/india-news/
landslide-on-char-dham-road-leaves-pilgrims-stranded-
heavy-rains-cause-damage-and-blockages-in-uttarakhand-
101690225215947.html, last access: 26 June 2024). Such
damage and commensurate fatalities may become even
more frequent in the future. The entire upper Ganga Basin
is susceptible to extreme rainfall events (Joshi and Kumar,
2006), and climate change projections – although subject to
high uncertainties – indicate a trend towards more-frequent
extreme events due to elevation-dependent warming and
a likely increase in summer monsoon precipitation by
4 %–25 % (Krishnan et al., 2019). In addition, exposure
to landslides is likely to increase in Uttarakhand as the
Char Dham National Highway project is implemented
(Chouhan et al., 2023). Road construction and increased
traffic volumes attract more people, who will strive for new
economic opportunities associated with sites along roads
(Fort et al., 2010; Chouhan et al., 2023). These sites are
often more susceptible to landslides as construction often
implies vegetation removal and slope destabilization (Petley
et al., 2007; Li et al., 2020). A reduction in traffic may
disrupt the cycle of increasing hazard and exposure. The
commissioning of the currently constructed 125 km long
broad-gauge railway between Rishikesh and Karnprayag
(Azad et al., 2022) might be a major step towards this goal.

6 Conclusions

Road construction is soaring in the Himalayas. During the
last 5 years, ∼ 11 000 km of roads were built in the Indian
Himalayan states (The Tribune, 2022). Yet the fragility of
the Himalayan landscape as well as slope undercutting and
poor construction practices make maintenance of these roads

challenging. Our study of landslides along the NH-7 demon-
strates the scale of this challenge as we detect more than one
partially or fully road-blocking landslide per road kilometer
between Rishikesh and Joshimath. We contribute to a better
understanding and prediction of these landslides by creating
a landslide inventory of roadside landslides and the adoption
of a novel approach to landslide exposure analysis, which
treats the landslides as unmarked network-attached spatial
point phenomena. Together with inhomogeneous Poisson
process models, this inventory enables us to identify the main
controlling variables, i.e., slope angle, rainfall amount, road
widening and lithology. Our model shows that if corrected
for all other influences, road widening leads to a doubling of
road-blocking landslides. This finding quantitatively under-
pins previous claims that improper construction practices of
road widening increase rather than decrease landslide haz-
ards along roads (Sati et al., 2011). The Himalayas’ fragile
geology and exposure to torrential rains demand proper geo-
logical assessments and mitigation measures, such as con-
structing retaining walls, installing drainage systems and
stabilizing slopes, to minimize the impact of road widen-
ing on landslide occurrence. Thorough environmental impact
assessments before road widening projects and considera-
tion of alternative routes or transportation solutions can help
strike a balance between development and preserving the del-
icate mountain ecosystem while reducing landslide risks.
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