
Nat. Hazards Earth Syst. Sci., 24, 3173–3205, 2024
https://doi.org/10.5194/nhess-24-3173-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article: Drought as a continuum – memory effects
in interlinked hydrological, ecological, and social systems
Anne F. Van Loon1, Sarra Kchouk2,�, Alessia Matanó1,�, Faranak Tootoonchi3, Camila Alvarez-Garreton4,
Khalid E. A. Hassaballah5, Minchao Wu6,7, Marthe L. K. Wens1, Anastasiya Shyrokaya8, Elena Ridolfi9,
Riccardo Biella8, Viorica Nagavciuc10,11, Marlies H. Barendrecht12,1, Ana Bastos13,a, Louise Cavalcante14,
Franciska T. de Vries15, Margaret Garcia16,17, Johanna Mård8, Ileen N. Streefkerk1, Claudia Teutschbein6,
Roshanak Tootoonchi18, Ruben Weesie1, Valentin Aich19, Juan P. Boisier4,20, Giuliano Di Baldassarre8, Yiheng Du21,
Mauricio Galleguillos4,22, René Garreaud4,20, Monica Ionita10,11, Sina Khatami8,23,34, Johanna K. L. Koehler14,1,24,
Charles H. Luce25, Shreedhar Maskey26, Heidi D. Mendoza1, Moses N. Mwangi27, Ilias G. Pechlivanidis21,
Germano G. Ribeiro Neto28,b, Tirthankar Roy29, Robert Stefanski19, Patricia Trambauer30, Elizabeth A. Koebele31,32,
Giulia Vico33, and Micha Werner26

1Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
2Water Resources Management Group, Wageningen University, Wageningen, the Netherlands
3Department of Crop Production Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
4Center for Climate and Resilience Research, ANID–FONDAP–1523A0002, Santiago, Chile
5IGAD Climate Prediction and Applications Centre, Nairobi, Kenya
6Department of Earth Sciences, Uppsala University, Uppsala, Sweden
7Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
8Centre of Natural Hazards and Disaster Science (CNDS), Department of Earth Sciences,
Uppsala University, Uppsala, Sweden
9Dipartimento di Ingegneria Civile, Edile e Ambientale, Sapienza Università di Roma, 00184 Rome, Italy
10Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
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Abstract. Droughts are often long-lasting phenomena, with-
out a distinct start or end and with impacts cascading across
sectors and systems, creating long-term legacies. Neverthe-
less, our current perceptions and management of droughts
and their impacts are often event-based, which can limit
the effective assessment of drought risks and reduction of
drought impacts. Here, we advocate for changing this per-
spective and viewing drought as a hydrological–ecological–
social continuum. We take a systems theory perspective and
focus on how “memory” causes feedback and interactions
between parts of the interconnected systems at different
timescales. We first discuss the characteristics of the drought
continuum with a focus on the hydrological, ecological, and
social systems separately, and then we study the system of
systems. Our analysis is based on a review of the litera-
ture and a study of five cases: Chile, the Colorado River
basin in the USA, northeast Brazil, Kenya, and the Rhine
River basin in northwest Europe. We find that the memo-
ries of past dry and wet periods, carried by both bio-physical
(e.g. groundwater, vegetation) and social systems (e.g. peo-
ple, governance), influence how future drought risk mani-
fests. We identify four archetypes of drought dynamics: im-
pact and recovery, slow resilience building, gradual collapse,
and high resilience–big shock. The interactions between the
hydrological, ecological, and social systems result in systems
shifting between these types, which plays out differently in
the five case studies. We call for more research on drought
preconditions and recovery in different systems, on dynamics
cascading between systems and triggering system changes,
and on dynamic vulnerability and maladaptation. Addition-
ally, we advocate for more continuous monitoring of drought
hazards and impacts, modelling tools that better incorporate
memories and adaptation responses, and management strate-
gies that increase societal and institutional memory. This
will help us to better deal with the complex hydrological–
ecological–social drought continuum and identify effective
pathways to adaptation and mitigation.

1 Introduction

Drought is a creeping phenomenon (Wilhite and Glantz,
1985) with unclear definitions of when a dry spell devel-
ops into a drought (Hall and Leng, 2019; Kiem et al., 2016;
Slette et al., 2019). This is what we read in the introduc-
tion of almost every drought paper and what we have been
taught at school or university. However, in drought monitor-
ing, analysis, forecasting, and management, drought is still
framed as an event. For example, most disaster databases
record only within-year events and do so in a binary way
(drought/no drought; e.g. EM-DAT, 2023). However, multi-
ple failed rainy seasons cause exponentially more harm than
a single failed season, as for example recently seen in the
Horn of Africa (Amha et al., 2023). Also in ecosystems,
consecutive droughts cause legacies, affecting these ecosys-
tems’ long-term resilience (Müller and Bahn, 2022). In many
places, such as the Netherlands, drought monitors and man-
agement committees are only operational in the summer pe-
riod when most impacts are expected or are only put in place
once a defined drought event is underway (KMNI, 2023).
This is problematic because drought impacts in a single sea-
son or year are strongly dependent on what happened in
previous seasons and years (i.e. antecedent conditions and
baseline vulnerability to drought) and on what happens af-
terwards (i.e. responses to and recovery from drought). This
is what we call “memory”; a process that is prevalent both in
the hydrological system, ecosystem, and social system and in
their interactions. For example, the responses of a hydrolog-
ical system to alterations of dry and wet periods are related
to the memory of previous conditions. Here, we argue that
the event-based approach to understanding and managing
drought needs to change if we want to better mitigate drought
impacts on both ecosystems and society. We make this argu-
ment by exploring and discussing memory effects in interact-
ing hydrological, ecological, and social systems based on the
scientific literature and narratives from five global cases.

Drought has different faces, and complexities are inher-
ent in each aspect of drought, including hazard, impacts, and
overall risk. Drought hazards can manifest in different parts
of the hydrological system, propagating from meteorological
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drought to soil moisture drought and hydrological drought,
with different spatial and temporal characteristics (Van Loon,
2015). There are different temporal dimensions to drought,
which range from flash droughts to mega-droughts (Christian
et al., 2021; Cook et al., 2022; Ionita et al., 2021; Pendergrass
et al., 2020). Flash droughts are driven by a short but extreme
precipitation deficit (often co-occurring with high evapotran-
spiration rates (Shah et al., 2022; Sungmin and Park, 2024)
and mega-droughts by a less extreme, but very prolonged,
reduction in precipitation and/or increase in evaporative de-
mand (Ault et al., 2016). Not only drought development but
also recovery from drought varies in space and time and be-
tween different parts of the hydrological system. This means
that the end of a drought is not always clear and that dry
conditions may linger for a long time (Parry et al., 2016; Ti-
jdeman et al., 2022). Drought hazards are quantified with a
range of different indices (such as the standardised precipita-
tion index (SPI) – McKee et al., 1993; the standardised pre-
cipitation evapotranspiration index (SPEI) – Vicente-Serrano
et al., 2010; or the self-calibrated Palmer drought severity
index – Wells et al., 2004), many of which allow for con-
sidering different levels of severity and different time peri-
ods (accumulation of precipitation over several timescales).
However, in event-based analyses, these are again reduced to
a single timescale and a threshold is used to define a distinct
start and end date for a specific drought event (Brunner et al.,
2021; Kchouk et al., 2022; Van Loon, 2015).

Drought impacts on ecosystems and society are wide-
ranging and extend across a variety of temporal and spatial
scales. The delineation of what a drought impact is and when
it starts and ends is not straightforward (Hall and Leng, 2019;
Slette et al., 2019), and the timescales of drought impacts
are highly variable (de Brito et al., 2020). Drought impacts
are often gradual in time, for example an increased walking
distance to collect water due to the drying up of boreholes,
progressive vegetation stress due to decreasing soil moisture
levels, reduced energy production or goods transported due
to reduced river water levels, or affected livelihoods leading
to school dropouts. Some of these changes are even reported
not as impact but rather as a way of coping with drought.
This makes relating drought impacts to drought hazard indi-
cators challenging (Bachmair et al., 2016; Shyrokaya et al.,
2024). A way to include social dynamics is to add vulnera-
bility factors (Blauhut et al., 2016). Other studies use contin-
uous impact data and relate these to gradual drought severity
levels with continuous indices (e.g. crop yield; Madadgar et
al., 2017). This approach can capture non-linear relationships
but still does not consider the fact that vulnerability can also
change during drought, thereby affecting future drought im-
pacts (i.e. vulnerability is dynamic; de Ruiter and van Loon,
2022).

Drought risks are complex (Blauhut, 2020). Interactions
between hazard, vulnerability, and impacts are not always
one-way, and feedback, human (re)actions, and cascading
effects make the relationship between drought hazard and

impacts non-linear and dynamic (de Brito, 2021; Kchouk et
al., 2022; Wens et al., 2019). For example, when agricultural
crops are affected by soil moisture drought, impacts may ini-
tially be mitigated by applying irrigation (e.g. from ground-
water), but later this water abstraction enhances hydrologi-
cal drought, which in turn impacts other sectors dependent
on groundwater (e.g. drinking water supply; Pauloo et al.,
2020). These interactions and non-linearities are often not in-
cluded in drought hazard impact studies (Wens et al., 2019),
and studies on future drought risk only consider changes in
drought hazard, keeping exposure and vulnerability fixed in
time (Hagenlocher et al., 2019). In addition, the perception
of drought severity, impacts, planning, and management can
also considerably differ among different societies or commu-
nities, as well as over time, and may not always align with the
actual observed drought severity and impacts (Teutschbein et
al., 2023).

An event-based approach to defining droughts historically
has been developed for several reasons. Firstly, it was im-
portant to distinguish drought as an extreme event from nat-
ural variability. For extreme-value statistics and other quan-
titative analyses, drought event characteristics were needed
based on a clear delineation of drought vs. no-drought (His-
dal et al., 2000). Several studies, however, have shown that
the selection of a timescale for the analysis has a strong
influence on the results, e.g. for the relation between heat-
waves and societal response and impacts (De Polt et al.,
2023), ecological impacts of drought (Gouveia et al., 2017),
and linking drought indicators to societal impacts (Bachmair
et al., 2015). Secondly, it can be helpful to frame drought
as disaster for political reasons or to release funding based
on drought declarations and triggers (Botterill and Hayes,
2012; Estrela and Sancho, 2016; Monte et al., 2020). A dis-
aster risk framing of drought requires a hazard event to be
distinguished with a specific exposure and vulnerability re-
lated to the hazard event (Blauhut, 2020). There have been
calls for moving from crisis management to more risk-based
management of drought (Estrela and Sancho, 2016; Sivaku-
mar et al., 2014; Wilhite, 2017; Wilhite et al., 2000), and
this suggestion is already being implemented in some na-
tional or regional drought management plans. Guidelines
and declarations like the guidelines for drought management
plans (Iglesias et al., 2009), the 2013 High-level Meeting
on National Drought Policy (HMNDP) declaration (Sivaku-
mar et al., 2014), the National Drought Management Pol-
icy Guidelines (Wilhite and Pulwarty, 2014), and the Hand-
book of Drought Indicators and Indices (Svoboda and Fuchs,
2016) have been instrumental in advancing drought man-
agement. Regional examples from central and eastern Eu-
rope (Fatulová, 2014; GWP CEE, 2014) and the Horn of
Africa (GWP, 2015) highlight the development of drought
management, supporting capacity building and increased re-
silience to drought impacts. International collaborative ef-
forts like the WMO–GWP Integrated Drought Management
Programme (IDMP) have been very important for highlight-
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ing and sharing these efforts. However, research has shown
that drought management plans are mostly strong in emer-
gency management and less developed on determining long-
term goals and implementing measures to achieve these (Fu
et al., 2013) and that they could improve on including vul-
nerability and impacts (Urquijo-Reguera et al., 2022). Addi-
tionally, in some countries, the drought disaster framing has
been found to be unhelpful in drought management. For ex-
ample, Australia removed droughts from the natural disaster
policies in 1989 because droughts started to be viewed as a
continuing risk related to climate variability and drought dec-
larations triggering government support caused debate and
inequalities (Botterill and Hayes, 2012). Here, we argue that,
taking an event-based view of drought, i.e. monitoring or as-
sessing drought as a snapshot in time (Bastos et al., 2023),
analysing each drought driver or impact separately, and fo-
cusing on emergency management and drought emergency
declarations, oversimplifies the complexity of drought and
its dynamics (Hagenlocher et al., 2023). Such an event-based
approach overlooks important periods that shape antecedent
conditions and recovery from drought, as well as the cas-
cading and compounding effects of drought processes, dy-
namic vulnerability, and feedback between hazard and im-
pact. Moreover, because of the complex interactions between
drought and multiple systems, we support the notion that un-
derstanding drought requires considering not only physical
(hydro-meteorological) processes but also ecological (envi-
ronmental) and social (economical, political) processes to as-
sess drought risks. Concurrently, scholars have recently ar-
gued that drought risk should be seen as systemic, i.e. re-
sulting from complex interdependencies and feedbacks be-
tween compounding and concurring hazards, as well as pos-
sible tipping points (Hagenlocher et al., 2023; Sillmann et
al., 2022). To address this issue, a systems theory perspective
is needed. Therefore, in this paper, we combine the frame-
works of social–ecological systems and earth system sci-
ence and apply these to the temporal dimensions of drought.
We first explain the theoretical frameworks used (Sect. 2);
then we discuss memory in hydrological, ecological, and so-
cial systems (Sect. 3); and next we compare the emerging
properties and feedbacks within and between these systems
(Sect. 4). We base our analysis on a review of the scientific
literature and on five case studies in different parts of the
world (see Supplement Sects. S1–S5). We conclude with an
outlook providing recommendations for further research and
improved monitoring and management (Sect. 5). Consider-
ation of these aspects is needed for a new perspective on
drought, wherein we conceptualise drought as a continuum
and consisting of interacting hydrological–ecological–social
memory processes.

2 Systems theory and drought memory

In this paper we build on the concepts of complex sys-
tems and systems thinking to conceptualise drought as a
hydrological–ecological–social system and to draw on ele-
ments from social–ecological systems, socio-hydrology, and
earth system science. Our specific focus is the dynamic as-
pects of these systems interacting over time as they are af-
fected by and create system memory. In this section, we first
introduce key overarching concepts relevant to our conceptu-
alisation of the drought system and its temporal dimensions.

The field of systems thinking defines complex systems
as composed of a set of elements (which can be systems
themselves) that have connections between each other (Jack-
son, 2019; Shaked and Schechter, 2017). The interactions
between these interconnected elements can lead to unex-
pected emergent results (Westra and Zscheischler, 2023). El-
ements can interact and feed back at different scales, creating
a multidimensional complex adaptive system (Rammel et al.,
2007). Systems theory is applied to, for example, agriculture,
natural resource management (Ison et al., 1997), and disaster
recovery (Bahmani and Zhang, 2021).

Social–ecological systems (SESs) are examples of com-
plex adaptive systems characterised by integrated bio-
physical and socio-cultural processes (Ahmed and Abdalla,
2005; Delgado-Serrano et al., 2015; Ostrom, 2009; Tellman
et al., 2018). Socio-hydrology or hydrosocial systems can be
seen as a specific type of SES revolving around the interac-
tions between people and water (Konar et al., 2019; Siva-
palan et al., 2012; Wesselink et al., 2017). Many studies,
for example, use socio-hydrology to understand and model
the complex dynamics of flood risk resulting from the inter-
play between floods and people (Di Baldassarre et al., 2013;
Vanelli et al., 2022). Earth system science (ESS) focuses on
the complex adaptive components of the earth system and
their interactions (Steffen et al., 2020). ESS is strongly based
in the natural sciences (meteorology, climate physics, en-
vironmental science) but has more recently recognised the
important role of humans as agents of change of the earth
system (Alessa and Chapin, 2008). One difference between
SESs and ESS is the scale at which they are studied, with
ESS focusing on the planetary scale (Steffen et al., 2020).

Within complex social–ecological or earth systems, the in-
teractions between the elements or subsystems happen across
both spatial and temporal scales (Konar et al., 2019; Vanelli
et al., 2022). In this paper, we are interested in temporal as-
pects. Naylor et al. (2020) state that to understand complex
systems and their emergent properties, it is necessary to ex-
amine the changes in relationships between system elements
over time. The concept of time is studied extensively in the
separate systems – the hydrological system (Koutsoyiannis,
2013), ecosystem (Jackson et al., 2021), and social system
(Peixoto and Rosvall, 2017) – despite common features be-
tween them. Aspects like antecedent conditions, response
times to disturbances, and recovery to the original state (or
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Table 1. Examples of drought as a continuum in hydrological systems, ecosystems, and social systems based on specific studies.

Hydrological systems Ecosystems Social systems

Antecedent conditions Groundwater droughts are more severe Ecosystems affected by drought have Most vulnerable to drought
and spatially coherent with dry lower net primary production (NPP) are the already poor and
antecedent conditions (Van Loon et values under dry antecedent marginalised groups (King-
al., 2017). conditions (Machado-Silva et al., 2021). Okumu et al., 2020).

Response times/ Catchments with permeable geology Stomatal regulation gradually leads to There are different response
resilience have a longer drought response time loss of hydraulic conductance, which times of public and private

(Barker et al., 2016). over time can lead to mortality sectors (Teutschbein
(Hammond et al., 2019; Tombesi et al., et al., 2023).
2015).

Recovery Hydrological drought recovery Ecosystem recovery times are Financial and political
depends on catchment associated with ecosystem types processes hinder social
characteristics and human influences and drought characteristics recovery (Pribyl et al., 2019).
(Margariti et al., 2019; Parry et al., (Schwalm et al., 2017).
2016).

transition to a new state) jointly shape the response of a sys-
tem to external drivers. These factors determine whether the
system changes quickly or slowly, depending on the system’s
memory. The memory of a system refers to its ability to retain
information about past states, conditions, and experiences,
which influences its current behaviour and response to future
events. Memory is often manifested through legacies and re-
sponses. Legacies are the lasting effects of past conditions
that might continue to influence the system’s structure, func-
tion, and behaviour over time. Responses are the manifes-
tation of how quickly the system reacts to disturbances and
adapts to changes. A system with a long memory retains past
influences for a longer period, leading to slower responses
and longer legacies, while a system with a short memory
quickly responds to disturbance and has short legacies (Gun-
derson and Holling, 2002; Kchouk et al., 2023; Redman and
Kinzig, 2003).

The memory of the systems within a complex system
strongly determines the emerging properties, such as (i) self-
organisation and emergence, (ii) non-linear behaviour and
tipping points, (iii) state shifts and feedback loops, and
(iv) resilience and adaptation (Carmichael and Hadžikadić,
2019; Preiser et al., 2018). Such properties are particularly
evident when examining the co-evolution of human and wa-
ter systems across time. For example, Srinivasan et al. (2012)
introduced the concept of “syndromes” to conceptualise and
describe the evolving nature of human–water interactions
over time. These syndromes represent specific patterns of
water use, reflecting the dynamic state of the system as it
changes and adapts with time. Similarly, Roobavannan et
al. (2017) modelled a “pendulum swing” in the management
of the Murrumbidgee Basin in Australia, which is in fact
a shift from agricultural to environmental water allocation.
This shift reflects the “memory properties” of systems as it
was shaped by accumulated experiences, past policies, and

societal values, showing how historical experiences influence
current practices.

Time is an important element in the development of
drought and drought impacts, as recognised by previous stud-
ies (Hall and Leng, 2019; Tijdeman et al., 2022; Wilhite
and Glantz, 1985; WMO, 2021), and time characteristics
have been studied empirically in the separate systems (see
some examples in Table 1). In the next sections, we ex-
plore and discuss the concept of memory shaping drought
over time from different perspectives: hydrology, ecology,
and social science. Next, we analyse potential temporal inter-
actions across these systems to understand how they impact
the broader drought system across time.

3 Drought as a continuum in different systems

3.1 Hydrological system

The emphasis on drought as a hydrological extreme event has
led to drought detection and definition using indices spec-
ified over defined timescales (McKee et al., 1993; Mishra
and Singh, 2010) or considering a limited range of lagged
hydro-meteorological variables (Mishra and Singh, 2011).
However, it is increasingly recognised that hydrological
droughts result from complex interactions between multiple
bio-physical processes and human influences (Van Loon et
al., 2016). This implies that hydrological droughts occur not
as singular events but rather as a result of the continuous evo-
lution of multiple hydrological fluxes and states. Therefore,
we cannot fully characterise droughts without considering
the (wet and dry) hydrological conditions that either precede
or follow what is considered a drought event, as well as how
baseline conditions may be shifting over time due to climate
change. The duration for which these hydrological conditions
need to be considered to understand the evolution of drought
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and subsequent recovery primarily depends on the processes
that contribute to catchment memory (Stoelzle et al., 2020).

Catchment memory, in the context of drought, modulates
the cumulative effects of anomalous meteorological and hy-
drological conditions and their persistence over time and thus
the severity, duration, and recovery of droughts (Alvarez-
Garreton et al., 2021). This memory depends on the het-
erogeneous and spatially distributed characteristics of the
catchment, such as topography, land cover, soil types, stor-
age properties, and variability in hydro-climatic conditions
(Cranko Page et al., 2023; Fowler et al., 2020; De Lavenne
et al., 2022). For instance, catchment memory in surface-
water-dominated catchments may be quite short, depending
on soil moisture and vegetation memory (Ghajarnia et al.,
2020; Gu et al., 2023; Fig. 1a, dark-blue line). By contrast,
in groundwater-dominated catchments, catchment memory
may typically be longer, as groundwater acts as a storage
reservoir that buffers short-lived rainfall anomalies and sus-
tains baseflow in rivers and streams (Sutanto and Van Lanen,
2022). Such a long memory will, however, lead to slower
recovery, particularly if groundwater levels have been sig-
nificantly depleted due to more persistent rainfall deficits
(Fig. 1b, light-blue line). This was found during the 2018–
2022 drought in groundwater-dominated systems in the east-
ern part of the Netherlands, which showed minimal or no re-
covery despite the drought being interspersed with relatively
wet conditions in the winter of 2019–2020 (Brakkee et al.,
2022; see the Rhine River basin case study, Sect. S5). High
meteorological variability can dissipate catchment memory
given rapid and frequent changes in hydrological states, es-
pecially in systems with shallow groundwater tables where
excess water cannot be stored and the system is reset during
wet periods (Appels et al., 2017; van der Velde et al., 2009).
However, large subsurface storage with deep groundwater
levels tends to attenuate the effects of variability in precipita-
tion and evapotranspiration on the hydrological system. This
then contributes to the accumulation of drought deficits and
the lagging and pooling of meteorological drought events,
thus extending the recovery process (Sutanto and Van Lanen,
2022). Other forms of storage can also contribute to long
catchment memory, such as extensive wetlands and lakes
(Gu et al., 2023). Furthermore, human-made storage reser-
voirs can increase catchment memory and buffer drought
(Ribeiro Neto et al., 2022), though only up to certain critical
thresholds such as when the reservoir falls empty (Range-
croft et al., 2019; Fig. 1a, orange line). Recovery in such
reservoir-influenced catchments may be slower (Margariti et
al., 2019; see also the northeast Brazil case study, Sect. S3).

Catchment memory varies across different climate types.
In arid and semi-arid climates, propagation from meteo-
rological to hydrological drought may be slower than in
wet–tropical climates (Gevaert et al., 2018; Odongo et al.,
2023). This may be exacerbated by land–atmosphere inter-
actions, which can lead to the self-propagation of droughts,
thus extending them in space or time (Miralles et al., 2019;

Schumacher et al., 2022). Catchment memory also varies
in climates with distinct seasonality, such as tropical sa-
vannas, snow-dominated catchments, or Mediterranean-type
climates (Gevaert et al., 2018; Seager et al., 2019) where
drought propagation has a strong intra-seasonal (De Lavenne
et al., 2022) or even multiannual timescale (Gevaert et al.,
2018). For example, in the Andes Cordillera, snow deficits
lead to streamflow deficits not only during the summer melt-
ing season but also in the following autumn season (Alvarez-
Garreton et al., 2021; see the Chile case study, Sect. S1). Sim-
ilarly, winter snow droughts in the snow-dominated catch-
ments of the Alps affect summer discharges of the river
Rhine (Ionita and Nagavciuc, 2020; Khanal et al., 2019),
while in the winter of 2022–2023, unprecedented dry and
warmer-than-normal conditions over the Italian Alps caused
critical hydrological conditions in the Po and Adige rivers
in the ensuing spring (Colombo et al., 2023). Another exam-
ple is the Mediterranean region, where precipitation is highly
seasonal due to winter storms. The weakening of the storm
systems combined with long–dry summers leads to a precip-
itation deficit and, thus, increased drought risk in the region
(Cook et al., 2014; Ionita and Nagavciuc, 2021).

Catchment memory can, therefore, connect climate and
hydrological anomalies across different temporal scales. Pre-
cipitation anomalies occurring at a particular time of the
year can be compounded and lead to long-memory stream-
flow anomalies later in the year (Mudelsee, 2007). Fig-
ure 1 schematically shows how the superposition of different
drought signals and hydrological states with long and short
memory may result in either amplifying or dampening the
duration and severity of hydrological droughts. However, the
interaction of these signals is not always linear, as witnessed
by the unexpectedly quick recovery in groundwater systems
in Germany (Tijdeman et al., 2022: see the Rhine River basin
case study, Sect. S5).

It is worth noting that the processes that constitute catch-
ment memory are not stationary. Unprecedented climatic
conditions such as multi-year droughts may alter how a
catchment responds to precipitation and/or how surface and
groundwater systems interact (Fuchs et al., 2019; Fig. 1b,
dashed line). This can lead to persistent shifts in rainfall–
runoff relationships (Eltahir and Yeh, 1999; Kleine et al.,
2021) and less runoff than expected (Alvarez-Garreton et al.,
2021; Fowler et al., 2020; Saft et al., 2015). Further, catch-
ments may not always fully recover and return to their orig-
inal states after protracted droughts end, leading to new per-
sistently low-flow states due to changes in the dominant hy-
drological processes and catchment memory (Peterson et al.,
2021; Fig. 1b, yellow line).

In addition to the effects of protracted dry conditions, cli-
mate change can also lead to non-stationary catchment re-
sponses through aridification as a result of greater atmo-
spheric water demand, increased evaporation, and lower soil
moisture (Boisier et al., 2018; Overpeck and Udall, 2020), as
experienced in the Colorado River basin in the southwest-
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Figure 1. Drought in surface water (SW; a) and groundwater (GW; b) in different catchments in response to a climate driver (e.g. precip-
itation, recharge), with a fast or slow catchment response (dark- and light-blue lines), with a reservoir (orange line), and with groundwater
depletion (yellow line). The “drought wave” decreases in amplitude but increases in wavelength as the catchment storage increases. This
results in a superposition of anomaly signals in the hydrological system. When groundwater becomes disconnected from surface water,
memory increases and response to precipitation is strongly reduced.

ern USA (Colorado case study, Sect. S2). Climate warm-
ing may lead to a modified drought response by shifting
the hydrological regime of a basin from snow-dominated
to rainfall-dominated. A shift from snow to rain in winter
may reduce catchment memory, dampening winter droughts
and amplifying spring and summer droughts, as observed in
Sweden (Arheimer and Lindström, 2015; Teutschbein et al.,
2022) and the western USA (Siirila-Woodburn et al., 2021).
Climate change also affects snow and glacier dynamics and
storage and therefore the drought buffering effect these as-
pects have (van Tiel et al., 2023).

Finally, human activities can change catchment memory
processes, such as through the overexploitation of groundwa-
ter leading to depletion and degradation of aquifer systems.
Such perturbations modify drought propagation mechanisms
and may increase drought impacts by reducing water secu-
rity, potentially leading to permanent loss of natural water
storage (Fig. 1, yellow line; Alvarez-Garreton et al., 2024;
Chile case study, Sect. S1), and by causing land subsidence
due to compaction (e.g. San Joaquin and Central Valley in
California; Ojha et al., 2018; Smith et al., 2017). Land use
change can also result in changes in catchment memory. For

example, large-scale tree restoration or afforestation can re-
sult in either more or less water availability, depending on the
balance between increased evapotranspiration and increased
precipitation (Galleguillos et al., 2021; Hoek van Dijke et
al., 2022). Similarly, the effect of urbanisation on stream-
flow drought is a balance between decreased water storage
due to increased imperviousness and increased water storage
because of increased sewage return flows and pipe leakage
(Van Loon et al., 2022).

3.2 Ecosystem

Drought has widespread impacts on terrestrial ecosystems
globally and is a major driver of variability in the global
carbon cycle (Ray et al., 2015; Reichstein et al., 2013;
Schwalm et al., 2017; Stocker et al., 2019). The impacts of
droughts on ecosystems depend on drought characteristics,
ecosystem memory, and the interactions between ecosystems
and their environment and are not necessarily detrimental
(Cranko Page et al., 2023; Kannenberg et al., 2020; De Long
et al., 2019; de Vries et al., 2023; Wu et al., 2022). For ex-
ample, plants in many semi-arid and arid systems have de-
veloped drought-tolerant traits, such as deep roots, thick and
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leathery leaves, drought deciduousness, and high fire resis-
tance, allowing them to cope with drought and cascading
impacts such as wildfires (Blumenthal et al., 2020; Jacob-
sen et al., 2008). Moreover, droughts can promote develop-
ment and retention of biodiversity (e.g. in drought- and fire-
dependent ecosystems) (Agee, 1996). Drought can also sta-
bilise the ecological landscape and reinforce community re-
silience (Lloret et al., 2012; Fig. 2, orange line). However,
shifts in drought patterns, e.g. due to anthropogenic climate
change, compounded with other human pressures on ecosys-
tems, can alter ecosystem composition and functioning, in
turn affecting ecosystem resilience and potentially leading to
critical memory effects (Bastos et al., 2023; Crausbay et al.,
2020; Kannenberg et al., 2020).

The impacts of drought on ecosystems take place at mul-
tiple timescales, from very short (hours to days) to very long
(years to decades; Fig. 2, dark-blue and light-blue lines).
The effects of drought on ecosystems can vary depending
on vegetation type (Ruehr et al., 2019), soil type (Buttler
et al., 2019), historical and concurrent climate (Ruiz-Pérez
and Vico, 2020; de Vries et al., 2023; Zipper et al., 2016),
microclimate (Suarez and Kitzberger, 2008), preconditions
(Bastos et al., 2020) and the timing of drought within grow-
ing seasons (Hahn et al., 2021; Iizumi et al., 2018) due to
distinct phenological sensitivity to climatic conditions (Wu
et al., 2021). The initial impacts are on plant physiological
processes (Hsiao, 1973; Li et al., 2023), as low water avail-
ability reduces turgor pressure in leaf cells, stomatal conduc-
tance, and xylem conductivity and generally results in de-
creases in whole-plant hydraulic conductance affecting wa-
ter and carbon exchanges through the soil–plant–atmosphere
continuum (McDowell et al., 2022; Tyree and Ewers, 1991).
These effects cascade to affect overall plant primary produc-
tivity (Griffin-Nolan et al., 2018), growth (Kannenberg et al.,
2019), and carbon allocation (Hartmann et al., 2020), as well
as plant–plant (Zhang et al., 2019) and plant–insect (Kolb et
al., 2016; Öhrn et al., 2021; Raderschall et al., 2021) interac-
tions, or even cause plant death.

Drought can furthermore negatively affect soil carbon (C)
storage by reducing below-ground plant C inputs and al-
tering their quality (Fuchslueger et al., 2016; de Vries et
al., 2019; Williams and de Vries, 2020), reducing micro-
bial activity and decomposition of soil organic matter and
affecting plant and microbial communities and their interac-
tions (Schimel, 2018). Experiments in grasslands have shown
rapid responses of plant and microbial growth and commu-
nity composition to drought but slow responses of total soil C
pools (Aanderud et al., 2015; Placella et al., 2012; de Vries
et al., 2016). Twenty years of chronic summer drought has
caused persistent shifts in soil fungal and bacterial commu-
nities and has reduced microbial biomass and soil C under
grasses but not under heather plants (Gliesch et al., 2024).
This highlights the role of plant community composition and
drought characteristics in affecting soil C pool dynamics at
different temporal scales (Fig. 2, blue line).

While some ecosystems seem to recover quickly after a
single dry period, others take 2 or more years to recover (An-
deregg et al., 2015; Schwalm et al., 2017; Wu et al., 2022).
Vegetation sensitivity to drought has been reported to in-
crease in the season following an initial dry period in some
ecosystems (Bastos et al., 2021; Machado-Silva et al., 2021;
Nagavciuc et al., 2023; Wu et al., 2022). These memory ef-
fects can be caused by several mechanisms. First, plant ac-
tivity recovers in several hours to years, depending on water
stress characteristics (e.g. intensity and duration), the vulner-
ability of the plant tissues, and memory in the soil–plant–
atmosphere system (e.g. from previous periods). Photosyn-
thetic processes generally recover quickly (e.g. within hours
or days), but hydraulic damage or failure requires a longer
time, provided recovery is possible at all (Adams et al., 2017;
Choat et al., 2018; Ruehr et al., 2019). The amount of pre-
cipitation after the drought period also plays a role. For ex-
ample, in the Yangtze River basin (China), grasslands had
already recovered with 50 % of normal precipitation, while
forests required at least near-normal precipitation to fully re-
cover (Huang et al., 2021). Second, drought reduces plant
uptake of soil nutrients, leaving a larger nutrient pool avail-
able for post-drought plant growth than that available in nor-
mal conditions. This could lead to fast-growing plants pro-
liferating and could decrease the ecosystem’s ability to cope
with a second drought (de Vries et al., 2018). Third, in natu-
ral ecosystems, the cascading short- or medium-term effects
of droughts can increase background mortality (McDowell
et al., 2022) and shift plant functioning and drought strate-
gies, with long-term altered species composition and sen-
sitivity to climate (Crausbay et al., 2020; Griffin-Nolan et
al., 2019; Fig. 2, green line). Drought also shifts the com-
position of soil microbiota, including the balance of mutual-
ists and pathogens, potentially leaving plants more vulner-
able to subsequent drought events (de Vries et al., 2023).
Fourth, chronic drought can cause reduced soil carbon in-
puts, a loss of soil carbon, and changes in soil physical prop-
erties (Zhang et al., 2018), reducing the soil water-holding
capacity and rendering ecosystems more vulnerable to sub-
sequent drought. These post-drought memory effects prop-
agate through the whole ecosystem, represented as changes
in ecosystem functioning beyond the current growing season
(e.g. defoliation detected by aerial surveys in Meddens et al.,
2012, and large-scale satellite-sensed vegetation greenness
by Wu et al., 2022), losses in woody biomass for years ahead
(Anderegg et al., 2015), and post-drought tree mortality or
major die-off in the low-resilience ecosystems (Allen et al.,
2010, 2015; Fig. 2, yellow line). A case in point is the recent
drought in central Europe, where strong legacy effects during
a multi-year drought caused massive vegetation die-off (see
the Rhine River basin case study, Sect. S5). At the ecosystem
scale, divergent impacts and recovery responses in more di-
verse systems might result in weaker drought legacy effects
compared to less diverse and more vulnerable systems (Yu
et al., 2022). Some of these mechanisms also play a role in
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Figure 2. Drought in a variety of different ecosystems in response to a climate driver (e.g. precipitation, recharge), with drought-adapted
ecosystems (orange line) starting at a lower baseline, drought-adapting ecosystems (green line) changing in response to drought, more or less
resilient ecosystems (dark- and light-blue lines) impacted by and recovering from drought, and collapsing ecosystems (yellow line) gradually
decreasing due to recurrent droughts. NPP denotes net primary production, and LU denotes land use. The dashed lines represent ecosystem
management and other human influences.

ecosystems dominated by annual plants, such as agroecosys-
tems, altering vulnerability to subsequent droughts (Renwick
et al., 2021), but no legacy effects of drought on crop produc-
tion have appeared at a national scale (Lesk et al., 2016).

In managed ecosystems, like agroecosystems and man-
aged forests, the effects of droughts are compounded with
management strategies and land use practices. For exam-
ple, the vulnerability to water stress is reduced by irriga-
tion (Luan and Vico, 2021; Zipper et al., 2016) (Fig. 2,
dashed yellow line). It might also be reduced by species di-
versification in space (e.g. species-rich grasslands, mixed-
species forests, intercropping, and drought-resistant species;
Grossiord et al., 2020; Haberstroh and Werner, 2022; Mc-
Carthy et al., 2021; Sears et al., 2021; Wright et al., 2021)
or time (i.e. crop rotations; Bowles et al., 2020; Marini et al.,
2020; Renwick et al., 2021) but exacerbated by forest clear-
cutting through land–atmosphere interactions (Pongratz et
al., 2009; Wu et al., 2017; Fig. 2, dashed light-blue line). Soil
management, e.g. tillage, affects soil properties and function-
ing and hence the response to drought in ways depending
on local conditions (Pittelkow et al., 2015; Schneider et al.,
2017). The timescales for the implementation of mitigating
actions (e.g. irrigation) or for the effects to emerge (e.g. crop
rotations) can be long (Marini et al., 2020; Renwick et al.,

2021). Most of the cascading effects that appear in natural
ecosystems are similar in managed ecosystems, but these can
be buffered or amplified by specific management practices
(e.g. rotation periods, age structure, stand density, diversifi-
cation). Nevertheless, in managed ecosystems, plant species
composition is defined by management itself and not by plant
community evolution, albeit still in the context of existing
climate and risk avoidance preferences. Over time, increas-
ing droughts could, for example, promote the adoption of
climate-resilient crops and varieties (Acevedo et al., 2020).

The prolonged effects of drought could also increase the
frequency of severe wildfires (see the Chile and Colorado
River basin case studies, Sects. S1 and S2), but actual im-
pacts on ecosystems may be delayed by years or decades de-
pending on fire management strategies. While wildfire con-
sequences can manifest in individual dry years (Abatzoglou
and Williams, 2016; Holden et al., 2018; Littell et al., 2016),
tree damage and mortality driven by the effects of earlier ex-
tended droughts increase the fire severity, fire frequency, and
burned area in historically fire-adapted forests (Stephens et
al., 2018). However, wet periods are also important for wild-
fire risk. For example, some of the current wildfire crises
in the western USA stem, in part, from a relatively wet pe-
riod in the 1950s and 1960s that facilitated fire suppression
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in forests with historically frequent fires and was followed
by deepening droughts and extended dry spells (Abatzoglou
and Williams, 2016; Holden et al., 2018) in forests with sub-
sequently more abundant fuels (Hessburg and Agee, 2003).
In addition to fire-induced tree mortality, tree mortality can
also occur after drought because of the increased risk of in-
sect outbreaks due to the lower resistance of drought-stressed
trees (Fettig et al., 2019; Kolb et al., 2016; Luce et al., 2016;
McDowell et al., 2022; Fig. 2, yellow line). As a consequence
of these long-term and cascading impacts, some ecosystems
are now seeing extensive ecological transformation (Craus-
bay et al., 2020; Steel et al., 2023).

Some of these processes feed back into the development
of hydrological drought. For example, with increasing water
limitation, some plants are able to increase their water use
efficiency, therefore buffering water loss through transpira-
tion (Flach et al., 2018; Peters et al., 2018) and maintain-
ing photosynthesis, although contrasting patterns have been
found globally (Yang et al., 2016). Differences in water use
and drought stress responses underlying different vegetation
types can, therefore, contribute to asymmetries in the devel-
opment of soil moisture anomalies during drought (Bastos et
al., 2020; Flach et al., 2018). Other factors, such as the ear-
lier onset of the phenological cycle, may further contribute
to exacerbating summer drought (Lian et al., 2020).

3.3 Social system

Less water than normal in part of the hydrological system
can have a significant negative impact on social systems, in-
cluding on livelihoods, food security, and health, but is only
impactful when it exceeds the capacity to manage the wa-
ter deficit, for example when it affects an already vulnerable
population (Raju et al., 2022). Similarly to ecosystems, the
impacts of droughts on social systems depend on the sever-
ity of the water deficit and the capacity of the system to
cope with and adapt to such conditions. Social impacts of
drought arise when policies, regulations, and other drought
management actions fail or are inadequate and society can-
not cope with dry conditions. Additionally, different groups
or sectors of society can be impacted by the same drought
but in different ways and at different times (Stahl et al., 2016;
Wlostowski et al., 2022); they may also respond differently
(Teutschbein et al., 2023). For instance, rainfed agriculture is
sensitive to meteorological and soil moisture drought, while
hydropower and inland navigation are sensitive to hydrologi-
cal droughts (Van Loon, 2015; Teutschbein et al., 2023). This
mirrors how different ecosystems and vegetation types re-
spond variably to drought based on their specific character-
istics and resilience (see Sect. 3.2). Consequently, the timing
of drought impacts in each context is related to the speed of
drought propagation through the hydrological cycle (Van La-
nen et al., 2016) (Fig. 1) and societal processes (such as wa-
ter allocation laws, priority rules) that can cause amplified,
attenuated, or lagged effects (Fig. 3a, dark-blue and light-

blue lines). This can be observed when immediate drought
impacts are delayed by prevention and mitigation measures
(e.g. irrigation) but will be felt later, and potentially more
severely, when the drought propagates to surface water or
groundwater (van Dijk et al., 2013). Drought impacts on so-
ciety can also be reduced with emergency measures like food
aid (Fig. 3a, dashed line), which may not be sustainable in
the long term if drought persists. In some sectors, societal re-
sponses can even increase the impacts of drought, such as
when drought not only reduces water availability but also
increases water demand, the combination of which stresses
public water supplies (Di Baldassarre et al., 2018).

Similarly to their propagation through the hydrological cy-
cle (Sect. 3.1) and akin to the way drought affects various
physiological and community-level plant processes over time
(Sect. 3.2), drought impacts cascade through society and the
economy with different speeds. They affect different groups
and regions with different intensities and timings and po-
tentially far from where the drought originated (de Brito,
2021). Drought impacts are often gradual changes in fac-
tors that can also be influenced by other processes (e.g. de-
cline in crop yield, energy production losses, reductions in
goods transported via rivers), which makes it difficult to de-
fine whether anomalies are impacts of a drought or caused
by something else, as well as when they start and end (Hall
and Leng, 2019). Moreover, some of these impacts can be
the result of the drought itself (lower water availability) or
be related to responses to drought (lower water allocation).
In response to drought, individuals can take a variety of mea-
sures to mitigate impacts such as leaving some portion of
agricultural land fallow, minimising transport loads, or de-
creasing outdoor or inessential water use. Decision-makers
may decide to implement water use restrictions (van Oel et
al., 2018; Ribeiro Neto et al., 2022) or restrictions on naviga-
tion or cooling water discharge in order to preserve limited
water supplies for more critical uses. Migration can also be
seen as either a coping mechanism or an adaptive measure
against drought (Falco et al., 2019; Vinke et al., 2020). Mi-
gration can also increase the vulnerability of the migrating
group (e.g. decreased health/financial resources) or put extra
stress on the water resources of the receiving area, potentially
also affecting the original communities there. These drought-
related decisions and restrictions also impact society, as they
shift exposure to water deficits from one group or system at
risk to another.

Drought impacts may also linger long after the drought
hazard has ended (WMO, 2021), creating indirect impacts
such as disrupted international trade (Carse, 2017); tem-
porary or permanent unemployment; business interruption
(Ding et al., 2011); loss of income (Zaveri et al., 2023); men-
tal health issues (Vins et al., 2015); diseases due to poor wa-
ter and air quality (Charnley et al., 2021; Mora et al., 2022);
and food insecurity, malnutrition, starvation, and widespread
famine (Bailey, 2013; UNDDR, 2021). However, drought
impacts may also be positive for some groups; for exam-
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Figure 3. Drought in the social system in response to a climate driver (e.g. precipitation, recharge): (a) individuals, communities, and sectors
and (b) governance. (a) Different communities have different baseline resilience (starting point on y axis) and different means to adapt and
respond (green and yellow lines), different sectors can be impacted and recover on different timescales (dark- and light-blue lines), and
communities can be highly resilient but also unaware and therefore more affected when drought hits (orange line). (b) Governance systems
can follow the hydro-illogical cycle (Wilhite, 2011) of emergency response and forgetting (blue line), implement policies that allow for
proactive response and preparedness (green line), or create a maladaptive system that could end in societal collapse (yellow line).
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ple, increased crop prices may result in higher incomes for
those farmers who do not suffer a significant production
loss (Ding et al., 2011) (Fig. 3a, green line), and dry and
warm weather may boost tourism, especially in cold, wet
climates, e.g. mountain areas (Koutroulis et al., 2018; Liu,
2016; Wlostowski et al., 2022).

How society is impacted by and responds to drought is
not dependent on only a single drought, however. It is also
shaped by a complex interplay of dry and wet cycles, socio-
political preconditions, socio-economic dynamics, adaptive
behaviour and memory at multiple governance levels, and
other processes directly or indirectly related to drought.
In this section, we discuss three points that illustrate how
drought functions as a continuum in the social system.

Firstly, social vulnerability to drought is dynamic, both
within and between droughts (de Ruiter and van Loon, 2022).
Dynamic vulnerability means that communities’ suscepti-
bility to drought impacts can change over time, influenced
by varying levels of exposure, sensitivity, adaptive capac-
ity, and collective memory, as well as underlying inequalities
(with regard to water access and who benefits from the top-
down reactive drought management) (IPCC, 2014; UNDDR,
2021). Critically these aspects of vulnerability are also in-
fluenced by evolving drought conditions and past droughts,
among other, more external, factors. For instance, extended
dry situations may gradually erode communities’ financial
resources (Enqvist et al., 2022; Kchouk et al., 2023; Savelli
et al., 2021) (see the northeast Brazil case study, Sect. S3),
physical health (Belesova et al., 2019; Sena et al., 2017;
Treibich et al., 2022) and mental health (O’Brien et al.,
2014), access to education (Hyland and Russ, 2019), family
and community harmony (Dean and Stain, 2007), and more
(Keshavarz et al., 2013), in ways that exacerbate ongoing or
future vulnerability (Fig. 3a, yellow line). For instance, re-
peated drought can deplete a household’s resources, making
migration or other coping and mitigation choices impossi-
ble and trapping societies in a vicious cycle of increasing
vulnerability (Black et al., 2011; Black and Collyer, 2014;
Nawrotzki and DeWaard, 2018).

How a community recovers after a drought event also in-
fluences future vulnerability. Societies that recover quickly
after a drought have been found to be less vulnerable to
the next drought compared to societies that recover slowly
(Di Baldassarre et al., 2018; Kchouk et al., 2023; Weiss and
Bradley, 2001). This is similar to ecological systems where
the speed of recovery from drought impacts influences future
resilience and vulnerability. However, returning quickly to
a past state without considering the need to build resilience
to future events can exacerbate vulnerability and undermine
long-term resilience (Koebele et al., 2020). Indeed, succes-
sive droughts, or droughts compounded by other hazards, ex-
tend the recovery time of affected communities. Therefore,
vulnerability is not static, and a fixed level of vulnerability
cannot be defined for a specific event. Using pre-drought esti-
mates of vulnerability and averages calculated over extended

periods can underestimate the compounding nature of vul-
nerability.

There is also a strong imprint of long-term social, politi-
cal, and economic processes unrelated to drought on social
vulnerability and therefore on drought risk. For example,
in the 2018 Cape Town drought (often referred to as “Day
Zero”), Apartheid-era social processes influenced vulnera-
bility to drought through historical, spatial, and economic
segregation, which led to long-term unequal access to water
(Enqvist and Ziervogel, 2019; Savelli et al., 2021) and made
some communities inherently more vulnerable (Fig. 3a, dif-
ferent baselines). An aggressive water-metering campaign by
the government, coupled with massive increases in the price
of water, further strained these communities’ already-limited
financial resources (Enqvist et al., 2022).

Secondly, adaptation happens in response to past, ongo-
ing, and/or expected drought experiences, which influences
future drought risk (Kreibich et al., 2022). While short-term
coping measures, such as buying food or water, are stopped
when they are not needed anymore, long-term adaptation
measures, like implementing irrigation or changing liveli-
hood, have a long legacy. Adaptation happens on the scale of
individuals and communities, as well as governments, and is
strongly related to individual and collective memory. While
drought events may leave a significant impact on people’s
memory due to the immediate and tangible effects experi-
enced (van Duinen et al., 2015; Gebrehiwot and van der
Veen, 2021; Griffiths and Tooth, 2021; Taylor et al., 1988),
this memory likely fades over time, especially if something
else eventful such as flooding happens (Garcia et al., 2022).
Recency bias in human memory (related to the availability
heuristic; Garcia et al., 2022; Tversky and Kahneman, 1973)
gives greater importance to the most recent events. This can
lead to a gradual decrease in the perceived risk of droughts
and the neglect of long-term drought management practices
(Fig. 3a, orange line).

Communities can retain the memory of previous droughts
through institutional arrangements (Howden et al., 2014),
cultural practices, and collective experiences (Pandey and
Bhandari, 2009; Salite and Poskitt, 2019; Shiferaw et al.,
2014). In drought-prone areas of sub-Saharan Africa, for ex-
ample, farmers have adopted different drought-risk coping
strategies to reduce their risk of drought (see the Kenya case
study, Sect. S4). These include choosing specific crop vari-
eties, temporal adjustments of the cropping calendar, changes
in weeding and fertilisation practices, and use of soil and wa-
ter conservation practices. Some of these strategies, which
originated as coping mechanisms, have become an integral
part of the farming system and have reduced overall risk
(Pandey and Bhandari, 2009; Shiferaw et al., 2014; Fig. 3a,
green line).

Droughts trigger not only individual and community
action, but also management response from governments
across different levels. Droughts can drive short- and long-
term policies and decision-making, similarly to how manage-
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ment strategies and land use practices in managed ecosys-
tems can mitigate or exacerbate the effects of drought (see
Sect. 3.2 and Figs. 2 and 3a, yellow lines). Short-term cri-
sis management is most common, including emergency re-
lief, such as water trucks and cash transfers, targeted at spe-
cific areas and affected groups (Barendrecht et al., 2024;
Wilhite, 2017). However, governments often deal with each
drought as a “new” or unique event, possibly because of a
low memory of “creeping disasters” like drought (Ulibarri
and Scott, 2019; Wilhite and Glantz, 1985) (illustrated in
the hydro-illogical cycle; Fig. 3b, blue line). This makes
it less likely that long-term proactive measures are imple-
mented for drought compared to other natural hazards (Hurl-
bert and Gupta, 2016). For example, in the Netherlands, se-
vere drought events (1976, 2003) resulted in fewer structural
measures than flood events (1953, 1993) (Bartholomeus et
al., 2023). In South Africa, Vogel and Olivier (2019) anal-
ysed responses to droughts over time and found “reaction
but little effective ‘deep’ thinking about drought. The per-
sistent truths of recurring drought, a failure to learn from the
process of drought rather than the event, the problems of the
scientific uncertainty linked to droughts and the usual crisis
response to drought made by a select few, are all shown to
be threats to ensuring adaptation to repeated droughts in the
future” (Vogel and Olivier, 2019).

Furthermore, applying emergency measures to address the
persistent impacts of droughts may conceal the need for long-
term management strategies and lead to unintended con-
sequences in other systems, such as in the case of Chile,
where the law has suspended the obligation to maintain
ecological flows in several basins for over 8 consecutive
years as a means to mitigate socio-economic drought impacts
(see the Chile case study, Sect. S1; Alvarez-Garreton et al.,
2023). Long-term management starts to emerge after multi-
ple drought events as a lagged-effect scenario. For example,
in Chile and Argentina after 4 years of drought emergency,
drought was no longer seen as a “hazard” but as the nor-
mal state (Hurlbert and Gupta, 2016). According to Nohrst-
edt (2022) “transformation does not materialize as an imme-
diate response to dramatic agenda-setting disaster, but will
rather emerge gradually through time due to accumulated
experience from multiple events” (Nohrstedt, 2022, p. 432;
Fig. 3b, green line). A review by Mendoza et al. (2024)
found that in several studies, communities were able to distil
insights from previous drought experiences through farmer
field schools and other collaborative learning spaces. Engag-
ing in long-term collaborative learning enabled communi-
ties to see which adaptive strategies worked best in specific
conditions. However, management or adaptation not only is
implemented in response to drought, but also can be imple-
mented in anticipation of (increasing) drought risk. Recently,
climate change projections, with special attention paid to the
risks of droughts, have been actively integrated into policy
development and decision-making processes in Europe. This
is evidenced by the initiatives and strategies outlined in the

first European Climate Risk Assessment (EUCRA, 2024)
and the European Drought Risk Atlas (Rossi et al., 2023)
through advanced modelling, systematic risk assessments,
and addressing interconnected and cross-border impacts.

Thirdly, responses to drought can later turn out to be mal-
adaptive. Maladaptation (or rebounding vulnerability) occurs
when the outcome of adaptation measures ends up increas-
ing the vulnerability of a community over time (Juhola et al.,
2016; Schipper, 2020) (Fig. 3b, yellow line). For example,
increasing water storage and supply with reservoirs provides
a buffer during dry periods but can also lead to a form of
the safe development paradox called the “reservoir effect”
(Di Baldassarre et al., 2018). Over-reliance on reservoirs can
increase social exposure and vulnerability when a drought
occurs. Short-term adaptation measures can also erode the
conditions for sustainable development by consuming the
adaptive capacity of a community and preventing it from tak-
ing measures with long-term benefits. For example, if during
a previous drought, there had been an increase in groundwa-
ter pumping that continued after the drought, the impacts of a
second drought may be experienced more quickly due to the
added effect of groundwater pumping (Pauloo et al., 2020).
Moreover, changes in rainfall patterns can affect water user
behaviour, which again may influence the sustainability of
small-scale rural water service providers due to high intra-
seasonal revenue variability (Armstrong et al., 2022).

Maladaptation impacts vary across society as a result of
social processes including poverty, inequality, power asym-
metries, and ineffective decision-making. For example, in
Cape Town during the 2018 drought, the wealthiest popu-
lations, who already had the highest consumption rate prior
to the crisis (Enqvist and Ziervogel, 2019), could also af-
ford to implement coping strategies such as drilling private
groundwater wells (Simpson et al., 2019), which ultimately
decreased their vulnerability to drought compared to the pre-
crisis level but lowered water availability for those who could
not afford to drill deeper wells. In rural areas of Chile, peo-
ple rely on self-organised communities with inadequate in-
frastructure for providing subsistence drinking water, leading
to water cuts that were remedied by cistern trucks. Cistern
trucks have become a non-structural reactive measure to ad-
dress permanent water access requirements in rural areas. On
the other hand, people in urban areas rely on water sanitation
companies and have not been affected by water cuts because
these companies have adequate infrastructure (see the Chile
case study, Sect. S1).

4 Drought as a continuum in the system of systems

4.1 Similar emergent temporal patterns between the
systems

In the hydrological, ecological, and social systems studied
in Sect. 3, common patterns are visible, corresponding to
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the systems theory element of “self-organisation and emer-
gence” (Sect. 2). We see that the dynamics of drought in all
systems can be characterised as a combination of different
fluctuations, cycles, gradual changes, and shocks that emerge
from memories and responses within the specific system, fol-
lowing the systems theory element of “resilience and adap-
tation” (Sect. 2). This leads us to define a typology of the
drought continuum, with four archetypical temporal drought
trajectories (Fig. 4):

1. Impact and recovery. The system is affected by drought
but subsequently bounces back. Depending on the type
of system, this impact and recovery can happen quickly
or slowly, related to short or long memory (type 1a
and 1b, Fig. 4). Superposition of signals with different
time frames can occur, like we discussed for the hydro-
logical system (Sect. 3.1).

2. Slow resilience building. The system adapts well to
drought, and drought resilience increases over time.
We see this for example in selected social systems
(e.g. drought-resilient farming systems; Sect. 3.3) and
in ecosystems (e.g. drought-tolerant traits; Sect. 3.2).

3. Gradual collapse. The system becomes more vulner-
able with each drought and changes to a negative
state. In the ecosystem, we see this as a result of
long-term legacy effects and compounding processes
(Sect. 3.2). In the social system, this happens as a com-
bination of high baseline vulnerability and maladapta-
tion (Sect. 3.3).

4. High resilience–big shock. The system has a baseline
of high resilience and is not affected initially, but it is
impacted more after prolonged or successive droughts
that lead to critical transitions. We see this most clearly
in the social system, where an initially high resilience
leads to a lack of awareness and preparedness until a
severe drought causes a tipping point (Sect. 3.3). How-
ever, also in ecosystems, dry conditions can trigger a
catastrophic shift in seemingly stable systems (Scheffer
et al., 2001).

4.2 Interactions leading to critical transitions
overflowing between systems

Because the systems are intrinsically intertwined, a change
in one system leads to a change in another system. This can
trigger a system to change trajectory, leading to type tran-
sitions. These interactions correspond to the systems theory
elements of “non-linear behaviour and tipping points” and
“state shifts and feedback loops” (Sect. 2).

For example, a high-resilience–big-shock social system
may be using water resources unsustainably and deplet-
ing groundwater, shifting the hydrological system from an
impact-and-recovery system to a gradual-collapse system

Figure 4. Typology of drought continuums emerging from the anal-
ysis of temporal drought trajectories in the hydrological, ecological,
and social systems: (1) impact and recovery (1a, a quickly respond-
ing system; 1b, a slowly responding system), (2) slow resilience
building, (3) gradual collapse, and (4) high resilience–big shock.

(point 1, Fig. 5a). At first, this may bring benefits to soci-
ety and not impact the ecosystem too much, but at a cer-
tain moment a tipping point is reached where the ecosys-
tem also moves into gradual collapse, for example when
groundwater-dependent ecosystems dry out completely and
are lost (point 2, Fig. 5a).

On the other hand, an impact-and-recovery social system
that implements reservoirs can create a high-resilience–big-
shock hydrological system but at the same time can cause a
gradual collapse in the ecosystem (point 1, Fig. 5b). If so-
ciety then shifts to a slow-resilience-building social system,
such as through the adoption of nature-based solutions, this
may nudge the hydrological system into impact and recovery,
and then the ecosystem can also evolve into slow resilience
building (point 2, Fig. 5b).

4.3 Case studies of hydrological–ecological–social
drought continuums

We explored different drought typologies, system interac-
tions, and type transitions in five case studies (Chile, Col-
orado River basin, northeast Brazil, Kenya, Rhine River
basin; Sects. S1–S5).

4.3.1 System types

System types are apparent in the case studies. For example,
in Kenya (Sect. S4), we see the impact-and-recovery typol-
ogy. Short-duration, heavy rainfall has been demonstrated
to play an important role in groundwater recharging after
drought, resulting in the recovery of the hydrological system
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Figure 5. Example pathways of connected systems moving between types: (a) from an impact-and-recovery system to a gradual collapse
system and (b) from an impact-and-recovery system to a slow resilience building system.

(Matanó et al., 2024). The case in northeast Brazil (Sect. S3)
shows signs of a gradual-collapse typology due to maladap-
tation. In some communities, the introduction of a reservoir
aimed at reducing drought vulnerability ultimately proved to
be maladaptive. As the reliance on external labour for income
shifted to intensive irrigated agriculture following the reser-
voir’s implementation, the community’s financial resources
progressively eroded due to recurring droughts (Kchouk et
al., 2023). In the Rhine River basin (Sect. S5), we find an
example of the high-resilience–big-shock type. The system
is highly managed and engineered, vulnerability is low, and
there is a lack of awareness, which means that drought im-
pacts are often not felt by society. Impacts are compensated
for due to market price effects, are passed on in time, or are
passed down to other systems. Drought management ignored
connections between systems and longer-term impacts until
this was no longer possible in the recent droughts in 2018–
2020 (Bartholomeus et al., 2023).

4.3.2 Systems influencing each other

We also see examples of one drought system influencing an-
other. The multi-year drought in Chile (Sect. S1) instigated
changes in the hydrological system, which were influenced
by the social system. During the drought, snow-dominated
basins in the Andes generated on average 30 % less stream-
flow than previous single-year droughts due to long catch-
ment memories (impact and recovery – type 1b). In some ru-
ral areas, this memory effect leading to lower flows has over-
lapped with water extractions for human activities in down-
stream sections (impact and recovery – type 1a), leading to

an amplification of drought signals in lowlands that has re-
sulted in the drying out of lakes and pumping wells supplying
water for human consumption (impact and recovery – super-
position of signals due to interaction between hydrological
and social systems). Also, the drought response of ecosys-
tems has been strongly influenced by both the hydrological
and the social systems. Before the drought, wildfires were
concentrated between November and April, but now they ex-
tend from October to May, increasing the occurrence period
from 6 to 8 months (impact and recovery – change of type 1a
to type 1b due to interaction between hydrological systems
and ecosystems). This increase is related to the drier condi-
tions during the multi-year drought, but it is also modulated
by local anthropogenic perturbations. More than 70 % of the
megafires ( > 50000 ha of burned area) of the last 4 decades
have occurred during drought, where 50 % of the burned area
corresponds to monocultures of exotic species (mainly pine
and eucalypt trees). It is also worth noting that 99 % of wild-
fires in Chile are caused by human actions, whether they are
accidental or intentional. In these examples, the system main-
tains its typology, and the interactions cause a lengthening or
enhancement of the drought memory, leading to changes in
response and recovery.

This was also apparent in the Colorado River basin
(Sect. S2), which has been in a long drought for over
2 decades (2000 to the present). Despite being punctuated
by periods of high winter precipitation, the basin has experi-
enced more very dry years than normal and major reservoirs
have been drawn down to record low levels. Here, the hydro-
logical system strongly influences the ecosystem. Extended
drought, coupled with aridification, threatens the health of
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various riparian environments and endemic species, some of
which already face the risk of extinction (gradual collapse
– speeding up due to interactions between hydrological sys-
tems and ecosystems). It may also lead non-native species
to dominate over native species (Rogosch et al., 2019). The
hydrological system has also influenced the social system,
especially governance. In the early years of the drought,
policymakers took incremental actions because they did not
proactively estimate or understand how severe the drought
would become. This has led to the need for repeated policy
changes, which challenges policymaker and stakeholder ca-
pacity, as well as public support (Deslatte et al., 2023; Gar-
cia et al., 2020) (impact and recovery – type 1a). The occa-
sional “wet” year may also have undermined drought adap-
tation as decision-makers “forget” or “ignore” the drought
(impact and recovery – less memory due to interaction be-
tween hydrological and social systems), though these years
may also provide helpful buffers to make adaptation mea-
sures successful (e.g. adding a small amount of water to stor-
age reservoirs). The highly polycentric governance system
of the basin – meaning that many different actors and sectors
have the authority to make decisions about water manage-
ment – may also challenge drought governance due to actors’
different values, legal rights, and experiences of drought.

4.3.3 Feedback between systems

Feedback between systems results in a two-way influence
on memory. The high concentration of small dams in north-
east Brazil (that have been built to protect against drought;
Sect. S3) affect the memory of the watershed. During mul-
tiannual droughts, these dams remain dry longer due to low
precipitation and high evaporation rates. This in turn reduces
hydrological connectivity by decreasing runoff and recharge
to the large reservoirs. These reservoirs are vital for urban
water supply, and the delay in recharge prolongs the impacts
of the drought (Ribeiro Neto et al., 2022). So this is an ex-
ample of how the hydrological system changes from impact
and recovery type 1a to impact and recovery type 1b due to
the interaction between social and hydrological systems and
of how the social system then also changes from impact and
recovery type 1a to impact and recovery type 1b due to the
interaction between hydrological and social systems.

Feedback between two systems can also result in (poten-
tial) type transitions, for example the social system causing
a gradual collapse of the hydrological system, which then
triggers a high-resilience–big-shock mode in the social sys-
tem. In Chile (Sect. S1), a large portion of the drinking water
supply in the capital is obtained from long-memory ground-
water systems that are consistently being depleted and that
may already have been disconnected from subsurface flows
and recharge (e.g. 300 m deep pumping wells were recently
inaugurated as a key drought adaptation strategy). This gen-
erates a false perception of not being under drought because,
despite a decade-long drought and depleted surface reser-

voirs, people are not experiencing water shortages in San-
tiago. This may lead to increased vulnerability – the oppo-
site aim of the adaptation strategy – by over-relying on a
water supply system that is based on an invisible reservoir
that has an unknown but finite volume which is not being
replenished (Alvarez-Garreton et al., 2024). A similar situa-
tion emerged in the Colorado River basin (Sect. S2), where,
due to high levels of natural interannual variability, major
reservoirs were constructed in the previous century to store
water from snowmelt for use in dry years (i.e. “buying time”
during drought years). However, this response may be mal-
adaptive in the future as the climate changes (more dry years,
higher temperatures, more precipitation as rain rather than
snow), leading to other unsustainable actions that forebode
gradual collapse (i.e. increase groundwater pumping when
surface water is not available) (Garcia et al., 2020). This has
already led to significant water supply challenges, especially
in the lower half of the basin. However, sustained collabo-
ration among policy actors on water sustainability may push
the social system towards a mode of slow resilience building
(Karambelkar and Gerlak, 2020; Koebele et al., 2020).

4.3.4 Dynamic shift of the
hydrological–ecological–social system

Interactions between all three subsystems can result in a dy-
namic shift of the hydrological–ecological–social system. In
Kenya (Sect. S4), the more frequent droughts in the 21st cen-
tury pose new challenges for the social, ecological, and hy-
drological systems. Key social processes affecting land use,
most prominently agricultural expansion, have affected hy-
drological and ecological systems. Land use changes have af-
fected how meteorological drought propagates to hydrologi-
cal drought and have led to a weakening of ecological buffers
to drought, such as riparian forests (impact and recovery –
change of type 1b to type 1a due to interaction between hy-
drological systems and ecosystems). While policy responses
to drought in Kenya have historically been reactive, there
has been an emergence and expansion of public dams, wa-
ter reservoirs, and irrigation systems for crop farming in pre-
viously pastoral areas. While being able to buffer droughts
(impact and recovery – change of type 1a to type 1b due to
interaction between hydrological and social systems), new
socio-hydrological dynamics are triggered, such as reservoir
effects (high resilience–big shock), divergent paths of vul-
nerability among water infrastructure users, and pressure on
surrounding natural resources (gradual collapse). Continu-
ally adapting to the new drought reality, a young generation
of pastoralists are starting to support more strict grazing zone
management, which may reduce degradation of vital hydro-
logical and ecological buffers to drought (slow resilience
building). This is an example of where shifts in the so-
cial system can trigger type transitions so that the combined
hydrological–ecological–social drought system can move to
a slow-resilience-building typology.
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Similarly in the Rhine River basin (Sect. S5), historically,
(ground)water levels and vegetation interact dynamically and
have been able to recover from shocks (impact and recov-
ery). Over time, artificial drainage and over-abstraction have
resulted in depleted groundwater, and agricultural manage-
ment and pollution have rendered ecosystems highly vulner-
able. The combination of these factors has led to a stressed
system that was strongly impacted in the 2018–2020 drought
and showed very limited recovery (gradual collapse due to
the effect of social systems on hydrosystems and ecosys-
tems). However, this recent event also sparked interest and
awareness, which resulted in improvements in drought mon-
itoring and forecasting, the development of new policies, and
the implementation of more sustainable adaptation (nature-
based solutions). For example, in the Netherlands, regional
water authorities can implement surface water use restric-
tions during drought, but since the multi-year drought, there
has been an increased awareness that groundwater use should
also be restricted, with the aim to prevent long-term effects
on the hydrological system and potential cascading effects
on the social system and ecosystem (Bartholomeus et al.,
2023). These are the first signs that the gradual collapse is be-
ing changed to slow resilience building, in which changes in
the social system are improving the hydrological system and
the ecosystem and finally benefiting the entire hydrological–
ecological–social system.

5 Outlook

The use of systems theory to explore the temporal dimen-
sions of the hydrological–ecological–social drought contin-
uum has provided important insights. These insights could
be used in future studies and practices to improve drought
management. Here, we discuss some suggestions.

5.1 Scientific outlook

Research on drought as a continuum should encompass both
enhanced process understanding and improved tools and
methods. We suggest the following:

1. Hydrological modelling tools used for drought analy-
ses should better represent memories in the hydrolog-
ical system. These memories were found to contribute
to a better forecast skill for streamflow drought (Du
et al., 2023; Sutanto et al., 2020; Sutanto and Van La-
nen, 2022), but not all hydrological memories are cur-
rently represented well in modelling tools, especially
multiannual dynamics (Fowler et al., 2020) and catch-
ment memory processes related to snow, groundwater
(Tallaksen and Stahl, 2014), and vegetation (Troch et
al., 2013). Further, analyses and predictions should in-
corporate non-stationarity in hydrological–ecological–
social processes and future extremes (Brunner et al.,

2021; Samuel et al., 2023). Substantial improvement
can come from better incorporating these dynamics.

2. Modelling of ecosystem dynamics and memory should
also be further developed. State-of-the-art process-
based ecosystem models already mostly include soil
water dynamics and some of their delayed effects on
physiological processes but should also consider longer-
term key legacy effects of droughts and other dis-
turbances via, for example, the explicit consideration
of groundwater dynamics (Mu et al., 2021), drought-
induced structural damage (defoliation, xylem damage),
and mortality and hence ecosystem composition or en-
hanced vulnerability to pests (Kolb et al., 2016) and
wildfire (Hantson et al., 2016; Luce et al., 2016). Sim-
ilarly, soil-mediated long-term legacy effects, e.g. via
microbial community composition and activity, and soil
carbon effects on soil hydraulics or interactions with
nutrient availability are generally neglected. Typically,
these modelling limitations arise from the currently lim-
ited mechanistic understanding of these processes, espe-
cially at regional to global scales.

3. Analyses of the social processes underlying drought risk
should better include temporal dynamics and effects of
social memory for individuals, communities, and gov-
ernance systems. Given the role of socio-economics,
inequalities, perceptions, and other social processes in
defining drought risk and recovery, the ability of gov-
ernance systems to maintain institutional memory and
effectively manage this integrated system is particu-
larly relevant. Additionally, scholars should investigate
how polycentric systems, which are often praised as
a solution for complex water management, may actu-
ally produce maladaptive outcomes in the presence of
poor coordination, power asymmetries, a lack of leader-
ship, disincentives for proactive change, and more (Bid-
dle and Baehler, 2019; Lubell et al., 2014; Morrison et
al., 2019). Empirical research on these processes would
give important insights.

4. Research needs to be developed to better understand
the role of drought preconditions and post-drought
recovery in different systems. These would need to
take into account dynamic vulnerability (de Ruiter and
van Loon, 2022) and the interaction between long-term
changes and short-term dynamics in different compo-
nents of the systems. Long-term changes can include
climate change, ecosystem composition changes, socio-
economic changes, and changes in land and water use
or management, which all influence catchment, ecosys-
tem, and social memories. From the analysis of these
short- and long-term dynamics, the occurrence of types
and type transitions can be inferred. It would be in-
formative to investigate under what conditions these
types and type transitions occur. For this, we suggest
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analysing contrasting cases in different parts of the
world by combining observational data with modelling.

5. More research is needed on interactions and feedback
between systems related to drought impacts and re-
sponses (Vanelli et al., 2022). For example, groundwa-
ter depletion should be analysed using approaches that
include the complexity of hydrological–social interac-
tions over time (Schipanski et al., 2023). Also studies on
maladaptation to drought should consider the interac-
tions and feedback within the hydrological–ecological–
social system (Adla et al., 2023). Furthermore, we ad-
vocate for more collaboration between climate scientists
and ecologists (Mahecha et al., 2022).

6. Tools for analysing drought as a continuum need to
better accommodate interactions between systems and
shifts in types. This could be done, for example, by
combining the analysis of historical causal pathways
(Srinivasan et al., 2012) with the development of fu-
ture adaptation pathways (Haasnoot et al., 2013). A
promising approach is that of storylines, which have
recently been used to look at the climatological pro-
cesses underlying drought (Gessner et al., 2022; Shep-
herd et al., 2018; van der Wiel et al., 2021). Story-
lines can also be developed from hydrological and eco-
logical data (Bastos et al., 2023) and be combined
with qualitative social narratives to show the unfold-
ing of the past or of plausible futures of the inter-
connected hydrological–ecological–social system. Ad-
ditionally, earth system models, agent-based models,
and system dynamics models are tools that explicitly al-
low for these interactions to be explored (see example in
Bastos et al., 2023; de Ruiter and van Loon, 2022).

7. Observational data are critically needed, both for en-
hancing our process understanding of drought as a con-
tinuum in the hydrological–ecological–social system
and for constraining interdisciplinary modelling tools.
These data need to be multidisciplinary, covering dif-
ferent aspects of the system of systems, including its
interactions and feedbacks, and collected already with
interdisciplinarity studies in mind (Strang, 2009). They
can be both qualitative and quantitative and can in-
clude proxies for processes that cannot easily be ob-
served (Quandt, 2022; Rangecroft et al., 2021). These
data should also be continuous and longitudinal, instead
of event-based or project-limited. For example, longi-
tudinal data can show long-term behavioural change in
water consumption during and after drought (Sousa et
al., 2022).

8. In this paper we focused on temporal scales; future re-
search should also consider spatial scales, especially
because some interactions take place at large spatial
scales. Additionally, interactions across temporal and

spatial scales are not often studied (Vanelli et al., 2022).
We suggest that the appropriate temporal and spatial
scales of analysis are determined for each piece of re-
search specifically, dependent on the characteristics of
the system under study. Relevant larger-scale processes
can be considered boundary conditions for the system.

5.2 Practice outlook

Dealing with drought as a continuum in practice will require
changes to how droughts and their impacts are monitored,
modelled, forecasted, and managed and has implications for
effective policy development. We suggest the following:

1. Drought monitoring needs to move from event-based to
continuous monitoring, not only for hazard, but also for
vulnerability and impacts. While several drought obser-
vatories still consider droughts to be single events or
are only operational in specific seasons, there are some
ongoing efforts to move to continuous monitoring that
can serve as examples. For drought hazard, the Euro-
pean Drought Observatory (EDO, 2023), East Africa
Drought Watch (EADW, 2023), and Rijkswaterstaat
(see the Rhine River basin case study, Sect. S5) are mov-
ing towards continuous monitoring. For social and eco-
logical drought impacts (Martínez-Vilalta and Lloret,
2016), the Drought Management Centre for Southeast-
ern Europe (DMCSEE, 2023), Kenya National Drought
Management Authority (NDMA, 2023), and Brazilian
Drought Monitor (Walker et al., 2024) (see the north-
east Brazil case study, Sect. S3) are examples where
impacts are monitored on a continuous basis. Impacts
on key ecological functions (plant productivity, water
use, etc.) are monitored continuously and through mul-
tiple remote-sensing platforms and ecosystem monitor-
ing networks with global or regional coverage (ICOS,
AmeriFlux, FLUXNET, LTER). We are not aware of
examples where vulnerability is monitored dynamically.
We therefore recommend that key drought vulnerability
indicators should also be monitored dynamically.

2. Monitoring of different systems needs to be combined
to provide an overview of cascading effects between
systems. The US Drought Monitor (USDM, 2023) is
an example of combined drought hazard and impact
monitoring that incorporates memory effects in differ-
ent systems. The weekly drought map is a combina-
tion of physical drought indicators; drought impacts;
field observations; and local insight from a network of
more than 450 experts, including hydro-climatologists,
ecologists, forest scientists, and relevant stakeholders.
The maps are based on the information of the previ-
ous week and updated with new information. This ap-
proach builds in memory effects and explicitly includes
drought recovery, both in the hazard and in the impacts.
What is not explicitly included in these drought mon-
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itors, however, are vegetation responses, for example
changes in transpiration, and management responses,
such as increased irrigation, which can drive changes in
the hydrological–ecological–social system in time. We
suggest other drought monitors also include these mem-
ory effects in different systems and go one step further
by also incorporating dynamic feedback.

3. Drought forecasting and early warning should be based
on improved modelling tools that include memory and
dynamic feedback (see “Scientific outlook”; Pulwarty
and Sivakumar, 2014). Operational drought forecast-
ing is currently limited to monthly precipitation and
temperature forecasts, e.g. the USDM drought outlook
(USDM, 2023) and Latin American drought forecast
(SISSA, 2023), excluding memories in the hydrologi-
cal system. Additionally, forecasting of drought impacts
should be further developed to better anticipate societal
and ecological impacts of drought. Some recent papers
are taking steps in this direction, with longer-term pro-
cesses, dynamic vulnerability, and memory effects be-
ing incorporated into impact forecasting (Boult et al.,
2022; Busker et al., 2023). Operational drought impact
forecasting is, however, still very limited (Shyrokaya et
al., 2023). Only the East Africa Drought Watch (EADW,
2023) includes forage forecasts and is in the process of
developing food and water security forecasts.

4. Drought management should be more prospective.
Prospective management means that, instead of only
proactively reducing risk for an upcoming event, expo-
sure and vulnerability are reduced in the long term and
maladaptation and the creation of new risks are avoided
(UNDDR, 2021). Drought management will always
need to include an element of short-term “early action”
and crisis management to minimise unexpected impacts
(Pulwarty and Sivakumar, 2014), but we support the no-
tion that more attention should be paid to long-term
adaptation and resilience building to avoid drought im-
pacts and to plan the best strategies to reduce cascading
effects within the hydrological–ecological–social sys-
tem. Some recent approaches advocate for long-term
drought resilience building and planning, e.g. the three-
pillar approach suggested by the Integrated Drought
Management Programme (IDMP, 2023), the related
Drought Toolbox of UNCCD (2023), and the EPIC Re-
sponse Framework of the World Bank (Browder et al.,
2021). However, these efforts need to be accelerated and
scaled up, and many established drought policies fol-
lowing this long-term approach have not been imple-
mented.

5. Drought management should be more coordinated and
integrated across actors and systems. The current ap-
proaches for governing drought, and water more gen-
erally, often contribute to a loss of social memory and

maladaptation. This is because drought management is
often highly siloed across different ministries or agen-
cies due to its widespread effects on nearly all aspects
of society (Bressers et al., 2016). This leads to sig-
nificant fragmentation in the responsibility for manag-
ing drought across scales and sectors, which increases
the complexity of governance (Teisman and Edelenbos,
2011). Consequently, calls for more collaborative and
networked approaches to water management have be-
come ubiquitous (Eberhard et al., 2017; Sabatier, 2005),
though the implementation and effectiveness of such ap-
proaches are highly variable.

The examples mentioned in this section, drawn from real-
world practices by organisations such as the IGAD Cli-
mate Prediction and Applications Centre (ICPAC) and IDMP,
demonstrate successful strategies and highlight areas for im-
provement, serving as practical case studies for policymak-
ers. In this way, they help reinforce the effectiveness of cur-
rent policies, ensuring their continued relevance and imple-
mentation. Additionally, they provide a foundation for new
policy initiatives by identifying best practices and innova-
tive approaches that address emerging challenges in drought
management.

These recommendations for science and practice will, we
hope, contribute to the adoption of a changed perspective,
where droughts are considered not in terms of a snapshot in
time but rather in terms of a continuum of interrelated and
dynamic hydrological–ecological–social processes. Consid-
ering drought to be a continuum will require a change in
how droughts are monitored, modelled, and managed but will
provide an opportunity for a more holistic and integrated ap-
proach to managing droughts and the impacts they have.
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