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Abstract. The atmospheric–hydrological coupling systems
are essential to flood forecasting because they allow for more
improved and comprehensive prediction of flood events with
an extended forecast lead time. Achieving this goal requires
a reliable hydrological model system that enhances both
rainfall predictions and hydrological forecasts. This study
evaluates the potential of coupling the mesoscale numerical
weather prediction model, i.e., the weather research and fore-
casting (WRF) model, with different hydrological modeling
systems to improve the accuracy of flood simulation. The
fully distributed WRF-Hydro modeling system and the semi-
distributed Hydrological Engineering Center Hydrological
Modeling System (HEC-HMS) were coupled with the WRF
model, and the lumped HEC-HMS model was also adopted
using the observed gauge precipitation as a benchmark to
test the model uncertainty. Four distinct storm events from
two mountainous catchments in northern China character-
ized by varying spatial and temporal rainfall patterns were
selected as case studies. Comparative analyses of the sim-
ulated flooding processes were carried out to evaluate and
compare the performance of the coupled systems with dif-
ferent complexities. The coupled WRF–HEC-HMS system
performed better for long-duration storm events and obtained
optimal performance for storm events uniformly distributed
both temporally and spatially, as it adapted to more rapid
recession processes of floods. However, the coupled WRF–
HEC-HMS system did not adequately capture the magnitude
of the storm events as it had a larger flow peak error. On
the other hand, the fully distributed WRF–WRF-Hydro sys-
tem performed better for shorter-duration floods with higher

flow peaks as it can adapt to the simulation of flash floods.
However, the performance of the system became poor as uni-
formity decreased. The performance of the lumped HEC-
HMS indicates some source of uncertainty in the hydrolog-
ical model when compared with the coupled WRF–HEC-
HMS system, but a larger magnitude error was found in the
WRF output rainfall. The results of this study can help es-
tablish an adaptive atmospheric–hydrologic coupling system
to improve flood forecasting for different watersheds and cli-
matic characteristics.

1 Introduction

Floods are frequent and widespread natural hazards that re-
sult in substantial annual losses to human lives and properties
worldwide (Jonkman, 2005). Due to climate change, the fu-
ture is expected to bring more intense precipitation, which
might potentially lead to an increase in extreme-rainfall-
induced flood events and elevated flood risk (Mirza, 2003).
Flood forecasting is essential to mitigating the impact of
floods by providing timely warnings and enabling proactive
measures that help to safeguard lives, property, and infras-
tructure in vulnerable areas (Merz et al., 2020). Improving
the ability to predict flood risks ahead of time is essential to
the premise of promoting forecast accuracy. To improve the
simulation accuracy and extend the forecast lead time, there
is a growing trend in favor of substituting the conventional
throughfall with the mesoscale numerical weather predic-
tion (NWP; Ozkaya, 2023; Trinh et al., 2023; Kaufmann et
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al., 2003). An effective strategy to do this involves coupling
the hydrological model with a high-resolution regional NWP
model. This approach has demonstrated capabilities to not
only improve the accuracy of flood forecasting but also ex-
tend real-time forecast lead time, compared to conventional
flood forecasting that relies only on gauge observations as
inputs (Seid et al., 2021).

In recent years, coupling hydrological models with
high-resolution NWP models covering different scales has
emerged as a promising approach to improve flood simula-
tion (Jasper et al., 2002; Bartholmes and Todini, 2005; Nam
et al., 2014; Wu et al., 2014, 2020; Cattoën et al., 2016; Li
et al., 2017; Chen et al., 2020; Ming et al., 2020; Dasgupta
et al., 2023; Patel and Yadav, 2023; Bacelar et al., 2023).
Jasper et al. (2002) coupled the WaSim-ETH model with
surface observations, forecast data from five high-resolution
NWP models, and weather radar data for seven extreme flood
events. They concluded that future simulation improvement
hinged on the NWP model development. Bartholmes and
Todini (2005) analyzed the effects of coupling meteorolog-
ical mesoscale quantitative precipitation forecasts at various
scales with the TOPKAPI model to extend the flood simula-
tion horizon. The results highlighted the limited reliability of
quantitative simulation precipitation generated by meteoro-
logical models. Cattoën et al. (2016) coupled the NZLAM re-
gional NWP model at high and low resolutions with the Top-
Net hydrological model for flood simulation, and their find-
ings indicated the advantage of utilizing a high-resolution
convection-permitting time-lagged ensemble simulation over
a lower-resolution large-scale model. Li et al. (2017) coupled
the Weather Research and Forecasting quantitative precipi-
tation forecast (WRF QPF) with the Liuxihe model to ex-
tend the flood-forecasting lead in southern China and found
that as the lead time increased, both the accuracy of the
WRF QPF and the flood simulation capability decreased.
Chen et al. (2020) coupled the GRAPE_MESO model, a
two-dimensional hydrodynamical flood model, and a rain-
storm prediction reconstruction method for urban flood sim-
ulation. Their results showed that the coupled modeling sys-
tem achieved accurate predictions with high resolution and
an extended lead time. Ming et al. (2020) produced high-
resolution catchment-scale rainfall–runoff and flood fore-
casting by coupling the WRF model with a GPU-accelerated
hydrodynamic model. The system provided a 34 h lead time
based on weather forecasts available 36 h in advance. Patel
and Yadav (2023) researched the coupling of hybrid ensem-
ble linear regression, the HEC-HMS model, and the Bayesian
numerical weather model to simulate hourly reservoir in-
flows. Their results demonstrated the effectiveness of these
coupled systems in accurately predicting reservoir inflows in
the Sabarmati River basin in India.

Although recent studies have been conducted to improve
flood forecasting by coupling NWP models with hydrolog-
ical models, few have addressed the implications of choos-
ing between fully distributed and semi-distributed models of

varying complexities in constructing these coupling systems.
The complexity of the hydrological model plays an impor-
tant role in determining the generation of the streamflow,
which should not be neglected when establishing and evalu-
ating the atmospheric–hydrological coupling system (Ahmed
et al., 2023). A fully distributed model divides a watershed
into smaller spatial units, allowing for a detailed represen-
tation of the entire area. A semi-distributed model groups
similar sub-basins, providing a balance between detail and
computational efficiency (Valiya Veettil et al., 2021). By inte-
grating meteorological data from the NWP models into these
hydrological models, it is possible to create a holistic under-
standing of how meteorological inputs impact the generation
of the streamflow. Understanding the source of uncertainties
involved in this process and how to eliminate them is also of
paramount importance in improving the performance of the
atmospheric–hydrological systems for flood forecasting. Ex-
treme weather events, particularly intense storms, pose sig-
nificant challenges for hydrological modeling due to their
complex interactions with surface and subsurface processes.

The main objective of this study is to evaluate the po-
tential of coupling the mesoscale numerical weather predic-
tion model, i.e., the weather research and forecasting (WRF)
model, with different hydrological modeling systems to im-
prove the accuracy of flood forecasting. The fully distributed
WRF-Hydro modeling system and the semi-distributed Hy-
drological Engineering Center Hydrological Modeling Sys-
tem (HEC-HMS) were coupled with the WRF model. Ad-
ditionally, the lumped HEC-HMS model was adopted using
observed gauge precipitation as a benchmark to test the rain-
fall input uncertainty. This approach examines the effective-
ness of the HEC-HMS model in replicating observed con-
ditions at the gauge locations as shown in Fig. 1. Four dis-
tinct storm events, characterized by varying spatial and tem-
poral rainfall patterns, were selected as case studies. These
events occurred in two mountainous catchments along the
Daqing River, where precise flood prediction is urgently re-
quired to mitigate the risks associated with construction in
northern China’s downstream area. The WRF model stands
out as the predominant mesoscale NWP model for simulat-
ing and forecasting rainfall in hydrology and water resource-
related disciplines (Done et al., 2004; Lo et al., 2008; Liu
et al., 2012; Haghroosta et al., 2014; Chawla et al., 2018;
Yáñez-Morroni et al., 2018; Huang et al., 2023). The ad-
vancement of the WRF-Hydro modeling system, built upon
the research on the WRF model, has enhanced the efficiency
of utilizing WRF for hydrological simulation (Gochis et al.,
2013). This innovation addresses the issue of misalignment
between the resolution of the atmospheric model and the res-
olution of the hydrological model. In recent years, the de-
velopment of the WRF-Hydro modeling system by the Na-
tional Center for Atmospheric Research (NCAR) and its col-
laboration partners has been coupled with the WRF model in
various hydrological research projects. This coupling has en-
hanced flood-forecasting accuracy (Senatore et al., 2015) and
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improved the representation of streamflow dynamics (Ryu
et al., 2017). It has demonstrated effectiveness in simulat-
ing extreme weather events and their hydrological impacts
(Wang et al., 2020; Sun et al., 2020) and in capturing spatial
variability in hydrological responses (Quenum et al., 2022;
Wang et al., 2022). Additionally, it has proven robust across
various climates and geographies, ensuring reliable hydro-
logical predictions (Liu et al., 2023; Naabil et al., 2023). The
HEC-HMS model is a widely used hydrological model with
a flexible structure to be built in either a lumped mode or a
semi-distributed mode. In recent years, there have also been
efforts to couple HEC-HMS with the WRF model (Herath
et al., 2016; Givati et al., 2016; Niyogi et al., 2022; Tien
Thanh et al., 2023; Ting et al., 2023). The study of Herath
et al. (2016) demonstrates the coupled WRF and HEC-HMS
to be a helpful tool for the flood warning system in Polgolla
Barrage in Sri Lanka. Givati et al. (2016) coupled the HEC-
HMS model using a 3 km hourly precipitation generated by
the WRF model for flood forecasting in the Mediterranean
region. Niyogi et al. (2022) also coupled the WRF model of
1.5 km resolution with the HEC-HMS model and HEC-RAS
2D hydraulic model of 10 m resolution.

This study establishes two atmospheric–hydrological sys-
tems by coupling the WRF model with WRF-Hydro and the
HEC-HMS model to forecast four typical storm events in
the study basin. This study utilizes a one-way coupling ap-
proach between the two hydrological model structures and
the WRF model. This means that WRF output drove the hy-
drological models without reciprocally influencing the atmo-
spheric modeling processes. The 1km× 1km output rainfall
from the WRF model is used to drive the WRF-Hydro model
and the HEC-HMS model to produce flood forecasting. Also,
the lumped HEC-HMS driven by the observed garage pre-
cipitation is used to produce flood forecasting. Comparative
analyses were carried out to evaluate the performance of the
forecast processes of the four storm events by the coupled
atmospheric–hydrological and lumped systems and to iden-
tify the source of uncertainties further.

The analysis in Sect. 4 is structured as follows:

– in Sect. 4.1, we evaluate and compare the performance
of the coupled systems, i.e., WRF–WRF-Hydro and
WRF–HEC-HMS, with different complexities;

– in Sect. 4.2, we evaluate and compare the performance
of the coupled WRF–HEC-HMS and lumped HEC-
HMS model driven by observed rainfall to analyze the
model uncertainty;

– in Sect. 4.3, we evaluate and analyze the error of the
WRF model output rainfall and its resulting uncertainty
in the atmospheric–hydrological coupling systems.

2 Study area and events

2.1 Study area

This study adopts the Fuping and Zijingguan sub-catchments
within the Daqing River basin, located in northern China, as
study areas. Fuping (2219 km2) and Zijingguan (1760 km2)
are typical mountainous sub-catchments located in the upper
Shahe River of the southern branch and the upper Juma River
of the northern branch of the Daqing River, respectively, as
shown in Fig. 1. The Fuping sub-catchment has a longitu-
dinal river slope of 5.7 % and a residential area of 0.63 %.
The Zijingguan sub-catchment has a longitudinal river slope
of 5.5 % and a residential area of 0.52 %. The predominant
land use in the Daqing River basin is farmland, forestland,
and grassland, with a granitic gneiss type of geology. The
Fuping catchment has a total of 8 gauged stations, and the
Zijingguan catchment has a total of 11 gauged stations as
shown in Fig. 1. Hydrological stations measured the flow at
the outlets of the two catchments. The Daqing River basin ex-
periences severe soil erosion attributed to dry soil conditions
and excessive groundwater exploitation. Additionally, during
the storm season, typically from June to September, the river
undergoes substantial seepage. The mean annual rainfall is
approximately 490 and 650 mm for Fuping and Zijingguan,
respectively, with most rain occurring between late May and
early September. Summer storms with high intensities and
short durations are typical of the rainfall found in China’s
mountainous regions, such as Fuping and Zijingguan. There-
fore, they mostly result in severe flood disasters in the down-
stream Daqing River basin.

2.2 Storm events

Four storm events with 24 h durations and relatively high
flow peaks, as shown in Fig. 2, are selected to test the per-
formance of the coupled hydrological rainfall–runoff model-
ing systems constructed in this study. Three events occurred
in the Fuping sub-catchment, and one event occurred in the
Zijingguan sub-catchment. Storm events in the Fuping and
Zijingguan catchments in the Daqinghe basin are driven by
the East Asian monsoon bringing moist air and intense rain-
fall. These storms often form into mesoscale convective sys-
tems (MCSs), which are large clusters of thunderstorms with
sustained heavy rain, leading to rapid river rises and poten-
tial flooding. The gauged rainfall and flow data were pro-
vided by the Ministry of Water Resources of the People’s
Republic of China. Table 1 shows the duration, cumulative
rainfall, and peak discharges of the storm events. The four
24 h storm events are categorized according to their spatial
and temporal distributions. The coefficient of variance (Cv)
of the storm event is calculated to designate the different ho-
mogenous characteristics (Hosking and Wallis, 1997) as
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Figure 1. Locations of the two study sub-catchments in the Daqinghe catchment.

Cv =

√∑N
i=1
(
xi
x
− 1

)2
N

. (1)

When calculating Cv for the spatial distribution, the 24 h cu-
mulative rainfall at any ith rain gauge is xi , the cumulative
average rainfall of all stations is x, and N is the total number
of all the stations. For Cv, in temporal distribution calcula-
tion, the catchment areal rainfall at any hour i time step is xi ,
the average areal rainfall of all time steps is x, and N is the
total duration of the storm events (24 h).

The Cv values of the selected storm events shown in Ta-
ble 2 reflect the spatiotemporal derivation of the catchment
accumulative gauge rainfall of each station and the average
rainfall at each time step, respectively. A smaller Cv value in-
dicates that the rainfall distribution is more uniform or even
in space or time. As seen in Table 1, storm event 2, with the
smallest spatial distribution Cv value, is the most uniform in
space, followed by event 1, event 4, and event 3. The most
uniform in time is storm event 1, with the smallest tempo-
ral distribution Cv value, followed by event 2, event 4, and

event 3. Generally, from the categorization, event 1 has rain-
fall that is uniform in spatial and temporal distributions, and
event 2 has rainfall that has a uniform spatial distribution but
non-uniform temporal distribution. Events 3 and 4 have non-
uniform rainfall in spatial and temporal distributions.

The selected rainfall–runoff storm events have different
lengths and flood recession times. We employ a 71 h dura-
tion for events 1 and 3, a 67 h duration for event 2, and a 36 h
duration for event 4, as shown in Fig. 2. Event 4 can be noted
as an extreme situation; it has larger Cv values and occurred
in a shorter duration with the highest flow peak and rain-
fall intensity. Event 4 corresponds to the events at the most
significant monitoring point that occur once every 500 years
and is regarded as one of the largest flood disasters (Du et
al., 2016). These different rainfall–runoff characteristics are
used in the evaluation of the simulation results.
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Figure 2. The rainfall–runoff observations of the four 24 h storm events.

Table 1. The selected four 24 h storm events in Fuping and Zijingguan sub-catchments.

Event Sub-catchment Start time End time 24 h cumulative Peak discharge
rainfall (m3 s−1)

1 Fuping 29/07/2007 20:00 30/07/2007 20:00 63.38 29.70
2 Fuping 30/07/2012 10:00 31/07/2012 10:00 50.48 70.70
3 Fuping 11/08/2013 07:00 12/08/2013 07:00 30.82 46.60
4 Zijingguan 21/07/2012 04:00 22/07/2012 04:00 172.2 2580.00

Table 2. The coefficient of variance (Cv) of the four 24 h storm
events.

Rainfall Spatial Temporal
event distribution distribution

1 0.3975 0.6011
2 0.1927 1.0823
3 0.7400 2.3925
4 0.6098 1.8865

3 Hydrological models and experimental design

3.1 WRF model setup

The Weather Research and Forecasting (WRF) non-
hydrostatic model is a widely used numerical weather pre-
diction system that simulates and forecasts atmospheric pro-
cesses (Powers et al., 2017). The WRF model version 3.7

is used in this study. Its structure includes initialization, dy-
namics, physics, grid options, output tools, boundary condi-
tions, nesting capabilities, and parallel-computing support,
making it versatile for various applications and domains.
The versatile and flexible abilities of the WRF model pre-
dict weather patterns at different spatial and temporal scales,
from global to regional and even local levels (Cassola et al.,
2015). Additional details about the WRF model can be ex-
plored in Skamarock and Klemp (2008). The performance
of the WRF model largely depends on the parameterization
schemes, which can be effective for some storm events but
not for others (Liu et al., 2013). Due to the difficulty in de-
termining the best schemes for future storms, these are often
preset in operational uses (Liu et al., 2015). In this study,
we utilize the most widely used physical parameterizations
for northern China. Details of the parameterizations that sig-
nificantly influence precipitation generation are provided in
Table 3 and further elaborated by Tian et al. (2017a).
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3160 S. U. Jam-Jalloh et al.: Coupling WRF with HEC-HMS and WRF-Hydro for flood forecasting

Table 3. Main WRF model physical schemes used in this study.

Parameterization Chosen option Reference

Microphysics scheme Lin Lin et al. (1983)
Longwave radiation Rapid Radiative Transfer Model (RRTM) Mlawer et al. (1997)
Shortwave radiation Dudhia Dudhia (1989)
Land surface scheme Noah Chen and Dudhia (2001)
Planetary boundary layer Yonsei University (YSU) Hong et al. (2006)
Cumulus convection Kain–Fritsch (KF) Kain (2004)

This study employs the most widely used parameter setup
option from previous studies in northern China because de-
termining the optimal parameters for future storm events
poses a significant challenge (Tian et al., 2017b). More in-
formation on the parameter setup can be explored in Tian et
al. (2017a). Table 4 shows the main parameterization con-
figurations of the WRF model for the two sub-catchments
that have more influence on precipitation generation. The
initial boundary conditions for simulation are derived from
the 1°× 1° FNL driving data at 6 h intervals, with the in-
tegration time step set at 6 s (Zhu et al., 2022). The FNL
data are the Final Operational Global Analysis meteorologi-
cal data, which are provided by the National Centers for En-
vironmental Prediction (NCEP; available at http://rda.ucar.
edu/datasets/ds083.2/, last access: 25 January 2023). The
WRF output data interval is set at 1 h with a spin-up time
of 6 h. Three nested domains are set up over the Fuping
and Zijingguan sub-catchments. The innermost domain of
the WRF is set up at a 1 km horizontal resolution, and the
nesting ratio of the three layers is configured at 1 : 3. The
grid center of the Fuping sub-catchment is at 39°04′15′′ N
and 113°59′26′′ E, and the nesting grid divisions from do-
main 1 to domain 3 are 252km× 234km, 144km× 126km,
and 96km× 84km. The grid center of the Zijingguan sub-
catchment is at 39°25′59′′ N and 114°46′01′′ E, and the nest-
ing grid divisions from domain 1 to domain 3 are 216km×
198km, 108km×90km, and 72km×42km. With a Lambert
projection, a 40 vertical discretization up to a 50 hPa top-
layer pressure is set up for the three nested domains (Tian
et al., 2020). The downscaled output precipitation from the
WRF model serves as input to drive the HEC-HMS and the
WRF-Hydro models.

3.2 WRF-Hydro model

The Weather Research and Forecasting Hydrological (WRF-
Hydro) model is a widely used, fully distributed hydrological
modeling system that integrates atmospheric, land surface,
and hydrological processes to simulate and predict surface
and subsurface water fluxes. Its structure is designed to rep-
resent the complex interactions between the atmosphere and
the land surface, including precipitation, runoff, streamflow,
and soil moisture. The WRF-Hydro model can only be run
by coupling with the WRF model or utilizing meteorological

Table 4. Main WRF model parameterization configurations for the
two sub-catchments.

Parameterization Chosen option

Driving data FNL at 6 h

Integration time step 6 s

Output interval 1 h

Fuping sub-catchment 39°04′15′′ N, 113°59′26′′ E
grid center

Zijingguan sub-catchment 39°25′59′′ N, 114°46′01′′ E
grid center

Nesting ratio 1 : 3

Horizontal resolution Dom1: 9 km
Dom2: 3 km
Dom3: 1 km

Fuping nesting grid Dom1: 252km× 234km
division Dom2: 144km× 126km

Dom3: 96km× 84km

Zijingguan nesting grid Dom1: 216km× 198km
division Dom2: 108km× 90km

Dom3: 72km× 42km

Projection resolution Lambert

Vertical discretization 40 layers

Pressure 50 hPa

data to establish an atmospheric–hydrological model system.
This study implements a one-way run utilizing the WRF-
Hydro modeling system version 3.0 with the WRF model
(Gochis et al., 2015).

The hydrological components of WRF-Hydro model are
described below.

– Routing. This simulates water movement through river
networks and channels, accounting for flow routing
and storage dynamics. WRF-Hydro uses a simplified
Muskingum–Cunge routing equation for river routing,
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where Q is the river discharge, t is time, 1x is the river
reach length, S is the channel storage, n and n−1 repre-
sent the current and previous time steps, and 1Q is the
change in discharge over time

(
∂Q
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)
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– Runoff generation. The WRF-Hydro model generates
runoff using a simple water balance (SWB) method.
The topsoil layer experiences a surface infiltration ex-
cess when the precipitation capacity surpasses the infil-
tration capacity, resulting in a corresponding alteration
in the surface water depth h (m),
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86 400
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,

(3)

where h (m) represents the change in surface water
depth, k is an integer representing the soil layer (ranging
from 1 to 4), δk (m3 m−3) and Zk (m) are the soil mois-
ture grid and depth of the kth soil layer, δs (m3 m−3)
represents the maximum soil moisture content, 1t (s)
represents the model time step, S denotes the coeffi-
cient from the regulating runoff infiltration Richards’
equation, andRfd andRdt denote the saturated hydraulic
conductivity and the tunable coefficients for surface in-
filtration, respectively.

– Groundwater flow. The baseflow module typically de-
scribes groundwater flow. The bucket model uses a con-
ceptual storage equation. This equation depicts ground-
water storage changes over time, influenced by input
recharge and outflow proportional to the difference be-
tween current storage and baseflow threshold,

dS
dt
= R−Kb · (S− S0), (4)

where ds
dt is the rate of change of storage with respect to

time, R is the recharge to the groundwater storage (from
excess soil moisture), Kb is the baseflow recession co-
efficient, S is the storage of groundwater, and S0 is the
baseflow threshold storage.

The horizontal resolution of WRF-Hydro is specified by
segmenting the inner domain of WRF into a grid spacing of

100 m in this study. The horizontal routing grids for catch-
ments in the WRF-Hydro model are computed using the
Muskingum–Cunge method, which handles channel rout-
ing with time-varying parameter estimates and neglects the
backwater effect (Wang et al., 2022). In this study, the ver-
tical routing process integrates the Noah-MP land surface
model (LSM), which includes four soil layers (10, 30, 60,
and 100 cm) spanning a 2 m soil column from top to bottom.
Enabling the fully coupled option initiates the involvement of
the hydrological module, disaggregation–aggregation mod-
ule, and LSM components of WRF-Hydro when running
WRF. It should be noted that the default Noah configura-
tions in WRF-Hydro were employed rather than using site-
specific settings. Also, the baseflow bucket model is switched
off for simulation periods; the WRF-Hydro model primar-
ily accumulates subsurface runoff and redistributes it to the
channel, effectively increasing river flow (Xue et al., 2000).
It should be noted that the findings presented in this study
should be considered a benchmark for the WRF-Hydro fun-
damental model performance. The intention is to offer valu-
able insights for future users of the model operating in partic-
ular basins within northern China and comparable regions, as
well as to provide guidance for prospective model enhance-
ments in future years.

3.3 HEC-HMS model

The Hydrologic Engineering Center’s Hydrologic Modeling
System (HEC-HMS) is a comprehensive software tool devel-
oped by the United States Army Corps of Engineers for hy-
drological modeling and the simulation of watershed runoff.
It is used for a wide range of applications, including flood
forecasting, reservoir management, and water resource plan-
ning. The HEC–HMS model version 4.10 is employed in this
study (Bartles et al., 2006).

The key HEC-HMS model structure components are de-
scribed below.

– Data processing. This component includes tools for
GIS connection, data import, watershed delineation, and
data transformation.

– Meteorologic data. This component allows input of his-
torical or synthetic rainfall data in various formats.

– Hydrologic models.

– The loss model estimates losses due to interception,
depression storage, and infiltration. Direct runoff
(Q) is calculated as

(Q)=
(P − Ia)

2

(P − Ia+ S)
, (5)

where Q is direct runoff, P is precipitation, Ia is
initial abstraction, and S is potential maximum re-
tention after runoff begins.
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– Routing model. The model routes flow through
river channels using methods like the Muskingum–
Cunge method:

Q(k+ 1)= (1− x)×Q(k)+ x(P −Ploss), (6)

whereQ(k+1) is the outflow at the next time step,
Q(k) is the current outflow, x is the routing parame-
ter, P is inflow, and Ploss represents losses (Niazkar
and Zakwan, 2022).

– Unit hydrograph.

– The ModClark unit hydrograph method uses a lin-
ear convolution equation:

Q(t)=
P(t)

A
×UH(t), (7)

where Q(t) is the discharge (runoff) at time t , P(t)
is the precipitation at time t , A is the area of the
watershed, and UH(t) is the ModClark unit hydro-
graph at time t (Che et al., 2014).

– The SCS (Soil Conservation Service) unit hydro-
graph method uses a time–area approach:

Q(t)=
P(t)

12
×UH(t), (8)

where Q(t) is the discharge (runoff) at time t , P(t)
is the precipitation at time t , and UH(t) is the SCS
unit hydrograph at time t (Shatnawi and Ibrahim,
2022).

3.4 Experimental design

In atmospheric–hydrological coupling, two-way coupling is
essential for studying complex climate interactions, while
one-way coupling is often employed for practical meteoro-
logical or climate prediction models to simplify computa-
tional demands and focus on specific phenomena (Wu et
al., 2016). Therefore, this study adopts the one-way cou-
pling when constructing the atmospheric–hydrological cou-
pling systems. The experimental structure for the gridded
coupled atmospheric–hydrological systems and the lumped
system, which comprise three types of hydrological models,
i.e., WRF, WRF-Hydro, and HEC-HMS models, is shown
in Fig. 4. The WRF model is used to downscale the 1°× 1°
FNL data, which will generate gridded rainfall to drive the
HEC-HMS and the WRF-Hydro model for flood simulation.
The lumped HEC-HMS model is also used for flood sim-
ulation using the observed rainfall. The purpose is to set a
benchmark for the coupled WRF–HEC-HMS system in order
to analyze the source of model uncertainties in the coupled
atmospheric–hydrologic system.

When calibrating the WRF-Hydro model, we employed
manual calibration by carefully considering several cru-
cial parameters that have the potential to impact flood-
forecasting accuracy significantly. These parameters were

Figure 3. HEC-HMS schematic DEM map of Fuping and Zijing-
guan catchments.

identified through prior research on parameter sensitivity
analysis conducted in the study region (Liu et al., 2021b).
Because of the limited data in our study area, a systematic
adjustment of model parameters to minimize discrepancies
between observed and simulated streamflow was done for
each storm event to enhance model accuracy. These parame-
ters include the scaling parameter for overland flow rough-
ness (OVROUGHRTFAC), the scaling parameter for sur-
face retention depth (RETDEPRTFAC), the channel Man-
ning roughness parameter (MannN), and the parameter for
runoff infiltration (REFKDT).

For the calibration of the HEC-HMS model, the studied
watersheds were delineated into 8 and 11 sub-basins for
Fuping and Zijingguan, respectively, as shown in Fig. 3.
The 1km× 1km output gridded rainfall from the WRF
was imported and interpolated using the bilinear resampling
method. The ModClark and Soil Conservation Service (SCS)
unit hydrograph methods were employed t simulate excess
precipitation into direct surface runoff for the gridded and
lumped models, respectively. The initial and constant method
was employed to model infiltration loss, and the exponential
recession model was used to model baseflow for the gridded
and lumped HEC-HMS. Typically, in standard situations, the
model calibration process involves making subjective adjust-
ments to its parameters through a trial-and-error approach.
While it is possible to calibrate the model manually, HEC-
HMS additionally provides an inherent automatic optimiza-
tion procedure designed to assess the suitability and practi-
cality of parameter values and their respective ranges for the
intended use of the model (Feldman and US Army Corps of
Engineers, 2000).

Comparative analyses of the forecast flood processes were
carried out to evaluate and compare the performance of
the coupled and lumped systems. The flood-forecasting re-
sults are evaluated using the following statistical criteria:
the Nash–Sutcliffe efficiency coefficient (NSE), root mean
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Figure 4. Experimental structure for the coupled atmospheric–hydrological and lumped modeling system.

square error (RMSE), relative flood peak (Rf), and the rela-
tive flood volume (Rv).

NSE= 1−

∑N
i=1
(
y′i − yi

)2∑N
i=1(yi − y)

2
(9)

RMSE=

√√√√ 1
N

N∑
i=1

(
y′i − yi

)2 (10)

Rf =

(
y′f− yf

)
yf

(11)

Rv =

(
y′v− yv

)
yv

(12)

Here, y′i and yi represents the simulated and observed dis-
charge flow at a specific time step denoted by i; N denotes
the total number of flood event time steps; y is the calculated
average discharge; y′f and yf represent the simulated and ob-
served flood peaks, respectively; and y′v and yv represents the
simulated and observed flood volumes, respectively.

4 Results

4.1 Results from the coupled WRF–HEC-HMS and
WRF–WRF-Hydro systems

The simulation results of the coupled WRF–HEC-HMS and
WRF–WRF-Hydro modeling systems are shown in Fig. 5
and Table 5. As demonstrated in Sect. 3.4, the 1km×
1km output rainfall from the WRF model is used to simu-
late the four storm events using the coupled atmospheric–
hydrological systems. Comparing the simulation results, it
can be seen that the coupled WRF–HEC-HMS model per-
forms better for storm events 1 and 3 with NSE of 0.84
and 0.79, respectively, as these events have longer durations,
demonstrating that the model adapted well in modeling pro-
longed floods. Also, the coupled WRF–HEC-HMS system’s
best performance is event 1 (NSE= 0.84), characterized by
long duration and relatively small flood magnitude, demon-
strating the ability to model floods subjected to rapid reces-
sion. The coupled WRF–WRF-Hydro system performs better
for events 2 and 4 with NSEs of 0.63 and 0.62, respectively,
which are floods with very high magnitudes and shorter du-
rations, demonstrating abilities in modeling flash floods.

By comparing the observed and simulated hydrographs of
the coupled WRF–HEC-HMS and WRF–WRF-Hydro mod-
eling systems (Fig. 5), it can be seen that the flow peaks were
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Figure 5. Simulated flood hydrographs of the coupled WRF–HEC-HMS and WRF–WRF-Hydro systems for the four storm events.

Table 5. Simulation results of the coupled WRF–HEC-HMS and WRF–WRF-Hydro system for the four storm events.

Storm event Rf (%) RMSE NSE

HEC-HMS WRF-Hydro HEC-HMS WRF-Hydro HEC-HMS WRF-Hydro

Event 1 −22.56 −10.43 4.26 7.11 0.84 0.56
Event 2 −16.12 −5.75 14.13 16.06 0.51 0.63
Event 3 −10.73 −12.77 3.90 6.89 0.79 0.34
Event 4 −58.48 −54.90 404.55 513.59 0.58 0.62

Average −26.97 −20.96 106.71 135.91 0.68 0.54

underestimated for both models. The WRF–HEC-HMS sys-
tem has the largest flow peak error, ranging from −10.78 %
to −58.48 %, but a better RMSE, ranging from 4.26 to
404.55. The worst flow peak error (−58.48 %) was for
event 4 (highest flow peak and short duration), and it only
has a better flow peak error for storm event 3 (−10.73 %)
when compared to the coupled WRF–WRF-Hydro system.
The WRF–WRF-Hydro system has a better flow peak error
ranging from −5.75 % to −54.90 % but higher RMSE rang-
ing from 7.11 to 513.59. Its worst flow peak error was also
for event 4 (−54.9 %), for which it had a better performance.
However, the coupled WRF–HEC-HMS model with an NSE
value ranging from 0.51 to 0.84 and the coupled WRF–WRF-
Hydro model with an NSE value ranging from 0.34 to 0.63
indicate that the HEC-HMS model results in a better average
performance when coupled with WRF.

4.2 Results from the lumped HEC-HMS model driven
by the observed rainfall

Considering the unsatisfactory performance of the coupling
systems, the four storm events were also simulated with
the lumped HEC-HMS using the observed rainfall (demon-
strated in Sect. 3.4). Lumped models do not possess the nec-
essary spatial data to depict hydrological processes accu-
rately because they only have temporal inputs. The simula-
tion results of the lumped HEC-HMS are shown in Table 6
and Fig. 6.

As shown in Table 6, the best performance of the lumped
HEC-HMS is event 1 with NSE= 0.90, which has the best
uniform temporal distribution with a long duration. The
worst performance is found in event 3 with NSE= 0.48,
which has the least uniform temporal distribution. Gener-
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Figure 6. Flood-forecasting hydrographs of the coupled WRF–HEC-HMS and lumped HEC-HMS systems for the four storm events.

Table 6. Simulation results of the lumped HEC-HMS model driven
by observed rainfall for the four storm events.

Storm events Rf (%) RMSE NSE

Event 1 −1.01 3.19 0.90
Event 2 −7.78 14.77 0.59
Event 3 0.86 6.11 0.48
Event 4 −10.77 279.14 0.81

Average −4.68 75.80 0.70

ally, the lumped HEC-HMS obtained a late flood peak for
some storm events, i.e., −9 and −1 h for events 1 and 3, re-
spectively. Also, it underestimated the flow peak for events 2
and 4, indicating some uncertainty in the model. The lumped
HEC-HMS model shows an average performance that is not
too great compared to the coupled WRF–HEC-HMS sys-
tem, i.e., 0.70 (average lumped HEC-HMS NSE value) mi-
nus 0.68 (average coupled WRF–HEC-HMS value) equals
0.02.

The simulation results (Rf, RMSE, NSE) of the coupled
WRF–HEC-HMS and lumped HEC-HMS model were com-
pared (Rp–Rp lumped, RMSE–RMSE lumped, NSE–NSE
lumped) as shown in Fig. 6 and Table 7. This compari-
son analyzes the level of uncertainty in the hydrological
model. The largest error in performance was found in event 3
(NSE= 0.31), which has the largest non-uniform tempo-

ral distribution, showing a better performance for the cou-
pled WRF–HEC-HMS system. For the other three events,
the difference between the coupled WRF–HEC-HMS model
and the lumped HEC-HMS model increased as the rainfall
temporal distribution heterogeneity increased. This shows
that when the rainfall temporal distribution is uniform, as in
event 1, event 2, and event 4, the performance error decreases
to −0.07, −0.08, and −0.22, respectively. Also, there is a
large difference in flow peak error and RMSE, indicating the
level of underestimation of the flow peak from the coupled
WRF–HEC-HMS system, more notably in storm event 4.
These comparisons indicate some uncertainty from the cou-
pled WRF–HEC-HMS model.

4.3 Error in the simulated WRF rainfall

The simulated WRF rainfall is analyzed to determine the er-
ror level, which influences the forecasting results of the cou-
pled systems. The relative errors (Rv) of the 24 h rainfall ac-
cumulations of the observed and simulated four storm events
are shown in Table 8. Figure 7 displays the temporal varia-
tions of the observed and simulated rainfall in the accumula-
tive curves and time series bars for the four storm events.

It can be seen in Table 8 and Fig. 7 that event 1, which has
the most uniform temporal distribution with Cv = 0.60 (as
shown in Table 2), has a better simulation result compared to
the other storm events, having the lowest Rv value of 9.53 %.
The largest relative errors were found in storm events 3 and
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Table 7. Comparison between the coupled WRF–HEC and lumped HEC-HMS model for flood forecasting of the four storm events.

Storm events Rf Rf–Rf lumped RMSE RMSE–RMSE lumped NSE NSE–NSE lumped

Event 1 −22.56 21.55 4.26 1.07 0.84 −0.07
Event 2 −16.12 8.35 14.13 0.64 0.51 −0.08
Event 3 −10.73 9.87 3.90 2.22 0.79 0.31
Event 4 −58.48 47.71 404.55 125.41 0.58 −0.22

Figure 7. The 24 h accumulative curves of the observed and the simulated rainfall of the four storm events.

Table 8. The four 24 h storm events observed and simulated WRF
rainfall.

Storm Observations WRF simulations (mm) RE (%)
event (mm) in the innermost domain

Event 1 63.38 69.42 9.53
Event 2 50.48 36.88 −26.94
Event 3 30.82 14.90 −51.66
Event 4 172.2 57.29 −66.73

4, with the most non-uniform temporal rainfall distributions.
Generally, both coupled systems performed poorly, with the
largest flow peak error for storm event 4 having the largest
relative error of −66.73 %. Therefore, it can be seen that the
simulation uncertainty of the storm events is directly propor-
tional to the temporal rainfall non-uniformity, especially for
events with very high peaks.

The spatial variation of the 24 h accumulations of rainfall
of the four storm events is further analyzed in the study catch-
ments. Figure 8 shows the spatial patterns of the accumula-
tion rainfall distribution from the observed rain gauges, sim-
ulated WRF output, the coupled WRF–WRF-Hydro system,
and the spatial differences of the accumulation rainfall dis-
tribution of simulated WRF output and the coupled WRF–
WRF-Hydro model (i.e., the coupled WRF–WRF-Hydro
system minus WRF), respectively. As seen in the figures, the
largest spatial variation was found in event 3, with the most
non-uniform spatial distribution Cv = 0.74 (Table 2) com-
pared to the other events. The simulations of the coupled
WRF–WRF-Hydro system exhibited more noticeable vari-
ations for event 3 compared to the WRF model. This spatial
difference is evident in subfigure (c) for event 3 in Fig. 8,
illustrating a better performance of the coupled WRF–WRF-
Hydro model compared to the WRF model at the crucial
storm center. This improvement is attributed to the model’s
efficient rainfall spatial redistribution.
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Figure 8. The 24 h accumulative spatial distributions of the four storm events in the study catchments: gauge observation, (a) WRF model,
(b) coupled WRF–WRF-Hydro system, and (c) coupled WRF–WRF-Hydro system minus WRF.

Storm event 4, characterized by intense convective rain-
fall, experienced a rapid and substantial increase in rainfall
intensity within a shorter duration, with maximum gauge cu-
mulative values reaching 355 mm. Both the WRF model and
the coupled WRF–WRF-Hydro system underestimated this
storm, with the WRF model exhibiting even poorer perfor-
mance. This suggests a failure to capture such intense storms
in the Zijingguan catchment accurately. For storm events 1
and 2, the WRF and the coupled WRF–WRF-Hydro systems
both exhibited nearly identical spatial patterns in cumula-
tive rainfall distributions. The simulations for these events
aligned more closely with cumulative rain gauge observa-
tions compared to events 3 and 4. The WRF and coupled
WRF–WRF-Hydro models effectively captured the storm
centers of events 1 and 2. However, for storm event 3, some
areas with high rainfall accumulations within the catchment
were not accurately represented by the WRF and coupled
WRF–WRF-Hydro models compared to observations.

5 Discussion

The WRF atmospheric model, when coupled with hydro-
logical models, significantly enhances the representation of
precipitation and its impact on hydrological processes. The
model’s ability to account for localized variations improves
accuracy in capturing spatial heterogeneity, thereby con-
tributing to its effectiveness in various scenarios (Liu et al.,
2021b). The results of the coupled WRF–HEC-HMS and
WRF–WRF-Hydro systems highlight intriguing findings in
flood simulation within mountainous catchments of northern
China. These coupled models exhibit distinct characteristics
in effectively capturing the complex interplay between pre-
cipitation and runoff. The coupled WRF–WRF-Hydro sys-
tem, a fully distributed system, performs better for extreme
storm events, as in the case of storm events 2 and 4. How-
ever, this coupled system performed poorly for storm events
that exhibited faster surface runoff recession, exemplified in
storm events 1 and 3. This may be because of the interaction
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between the land surface and rainfall–runoff generation, oc-
curring within the WRF-Hydro model at a shorter integration
time step. This increases the volume of infiltrated precipita-
tion, leading to higher soil moisture and a decrease in runoff
production (Branch et al., 2016). On the other hand, the
coupled WRF–HEC-HMS model, a simpler semi-distributed
model,performs better for prolonged floods, as in the case
of storm events 1 and 3, as it can adapt to the rapid re-
cession process. Nonetheless, the coupled WRF–HEC-HMS
model may have oversimplified the hydrological processes
in some storm events, resulting in less accurate predictions,
particularly in extreme conditions such as events 2 and 4.
The lumped parameter approach in HEC-HMS, i.e., assum-
ing uniformity in parameters such as soil properties and land
use, might not be able to represent the rapid hydrological
changes across different sub-basins.

The performance error of the lumped system reflects the
uncertainty inherent in the hydrological model. The lumped
HEC-HMS is driven by observed data, representing a system
with the true inputs of the studied catchments. Adopting the
lumped HEC-HMS model allows us to assess the influence
of rainfall errors on the coupled systems. The comparison be-
tween the lumped HEC-HMS model driven by observed rain-
fall and the coupled WRF–HEC-HMS model reveals that the
error is primarily attributed to simulated WRF rainfall. The
model structure also has some influence (lumped> gridded),
although this influence is negligible compared to the sim-
ulated rainfall error. The results show minimal differences
in average model performance between the lumped HEC-
HMS and the coupled WRF–HEC-HMS model. The simu-
lation results of the coupled WRF–HEC-HMS and WRF–
WRF-Hydro modeling systems are influenced by the uncer-
tainties in the hydrological models and the driven data. Pre-
vious studies have shown that the error in the WRF output
rainfall, which depends on the quality of the driven data (i.e.,
FNL data), necessarily causes parallel uncertainty in hydro-
logical forecasts (Merino et al., 2022). We analyzed the tem-
poral and spatial errors inherent in the simulated WRF out-
put rainfall, influencing the simulation results of the cou-
pled systems. The temporal variations scrutinize how well
the WRF model captures the timing and intensity of rainfall
events, providing a comprehensive understanding of its pre-
dictive capabilities in the study catchments. The most signif-
icant temporal variation between the 24 h accumulations of
observed and simulated rainfall was found in storm event 4,
characterized by the highest rainfall intensity. Additionally,
we assess the 24 h accumulations of rainfall spatial variation,
identifying regions where the models may struggle to pre-
dict precipitation patterns accurately in the study catchments.
The most significant spatial variation was found in event 3,
where both the WRF model and coupled WRF–WRF-Hydro
systems failed to capture areas with high rainfall accumula-
tions within the catchment accurately compared to the obser-
vations.

Even though there are some uncertainties in the coupled
atmospheric–hydrological systems, it is evident that a larger
magnitude of error is attributed to the WRF output rainfall.
This indicates that the primary factor influencing the over-
all accuracy of the coupled systems is the accuracy of simu-
lated WRF rainfall. To enhance simulation rainfall in small-
and medium-scale mountainous catchments, such as those
in northern China, here are some recommendations: the ob-
served rainfall can be used to correct the simulated rain-
fall, implement radar data assimilation in numerical weather
prediction (NWP) models, and integrate the simulated rain-
fall with radar quantitative precipitation forecasts (QPFs) or
quantitative precipitation estimates (QPEs; Vendrasco et al.,
2016; Tong et al., 2016; Liu et al., 2021a). In comparison
with previous studies, our results show significant improve-
ments in flood-forecasting accuracy by coupling the WRF
model with different hydrological systems. This aligns with
Jasper et al. (2002) on NWP model development, Bartholmes
and Todini (2005) on high-resolution NWP data benefits, and
Cattoën et al. (2016) on forecast reliability. Our findings also
support Li et al. (2017) on decreased accuracy with longer
lead times, mitigated here by high-resolution models. By in-
tegrating fully distributed and semi-distributed models, we
extend the work of Ming et al. (2020) and Chen et al. (2020),
who demonstrated the advantages of coupled NWP and hy-
drodynamic models. Similar to the research of Giannaros
et al. (2021) and Varlas et al. (2024), our approach shows
that high-resolution NWP data integrated with hydrological
models can enhance real-time flood prediction. Implement-
ing these coupled systems in operational frameworks can
provide more accurate and timely flood warnings.

It should be noted that the unique topographic and climatic
features of our study area compound the inherent uncertainty
in simulations. Coupling the WRF model with hydrologi-
cal models introduces additional challenges, such as model
parameterization, spatial static data, downscaling resolution,
and integration time step, all of which can significantly influ-
ence simulation outcomes. Furthermore, uncertainties in me-
teorological inputs, such as precipitation forecasts, and the
choice of model coupling approaches, such as the one-way
coupling used in this study, may affect the reliability of flood
predictions. However, the general conclusions of this study
aim to provide valuable insights into the performance and
potential enhancements of this modeling approach in the face
of complex topographical and meteorological conditions.

6 Conclusions

This study coupled the semi-distributed HEC-HMS and fully
distributed WRF-Hydro models with a 1km× 1km rainfall
output from the WRF model, alongside the lumped HEC-
HMS using observed gauge precipitation. We conduct a com-
parative analysis of the forecast processes from these coupled
hydrological systems for storm events with varying char-
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acteristics. The lumped HEC-HMS model is adopted as a
benchmark to compare and analyze the level of uncertainty in
the coupled WRF–HEC-HMS model system. Additionally,
we analyze the error in simulated WRF output rainfall. From
the results, we conclude the following.

– The coupled WRF–HEC-HMS system exhibits better
performance in predicting prolonged storm events with
optimal accuracy in uniformly distributed spatial and
temporal patterns (e.g., event 1). It effectively adapts
to rapid recession processes, despite challenges in ac-
curately capturing flood magnitudes, leading to larger
flow peak errors.

– In contrast, the coupled WRF–WRF-Hydro system per-
forms better for shorter-duration floods characterized by
higher flow peaks, demonstrating strong capability in
flash flood forecasting. However, its performance is re-
duced as uniformity in storm events decreases, which
might be due to incorrect representation of the spatial
rainfall.

– The performance of the lumped model driven by the
gauge-observed rainfall indicates the uncertainty in the
hydrological models when compared with the coupled
WRF–HEC-HMS system, but a larger magnitude error
was found in the WRF output simulated rainfall.

The conclusions from this study verify the notion that the
coupled atmospheric–hydrological modeling systems are in-
fluenced by the rainfall simulation accuracy and complexity
of the hydrological model. We hope this study will encour-
age further research on improving the simulated rainfall and
hydrological models to verify the conclusions of this study.
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