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Abstract. Weather conditions that can enhance wildfire po-
tential are a problem faced by many countries around the
world. Wildfires can have major economic impacts as well
as prolonged effects on populations and ecosystems. Dis-
tributing information on fire hazards to the public and first
responders in real time is crucial for fire risk management
and risk reduction. Although most fires today are caused by
people, weather conditions determine if and how fast the fire
spreads. In particular, research has shown that atmospheric
vapor pressure deficit (VPD) is a key parameter predicting
the dryness of vegetation and the available fuel for fires.
VPD is determined from the environmental air temperature
and relative humidity, both of which are readily obtained
from smartphones carried by the public. In this study we use
smartphone data from the company Opensignal, collected
over almost 4 years and from more than 40 000 users per day,
to estimate VPD values. We have found that smartphone data
can provide useful information about fire risk and danger.
Here we present two case studies from wildfires in Israel and
Portugal in which VPD is calculated using calibrated temper-
ature and relative humidity measurements from smartphones.
Given the rapid growth in the number of smartphones around
the globe, we propose applying smartphone data for meteoro-
logical research and fire weather applications. Possible users
of these results could be wildfire researchers; public policy
specialists in wildfire, climate, and disaster management; en-
gineers working with big data; low-income countries; and
citizen science advocates.

1 Introduction

In the past years there has been a dramatic rise in wildfires
around the globe. Between January 2017 and August 2017,
there were around 40 000 wildfires in the United States that
burned approximately 2.3× 106 ha. In California and Portu-
gal, 2017 was the worst wildfire season on record, with ma-
jor destruction of homes and natural vegetation. In Novem-
ber 2019, Australia restricted its outdoor water consump-
tion to maintain a sufficient water supply to help firefight-
ers, and in 2019 California wildfire damage was estimated at
more than USD 80 billion. In 2023 there were record fires
across Canada, with the resulting air pollution and smoke
spreading across the northeastern United States. It is clear
that improved monitoring and forecast models will foster bet-
ter early wildfire warnings that will allow people, cities, and
countries to be better prepared, with implications for reduc-
ing the loss of lives and damage to property and infrastruc-
ture.

Monitoring of such extreme weather hazards has typically
used traditional weather stations and sensors for in situ mea-
surements of the environment. In this study we propose that
micro-sensors in smartphones carried by the public may pro-
vide additional and highly complementary data. The devel-
opment of smartphones over the last 2 decades and the reduc-
tion in their cost has led to more than 6.4 billion smartphones
in use worldwide today (out of almost 8 billion estimated
people). Today, smartphones are often more accessible to the
population in some countries than electricity or running wa-
ter, and the global distribution of smartphones, together with
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improved internal sensors, is only expected to increase over
the coming decades.

In recent years, several research groups have used smart-
phone data in scientific research. In the Netherlands, smart-
phones have been used to study air pollution (Snik et al.,
2014), while in the United States smartphones have been
used to study atmospheric pressure variability and the po-
tential for improved numerical weather prediction (Mass and
Madaus, 2014; McNicholas and Mass, 2021). Droste et al.
(2017) and Hintz et al. (2019) showed that smartphone pres-
sure sensors are a reliable source of atmospheric data, with
biases of the order of 1 mbar. In the UK, a study demon-
strated that smartphones can be used to map temperature
changes and anomalies (Overeem et al., 2013), and in Israel
(Price et al., 2018) smartphone data were used to study semi-
diurnal tides in the atmosphere.

The conditions that can affect the ignition and propaga-
tion of wildfires have been studied for more than a cen-
tury and can be influenced by large-scale climate phenomena
such as the El Niño–Southern Oscillation (ENSO) and the
Indian Ocean Dipole (Goldammer and Price, 1998; Bovalo
et al., 2012). However, on a daily basis, fire weather models
use surface weather conditions (temperature, humidity, wind
speed, and precipitation) on hourly to daily scales to gener-
ate fire weather indices (Baumgartner et al., 1967; McArthur,
1967; Keetch and Byram, 1968; Kase, 1969; Fosberg, 1978;
Anderson, 1982; Chandler et al., 1983; van Wagner, 1987;
Sharples et al., 2009; Di Giuseppe et al., 2020). Some studies
have combined large-scale climate indices and local meteo-
rological parameters (Shen et al., 2019) to estimate fire risk
and danger on longer timescales.

One main criterion for estimating fire danger and behav-
ior is the moisture content of vegetation (Keetch and Byram,
1968; Schroeder and Buck, 1970; Anderson, 1982; Sharples
et al., 2009; Shen et al., 2019). Indices like the Fire Poten-
tial Index (FPI), thousand-hour fuel (TH), dead fuel moisture
(DFM), and others are used to predict fire risk (Hernandez-
Leal et al., 2006; Escuin et al., 2008). Fire indices vary in
their complexity; some are very simple, like the Ångström
index (Chandler et al., 1983), which uses only temperature
(T ) and relative humidity (RH), while others are more com-
plex, applying additional meteorological parameters along
with soil properties and the biological life cycle of the plants,
like M68 (Kase, 1969). However, the majority of indices are
based on the two key parameters, temperature and relative
humidity (Table 1). While daily and hourly meteorological
data can be obtained using traditional measuring sensors,
smartphones potentially offer an additional source of reliable
data (Overeem et al., 2013; Mass and Madaus, 2014; Fuji-
nami, 2016; Hintz et al., 2019). Furthermore, smartphones
can theoretically provide high spatial resolution of the ob-
served parameters. For example, Fig. 1 shows the spatial cov-
erage of smartphone readings on 1 d (4 June 2014) in Israel
compared to the official weather station distribution from the
Israel Meteorological Service (IMS) stations.

The vapor pressure deficit (VPD) can be calculated from
temperature and relative humidity. Jain et al. (2022) used
VPD to show that a decrease in RH and an increase in T were
primarily responsible for increases in extreme fire weather
conditions globally. Other fire-related VPD studies done in
different parts of the world, like the study by Williams et
al. (2014) in the southwestern United States (SWUS), found
that in the spring and early summer (March–July) of 1961–
2014 the average VPD was ∼ 15 hPa. When they compared
it with the same months of 2011, which is considered to be a
year of extreme drought with record-breaking wildfires, they
found VPD anomalies of +3 hPa. Their finding showed that
even though it was not exceptionally hot in the southwest-
ern United States, it was exceptionally dry, showing that the
annual burnt area is closely related to spring–summer poten-
tial evapotranspiration and VPD anomalies. Thus, monitor-
ing T and RH, and hence VPD, from smartphone sensors has
the potential for providing useful information about VPD at
high spatial resolution and high temporal resolution even in
remote areas with few official weather stations. Crowdsourc-
ing of smartphone data may therefore provide a new tool for
analyzing the risk of fires in real time.

2 Methodology

2.1 Calibration methods

Most smartphones today have a set of sophisticated micro-
sensors that measure several local environmental parameters.
The most common sensors in smartphones measure atmo-
spheric pressure, magnetic field, light, temperature, relative
humidity, GPS location, sound, and even gravity and accel-
eration in three directions. This paper focuses on two param-
eters measured by smartphones: T and RH. RH sensors are
usually capacitive sensors that measure RH by placing a thin
strip of metal oxide between two electrodes. The metal ox-
ide’s electrical capacity changes with the atmosphere’s RH
(Yoo et al., 2010). The internal thermometers of smartphones
do not directly measure ambient air temperature and are im-
pacted by heat sources within the smartphone. Thus, a major
challenge is to estimate environmental air temperatures from
the smartphone temperatures measured inside the unit.

Figure 2 shows our control experiment done in Israel com-
paring a stationary smartphone (Samsung Galaxy S4) and an
adjacent weather station (Davis Vantage Vue) for both T and
RH. The smartphone was placed in a fixed location next to
the Davis system (less than a meter distance) on a table in
a shaded room with open windows. The temperature sen-
sor used in the Samsung Galaxy S4 model is SHTC1 ver-
sion 1 from Sensirion (https://www.sensirion.com/products/
catalog/?category=Humidity, last access: 6 March 2017,
Sensirion, 2015), with a resolution of 0.01 °C, an accuracy
of 0.3 °C, and a range between −40 and 125 °C (Cabrera et
al., 2021). The Davis temperature sensor has 0.1 °C resolu-
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Table 1. Summary of input data used in the most common fire danger indices. The abbreviations for the meteorological parameters are the
following: T , temperature; RH, relative humidity; P , precipitation; U , wind speed.

Fire indices Acronym Meteorological data Other parameters References

Ångström index Ångström T , RH [12]
Baumgartner index Baumgartner T , Tmin, Tmax, P , U Elevation, latitude [13]
Fine fuel moisture code FFMC T , RH, P , U [10]
Duff moisture code DMC T , RH, P [10]
Drought code DC T , P [10]
Initial spread index ISI T , RH, P , U [10]
Buildup index BUI T , RH, P [10]
Fire weather index FWI T , RH, P , U [10]
Fosberg fire weather index FFWI T , RH, U [14]
Keetch–Byram drought index KBDIsi T , P , P (annual) [15]
McArthur Mark 5 forest fire danger index FFDI T , RH, P , P (annual), U [16]
Sharples fuel moisture index FMI T , RH [18]
M68 index M68 T , RH, P , U snow, phenology [17]

Figure 1. Smartphone observations during 1 d (4 June 2014), with each circle representing the number of readings in a 0.1°× 0.1° grid box.
The IMS station coverage (official reference stations) is shown by uniform-size blue dots. The number of data samples from IMS is 86 400
on this day. The total number of data samples from smartphones is 15 770.
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tion with a nominal accuracy of 0.5 °C and ranges between
−40 and 65 °C. The same sensor (SHTCI1) is used in the
Samsung Galaxy S4 for RH, with a resolution of 0.01 %, an
accuracy between 3 % and 5 % that depends on both the tem-
perature of the environment and the humidity, and a range
between 0 % and 100 %. The Davis humidity sensor has a
resolution of 1 %, an accuracy of 2 %, and a range between
0 % and 100 %.

The data acquired from both sensors were split into train-
ing/learning data and testing data (Fig. 2). Using simple lin-
ear regression, we calibrated the smartphone data using the
Davis T and RH as ground truth for two periods (2–6 October
and 7–10 October). As can be seen in Fig. 2, after calibrating
with a simple linear regression, the correlation between the
calibrated T and RH data and the Davis data is very high for
both parameters (R2 of 0.86 and 0.975). This experiment was
repeated several times with several different devices (Galaxy
S4) and locations, and all show the same results, consistent
with Price et al. (2018).

Given this good estimation for the changes in T and RH
using four different Samsung Galaxy S4 smartphone sen-
sors, the next step was to determine how well crowdsourced
smartphone data (which are non-stationary and are used in
different and varied environments) agree with measurements
from official meteorological stations. For the crowdsourced
data from smartphones, we used data from the WeatherSignal
app (operated by Opensignal https://www.opensignal.com/,
last access: 6 March 2017). Opensignal provided almost
4 years of smartphone data (2013–2016) originating from
their WeatherSignal app and collected from more than 40 000
smartphone daily users (58 000 in 2014 and 40 000 in 2015)
around the globe. Raw smartphone data were supplied with-
out any phone or user ID to protect user privacy. We note that
the WeatherSignal app does not operate on iOS (iPhone) and
is available only for Android smartphones.

Although this appears to be a relatively large number of
global daily measurements, the measurements for specific
local locations can be highly variable and limited, and in
this study we were limited to the coverage of WeatherSig-
nal users. Using smartphone data, we calculated VPD on
a 1° by 1° grid using daily mean T and RH from smart-
phone data. Since Overeem et al. (2013) already investigated
crowdsourced temperature data from the same WeatherSig-
nal data, here we focus primarily on the quality of the RH
data from WeatherSignal, although we also show our new
analysis of temperature data from these same smartphones.

Due to the extreme fire season in the Iberian Peninsula
in 2013, in Fig. 3 we present a comparison between the
RH data from two official meteorological stations in the
south of Spain in 2013 (European Climate Assessment &
Dataset – ECAD, 2020) and the crowdsourced RH data from
smartphones in the same region. The RH data from the two
weather stations (Fig. 3a) in the south of Spain (latitude
36.75 N, longitude 6.0625 W and latitude 36.5 N, longitude
6.2625 W) were compared with all smartphone data collected

in the same area (within latitudes 36–37 N and longitudes 7–
6 W) (Fig. 3b). The daily RH in this region was determined
using∼ 230 smartphone data points per day. After a 3-month
period of training and calibration between the official stations
and the smartphone data, Fig. 3 shows the calibrated relative
humidity data for June to December 2013. The blue curve
indicates the RH daily mean from the two official weather
stations, while the green curve indicates the RH daily mean
from smartphones after calibration. The calibration was also
done using a simple linear regression model. The correlation
R2 between smartphone RH and official observations was
greater than 0.7, implying that the smartphone data can ex-
plain more than 70 % of the daily variability in the RH mea-
sured by the two meteorological stations in southern Spain.
The smartphone data averaged in space and time successfully
duplicate the daily fluctuations in RH for this region.

A similar comparison for smartphone T and RH was
performed using the European Centre for Medium-Range
Weather Forecast (ECMWF) ERA5 reanalysis (Hersbach et
al., 2020) and data from the Israel Meteorological Services
(IMS) as ground truth in Israel. Figures 4 and 5 show train-
ing/learning data (left panels) and testing data (right panels)
for T and RH in Israel. Part of the temperature data sets
(learning data) were used to establish the linear relation be-
tween the ERA5 and the smartphone data sets (June 2013–
December 2015) and then were applied to 2016 using the cal-
ibrated data (Fig. 4). The same calibration process was done
for RH data from Israel. Figure 5 shows the training/learn-
ing RH data and calibration equation for July and August
2016, which was then applied to September to December
2016 (testing data). In general RH data are noisier data com-
pared with temperature data, with less regular diurnal and
seasonal trends. Hence, we generally used shorter training
data sets (months instead of years) for calibrating the RH
data. The calibrations using both data sets (ERA5 and IMS)
result in strong correlations between the calibrated data and
ground truths for T and RH (R2 > 0.83).

A further comparison was done with T and RH data col-
lected from ERA5 and smartphones in Portugal. The results
are shown in Figs. 6 and 7. Figure 6 shows the temperature
learning data in the left panel (June 2013–January 2015) and
the testing data in the right panel, showing a high correlation
coefficient (R2 > 0.8). Figure 7 shows the RH learning data
in the left panel (June–December 2013) and the calibrated
testing data in the right panel, showing a rather moderate cor-
relation (R2

= 0.55). As mentioned above, we found that the
calibrated T data are generally in better agreement with the
ERA5 data than the calibrated RH data. This could be due
to fewer smartphones having RH sensors than temperature
sensors, and hence there is a larger sensitivity to RH outliers
and/or the impacts of rapid changes in RH over relatively
short distances between users (unlike temperature). In con-
clusion, we found that the RH crowdsourced data are less
reliable than the T crowdsourced data, even though the tem-
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Figure 2. Temperature and RH control experiment with a stationary smartphone (Samsung Galaxy S4) and an adjacent weather station
(Davis Vantage Vue), conducted in Israel. (a, c) Raw smartphone (red) and weather station (black) T and RH values, respectively, during
4 d (2–6 October). (b, d) Smartphone calibrated data (blue) and weather station (black) T and RH values, respectively, for a different 4 d
(7–10 October).

Figure 3. RH data from two weather stations in Spain extracted from ECAD (2020) marked with red triangles (a), with the exact location
at 36.75° N, 6.0625° W and 36.5° N, 6.2625° W. The RH data collected from smartphones were collected within latitudes 36–37° N and
longitudes 7–6° W (over land). Smartphones were trained using data from 3 previous months in the data sets. (b) The calibrated smartphone
(blue) and meteorological station (black) mean RH data are shown following the training period from June to December 2013 (R2

= 0.72).
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Figure 4. Daily temperatures for Israel from ERA5, IMS, and smartphones. (a, c) Learning data: linear regression equations using the two
data sets over 2.8 years (black, ERA/IMS; red, smartphones). (b, d) Calibrated smartphone data in blue and ERA5 and IMS data in black for
the year of 2016 (R2

= 0.87–0.9). The regression curve uses temperature in units of degrees Celsius.

Figure 5. Daily RH for Israel from ERA5, IMS, and smartphones. (a, c) Learning data: linear regression equations were found using these
two data sets for 2 months (black, ERA/IMS; red, smartphones). (b, d) Calibrated smartphone data in blue and ERA5 and IMS data in black
for September–December 2016 (R2

= 0.83–0.97).
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perature data are significantly impacted by the battery tem-
perature in the phones.

From the temperature data (Figs. 4 and 6) the annual vari-
ations in smartphone T values are apparent (lower T in win-
tertime and higher T in summer), but compared with data
from ECMWF and IMS data the winter temperatures are
always too warm. This can be explained by smartphone T
being affected by internal heat, and, moreover, most smart-
phone temperature measurements in winter are taken in-
doors, as opposed to the official weather stations. In addition,
the ECMWF model has its own obvious biases in wintertime,
often reporting warm biases too. So the ERA5 reanalysis can-
not always be regarded as ground truth. Nevertheless, using
the ECMWF and IMS data to calibrate T dramatically im-
proves the accuracy of the smartphone data. All further anal-
yses were done with daily calibrated smartphone data (T and
RH).

2.2 Vapor pressure deficit (VPD)

Vapor pressure deficit (VPD) is the difference between the
water vapor content of the air and its saturation value
(Eq. 1a). Unlike T and RH each by itself, VPD can reflect
more accurately the ability of the atmosphere to extract mois-
ture from the land surface and fuels and estimate the poten-
tial of fuel for fires. While RH is defined as the ratio between
the actual vapor pressure ea and the saturation vapor con-
tent of the air at a certain temperature, es (Ta), in percentage
(Eq. 1b), it is not an absolute measure like VPD (hPa). In ad-
dition, VPD shows an almost linear relationship with the rate
of evapotranspiration.

VPD= es(Ta)− ea (1a)

RH= 100 ·
ea

es(Ta)
(1b)

VPD can be calculated by using RH and es(Ta), as can be
seen in Eq. (2):

VPD= es(Ta)

(
1−

RH
100

)
, (2)

es(Ta)= 0.61094 · exp
(

17.625T
T + 243.04

)
. (3)

The August–Roche–Magnus approximation (Eq. 3) presents
an empirical relationship for es that implies VPD varies ex-
ponentially as a function of T and RH because es(Ta) de-
pends on the Clausius–Clapeyron equation. In other words,
the same water vapor pressure at different temperatures re-
sults in very different RH values. Despite its low popularity,
VPD has been investigated in several papers and has shown a
high correlation with burnt area for forest fires in the United
States (Williams et al., 2014; Seager et al., 2015; Sedano and
Randerson, 2014; Brown et al., 2023; Rao et al., 2023).

In our analysis we calculated VPD both temporally and
spatially using the calibrated smartphone data (T and RH).

Daily VPD values were calculated for the entire time period
as well as during large fire events. The background climatol-
ogy of VPD was calculated using ERA5 T and RH data from
2000 to 2010 (10 years). These years are independent of our
data (2013–2016) and represent a climatological background
for comparison with the smartphone data.

For the spatial analysis, a spatial anomaly index was cre-
ated using a climatology of VPD in 3 non-fire years from the
smartphone data and averaging the daily VPD at a spatial res-
olution of 1°× 1°. When analyzing the wildfire case studies,
we subtracted the daily mean VPD of a specific month from
the 3-year non-fire monthly mean to calculate the 1VPD
(VPD anomaly). An index of zero means that the daily VPD
is the same as the monthly climatology, and a negative or
positive index indicates that VPD is lower or higher than
usual for this day. An anomaly larger than 2 standard devia-
tions from the climatological VPD represents a statistically
significant anomaly at the 95 % level, while a 3-standard-
deviation anomaly represents a statistical significance greater
than 99.7 %. High positive values of VPD imply enhanced
drying of vegetation and enhanced fire risk.

3 Results

Below, we present the analysis of VPD during wildfire events
in Israel and Portugal between 2013 and 2016 using smart-
phone data.

3.1 Israel

From 18 to 29 November 2016, Israel was influenced by
two different pressure systems causing dry surface winds
from the northeast. There were more than 1770 fires, 40
of which were considered mega-fires (burning more than
4000 ha); houses and properties were destroyed; and around
300 people were injured. The total damage was estimated at
USD 150 million (KKL JNF, 2020). Data from the IMS show
that the overall mean values of the relative humidity during
that period (coming from 80 stations scattered around Israel)
were below 20 %, and at the peak they were as low as 10 %.

Figure 8 shows the temporal and spatial analysis on re-
gional maps showing the absolute VPD (Fig. 8 top pan-
els) and the VPD anomaly (Fig. 8 bottom panels) calculated
from smartphones for individual days in November 2016.
The maps start on 16 November, with a 3 d interval between
each map (a–e). From 22 to 27 November, widespread fires
occurred, with the VPD evolving during these 2 weeks. As
mentioned before, 1VPD is calculated using the monthly
mean of the calibrated VPD for a specific month (here
November 2013, 2014, and 2015) and subtracting November
2016 daily means from the November 3-year monthly mean.
Figure 8 shows extreme anomalies (> 8 hPa) in VPD during
the days of wildfire (22–27 November).

https://doi.org/10.5194/nhess-24-3035-2024 Nat. Hazards Earth Syst. Sci., 24, 3035–3047, 2024
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Figure 6. Daily temperatures for Portugal from ERA5 and smartphones. (a) Learning data: linear regression equations were found using
these two data sets over 1.6 years (black, ERA; red, smartphones). (b) Calibrated smartphone data in blue for the year of 2015 (R2 > 0.8).
The peak temperatures were associated with the extreme heat in the Iberian Peninsula in April 2015, with temperatures reaching nearly 40 °C
at some locations.

Figure 7. Daily RH for Portugal from ERA5 and smartphones. (a) Learning data: linear regression equations were found using these two
data sets over a 7-month period (black, ERA; red, smartphones). (b) Calibrated smartphone RH data in blue for the year of 2014 (R2

= 0.55).

Figure 9 shows July to December 2016 daily VPD cal-
culated from smartphones (red line) across Israel, compared
with the 2000–2010 climatology of daily mean VPD for
the same area from ERA5 (dashed blue line), together with
1 standard deviation (light blue lines). A significant increase
and anomaly in VPD are detected a day before the fires start
(21 November 2016) and during the fires, with an increase
that starts at 1σ going up to 8σ . Hence, this anomaly in
VPD in November, detected by the smartphones, is statis-
tically significant at the 99.9999 % level. There was also an-
other large VPD positive anomaly at the end of August 2016,
implying high wildfire danger. However, no significant fires
occurred.

3.2 Portugal

According to Forest Fires in Europe, Middle East and North
Africa reports for 2013–2016 (Schmuck et al., 2014, 2015;
San-Miguel-Ayanz et al., 2016, 2017), in 2013 Portugal was
severely affected by fires. More than 350 fires bigger than
40 ha occurred in Portugal, while most of the damage oc-
curred between July and September. The fire season in Por-
tugal was more severe in 2013 due to the easterly flow over
the Portuguese mainland providing hot continental air over
the fire areas. The year 2016 is ranked second after 2013,
with a similar burnt area but fewer fires in numbers (Table 2).
The smartphone analysis for the Iberian Peninsula is shown
in Figs. 10 and 11 and is evaluated for latitudes 37–43 N
and longitudes 9–6 W. Fires in this region were examined us-
ing data from the European Forest Fire Information System

Nat. Hazards Earth Syst. Sci., 24, 3035–3047, 2024 https://doi.org/10.5194/nhess-24-3035-2024
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Figure 8. (a–e, top) Absolute VPD calculated from smartphones for days in November 2016, starting with 16 November and with a 3 d
interval between each map. Extreme wildfires occurred from 22 to 27 November (locations of fires are marked with black symbols). (a–e,
bottom) 1VPD calculated from smartphones for days in November 2016, starting with 16 November and with a 3 d interval between each
map. Extreme wildfires occurred from 22 to 27 November (locations of fires are marked with black symbols).

Figure 9. Israel July–December 2016 daily mean calibrated smartphone VPD (red) vs. 10-year (2000–2010) daily mean VPD for the same
area from ERA5, with 1 standard deviation (light blue envelope) used as the background reference climatology of VPD. Fires indicated with
red marks had a total burnt area of 4100 ha.

(EFFIS, https://effis.jrc.ec.europa.eu, last access: 7 February
2019).

Figure 10 (top panels) shows the temporal and spatial anal-
ysis, where the maps show the absolute VPD values calcu-
lated from smartphones for days in July 2013, starting with

2 July and with a 3 d interval between each map, while on
8 July a large wildfire occurred (> 15000 ha). Figure 10 (bot-
tom panels) shows the 1VPD index, calculated using the
monthly mean VPD of the discussed month (here July 2014,
2015, and 2016) and subtracting July 2013 daily means from
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Figure 10. (a–e, top) Absolute VPD calculated from smartphones for days starting with 2 July and with a 3 d interval between each map.
The wildfires occurred on 8 July 2013 with total burnt area > 15000 ha (locations of fires are marked with black symbols). (a–e, bottom)
VPD anomalies calculated from smartphones for days starting with 2 July and with a 3 d interval between each map. The fires occurred on
8 July 2013 with total burnt area > 15000 ha (locations of fires are marked with the black symbol).

Figure 11. Portugal June to December 2013 daily mean calibrated smartphone VPD (red) compared with 10-year (2000–2010) daily mean
VPD for the same area from ERA5 with 1 standard deviation (light blue envelope) used as the background reference climatology of VPD.
Large fires are indicated with red symbols. In July 2013, the total burnt area was > 15000 ha. In late November and early December 2013,
the total burnt area was > 1660 ha.

the July 3-year monthly mean. Figure 10 shows large extreme
anomalies in VPD (> 8 hPa) in the day before and during the
wildfire (8 July 2013). The regions in white did not have suf-
ficient smartphone data for this analysis.

Figure 11 shows June to December 2013 daily VPD cal-
culated from smartphones (red line) and the 2000–2010 daily

mean VPD for the same area from ERA5 (dotted blue line),
together with 1 standard deviation (blue lines). A signifi-
cant increase in VPD is detected 2 weeks before the fire,
when VPD remains high above the SD background enve-
lope, and it reaches a maximum anomaly 3 d before the large
fire (5 July 2013), with VPD values of more than 6σ and

Nat. Hazards Earth Syst. Sci., 24, 3035–3047, 2024 https://doi.org/10.5194/nhess-24-3035-2024
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Table 2. Number of fires and total burnt area (ha) in Portugal for
years 2013–2016.

Year 2013 2014 2015 2016

Number of fires 19 291 7067 15 851 13 261
in Portugal

Total burnt area (ha) 152 756 19 929 64 443 161 522

remaining around these values for 2 d after the fire started
(10 July 2013). Such large anomalies are statistically sig-
nificant above the 99.999 % level and suggest that dry and
hot weather was surrounding the Portugal region, drying fu-
els and increasing the fire risk. Another interesting observa-
tion is the high VPD value around the end of November and
the beginning of December 2013. December was surprisingly
dry, with more than 510 fires reported and more than 1660 ha
burnt around Portugal.

4 Conclusions and discussion

We have analyzed vapor pressure deficit (VPD) anomalies
from crowdsourced smartphones to show the potential of
smartphone data for detecting significant drying anomalies
related to wildfire events in two different locations in the
Mediterranean region. The November 2016 fires in Israel to-
gether with the 2013 fires in Portugal were caused by dry
weather that caused rapid drying out of surface fuel and lo-
cal vegetation. The smartphone-calculated VPD anomalies in
these two locations closely match the periods of severe dry
weather and severe wildfires.

Large anomalies in VPD, calculated with calibrated smart-
phone T and RH data, often occur days before the fires start
while continuing to rise during the fire periods, reaching 6–
8 standard deviations above the mean – a highly statistically
significant anomaly (> 99.9999 % significance). In our two
case studies the VPD anomalies at their peaks were above
+8 hPa. In this study we considered the daily mean VPD.
This may introduce biases in the actual extreme VPD val-
ues, since some of the data may have been collected outdoors
(daytime) and indoors (nighttime). In addition, there have
been recent studies highlighting the importance of night-
time VPD for the effectiveness of fire suppression operations
(Balch et al., 2022). During nighttime, fuels may recover part
of their moisture content; when VPD remains high at night,
this process is hindered and fuels’ flammability remains high,
thus supporting the rapid spread of fire.

Not every significant increase in VPD leads to a fire, since
without an ignition source a fire will not occur. Further-
more, smartphones may give inaccurate readings since they
are non-stationary, moving from desk to pocket, from indoor
A/C to outdoors, and sometimes from countryside to urban
heat islands. Of course, fire weather and warning depend on

additional more complex parameters, such as solar radiation,
types of fuel at the surface and subsurface, topography, cloud
cover, and ignition sources. However, many of these param-
eters may be reflected in the local temperature and humidity
fields.

Our vision is to one day use crowdsourced smartphone
data to extract useful information that will help provide early
warnings of fire hazards and risks. Such warnings could be
supplied in real time to the public, and they could be sup-
plied to firefighters and emergency management authorities
at high spatial resolution and close to real time. In the fu-
ture, such warnings could be supplied on a smartphone ap-
plication made available to users that contribute their data to
the crowdsourced early-warning algorithm. As with mapping
applications for traffic and hiking, future applications can be
developed to supply smartphone sensor data to a central pro-
cessing unit and within a few seconds receive in return the
fire hazard index on the user’s phone.

We propose that crowdsourced smartphone data may even-
tually provide superior spatial resolution than regular mete-
orological networks as the density of smartphones over the
world grows. Obviously, these data need to be obtained first
in order to use them, but the coverage of these high-volume–
high-density data is far greater than the coverage of station-
ary weather stations. This is especially true in developing
countries where other sources of public early warnings are
less available. In conclusion, we encourage the future use of
smartphone data collected by the public to help monitor ex-
treme fire hazard conditions at high temporal and spatial res-
olution. However, it should also be noted that this research
was done using smartphones in the market between 2013
and 2017. This includes all smartphone models that down-
loaded the WeatherSignal app during that period. The more
recent smartphones have fewer sensors, and the relative hu-
midity sensor is less common in recent smartphones in order
to fulfill customers’ demands to make smartphones more ro-
bust against water. In addition, due to the number of data
available to us from WeatherSignal, we averaged the data on
1°× 1° grid boxes. While we have shown that when com-
paring with individual weather stations the agreement is sig-
nificant (Figs. 2 and 3), we recommend future analysis with
better data be performed at 0.1° spatial resolution and 1 h
temporal resolution.

It is true that other observation networks can also supply
the data supplied by smartphone users, often at better qual-
ity. However, the novelty of our methodology is using sen-
sors that are commonly found in smartphones carried by the
public without specifically purchasing these sensors from the
users, and often the users do not even know they are collect-
ing these data. The crowdsourcing method presented here is
not intended to replace conventional methods of collecting
meteorological data but as an additional tool to use, particu-
larly since these sensors are non-stationary, have high density
in populated areas, and are beneficial in developing coun-
tries where smartphones are quite well distributed compared
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to fixed meteorological sensors. Furthermore, the connectiv-
ity of smartphones via the cell phone networks is built in
and transparent compared regular stationary observation net-
works.

Finally, to address privacy issues when using smartphone
data, we suggest data collection apps to save and sup-
ply only area-averaged values (superobs) (McNicholas and
Mass, 2021) to researchers and users. Supplying gridded data
at 1 km spatial resolution and 1 h temporal resolution would
eliminate any privacy and user identification issues.

Data availability. The smartphone data can be obtained di-
rectly from Opensignal (https://www.opensignal.com/, last ac-
cess: 6 March 2017, Opensignal, 2015) via their WeatherSignal
app (https://weathersignal.en.uptodown.com/android, last access: 6
March 2017). The ERA5 data are available from the ECMWF
(https://doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2020).
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