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Abstract. Meteorological and hydrological hazards present
challenges to people and ecosystems worldwide, but the lim-
ited length of observational data means that the possible ex-
treme range is not fully understood. Here, a large ensemble
of climate model data is combined with a simple grid-based
hydrological model to assess unprecedented but plausible hy-
drological extremes in the current climate across England.
Two case studies are selected – dry (summer 2022) and wet
(autumn 2023) – with the hydrological model initialised from
known conditions and then run forward for several months
using the large climate ensemble. The modelling chain pro-
vides a large set of plausible events including extremes out-
side the range from use of observed data, with the lowest
flows around 28 % lower on average for the summer 2022
drought study and the highest flows around 42 % higher on
average for the autumn 2023 flood study. The temporal evo-
lution and spatial dependence of extremes are investigated,
including the potential timescale of the recovery of flows to
normal levels and the chance of persistent extremes. Being
able to plan for such events could help improve the resilience
of water supply systems to drought and improve flood risk
management and incident response.

1 Introduction

Meteorological and hydrological hazards – storms, floods,
and droughts – present challenges to people, infrastructure,
and ecosystems globally (Beevers et al., 2022; Mokhtari
et al., 2023). The relatively limited period of available ob-

servational data means that the possible range of extremes
of such events is often not fully understood. For example,
Thompson et al. (2017) show that in SE England there is a
7 % chance of exceeding the current observed rainfall record
in at least one month in any given winter, with a 34 %
chance of breaking a regional record somewhere in England
and Wales. Similarly, Kent et al. (2022) investigate plausi-
ble summer rainfall extremes, showing an approximately 1 %
chance per year of exceeding current daily rainfall records in
the UK in the current climate. Chan et al. (2023) show an
approximately 9 % chance of a summer month with lower
rainfall than the observed driest summer in SE England in
the current climate. When such unprecedented events do in-
evitably occur, they can lead to very severe impacts (Bertola
et al., 2023). This is not just because of their unprecedented
magnitude but also due to inherent unpreparedness, given
that water supply systems, flood infrastructure, and related
risk management strategies are typically adapted to histori-
cal ranges of variability (Kjeldsen and Prosdocimi, 2016).

One possible way to assess how events may unfold is the
use of a so-called “storyline” approach; a storyline is typ-
ically defined as a “physically self-consistent unfolding of
past events, or of plausible future events or pathways” (Shep-
herd et al., 2018). This approach has been advocated in the
context of future climate change as a way of circumventing
the deep uncertainties associated with future climate pro-
jections by placing more emphasis on driving factors and
plausibility than probability (Shepherd et al., 2018). In this
context it has links to so-called H++ scenarios, which are
plausible but high-end scenarios of climate change (Reynard
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et al., 2017). But storylines can equally be applied in the con-
text of past events by developing plausible counterfactuals,
i.e. alternative ways that those events could have unfolded
even in the current climate (Sillmann et al., 2021). For ex-
ample, Chan et al. (2022) developed storylines for the UK
drought of 2010–2012 by applying changes to the observed
event based on (i) antecedent conditions (applying progres-
sively drier conditions), (ii) temporal sequencing (adding a
dry winter before or after the observed event), and (iii) cli-
mate change. The results showed the importance of hydro-
logical initial conditions and the vulnerability of catchments
in Britain to a “third dry winter”. Such studies can aid pre-
paredness by enabling planning for events similar to, but
more extreme than, known events (with known responses and
impacts). However, the development of storylines in this way
requires expert judgement on plausibility, and on the factors
important to the development of a particular event. Possi-
ble spatial factors may also be neglected; for example Chan
et al. (2022) apply the same storylines for catchments across
Britain, treating catchments essentially independently.

The use of large ensembles of climate data can reduce
the need for expert judgement and enable spatially consis-
tent analyses and estimation of likelihoods. The extreme win-
ter rainfall study of Thompson et al. (2017) was based on a
large ensemble of high-resolution initialised global climate
simulations (termed “UNSEEN”, UNprecedented Simulated
Extremes using ENsembles), thus “directly sampling more
extreme cases than the available observations, allowing the
identification of unprecedented rainfall events to assess their
likelihood in the real world”. Statistical modelling could also
be used to estimate the probability of unprecedented rainfall
from observations, and this is increasingly done in practice in
UK water resources management using stochastic simulation
(e.g. Dawkins et al., 2022). However, the use of a dynamical
model is judged to better preserve physical plausibility and
spatial dependence (Thompson et al., 2017). Data from either
could be used to drive hydrological models to enable sub-
sequent assessment of potentially unprecedented hydrolog-
ical extremes, but the likely better representation of spatial
structures in dynamical models is important if large or multi-
ple (not independent) catchments are being considered. Chan
et al. (2024) used a large ensemble of seasonal global model
hindcast data to drive catchment-based hydrological models
for 16 catchments (plus a groundwater model for 10 bore-
holes) in the Anglian region of England, and used the sum-
mer 2022 drought as a case study to explore plausible sto-
rylines of development into 2023. Brunner and Slater (2022)
show that pooling reforecast ensemble members of European
river flows enables more robust estimates of very extreme
flood events (those occurring less than twice in 100 years),
with reduced uncertainty bounds compared to observation-
based estimates.

Here, an expanded version of the UNSEEN ensemble of
Thompson et al. (2017) is used in combination with a sim-
ple grid-based hydrological model for Great Britain (GB),

to assess unprecedented but plausible hydrological extremes
in the current climate. For hydrological modelling, the an-
tecedent conditions (e.g. water stored in the soil and ground-
water) are an important factor in subsequent river flows.
Thus two case studies are selected, one very dry (summer
2022, associated with a major national-scale drought) and
one very wet (autumn 2023, associated with persistent and
large-scale flooding), with the hydrological model initialised
from known conditions at the start of each case study, then
run forward for a number of months using the large ensemble
of UNSEEN climate data. The case studies are used to illus-
trate the potential of the approach to provide unprecedented
but plausible temporal and spatial hydrological extremes.

2 Data and methods

2.1 The UNSEEN climate datasets

The UNSEEN dataset used in this study comes from two
hindcast ensembles of the Met Office Decadal Prediction
System version 3 (DePreSys3; Dunstone et al., 2016), which
is based on the Hadley Centre global coupled model (GCM)
HadGEM3-GC2 (Williams et al., 2015). The model has an
atmospheric grid resolution of ∼ 60 km in the midlatitudes,
and an ocean resolution of 0.25 °. The first ensemble is ini-
tialised every 1 November and the second is initialised every
1 May, and each has 40 ensemble members (realisations) but
they are run for different lengths of time:

– 16-month periods starting in each November from 1959
up to 2021;

– 11-month periods starting in each May from 1960 up to
2022.

Differences between ensemble members are solely due to
natural variability; i.e. there are no changes to GCM struc-
ture or parameterisation. Monthly rainfall rates (mmd−1) are
provided on a lat–long grid, for a region covering most of
the UK (Fig. 1a). The data for each realisation in an n-month
period are considered dependent.

The GCM rainfall data are processed via the two steps be-
low.

– Bias-corrected using simple monthly factors. Biases in
the temporal and spatial patterns of the GCM rainfall
data are corrected as simply as possible, using monthly
60 km grids of correction factors. These are derived
for each month of the November-initialised and May-
initialised data separately (i.e. there are 16 resulting
grids of correction factors for the November-initialised
runs and 11 for the May-initialised runs), by compar-
ing the GCM monthly mean precipitation across all ini-
tialisation years and realisations against monthly mean
observed precipitation from HadUK-Grid 1 km data for
1961–2020 (Met Office et al., 2021) averaged up to
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Figure 1. (a) Identifying GCM grid boxes on the GB national grid. (b) The standard average annual rainfall (SAAR) ratios used for down-
scaling GCM rainfall to the 1 km grid. (c) The 17 UK Hydrological Outlook regions, with the eight regions used here on the left-hand list
(green) and the rest on the right-hand list (blue).

the GCM grid. The grids of correction factors are then
smoothed using a 3× 3 grid around each cell, with a
weight of 1/2 for the centre cell and 1/16 for each of the
eight surrounding cells (unless any surrounding cell has
missing data, in which case its weight is added to that

of the centre cell). A similar bias correction is derived
for regional climate model (RCM) precipitation data by
Kay (2021). Maps of the correction factors are shown in
Figs. S1 and S2 in the Supplement; these show that the
GCM rainfall is typically too low (correction factor > 1)
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in August and September but is too high in other months
in some parts of the country.

– Downscaled to the 1 km GB national grid. The hydro-
logical model (Sect. 2.2) requires 1 km inputs, which
are derived from the ∼ 60 km lat–long data by identi-
fying the GCM grid box to use for each 1 km grid box
(Fig. 1a) and distributing the data non-uniformly over
the 1 km grid boxes within each GCM grid box using
ratios of 1 km to GCM grid box mean standard average
annual rainfall (SAAR) (Bell et al., 2007; Kay et al.,
2023b). The SAAR ratios are shown in Fig. 1b; these
show greater variation in ratios (and therefore in the
downscaled rainfall data) within 60 km grid boxes in the
north and west, which are typically hillier, with much
less variation in ratios within grid boxes in the flatter
south and east. The ratios thus principally indicate topo-
graphic effects on spatial rainfall distribution, including
rain-shadow effects.

2.2 The hydrological model

Grid-to-Grid (G2G) is a grid-based runoff production and
routing model, operating on a 1 km grid at a 15 min time step
across Great Britain (Bell et al., 2009). It is used for oper-
ational flood forecasting for England, Wales, and Scotland
(Price et al., 2012; Cranston et al., 2012) and has been used
to estimate the potential future impacts of climate change on
river flows across Britain (e.g. Kay et al., 2023a). However,
the short time step of the model (required for stability of the
routing scheme given the 1 km grid scale) means that runs
take an amount of time that is not insignificant. For a sea-
sonal forecasting application, where a relatively large num-
ber of runs were required using coarse (temporal and spatial)
climate data, a simple monthly water balance model (WBM)
was developed, based upon G2G (Bell et al., 2013, 2017).

The WBM uses data from long historical runs of G2G
(1 km grids of the long-term means of monthly actual evap-
oration (AE), flow, and subsurface water storage) as well as
information on the network of flow paths used by G2G, and it
is initialised using an estimate of subsurface water storage on
a 1 km grid across GB, also taken from G2G for the required
date. The WBM forms one component of the UK Hydrolog-
ical Outlook (UKHO; Prudhomme et al., 2017), where it is
initialised using a G2G estimate of subsurface water storage
derived using the most recent observations of rainfall and po-
tential evaporation (PE) and then run forward, driven by an
ensemble of Met Office rainfall forecasts for 1 and 3 months
ahead, to provide forecasts of regional mean river flows. The
results are combined with those from a number of other fore-
casting approaches to produce a monthly hydrological out-
look for the UK (https://hydoutuk.net, last access: August
2024, https://ukho.ceh.ac.uk, last access: March 2024).

Bell et al. (2017) provide an assessment of the perfor-
mance of the WBM compared to G2G, driving both with ob-

served 5 km gridded rainfall data (1962–2010) and initialis-
ing the WBM from G2G at the start of each month. Regional
means of standardised 1 km river flows for 17 regions across
GB (those in Fig. 1b), for 1 and 3 months ahead, show corre-
lations of over 0.8 in all cases.

2.3 Applying the climate data – two case studies

As described in Sect. 2.2, the WBM needs to be initialised
using an estimate of subsurface water storage on a 1 km grid
across GB, which is generally taken from a run of G2G
driven by observed rainfall and PE data. Here, the WBM is
initialised for two case study events:

1. summer 2022 drought and

2. autumn 2023 flood.

For each case study, the G2G model is run with daily ob-
served data up to the end of the previous month to produce
the initial conditions used by the monthly WBM. The ob-
served data consist of 1 km HadUK-Grid precipitation (Met
Office et al., 2021) and MORECS PE (Hough and Jones,
1997). Then the WBM is run forward for a number of months
using both UNSEEN ensembles for all realisations and all
initialisation years (1961–2022), regardless of the year in
which the UNSEEN climate data were initialised (hereafter
“WBM UNSEEN”; Table 1).

For each case study, the WBM is also run forward for
the same period using all years of historical HadUK-Grid
1 km precipitation data (1961–2022), not just the year corre-
sponding to the case study (hereafter “WBM Obs”). This is
analogous to the “ensemble streamflow prediction” method
used as part of the UKHO (Harrigan et al., 2018), where
an ensemble of historical sequences of daily weather data is
used to drive a lumped hydrological model from given initial
conditions for catchments across the UK.

The use of UNSEEN (and observed) data from all years
allows the widest examination of possible subsequent rain-
fall pathways following summer 2022 and autumn 2023. The
relatively long lead times of the UNSEEN data used here (Ta-
ble 1), and hence the relatively weak predictable UK rainfall
signals, result in a large dataset with a wide range of possible
outcomes including well-sampled dry (after summer 2022)
and wet (after autumn 2023) extreme tails. The WBM Obs
ensemble provides a “benchmark” that enables an assess-
ment of the added value of the WBM UNSEEN ensemble.

For droughts, which typically evolve relatively slowly due
to accumulated rainfall deficits, the monthly time step of the
modelling chain is likely sufficient. Floods can develop and
recede much more quickly, so a finer time step would ideally
be required (particularly for smaller/flashier catchments), but
the monthly system can still give an indication of the flood
potential; this is discussed further in Sect. 4.2.
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Table 1. The time periods covered by the November- and May-initialised UNSEEN climate ensembles, and their use in each case study. The
grey boxes indicate UNSEEN data months regarded as spin-up. The vertical green lines indicate the WBM initialisation for each case study
(end of July 2022 for the summer 2022 drought study and end of October 2023 for the autumn 2023 flood study).

2.3.1 Summer 2022 drought

July 2022 was exceptionally warm and dry in the UK, with
widespread record-breaking maximum temperatures and ex-
tremely low rainfall across England (< 70 % of average for
the majority of the country but < 10 % over large parts
of the south and east including Anglian) (Barker et al.,
2024; Hannaford et al., 2022). The preceding 4 months had
also been dry (< 90 % of average across the whole country,
with < 70 % in large areas, particularly in the south and east)
(Sefton et al., 2022), leading to river flows and reservoirs
reaching exceptionally low levels across much of England,
particularly in catchments in the south, and the introduction
of temporary use bans by several water companies in south-
ern England (Barker et al., 2024; Hannaford et al., 2022).

Here we ask the question, “how much worse might the
situation have become?” To do this, the WBM is initialised
from G2G subsurface conditions from the end of July 2022
and run to the end of February 2023 (7 months), with every
UNSEEN initialisation year and realisation and with every
observed data year. This gives 4960 WBM UNSEEN runs for
each month (2 ensembles× 62 initialisation years× 40 re-
alisations) vs. only 62 historical sequences for WBM Obs,
hence enabling a more robust assessment of rare low ex-
tremes.

2.3.2 Autumn 2023 flood

October 2023 was exceptionally wet across most of Eng-
land, with rainfall totals exceeding 150 % of the average
widely (apart from the southwest and northwest) and ex-
ceeding 250 % in some areas (particularly in the north and
east) (Hannaford et al., 2023). September had also been rel-
atively wet (exceeding 110 % of the average across much of
the country, apart from the far southeast and some limited
pockets elsewhere, and exceeding 150 % in some areas in the
northwest, northeast, and southwest), and, while August was

near-average, July also saw exceptional rainfall across the
country, leading to notable rainfall accumulations over this
3-month period (Sefton et al., 2023a). This led to river flows
reaching notably high levels across much of England, with
elevated flood risk in many areas.

We again ask the question, “how much worse might the sit-
uation become?” In a similar way to the summer 2022 analy-
sis, the WBM is initialised from G2G subsurface conditions
from the end of October 2023 and run to the end of Febru-
ary 2024 (4 months), with every UNSEEN initialisation year
and realisation and with every observed data year. This again
gives 4960 WBM UNSEEN runs for each month vs. only 62
for WBM Obs, hence enabling a more robust assessment of
rare high extremes.

2.4 Flow analyses

The WBM provides monthly mean river flows on a 1 km grid,
but in the UKHO these are typically standardised (by divid-
ing by long-term mean flow from a set of observation-driven
runs), and the standardised flows are displayed on a 1 km grid
or averaged across 17 regions (Fig. 1c). This WBM approach
was originally developed to provide an indication of the rel-
ative magnitude of monthly and regional mean river flows
across GB using spatially coarse GloSea5 rainfall forecasts
(Bell et al., 2017). A very similar approach is used here;
although the DePreSys3 hindcasts have an improved spa-
tial resolution, they are still relatively coarse, and focusing
on regional mean flows greatly simplifies subsequent analy-
ses and plotting. The results focus on eight regions of Eng-
land: NW England, Northumbria, Severn-Trent, Yorkshire,
Thames, Anglian, Wessex, and SE England (Fig. 1c).

2.4.1 Fidelity tests

Fidelity tests on WBM flow estimates are performed in a sim-
ilar way to that applied to the UNSEEN rainfall data (Thomp-
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son et al., 2017, their Fig. 2). That is, for each case study and
region,

– the WBM UNSEEN-simulated flows (May- and
November-initialised) are resampled 1000 times, with
each sample randomly selected from the 40× 2 avail-
able realisations for the year, producing a time series of
the same length as the WBM Obs time series;

– for each resample, the mean, standard deviation, skew-
ness, and kurtosis statistics are calculated;

– the same statistics are calculated for the WBM Obs-
simulated flows;

– if, for all four statistics, the WBM Obs flow value sits
within the 2.5 %–97.5 % range of the values from the
1000 resamples of the WBM UNSEEN simulations,
then the WBM UNSEEN simulations are considered
to have passed the test (i.e. the distributions of WBM
Obs and WBM UNSEEN flow values for the region and
month are considered indistinguishable), and if the test
is only failed for one of the four statistics, then this is
noted.

Passing the fidelity tests gives confidence in the ability of
the WBM and UNSEEN GCM precipitation to simulate ap-
propriate distributions of monthly mean river flows in a re-
gion, given the WBM initialisation for each case study.

2.4.2 Extreme flows

For each case study, the monthly time series of regional mean
flows from the full set of years and realisations of WBM
UNSEEN are plotted as the median and range (5th–95th per-
centiles and overall min and max). The November- and May-
initialised ensembles are combined together. For comparison,
the median and range from WBM Obs are also shown.

For historical context, the time series of monthly regional
mean flows for the previous 2 years are shown for each re-
gion, along with long-term mean flow ranges derived for the
preceding years (from 1963). These are derived from runs
of the WBM driven by observed data for 1963–2023, with
initialisation (using G2G data) at the start of every month
(hereafter “WBM Obs 1 m”). For each region, long-term
mean flow ranges are derived by extracting the 5th, 13th,
28th, 72nd, 87th, and 95th percentiles for each month, along
with the overall min and max. These percentiles are cho-
sen to match those defining the seven classes used in the
UKHO: “exceptionally low” (< 5th), “notably low” (5th–
13th), “below normal” (13th–28th), “normal” (28th–72nd),
“above normal” (72nd–87th), “notably high” (87th–95th),
and “exceptionally high” (> 95th) (https://ukho.ceh.ac.uk,
March 2024).

The WBM Obs 1 m run described above is not directly
comparable to the WBM UNSEEN and WBM Obs ensem-
ble runs, since the former is re-initialised from G2G for ev-
ery month, whereas the latter are only initialised at the start

of each case study and then run forward for the n months
of each study (where n is 7 for the summer 2022 drought
and 4 for the autumn 2023 flood). To demonstrate any dif-
ference this may make, a further run is performed using ob-
served driving data for each case study but only initialising
at the start and then running forward for n months (hereafter
“WBM Obs n-m”).

2.4.3 Temporal and spatial variation in extreme flows

The UNSEEN-derived extreme flows are assessed, for each
case study, by selecting and plotting the ensemble member
giving the most extreme flows for each month of the simula-
tion and investigating how these vary temporally (for con-
secutive months) and spatially (for neighbouring regions).
The UNSEEN ensemble member is defined by the ensemble
(November or May), the initialisation year, and the realisa-
tion number (out of 40); see Sect. 2.1.

2.4.4 Recovery or persistence of extreme flows

The long-term mean flow bands (Sect. 2.4.2) are used to as-
sess the chance of flows recovering to normal by each month
in each region for each case study. For example, for the sum-
mer 2022 drought case study, in each region each ensemble
member is assessed to see whether the flows have reached
the normal flow band (or higher) by month m but are still in
a lower flow band for each month of the simulation prior to
month m. Similarly, for the autumn 2023 flood case study,
in each region each ensemble member is assessed to see
whether the flows have reached the normal flow band (or
lower) by month m but are still in a higher flow band for
each month of the simulation prior to month m. The number
of ensemble members recovering to normal is then expressed
as a percentage of the full ensemble and plotted for each re-
gion and each case study. In a similar way, the chance of
flows remaining at least exceptionally low (high) is assessed
for summer 2022 (autumn 2023).

3 Results

3.1 Fidelity tests

The results of the flow fidelity tests are summarised in Ta-
ble 2 for the each case study, indicating a pass (“1”) or fail
(≤ 0) for each month and region, with a negative number in-
dicating which statistic the test failed on if it only failed on
one of the four. These show overall pass rates of 86 % and
78 % for the summer 2022 drought and autumn 2023 flood
events, respectively. Note that there are no failures only on
the mean (“−1”) because of the correction applied to GCM
precipitation data for mean monthly rainfall (Sect. 2.1).

Most of the failures occur in February; the pass rates
leaving out February are 96 % and 96 %, respectively. The
failures in February are only related to the standard devi-
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Table 2. The results of fidelity tests for the summer 2022 drought (left) and autumn 2023 flood (right) case studies. “1” indicates a pass for
all four statistics, while ≤ 0 indicates a fail for at least one statistic. If there is only a FAIL on one statistic then the negative number indicates
which one (−1 mean, −2 SD, −3 skewness, −4 kurtosis).

Summer 2022 drought Autumn 2023 flood

Aug Sep Oct Nov Dec Jan Feb Nov Dec Jan Feb

NW England 1 1 1 1 1 1 −2 1 1 1 −2
Northumbria 1 1 1 1 1 1 −2 1 −3 1 −2
Severn-Trent 1 1 1 1 1 1 −2 1 1 1 −2
Yorkshire 1 1 1 1 1 1 −2 1 1 1 −2
Thames 1 1 1 1 1 1 −2 1 1 1 −2
Anglian 1 1 −4 1 1 1 1 1 1 1 1
Wessex 1 1 1 1 1 1 1 1 1 1 1
SE England 0 1 1 1 1 1 −2 1 1 1 −2

ation (“−2”), which is due to this being too low for rain-
fall in the climate model runs (Kelder et al., 2022). This is
partly due to the extremely wet February 2020 (Davies et al.,
2021); removing this from the February fidelity testing leads
to passes in six out of eight regions for both the summer 2022
drought and the autumn 2023 flood (compared to only two
when February 2020 is included). In each case, the test still
fails in Thames and SE England. There are limited failures
in months other than February but notably for SE England in
August – the latter fails on both skewness and kurtosis which
seems to be due to the WBM UNSEEN ensemble providing
more extreme high flows than the WBM Obs ensemble, but
lower flows are better represented.

3.2 Extreme flows

Plots of the median and range of regional mean flows are
shown in Fig. 2 for the summer 2022 drought case study
and Fig. 3 for the autumn 2023 flood case study. These
show that using the large ensemble of UNSEEN data gives
more extreme flows than using all of the historical observed
data (dotted red lines vs. dotted grey lines), although the
5th, 50th, and 95th percentiles from WBM UNSEEN and
WBM Obs are all similar (dashed and dash-dotted orange
vs. dashed and dash-dotted grey), as expected from the fi-
delity tests. It should be emphasised that, for both WBM
UNSEEN and WBM Obs, the min and max (dotted lines)
represent the overall envelope of the ensemble of simulations
for each month, so they do not necessarily represent a plausi-
ble monthly evolution of the flows (see Sect. 3.3). On average
across the eight regions, for the 7 months of the summer 2022
drought case study, the low envelope of the WBM UNSEEN
flows is 28 % lower than that of the WBM Obs flows and, for
the 4 months of the autumn 2023 flood case study, the high
envelope of the WBM UNSEEN flows is 42 % higher than
that of the WBM Obs flows.

Figure 2 also shows that the simulations from WBM Obs
1 m (solid black line; initialised at the start of every month)
and WBM Obs n-m (dashed black line; only initialised at

the start of the case study period) are very similar. However,
Fig. 3 shows that the WBM Obs n-m simulation tends to
over-estimate high flows relative to the WBM Obs 1 m re-
initialised simulation; see Sect. 4.2 of the Discussion.

The effect of initialisation is clear in all regions but longer-
lasting in some. For example, for the summer 2022 drought
study, the conditions in July 2022 are obviously very dry (be-
low normal in all regions and exceptionally low in some).
In Severn-Trent the max from WBM Obs (top dotted grey)
has increased from below the long-term max to match it by
February 2023, whereas in Thames the WBM Obs max is
still well below the long-term max by then. In all regions
though, the min from WBM Obs (lower dotted grey) stays
below the long-term min.

Similarly, for the autumn 2023 flood study, the conditions
in October 2023 are very wet (above normal in all regions
and exceptionally high in some). In Northumbria the max
from WBM Obs (top dotted grey) has decreased from above
the long-term max to match it by December 2023, whereas in
Anglian the WBM Obs max is still well above the long-term
max even by February 2024. This is due to the presence of
significant groundwater stores in regions in the south and east
of England, which typically respond much more slowly to
weather conditions than the shallower stores typically found
in the north and west of England (Svensson et al., 2015). The
WBM has information about the spatial differences in sub-
surface stores from the data it takes from long historical runs
of G2G (Sect. 2.2).

3.3 Temporal and spatial variation in extreme flows

It is important to note that the WBM UNSEEN extremes for
consecutive months are often not given by the same UN-
SEEN climate ensemble member (ensemble, initialisation
year, and realisation; Sect. 2.1). Similarly, the extremes for
different regions, even neighbouring ones, are often not given
by the same ensemble member. This is illustrated for four re-
gions for the summer 2022 drought (Fig. 4) and for the au-
tumn 2023 flood (Fig. 5). Similarly, the WBM Obs extremes
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Figure 2. Regional mean flows for the summer 2022 drought case study. The dashed/dash-dotted/dotted lines show the median/5th–95th/min–
max across the ensemble using all the observed driving data (grey) and all the UNSEEN driving data (orange/red) for the WBM initialised
from the end of July 2022. The WBM flows driven by observed data for January 2021–February 2023 and initialised at the start of every
month are also shown (WBM Obs 1 m; solid black line), as are the WBM flows driven by observed data for August 2022–February 2023 but
only initialised at the start (WBM Obs n-m; dashed black line). For historical context, the coloured areas show the ranges from WBM Obs
1 m for 1963–2020: min, 5th, 13th, 28th, 72nd, 87th, 95th, and max percentiles. Note the log scale on the y axis to emphasis lower flows.
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Figure 3. As in Fig. 2 but for the autumn 2023 flood case study. For historical context, the coloured areas show the ranges from WBM Obs
1 m for 1963–2021: min, 5th, 13th, 28th, 72nd, 87th, 95th, and max percentiles.
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Figure 4. Regional mean flows for the summer 2022 drought case study for the ensemble member giving the lowest flow in each month
(coloured solid lines in order from August 2022 to February 2023, with labels identifying the ensemble member by ensemble (November or
May), initialisation year, and realisation number). As in Fig. 2, the dashed/dotted lines show the median/min–max across the ensemble using
all the UNSEEN driving data (orange) for the WBM initialised from the end of July 2022, and the WBM flows driven by observed data for
July 2022–February 2023 and initialised at the start of every month are also shown (WBM Obs 1 m; solid black line). For historical context,
the coloured areas show the ranges from WBM Obs 1 m for 1963–2020: min, 5th, 13th, 28th, 72nd, 87th, 95th, and max percentiles.
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Figure 5. As in Fig. 4 but showing regional mean flows for the autumn 2023 flood case study for the ensemble member giving the highest
flow in each month (coloured solid lines in order from November 2023 to February 2024). For historical context, the coloured areas show
the ranges from WBM Obs 1 m for 1963–2021: min, 5th, 13th, 28th, 72nd, 87th, 95th, and max percentiles.
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for consecutive months will likely not be given by the same
ensemble member.

For the summer 2022 drought, Fig. 4 shows that each of
the ensemble members giving the lowest flows in August,
September, or October 2022 has a fast recovery in flows
through the autumn. In contrast, the ensemble members giv-
ing the lowest flows in late autumn and early winter 2022 are
often low (but not the lowest) earlier in the year too, partic-
ularly in the Thames and Anglian regions, which are more
influenced by more slowly responding groundwater systems.
In no cases is the ensemble member giving the lowest flows
for 1 month also that giving the lowest flows for the follow-
ing month. In only three cases does the ensemble member
giving the lowest flows in a given month and region also
give the lowest flows for that month in a neighbouring re-
gion (September and October 2022 in Thames and Anglian
and January 2023 in Thames and Severn-Trent).

For the autumn 2023 flood, Fig. 5 shows that in no cases
is the ensemble member giving the highest flows for 1 month
also that giving the highest flows for the following month,
and only rarely is the ensemble member giving the high-
est flows in a given month also very extreme in earlier/later
months. The only real exception is the ensemble member
which gives the highest flows in Anglian in November 2023,
which also gives flows higher than previous observed records
(although not the highest from the UNSEEN ensemble) for
December 2023 and January 2024, falling back into the ex-
ceptionally high range in February 2024. In only one case
does the ensemble member giving the highest flows in a
given month and region also give the highest flows for that
month in a neighbouring region (December 2023 in Anglian
and Severn-Trent).

These results also need to be interpreted in the context of
the fidelity test results. In particular, in most regions the fi-
delity tests were failed in February (Table 2), although this
was mostly related to the extreme February observed in 2020,
so it may be that the results can otherwise be seen as repre-
sentative. The fidelity tests were also failed in the first month
(August) of the summer 2022 drought study in SE England,
so those results may be less reliable.

3.4 Recovery or persistence of extreme flows

The chance of flows recovering to normal, or remaining ex-
ceptionally low (or lower), by each month in each region for
the summer 2022 drought is shown in Fig. 6. Flows in more
northerly regions (NW England, Northumbria, Yorkshire)
were very likely to have recovered to normal by early 2023,
whereas other regions show a slower recovery (from a lower
starting point) – Anglian shows only around an 80 % chance
of recovery by early 2023 (Fig. 6a). Conversely, the analy-
sis of persistence of extremes shows around a 3 % chance of
flows remaining exceptionally low in early 2023 in the An-
glian region, with a zero chance of persistent low flows in
northerly regions (Fig. 6b).

For the autumn 2023 flood, flows in regions in the north
are very likely to have recovered to normal by early 2024,
whereas flows in regions in the south and east show only
around a 70 %–85 % chance of recovery by then, with An-
glian and Severn-Trent the worst (Fig. 7a). Conversely, the
analysis of the persistence of extremes shows around a
3 % chance of flows remaining exceptionally high (or higher)
in early 2023 in the Wessex region, with a zero chance of per-
sistent high flows in the northerly regions (Fig. 7b).

For both case studies, there are differences between the
monthly percentages of recovery and persistence estimated
from the WBM UNSEEN ensemble and the WBM Obs en-
semble (coloured bars vs. outlined bars). The percentages
derived from the WBM UNSEEN ensemble appear to vary
more smoothly from month to month than those derived from
the much smaller WBM Obs ensemble, and the larger ensem-
ble size means that the rarer persistent extremes should be
estimated more robustly. The general patterns for recovery to
normal flows are relatively similar, but the patterns for per-
sistence of exceptionally extreme flows are more different.
In some regions there are persistent extremes in the WBM
UNSEEN ensemble that do not exist at all in the WBM Obs
ensemble (e.g. Wessex for the summer 2022 drought lasting
into 2023 and Thames and Severn-Trent for the autumn 2023
flood lasting into 2024), but in other regions there are per-
sistent extremes in the WBM Obs ensemble which do not
exist in the WBM UNSEEN ensemble (e.g. SE England for
the summer 2022 drought lasting into 2023 and Yorkshire for
the autumn 2023 flood lasting into 2024).

4 Discussion

4.1 Case study outcomes

Both the flood and the drought case studies demonstrate the
potential of using the large ensemble of UNSEEN climate
data in combination with a simple grid-based national-scale
hydrological model. The modelling chain provides a large
set of plausible events including extremes outside the range
from use of observed data, with the lowest flows around 28 %
lower on average for the summer 2022 drought study and the
highest flows around 42 % higher on average for the autumn
2023 flood study. It enables the investigation of the tempo-
ral evolution and spatial dependence of extremes, including
the potential timescale and speed of recovery of flows to a
normal range and possible persistence of extremes across a
number of months.

For the summer 2022 drought case study, Fig. 4 shows
the existence of ensemble members giving very low flows
through to February 2023, particularly in the Thames and
Anglian regions which are more influenced by more slowly
responding groundwater systems. In reality, recovery of re-
gional mean flows to normal happened relatively quickly
in autumn 2022 (black line), although there were localised
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Figure 6. The percentage of ensemble members showing (a) the recovery of flows to (at least) normal by each month and (b) flows remaining
at least exceptionally extreme by each month, for the summer 2022 drought case study.

drought concerns in parts of eastern England into summer
2023 and concerns about a further drought developing more
widely in early 2023 following a dry winter (Sefton et al.,
2023b); some ensemble members show this possibility (e.g.
realisation 19 from November 1993 in Thames – blue line in
Fig. 4).

Chan et al. (2024) also used the summer 2022 drought as a
case study to explore storylines of development of extremes
into 2023 but using a different seasonal hindcast dataset and
only looking at selected catchments and boreholes in the
Anglian region of England. They split their large ensem-
ble into four clusters (based on atmospheric circulation in-
dices) and showed that the clusters characterising drier-than-
average winters resulted in continuation of the drought into
2023. This highlights a further advantage of the use of large
ensembles of climate model data – the ability to characterise
the large-scale drivers of extreme events.

For the autumn 2023 flood case study, Fig. 5 shows
that the ensemble member giving the highest flows in
the Anglian region in November 2023 also gave flows
higher than previous records for December 2023 and Jan-
uary 2024, before falling back into the exceptionally high
range in February 2024. Also, the ensemble member giv-
ing the highest flows in December 2023 in Anglian gave
the highest flows in the neighbouring Severn-Trent region.
In reality, after a wet December in 2023 (Turner et al.,
2024), severe flooding occurred over much of England very
early in January 2024, with over 250 flood warnings is-
sued by the Environment Agency and over 1000 prop-
erties flooded (https://floodlist.com/europe/united-kingdom/
storm-henk-floods-january-2024, August 2024). Flows then
dropped back to some extent later in January 2024, following
drier weather across much of England (Sefton et al., 2024),
before rising again in February 2024, which was exception-
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Figure 7. As in Fig. 6 but for the autumn 2023 flood case study.

ally wet across much of England, leading to record high flows
in some catchments (Sefton et al., 2024); some ensemble
members show this possibility (e.g. realisation 11 from May
2020 in Anglian – dark red line in Fig. 5).

For each case study, the selection of ensemble members
illustrating temporal and spatial variation (Sect. 3.3) focused
on those that gave the most extreme flows for any given re-
gion and month. However, Sect. 3.4 includes a summary of
the percentage of ensemble members where flows remained
at least exceptionally extreme by each month. This illustrates
a clear possibility of persistent extremes in some regions in
the south and east, with the chance of at least exception-
ally low flows persisting from summer 2022 into 2023 be-
ing ∼ 3 % in Anglian and the chance of at least exception-
ally high flows persisting from autumn 2023 into 2024 be-
ing ∼ 3 % for Wessex. The selection of ensemble members
could also focus on any that give extremely low/high flows

across multiple regions to enable study of possible spatially
extensive extreme events.

4.2 Limitations of the models and data

The WBM applied here is a very simple monthly hydrolog-
ical model, which has both advantages and disadvantages.
The monthly time step of the model means that it runs very
quickly, so it can easily be used for large climate ensembles
such as those applied here. However, it also assumes climato-
logical actual evaporation (AE, derived from long historical
runs of G2G). The effect of this will likely be less in so-
called water-limited areas in the south and east of England
(where AE is generally limited by soil water availability, es-
pecially in summer) and in so-called energy-limited areas in
the north and west of England (where AE is generally lim-
ited by potential evaporation), but it could have a larger effect
in the more energy–water-balanced areas in between (Kay
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et al., 2013) and also during more extreme wet/dry periods
when AE should probably be higher/lower. This could be the
reason for the possible over-estimation of high flows from
the WBM Obs n-m run, relative to the WBM Obs 1 m run,
which is re-initialised from G2G at the start of each month
(Fig. 3). Future work will investigate this possibility and as-
sess whether simple adjustments can be made to the WBM
to improve simulation of extreme events.

The WBM also does not account for snow at all; although
G2G has an optional snow module (Bell et al., 2016), it is not
applied to the long historical runs used to provide data for the
setup of the WBM or to the runs used for WBM initialisation.
The lack of snow accounting will not have a significant effect
for most regions of England most of the time, particularly
given the monthly time step of the WBM, as there are very
few large and/or long-lasting accumulations of snow in most
of England, although it is more important in parts of Scotland
(Kay, 2016).

The monthly time step of the WBM, as well as the resolu-
tion of the UNSEEN data, is likely sufficient for investigat-
ing extremely low flows and droughts, which typically evolve
relatively slowly due to rainfall deficits over extended peri-
ods of time. For extremely high flows and floods, a finer time
step would really be required as they can develop and recede
much more quickly, particularly for smaller or flashier catch-
ments. Despite this, the WBM can give a good indication
of the flood potential for most of England because the main
driver of floods here is soil moisture excess rather than ex-
treme precipitation or snowmelt (Berghuijs et al., 2019). One
potential approach could be to use a simple and fast-running
model, like the WBM, to run a large ensemble and then to
select individual members of interest based on the outcomes
from those runs. A much smaller set of runs of a more de-
tailed model, like G2G, could then be performed using the
particular members of interest to gain the extra temporal (and
spatial) detail, provided (at least) daily precipitation data are
available. Only monthly rainfall totals are available for the
UNSEEN ensembles applied here, but future options will be
investigated.

A simple bias correction was applied to the UNSEEN
climate data before use to drive the hydrological model
(Sect. 2.1). Applying this correction improved the results of
the fidelity testing (not shown), although February in par-
ticular still has issues (related to the standard deviation of
February rainfall being too low; Sect. 3.1). Bias correction
was also applied to climate data prior to use for hydrological
modelling by Chan et al. (2023, 2024). Brunner and Slater
(2022) apply a bias correction to simulated river flows but
highlight that, compared to observation-based estimates of
extreme floods, their method can “introduce biases arising
from the simulated meteorology and hydrological model”.

5 Conclusions

The UNSEEN climate datasets provide a large ensemble of
alternative historical climate realisations, allowing the direct
sampling of more extreme meteorological events than the
available observations and a better assessment of the like-
lihood of events (Thompson et al., 2017; Kelder et al., 2020).
When combined with a simple hydrological model, this sim-
ilarly allows the direct sampling of more extreme hydrologi-
cal events and better assessment of likelihood. Both are con-
ditional on a demonstration of fidelity for the event of inter-
est.

An important issue for the hydrological modelling com-
ponent is antecedent conditions. Here, two recent periods,
one very dry and one very wet, were selected as case studies
to initialise and run the simple hydrological model with the
large ensemble of UNSEEN climate data. These case studies
illustrate the potential of the approach to assess the temporal
evolution and spatial dependence of unprecedented but plau-
sible hydrological extremes. Clearly other periods could be
similarly simulated and investigated, for example the sum-
mer 1976 drought, which was one of the most extreme and
extensive meteorological and hydrological droughts in recent
history (Rudd et al., 2017), and the widespread flooding of
winter 2013/14, which was the wettest winter in Britain since
records began (Kay et al., 2018). The method could also be
applied to other countries/regions, with an appropriate hydro-
logical model and using the same or similar global climate
ensemble data.

Future work could include analysing the large-scale atmo-
spheric drivers of selected hydrological extremes, whether a
record extreme for an individual month or persistently ex-
treme for a number of months, which could improve un-
derstanding of extreme events and their evolution. More de-
tailed hydrological modelling, with (at least) daily precipita-
tion data, would ideally be used for flood case studies, when
results could also be investigated at a finer spatial scale, and
additional hydrodynamic modelling (or pre-modelled design
floods) could then provide information on flood extents and
impacts (e.g. Kay et al., 2018). Similarly, additional wa-
ter resource system modelling could provide information on
drought impacts (e.g. Borgomeo et al., 2014). Soil moisture
extremes could also be investigated, with consequent impacts
for agriculture as well as a range of natural hazards (e.g.
Kay et al., 2022), and other variables like groundwater levels
could be investigated in a similar framework.

Being able to plan for unprecedented but plausible hy-
drological extremes is important in terms of improving the
resilience of water supply systems to drought (Chan et al.,
2024) and improving flood risk management and incident re-
sponse (Brunner and Slater, 2022; Ganapathy et al., 2024).
The UK water industry now has a statutory obligation to
demonstrate resilience to droughts that are more extreme
than those recorded in the past, including very rare events
(e.g. 1 in 200 and 1 in 500 years) (Counsell and Durant,
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2023). Similarly, for fluvial flood risk management there
is a statutory requirement to plan for very extreme (rare)
events that may lie outside observational envelopes. In prac-
tice this is achieved through stochastic methods (e.g. using
weather generators to produce long precipitation series that
are then run through hydrological and supply system mod-
els) or statistical methods (pooling flood events from many
catchments or probable maximum precipitation/flood analy-
ses). The UNSEEN modelling chain described here provides
a physically informed alternative to complement these pri-
marily statistical approaches, with potential for use in both
long-term water resource/flood risk planning and emergency
drought/flood response contexts.

The use of methods such as those presented here, deriv-
ing unprecedented events from historical case studies, can
aid preparedness by enabling planning for events similar to,
but more extreme than, known events (with known responses
and impacts). Increasing resilience to potential extremes in
the current climate will also provide some resilience to the
effects of climate change, which is expected to increase both
floods and droughts in the future in the UK (e.g. Lane and
Kay, 2021; Kay et al., 2021; Rudd et al., 2019, 2023).
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