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Abstract. Insurance is an important element of flood risk
management, providing financial compensation after disas-
trous losses. In a competitive market, insurers need to base
their premiums on the most accurate risk estimation. To this
end, (recent) historic loss data are used. However, climate
variability can substantially affect flood risk, and anticipat-
ing such variations could provide a competitive gain. For in-
stance, for a year with higher flood probabilities, the insurer
might raise premiums to hedge against the increased risk or
communicate the increased risk to policyholders, encourag-
ing risk-reduction measures. In this explorative study, we in-
vestigate how seasonal flood forecasts could be used to adapt
flood insurance premiums on an annual basis. In an appli-
cation for Germany, we apply a forecasting method that pre-
dicts winter flood probability distributions conditioned on the
catchment wetness in the season ahead. The deviation from
the long term is used to calculate deviations in expected an-
nual damage, which serve as input into an insurance model to
compute deviations in household insurance premiums for the
upcoming year. Our study suggests that the temporal vari-
ations in flood probabilities are substantial, leading to sig-
nificant variations in flood risk and premiums. As our mod-
els are based on a range of assumptions and as the skill of
seasonal flood forecasts is still limited, particularly in cen-
tral Europe, our study is seen as the first demonstration of
how seasonal forecasting could be combined with risk and
insurance models to inform the (re-)insurance sector about
upcoming changes in risk.

1 Introduction

Extreme floods cause tens of billions of damages every year
around the globe. Climate change will further amplify these
losses due to more frequent and intense rainfall (Merz et al.,
2021). Flood risk adaptation measures, such as flood pro-
tection by levees, are required to reduce (future) risk, but
residual risk will remain. To cover for residual risk, insurers
play an important role by providing financial compensation
to communities and companies to rebuild after a disastrous
flood event. The availability of insurance dampens the im-
pacts from flood disasters on livelihoods and the economy
and accelerates recovery (e.g. Botzen and van den Bergh,
2008). However, the insurance industry faces several chal-
lenges regarding the coverage of natural disasters such as
floods, including fat-tailed and dependent risk distributions,
which are difficult to quantify (Kousky, 2019). The challenge
concerning the quantification of natural disaster risks is that
their estimation often depends on empirical evidence of nat-
ural disasters, which is scarcely available in many regions.
Many natural hazard insurance products that apply an in-
demnity insurance mechanism determine premiums annu-
ally, using empirical evidence of past events (Meier and Out-
reville, 2006). If an insurance market is competitive, insurers
will strive to apply the most accurate forecasting models and,
thereby, gain a competitive advantage over other insurers.
For example, an insurer may capture a larger market share
when it can better predict below-average risk in an upcoming
year than competitors, which allows it to charge lower premi-
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ums. On the other hand, the insurer that can better forecast a
year with higher damages caused by natural hazards can also
more effectively anticipate its business strategy than com-
petitors without this knowledge. Such anticipation may in-
clude raising annual premiums, which would give the insurer
a more comfortable financial position to cover damages (e.g.
Hudson et al., 2019), but it may also include communicat-
ing the upcoming hazards to policyholders and encouraging
risk-reduction measures (de Ruig et al., 2022). If the latter
strategy is done effectively, the insurer may not have to lose
its market share by increasing premiums while still maintain-
ing a healthy financial position.

For the insurance and re-insurance sector, prior knowledge
of possible decreases or increases in flood losses could assist
in more reliable pricing of flood risk and related insurance
premiums. An option is seasonal climate forecasts based on
coupled ocean—atmosphere models, for instance the long-
range forecasts of ECMWF (ECMWEF, 2023), which can be
used as forcing to hydrological models to obtain flood fore-
casts for the next few months (Bennett et al., 2016). Another
approach builds on statistical models, linking next-season
flood behaviour to the current climate and catchment state
(Kwon et al., 2008). The idea of using seasonal forecasts
to predict weather extremes over several weeks to months
is not new, but their potential for the (re-)insurance sec-
tor has hardly been explored so far. Dlugolecki (2000) has
addressed the potential of such forecasts for adjusting un-
derwriting policies. More recent literature has explored the
use of seasonal forecasts related to index-based crop insur-
ance (e.g. Cabrera et al., 2006, 2009). Carriquiry and Osgood
(2012) demonstrate how to couple the provision of loans for
covering cropping losses in an index insurance scheme to
seasonal forecasts. Their results show that reliable seasonal
forecasts may trigger the loan-insurance contract such that it
may “substantially benefit participating farmers”. In contrast,
Shafiee-Jood et al. (2014) demonstrate that seasonal fore-
casts cannot adequately predict extreme droughts and that the
use of forecast information could actually worsen the poten-
tial benefit for farmers. This negative effect can be caused by
the forecast uncertainty but also because of the issue of ad-
verse selection: only farmers who have forecasting informa-
tion and face a drought take insurance, while others do not.
Maynard (2016) developed a synthetic hurricane loss fore-
casting model to assess the effect of including forecasting
information in the pricing of insurance. This research indi-
cates that while forecasting information may have benefits
for policyholders in producing on average lower premiums,
it could have negative consequences for insurers: predicting
higher losses would require companies to hold more capital,
which can be more costly.

Seasonal forecasts are mostly applied to index-based crop
insurance studies, and research shows that forecast uncer-
tainty plays a decisive role in their usefulness in an insur-
ance context. Against this background it is important to note
that seasonal climate forecasts from dynamical or data-driven
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(statistical and Al-based) models have seen great advance-
ments in recent years. For dynamical forecasting models,
improvements in predictive skill have mainly benefited from
improved physical process representation and model initiali-
sation, the emergence of ensemble forecasts representing un-
certainty, and computing advances (Jia et al., 2015; Bauer
et al., 2015; Zhang et al., 2023). Data-driven seasonal fore-
casting has benefited from the improved estimation of initial
hydrologic conditions and incorporation of climate informa-
tion, as well as the advent of large datasets and Al-based
forecasting algorithms capable of handling non-linear rela-
tionships (Mendoza et al., 2017; Huang et al., 2020). Mean-
while, the majority of dams in the United States, for example,
rely on seasonal forecasts of reservoir inflows to decide about
water release (Turner et al., 2020).

The skill of seasonal forecasts results from slowly evolv-
ing earth surface boundary conditions, primarily sea sur-
face temperature but also soil moisture, snow cover, and sea
ice, and their impacts on weather (Robertson et al., 2020).
Globally, the El Nifo—Southern Oscillation (ENSO) is the
most prominent source of seasonal variability and can be
forecasted with lead times of several months. ENSO and
other climate modes (e.g. North Atlantic Oscillation) are
able to modify the intensity of floods (Ward et al., 2014;
Kundzewicz et al., 2019). Such climate—flood linkages lead
to periods of above- or below-average flood peaks and losses
(Zanardo et al., 2019). In addition to such climate telecon-
nections, floods are affected by the catchment wetness in
the season ahead (Aguilar et al., 2017; Merz et al., 2018).
Substantial influences of season-ahead catchment wetness on
flood peaks are expected in regions where the water stored in
the catchment is slowly released, for instance, in catchments
with high contributions of groundwater to flood runoff. An-
other mechanism for a substantial link between season-ahead
catchment state and flooding is regions where flood genera-
tion is linked to snowmelt and thus to snow accumulation in
the season ahead.

Seasonal streamflow forecasts are successfully used to in-
form water resource management, such as securing naviga-
tion (MeiBner et al., 2017) and managing reservoirs (Turner
etal., 2017) and irrigation (Apel et al., 2019). However, most
applications are related to low-flow and drought manage-
ment, while its use for flood management is largely unex-
plored (Arnal et al., 2018). In cases where flood character-
istics can be forecasted with lead times of several weeks
to months, early alerts can be issued, complementing the
more widespread short-term flood forecasts. Such early alerts
would allow for additional flood mitigation measures, such as
the pre-release of water from reservoirs to hedge against the
increased probability of flooding in the coming season.

Given the progress in recent years in seasonal flood fore-
casting methods, we explore in this paper how forecasting
data may influence evaluating and improving flood insurance
schemes. In an application for Germany, we use a statistical
forecast model that predicts winter flood peaks based on au-
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tumn precipitation conditions a few months earlier. The pre-
dicted deviation in flood peaks from the long-term mean is
used to simulate the deviation in flood risk, which is subse-
quently used as input to an established flood insurance model
to compute adjustments to insurance premiums for the up-
coming year. We are aware of the uncertainties related to
both seasonal flood forecasting and assumptions in our ex-
plorative study. Hence, we view this research as a demonstra-
tion of how seasonal forecasting information could be used
for the insurance sector and as a prompt for investigating the
opportunities of this approach in further studies.

2 Case study area: Germany

Germany (Fig. 1) has seen several catastrophic river floods
in recent decades (Kreibich et al., 2017). For instance,
widespread precipitation on saturated soils led to the 1993
Christmas flood in the middle and lower Rhine, with inun-
dation in three federal states. Other examples are the events
in 2002 and 2013 with disastrous damages in the Danube
and Elbe catchments. Flood seasonality shows a spatial pat-
tern across Germany with a winter-dominated flood regime
in western, central, northern, and eastern parts. While in the
first two regions most of the annual flood peaks occur in win-
ter, the latter two regions show an increased fraction of spring
and summer floods (Beurton and Thieken, 2009). Only a rel-
atively small region in southern Germany is dominated by
summer floods. For the sake of simplicity, we limit our anal-
ysis to the dominant flood season, i.e. the winter season, and
develop a forecasting model that predicts the flood probabil-
ity distribution in the upcoming winter season using climate
information in the preceding autumn.

Flood insurance coverage has been available in Germany
since 1991 as a supplementary contract to building or con-
tent insurance (Surminski and Thieken, 2017; Seifert et al.,
2013), which bundles flood risks with other natural hazard
risks like earthquakes or avalanches. Traditionally, flood in-
surance penetration rates were rather low in Germany; how-
ever, a number of measures have contributed to the continu-
ous increase in flood insurance penetration to 49 % for res-
idential buildings and 32 % for household contents (GDV,
2023). For instance, the flood hazard zoning system (ZURS)
was established by the German Insurance Association (GDV)
in 2001 and has since then been used to assess the insurabil-
ity of properties (Falkenhagen, 2005). The special situation
in the former German Democratic Republic (GDR) in East
Germany, where flood damage was covered by household
insurance, is no longer visible in the flood insurance pene-
tration rates today. In contrast, the exceptionally high flood
insurance penetration of 94 % in the federal state of Baden-
Wiirttemberg (GDV, 2023) is a consequence of the fact that
flood loss compensation was included in compulsory build-
ing insurance until 1994 in this federal state (Surminski and
Thieken, 2017; Seifert et al., 2013). Due to EU regulations
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this monopoly insurance had to be abandoned. Calls for a
compulsory flood insurance scheme in Germany after the
floods in 2002 and 2013 have been rejected (Schwarze and
Wagner, 2004).

3 Methods and data
3.1 Concept and models used

To demonstrate how seasonal flood forecasting could be ex-
ploited by the insurance sector, we developed a model chain
for our case study area, Germany. The model chain builds
on existing models and their output at the European scale
and consists of the following workflow (Fig. 2): (1) the non-
stationary flood frequency model of Steirou et al. (2022) pro-
vides flood peak distributions for 136 stations in Germany for
the winter season as a function of a climate indicator (autumn
precipitation in this case). (2) The flood risk model of Alfieri
et al. (2015) provides losses for several return periods (10,
20, 50, 100, 200, 500 years) for areas associated with the 136
streamflow stations. Losses that belong to the same NUTS3
area are aggregated to calculate the expected annual damage
(EAD) at the NUTS3 level for Germany. (3) Both outputs
are combined in a seasonal forecasting model that predicts,
based on autumn precipitation, the deviation of EAD in the
upcoming winter from the long-term average EAD. (4) The
Dynamic Integrated Flood Insurance (DIFI) model of Hud-
son et al. (2019) for EU member states is used to calculate
the insurance premiums for the upcoming season as a func-
tion of the forecasted EAD deviation at the NUTS3 level. (5)
The flood risk model of Ward et al. (2017) provides the input
data for DIFI. This workflow results in climate-informed in-
surance premiums, i.e. premiums that vary from year to year
given a certain climate state.

3.2 Seasonal forecasting of flood peaks and damage

We use the non-stationary flood frequency model developed
by Steirou et al. (2022) to obtain climate-informed flood peak
distributions for each streamflow gauge. They fitted the gen-
eralised extreme value (GEV) distribution to observed sea-
sonal flood peaks by conditioning GEV parameters on the
season-ahead climate covariate. They selected streamflow
stations that covered the period of 1950 to 2016 with at least
50 years of data. A set of 14 indices was regarded as po-
tential season-ahead covariates, including, for example, the
North Atlantic Oscillation, the sea ice concentration between
70 and 80° N and 30 and 105°E, or the precipitation. These
covariates had been shown to either influence atmospheric
circulation and related variables, particularly precipitation,
over Europe or affect flood generation directly as they rep-
resent the season-ahead catchment wetness. For several in-
dices, these climate-informed models were preferred over
the classical flood frequency approach with time-constant
GEV parameters for many European regions. For instance,
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Figure 1. Case study region of Germany. Main rivers and tributaries, streamflow stations used, and population density at the Nomenclature
of Territorial Units for Statistics 3 (NUTS3) level. We selected 136 streamflow stations for which we could establish the relationship between
flood peak and direct damage. Stations numbered in blue and situated in their NUTS3 regions highlighted in black are selected to provide a

more detailed illustration of the forecasting results.

the climate-informed GEV with the location parameter con-
ditioned on autumn precipitation was a better model for the
winter flood peaks for 90 % of the catchments in northern
Germany and the Netherlands.

In this paper, we use the results of Steirou et al. (2022)
for the German streamflow stations. To illustrate the idea of
seasonal forecasting of flood peaks and damage, we limit
our study to 1 of the 14 indices of Steirou et al. (2022).
Specifically, we estimate the probability distribution of flood
peaks in winter (December—February), where the GEV lo-
cation parameter is conditioned on the precipitation in the
season ahead (September—November). Thus, the winter flood
peak related to a given return period varies as a function of
autumn precipitation; for instance, more precipitation in au-
tumn increases the catchment wetness, thus increasing the
peak of the 200-year flood (Jongman et al., 2014). The source
of predictability of the seasonal forecasting model is thus the
memory of the catchment, which influences the antecedent
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conditions of flooding in the next season. The selected sea-
sonal forecasting model is based on observed winter flood
peaks at streamflow stations (Fig. 1) and observed nearby au-
tumn precipitation. Flood peaks are derived from the GRDC
discharge dataset. Autumn precipitation is obtained from the
grid cell closest to the gauge location of the CRU TS4.02
dataset (Climatic Research Unit of the University of East An-
glia).

The model of Steirou et al. (2022) is based on statistical
relationships between climate indicators and the flood be-
haviour in the following season. In contrast, almost all na-
tional and international forecasting centres rely on dynam-
ical models for seasonal climate forecasts, and much more
effort and resources have been invested in developing dy-
namical forecasting systems in the last few decades (Cohen
et al., 2019). Data-driven approaches are still justifiable, as
they are much easier to implement and apply and allow us
to efficiently search for states, regions, or timescales associ-
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Figure 2. Flow diagram of models used. The study builds on available models for frequency analysis, flood risk assessment, and insurance

for Europe.

ated with forecast skill (Cohen et al., 2019). As our study is
intended as a proof of concept of how seasonal forecasting
information could be used for the insurance sector, we fol-
low an opportunistic approach and use an already-available
and comparatively simple model.

In order to assess the potential benefits of climate-
informed forecasting models for (re-)insurance, we extend
the hazard model to a risk model across Germany, exploit-
ing the earlier work of Nguyen et al. (2020). Specifically,
we selected 136 stations in Germany for which we could es-
tablish the relationship between flood peak and direct dam-
age. To establish this relationship, we use the results of 2D
hydraulic simulations and damage evaluations by Alfieri et
al. (2015). The 2D hydraulic simulations for specific return
periods were based on the LISFLOOD-FP model. The di-
rect economic damage for various sectors, such as residen-
tial, commerce, industry, transport, infrastructure, and agri-
culture, was estimated via country-specific depth—damage
functions for different land use classes (Alfieri et al., 2015).
To account for regional variations in asset values within each
land use class, the depth—-damage functions were adjusted
using the gross domestic product (GDP) purchasing power
standards of 2007. We assessed the damage at a resolution of
100 m for selected return periods (7" = 10, 20, 50, 100, 200,
500 years) and then aggregated the results to a 5 km resolu-
tion using the areas of influence method (Alfieri et al., 2015).
The calculation of flood damage was performed for the area
upstream of each river station. To consider the effects of flood
protection measures, damage is set to zero for a given river
section when the return period of the peak discharge is lower
than its flood protection level. Flood protection levels were
taken from Jongman et al. (2014). Subsequently, we employ
the relationship between flood flow (or its return period) and
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damage to compute the expected annual damage (EAD) for
the selected stations and their respective areas.

In this way, we consider two cases: the climate-informed
case, where the flood probability distribution and conse-
quentially EAD change from year to year in response to
changes in autumn precipitation, and the traditional approach
or unconditional case, where the flood probability distribu-
tion and EAD are constant in time. By aggregating the es-
timated station-based EAD values, we calculate EAD at the
NUTS3 level for Germany for both cases. We then introduce
the forecasted (percentage) deviation in EAD (FDE), defined
as the ratio between the climate-informed EAD and the un-
conditional EAD for each of the 401 NUTS3 units in Ger-
many (Fig. 2). Thus, FDE is a time-varying metric, reflecting
changes in the flood probability over time due to interannual
changes or long-term trends in climate.

3.3 Insurance model (DIFI)

In order to translate the forecasted deviations in EAD into
forecasted deviations in insurance premiums, we use the Dy-
namic Integrated Flood Insurance (DIFI) model (Hudson et
al., 2019). The DIFI model was developed for the EU mem-
ber states and combines flood risk information with an insur-
ance sector and household behaviour model. The model sim-
ulates premiums at NUTS3 resolution and has recently been
applied to assess the effect of climate change on the unaf-
fordability of premiums and insurance uptake under various
existing and proposed flood insurance market structures in
Europe (Tesselaar et al., 2020). For an extended description
of the model, we refer to Hudson et al. (2019) and Tesselaar
et al. (2020); here we briefly summarise the main compo-
nents.

DIFI considers the flood insurance scheme in Germany.
Flood insurance in Germany is provided by private insur-
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ers, who charge risk-based premiums, and obtaining insur-
ance coverage is optional for households. In this system, pri-
vate insurers compete to charge accurate risk-based premi-
ums in order to increase their market share while limiting
risk of adverse selection. Private insurers calculate premi-
ums based on the local EAD and the uncertainty of this risk.
Concerning the latter, insurers generally apply a surcharge
based on the variance of flood risk to cover their risk aver-
sion. To combat moral hazard, insurers generally apply a de-
ductible of 15 % of flood damages (Paudel et al., 2013). To
reduce the risk of extreme events, insurers generally cover
this risk on the re-insurance market in a stop-loss mecha-
nism, where re-insurers cover losses after a certain thresh-
old of losses has occurred in a given time frame. Following
Paudel et al. (2013), for private flood insurance systems in
Europe, on average, this threshold is set at 85 % of annual
losses. This means that 15 % of annual losses are transferred
to re-insurance firms against an annual premium. The cal-
culation of re-insurance premiums is similar to general pre-
miums, except that re-insurers may charge a profit loading
factor due to their considerable market power.

The calculation of insurance premiums at the NUTS3 level
is based on EAD, which is obtained from the flood risk model
GLOFRIS (Ward et al., 2017; Winsemius et al., 2013). The
GLOFRIS model applies an established approach to simu-
lating flood risk by combining flood hazard, exposure, and
vulnerability. To simulate the seasonal fluctuation in flood
insurance premiums, we apply the forecasted percentage de-
viation of EAD assessed in this study to the baseline EAD
(for the year 2010) obtained from GLOFRIS. Moreover, an
important parameter in the estimation of flood insurance pre-
miums is the uncertainty in risk estimates, which is captured
by the standard deviation of EAD estimations, obtained us-
ing the approach explained in Hudson et al. (2019). Note that
in our assessment, premiums are set for households located
in 100-year floodplains, aggregated to the NUTS3 level. This
means that premiums are reflective of the average risk of all
such floodplains within a NUTS3 region. To estimate premi-
ums on this level, we divide the NUTS3 region’s EAD and
its variance by the number of households that are exposed to
the 100-year flood. The number of exposed households is re-
scaled for each forecasting year within the period considered
(1950 to 2016) using data from Paprotny and Mengel (2022).

4 Results and discussion

4.1 Forecasting flood probability distributions and
EAD

Our model setup provides annually varying flood probabil-
ity distributions and associated EAD values for all selected
streamflow gauges in Germany. Figure 3 exemplarily shows
these results for four gauges selected from the major river
basins, the Rhine, Weser, Elbe, and Danube. To visualise
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the variation in the flood probability distribution, we show
the 100-year flood discharge (HQ-100) as an example. Both
variables (HQ-100 and EAD) vary substantially in time, in-
dicating an important role of the season-ahead climate state
in flood probabilities and risk. The HQ-100 of the climate-
informed model varies along with the covariate (autumn
rain) as the flood probability distribution in winter is con-
ditioned on the preceding autumn precipitation. It thus fluc-
tuates around the time-constant HQ-100 discharge of the un-
conditional model which remains unaffected by the climate
covariate. At three gauges (IDs 1, 2, 4), the mean HQ-100 of
the climate-informed approach is similar to that of its uncon-
ditional counterpart. However, at gauge ID 3, the HQ-100 of
the unconditional case is noticeably larger.

Comparing the forecasted HQ-100 (second row in Fig. 3)
with the observed flood peaks (third row in Fig. 3), a modest
association is seen. This is explained by two effects. Firstly,
we compare a probability distribution, and more specifically
one return level value (HQ-100), against observed data. The
observations represent a single realisation of the true but un-
known distribution, and another realisation would look quite
different. Secondly, temporal changes in winter flood proba-
bilities not only are influenced by the selected covariate (au-
tumn precipitation), but also are affected by other variables,
such as snow accumulation and melt in winter.

Figure 3 (first, third, and fourth rows) reveals a close
and positive association between the season-ahead autumn
precipitation and the forecasted HQ-100 and EAD values.
Higher catchment wetness in autumn is transferred to higher
HQ-100 values, which are in turn translated into higher dam-
ages and thus higher EAD values. Comparing the variabil-
ity of the autumn precipitation, the HQ-100, and EAD sug-
gests that the temporal variability increases along this pro-
cess chain. Relatively small variations in autumn precipita-
tion are transferred into slightly larger variations in HQ-100
but substantial variations in EAD.

The two approaches, unconditional and climate informed,
can lead to significant differences in the long-term EAD (e.g.
the latter is reduced by 37.5 % for ID 3). This effect is ex-
plained by the non-linearity of the relation between flood
peaks and damages (IDs 2, 4) and, in addition, by the dif-
ference in the average flood quantiles estimated by the two
approaches (ID 3).

To understand the temporal variation in the flood quantiles
and the damage for the entire set of stations, Fig. 4 shows the
coefficient of variation (CV) for the forecasted HQ-100 flood
discharge and EAD of the climate-informed model across
Germany. For HQ-100, higher variation is found in the Elbe,
Oder, and Weser basins and the downstream areas of the
Danube compared to the Rhine and upstream areas of the
Danube River basins. The variability of the forecasted HQ-
100 discharge results from two sources: the variability of the
autumn precipitation and the variability of the observed flood
peaks. Comparing both (Fig. A1) reveals that the variability
is dominated by the latter source: the spatial pattern of CV
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Figure 3. Forecasting results — example time series at four gauges (location given in blue in the maps of Figs. 2 and 4). Shown is autumn
rain (first row), winter peak flow (second row), forecasted 100-year flood discharge (HQ-100, third row), and forecasted EAD (fourth row).
In the third and fourth rows the average climate-informed HQ-100 and EAD values are shown in purple and orange horizontal lines, while
the unconditional HQ-100 and EAD values are shown in grey. Information on catchment size and protection level is also provided.

for the forecasted HQ-100 is very similar to the pattern of
CV of observed flood peaks. The latter, in turn, depends on a
range of factors, such as the catchment size, climatic regime,
flood generation processes, and influence of reservoirs and
flood retention basins (Rosbjerg et al., 2013).

The spatial pattern of the variability of EAD follows
the pattern of HQ-100 variability. To measure the associa-
tion between the two maps, Kendall’s tau is used and indi-
cates a strong correlation of 0.59 between the HQ-100 CV

https://doi.org/10.5194/nhess-24-2923-2024

and EAD CV values. There is a significant relationship (p
value < 0.001) between the variation in the HQ-100 flood
and the variation in EAD across the different gauges in Ger-
many. However, the variability in EAD is 1 order of magni-
tude larger than the variability in HQ-100. The CV values
of HQ-100 display a weak positive skewness (0.38), with
values up to 0.25. On the other hand, the CV of EAD ex-
hibits a strong positive skewness (3.57), indicating a highly
skewed distribution with a longer tail on the right side. This
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Figure 4. Coefficient of variation in the 100-year flood discharge (HQ-100) (a) and expected annual damage (EAD) (b) for 136 stations.
Maps in (a) and (b) display their class breaks estimated using Jen’s natural break optimisation. Corresponding histograms and density curves

are shown in (c) and (d).

increase in variability can be explained by the non-linearity
of the relation between flood peaks and damages. Whenever
flood protection levels are exceeded, damage jumps from
zero to large values. Shifting the location parameter of the
flood probability distribution thus tends to lead to substantial
changes in EAD.

4.2 Forecasting insurance and premiums

Figure 5a presents the spatial variability of household in-
surance premiums across Germany, based on the flood
risk—insurance model (Fig. 2). Most premiums are about
EUR 1200 per household, with a few exceptions of up to
EUR 5000. In some NUTS3 regions, flood risk, and there-
fore premiums, is zero. This is explained by the fact that the
flood risk model GLOFRIS only considers the flooding of
large rivers (with a Strahler order of 6 and higher). There

Nat. Hazards Earth Syst. Sci., 24, 2923-2937, 2024

are some NUTS3 regions without large rivers. From an in-
surance perspective, this is not necessarily a limitation of the
model, since insurance for flooding of rivers is often a sepa-
rate product from flood insurance for flash floods and pluvial
floods. Because we use the flood risk per capita to calcu-
late premiums, regions with relatively high total risk do not
necessarily show high premiums: for high-risk areas with a
high population density, premiums are low. The opposite is
of course equally possible. It is important to note that pre-
miums are risk-reflective, meaning that exposed households
pay for the risk they face, which may be higher than the ac-
tual risk due to possible subsidising effects lowering premi-
ums in some areas. However, because the analysis is done
on the NUTS3 level, the degree to which premiums reflect
actual risk is not highly accurate. For example, for house-
holds that are exposed to a 100-year flood or worse, there
is a degree of risk sharing, whereas households that face lit-
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tle inundation associated with this flood pay relatively high
premiums compared to households that face worse levels of
inundation. On the other hand, the extent to which premiums
are risk-reflective in reality is often not very detailed either.

Figure 5b shows the volatility of projected premiums, re-
flecting the variation in forecasted annual flood risk.

This map shows which regions are prone to larger vari-
ation in forecasted flood peaks and damages compared to
other regions and how this plays out in terms of the variation
in forecasted premiums. This information is highly relevant
for insurers to prepare for the upcoming year and set premi-
ums such that they already anticipate expected risk for the
next year. Furthermore, these forecasted variations in premi-
ums may also support (re-)insurers in their strategy to reserve
capital for upcoming events and losses. It should be noted
that our forecast only considers changes in future flood peaks
based on autumn precipitation and does not include other fac-
tors that may increase or decrease forecasted risk and premi-
ums.

Figure 6 illustrates how premiums, based on the novel
seasonal forecast developed in this study, may deviate from
premiums calculated based on a rolling average of (in this
example) 10 years in the four NUTS3 regions: Miltenberg
(NUTS3 ID: DE269), Hanover (DE929), Stendal (DEEOD),
and Deggendorf (DE224). These four regions contain the
four streamflow gauges shown in Fig. 3. If premium setting
applies a moving-average method, as recommended for the
insurance of climate risks (Lyubchich and Gel, 2016), the
premium changes annually, as it is influenced considerably
by the amount of damage in recent years. However, premi-
ums change within a comparably small range (Fig. 6). If pre-
miums are instead based on seasonal forecasts, positive and
negative changes are much larger. Insurers may charge higher
premiums in years with expected high risk, causing policy-
holders to transfer to insurers that do not accurately forecast
risk but follow the rolling-average approach. Vice versa, in
years of low expected flood risk, premiums may be adjusted
accordingly, and the insurer may attract policyholders back
from insurers that maintain a rolling average to calculate the
premium. Viewed in this way, the accuracy of risk forecast-
ing improves the competitive position of insurers.

From a societal perspective, a premium that accurately re-
flects expected risk may trigger adaptive behaviour of poli-
cyholders. A sudden increase in the flood insurance premium
communicates to policyholders the potential looming threat.
An effective measure to encourage adaptation in years of se-
vere expected risk is to allow policyholders to reduce their
premium by applying certain risk-reduction measures. Such
measures may include applying flood-resistant building ma-
terials, relocating vulnerable possessions to higher floors, or
installing flood barriers that prevent floodwater from entering
the building. By stimulating risk-reduction efforts by policy-
holders, insurers may reduce the actual spike in flood risk
in years when risk is expected to be high while at the same
time limiting the costs for policyholders. Therefore, if imple-
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mented correctly, premiums that reflect accurately forecasted
flood risk may increase resilience and reduce overall costs of
flood risk.

4.3 Limitations and recommendations

The potential of seasonal flood forecasts for the insurance in-
dustry has hardly been investigated so far. Here, we address
this knowledge gap by exploring the sensitivity of house-
hold premiums to temporal changes in flood probabilities.
Our study suggests that these variations can be substantial,
leading to significant changes in flood risk and premiums.
Hence, these results indicate a potentially interesting lever
for the (re-)insurance sector worthwhile of further investiga-
tion.

Our explorative study has a number of limitations, some of
which follow from its use of available models and datasets.
Firstly, we apply models that have been developed, cali-
brated, and validated by earlier studies for different purposes.
We combine these models, or their outputs, without perform-
ing an in-depth calibration and validation of our model chain.
Our study is intended as proof of concept and not as a deci-
sion tool for the insurance sector. In the latter case, one would
need to perform a rigorous model evaluation including sen-
sitivity and uncertainty analysis to understand the skill of the
risk forecasts. For example, the aim of Steirou et al. (2022)
was to investigate whether the seasonal flood peak distribu-
tion was significantly influenced by the catchment or climate
state of the season ahead. Hence, they focussed on whether
the climate-informed distribution was a better fit than the tra-
ditional, stationary distribution considering model complex-
ity, but they did not perform an in-depth analysis of model
performance. Figure A2 shows Q — Q plots for the climate-
informed flood frequency distribution for the four example
streamflow stations (IDs 1, 2, 3, 4). Although these examples
suggest that the model of Steirou et al. (2022) agrees well
with observations, the application of our model chain would
require more elaborate model assessments.

Secondly, the climate-informed flood frequency model by
Steirou et al. (2022) could be improved. While it considers a
single climate covariate only, the joint use of two covariates,
one representing the climate state and one representing the
catchment state in the season ahead, might improve the fore-
casting skill. Moreover, the climate covariate, autumn pre-
cipitation, is extracted from a gridded dataset (CRU TS4.02
data; Harris et al., 2020). Using catchment-averaged precip-
itation could be a more representative proxy for the catch-
ment wetness. Furthermore, instead of a non-stationary ex-
treme value distribution approach, a different method could
be used to forecast the flood peak probability distribution.
The forecasting method could be based on dynamical mod-
els or Al-based approaches (Cohen et al., 2019).

Thirdly, the DIFI insurance model currently uses EAD
data from the GLOFRIS flood risk model of Ward et
al. (2017). It then applies a yearly deviation of the EAD data
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Figure 6. Time series of premiums for the four illustrative NUTS3 regions (locations are shown in Figs. 1 and 5).

based on our forecasting model, which is built on the flood
risk model of Alfieri et al. (2015). Although both flood risk
models are conceptually similar, future research can further
improve consistency across the different (sub-)models and
data by utilising the same data for forecasting simulations.
Fourthly, our model assumes that vulnerability is constant
in time and that climate is the only driver of changes in flood
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hazard. It thus ignores other changes in time, such as im-
proved flood protection and early warning systems. While
such time-varying effects could be included in principle, their
addition would substantially increase the uncertainty. Fur-
thermore, we limit our forecast model to the next season only,
while premiums are calculated for the next year. Finally, our
case study area, Germany, is not the best location in terms
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of seasonal streamflow forecasting skill. The proposed ap-
proach seems to be of even more practical use in areas out-
side of Europe, as other regions show more pronounced links
between climate variabilities and flood characteristics (Arnal
et al., 2019; Yan et al., 2020). While these limitations may
reduce the value of the specific quantitative results of our
case study, they do not affect the general insights gained in
our study. Although our results depend on the characteristics
of Germany in terms of climate, hydrology, flood protection,
flood-prone assets, damage processes, and insurance system,
the concept and methodology are transferable to other re-
gions.

In the pricing of insurance premiums, (perceived) un-
certainty in flood risk assessment estimates generally leads
to higher premium settings by insurers (Kunreuther et al.,
1993). We identify two main sources of uncertainty in our
seasonal forecasting concept that are relevant for pricing: (1)
our results indicate that some areas show higher variations in
historical forecasted EADs than others. These variations may
reflect natural variations in the hydro-climate system or hu-
man interventions in catchments and rivers. For instance, the
operation of reservoirs may decrease the temporal variation
in flood flows by cutting flood peaks. Having a better un-
derstanding of these variations and their geographic location
can be a basis for premium differentiation where the areas
with larger fluctuations in historical forecasted EADs have
somewhat higher premium surcharges. (2) Another source
of uncertainty not yet addressed in our concept is modelling
uncertainty. This may be captured through the employment
of probabilistic forecasting distributions. However, tailoring
this information into risk assessment and pricing is challeng-
ing and needs careful processing and communication (e.g.
Hansen et al., 2022).

Another recommendation for future research is to run
the presented modelling cascade with and without informa-
tion about the uncertainty in forecasted EAD. For example,
such comparative runs would provide insights into whether
prior information on EAD leads to lower (higher) premiums
in some locations, directly affecting policyholders. Further-
more, from the perspective of the insurers, it may be interest-
ing to assess how higher (lower) forecasted premiums lead to
higher (lower) capital reserves to anticipate forecasted risks
(Maynard, 2016).
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5 Conclusions

This study addresses a topic which has not received much
attention, namely to what extent seasonal flood forecasts
could be used to inform insurance schemes. In this explo-
rative study, we demonstrate in an application for Germany
how seasonal forecasting of flood peaks and flood risk (ex-
pected annual damage, EAD) influences insurance premi-
ums. Our results indicate that interannual variations in flood
peaks and risks are substantial, leading to substantial varia-
tions in household insurance premiums. This variation pro-
vides a potential lever to inform insurers and policyholders
about upcoming changes in flood risk and to devise strate-
gies to hedge against such variations.

Most premiums are about EUR 1200 per household with
a few exceptions of up to EUR 5000. Differences can be ex-
plained by a combination of both the variations in forecasted
EAD and the number of exposed households living in the re-
gion. Most fluctuations in predicted premiums are found in
the eastern part of Germany. A better understanding of these
historical variations in forecasted EAD and their geographic
distribution can be a basis for premium differentiation and
for optimising premium settings. In order to further explore
the potential of seasonal flood peaks and EAD forecasts, fu-
ture research can tap into probabilistic forecasting distribu-
tions and use these as additional information for pricing risk.
However, tailoring this information into risk assessment and
pricing is challenging and needs careful processing and com-
munication in order to apply the method in operational risk
assessment and pricing.
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Figure Al. Coefficient of variation in the autumn precipitation (a) and observed flood peaks (b) for 136 stations. Maps display their class
breaks estimated using Jen’s natural break optimisation.
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Figure A2. Q — Q plots for the four gauges shown in Fig. 3. These plots demonstrate that the model provides a good representation of the
observations, although some overestimation can be seen for gauge ID 1 and ID 2.
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Data availability. The discharge dataset used in this study
is available at https://portal.grdc.bafg.de/applications/public.
html?publicuser=PublicUser#dataDownload/Home (GRDC,
2017). The dataset of flood hazard maps for the Eu-
ropean Union is available at https://data.jrc.ec.europa.
eu/dataset/1d128b6c-adee-4858-9e34-6210707f3c81 (Al-
fieri et al., 2014). Flood protection levels are taken from
https://static-content.springer.com/esm/art%3A10.1038%
2Fnclimate2124/MediaObjects/41558_2014_BFnclimate2124_
MOESM264_ESM.pdf (Jongman et al., 2014). Grid-based precip-
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(Harris et al., 2020). The exposure dataset is available at
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