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Abstract. Despite a growing interest in extreme event attri-
bution, attributing individual weather events remains difficult
and uncertain. We have explored extreme event attribution by
comparing the method for probabilistic extreme event attri-
bution employed at World Weather Attribution (https://www.
worldweatherattribution.org, last access: 22 August 2024)
(WWA method) to an approach solely using pre-industrial
and current observations (PI method), utilising the extensive
and long-running network of meteorological observations
available in Sweden. With the long observational records,
the PI method is used to calculate the change in probabil-
ity for two recent extreme events in Sweden without rely-
ing on the correlation to the global mean surface temperature
(GMST). Our results indicate that the two methods generally
agree for an event based on daily maximum temperatures.
However, the WWA method results in a weaker indication
of attribution compared to the PI method, for which 12 out
of 15 stations indicate a stronger attribution than found by
the WWA method. On the other hand, for a recent extreme
precipitation event, the WWA method results in a stronger
indication of attribution compared to the PI method. For this
event, only 2 out of 10 stations assessed in the PI method
exhibited results similar to the WWA method. Based on the
results, we conclude that at least one out of every two of heat
waves similar to the summer of 2018 can be attributed to cli-
mate change. For the extreme precipitation event in Gävle in
2021, the large variations within and between the two meth-

ods make it difficult to draw any conclusions regarding the
attribution of the event.

1 Introduction

Anthropogenic greenhouse gases were the main drivers of
the observed increases in global temperatures during the 20th
century (Eyring et al., 2021). Even though global warming is
accompanied by a notable increase in the intensity and fre-
quency of local extreme temperature and precipitation events
(Trenberth, 2011; Seneviratne et al., 2021), linking individ-
ual extreme weather events to anthropogenic emissions re-
mains a challenge.

Extreme weather events typically display unusual meteo-
rological properties, have severe effects on society, and occur
relatively infrequently. However, the frequency and intensity
of many of today’s extreme events are expected to change
with the ongoing changes in the global climate. For extreme
events such as hurricanes (Holland and Bruyère, 2014) and
heat waves (Wilcke et al., 2020), changes in their climatology
have already been observed. Furthermore, extreme weather,
and its consequences have often already been experienced,
which makes extreme weather particularly interesting to sci-
entists as well as to the public in general. Hence, a ques-
tion often asked is whether any specific especially intense
weather event was caused by anthropogenic changes to the
climate.
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The relatively novel field of extreme event attribution
(EEA) arose out of the need to try to answer questions like
this. EEA is a collection of methods used to investigate
whether an extreme event can be attributed to any one forc-
ing, such as anthropogenic climate change (e.g. Stott et al.,
2016; van Oldenborgh et al., 2021). The last decade has seen
a rapid increase in both the number of publications of and
general interest in EEA studies. A notable example is the
BAMS special issue “Explaining Extreme Events” (e.g. Her-
ring et al., 2022), which has been published annually since
2011. Olsson et al. (2022) argue that the increasing interest in
EEA is connected to the ongoing development of the frame-
work for loss and damage (L&D), where the attribution of
single events could become a useful tool (Parker et al., 2015).
The possible use of EEA in future L&D programmes, com-
bined with the increasing societal interest in extreme weather
events, makes the exploration and evaluation of the suggested
methods both compelling and important.

There are several approaches to EEA, where two of the
more common ones are the risk-based approach and the sto-
ryline approach. In the risk-based approach, as described in,
for example, Stott et al. (2016), the question of attribution is
framed as probabilistic: how has forcing x changed the like-
lihood of event y? Here, it is the change in the risk of an
event occurring, rather than the event itself, that is attributed
to the changed forcing. This circumvents the otherwise dif-
ficult question of investigating the causal relationships of an
extreme weather event. The storyline approach (e.g. Hoerling
et al., 2013) instead focuses on the underlying physical pro-
cesses in combination with the stochastic nature of an event.
It tries to quantify the effects of natural variability and forc-
ings, such as increased greenhouse gases, sea surface temper-
ature (SST), and soil moisture, on the event. Due to these dif-
ferences, EEA studies conducted on the same event, e.g. the
Russian heat wave in 2010, and employing different methods
can appear to reach contrasting conclusions (e.g. Dole et al.,
2011; Rahmstorf and Coumou, 2011), even if both studies
turn out to be compatible (Otto et al., 2012). Similarly, the
use of different datasets can affect the outcome of an attribu-
tion study.

To represent a climate that is not influenced by anthro-
pogenic activities, the pre-industrial climate can be used as
a proxy. However, data representing the pre-industrial refer-
ence period are scarce and often not available. Instead, it is
possible to build a statistical model in which the distribution
of the variable(s) describing the event changes with global
mean surface temperature (GMST) and to use this to esti-
mate the magnitude of events in the pre-industrial climate
(Philip et al., 2020; see Sect. 2.2). This will be referred to
as the WWA method (with the abbreviation based on World
Weather Attribution; https://www.worldweatherattribution.
org, last access: 22 August 2024).

One particularly interesting aspect of the WWA method
is the assumption of a linear relationship between GMST
and the variable describing the event and how this is used to

represent the pre-industrial climate. These relationships are
generally well-defined at global scales. However, regionally,
there are many factors influencing how changes in the global
climate propagate and affect the local climate (Doblas-Reyes
et al., 2021), and the global linear relationship of variables to
GMST may not adequately capture these. Hence, any local
effects will likely be missing from the representation of the
pre-industrial period. In turn, this could affect the outcome
of an attribution study, where results stem from the differ-
ence in probability during the pre-industrial period and the
recent past.

We aim to explore the proficiency of adjusting the cli-
mate by GMST in the context of extreme event attribution
in the simplest way possible: by comparing the results of
the WWA method to the results of a comparison between
pre-industrial and current conditions based on observations.
To achieve this, we will investigate two of the most notable
extreme events in Sweden during recent years: the particu-
larly warm summer of 2018, in this study focused on south-
ern Sweden, and the heavy-precipitation event impacting the
Swedish city Gävle in August 2021. The heat waves during
the summer of 2018 have been featured in multiple recent
studies (Leach et al., 2020; Yiou et al., 2020; Wilcke et al.,
2020). Contrastingly, while the precipitation event in Gävle
was heavily featured in the media and has been examined
by the Swedish Meteorological and Hydrological Institute
(SMHI), studies focusing on the attribution of the event are
lacking.

For these events, we will employ two different methods for
EEA. The first analysis will use the method from the rapid at-
tribution framework from Philip et al. (2020), while the sec-
ond analysis will instead directly compare the pre-industrial
and current period using data from several stations with long
observational records, thus not adding the dependency on the
GMST (referred to as the PI method).

2 Data and methods

In this study, we will employ parts of the rapid attribu-
tion framework from Philip et al. (2020) to investigate the
possible attribution of two recent events in Sweden: the
warm summer of 2018 and the heavy-precipitation event in
Gävle on 17–18 August 2021. Alongside this more com-
monly used attribution method, we will perform an analysis
based on long-running series of meteorological observations
(PI method).

2.1 Gridded datasets and event definitions

We defined two different domains to represent the events:
one for the heat wave in the summer of 2018 and one for
the heavy-precipitation event in Gävle in 2021 (Fig. 1). The
domain for the summer of 2018 covers the mainland of Swe-
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Figure 1. Domain outlines and the locations of stations used in the
study. Purple dots represent stations used only for precipitation data,
the orange plus symbols represent those used for temperature data,
and green stars show stations used for both precipitation and tem-
perature. Coloured boxes show the outlines for the regions used in
the selection of the gridded data.

den south of 60° N, whereas the domain for the Gävle event
covers between 59 and 63° N and east of 13.5° E.

We used the following gridded datasets: GridClim (An-
dersson et al., 2021), PTHBV (Gävle only; Johansson and
Chen, 2005; Alexandersson, 2003; Johansson, 2000; Johans-
son and Chen, 2003), E-OBS (Cornes et al., 2018), and
ERA5 (Hersbach et al., 2020). Additionally, we also used a
bias-adjusted (Berg et al., 2022), 66-member version of the
EURO-CORDEX ensemble (CORDEX stands for Coordi-
nated Regional Climate Downscaling Experiment; Coppola
et al., 2021; Jacob et al., 2014), as described in Kjellström
et al. (2022). GridClim, E-OBS, ERA5, and the CORDEX
ensemble all provided data until the end of 2018, while
PTHBV covered up until the end of 2021. To assess how
well the individual members of the CORDEX ensemble rep-
resented observations, we computed four metrics, all as total

deviations: the annual averages, the monthly averages, the
seasonal cycle, and the spatial patterns in the annual aver-
ages, between 1989 and 2018 for the respective domains us-
ing GridClim as the reference dataset. For definitions of the
metrics, we refer to the report on the Bavarian climate projec-
tion ensemble (Bayerisches Landesamt für Umwelt, 2020).
For all datasets, grid points outside the Swedish mainland
were masked.

For each dataset, we used 30 years of daily data to de-
fine the period representing the recent past. In the context of
analysing return times of extreme events, 30 years is a rather
short period, and using a longer time series is generally desir-
able, and with the WWA method, it is advised to use as many
data as possible. However, for this study, we chose a shorter
period for two reasons. Firstly, we wanted to keep the pe-
riod defining the climate of the recent past the same for both
methods. Secondly, we wanted the period defining the cur-
rent climate to be relatively stationary, limiting the climate
signal from local changes in, for example, aerosol emissions.

The summer of 2018 in Sweden was characterised by sev-
eral long-lasting high-pressure weather situations. This led to
a record number of warm days, which was one of the unique
features of that summer (Wilcke et al., 2020). Consequently,
we define the summer 2018 event using the txge25 index
(the number of days with a maximum temperature ≥ 25°C),
since that better reflects the longevity of the event rather than
capturing the intensity on any single day or in any short pe-
riod. To compute txge25, we used daily maximum temper-
atures between 1989 and 2018. The txge25 index is similar
to the more common indicator SU (often referred to as sum-
mer days), defined as the number of days when Tmax > 25°C.
For model data, where the number of reported decimals are
plenty, this choice has little to no consequence. For obser-
vations, however, and specifically from manual historical
records, there is a notable difference between counting days
when tasmax> 25°C and where tasmax≥ 25°C. The reason
for this is that decimal points were not prioritised in early ob-
servational practices; e.g. a thermometer displaying 25.4 °C
may have been recorded as 25 °C. In our case, the average
median fraction attributable risk (FAR) for the summer 2018
event using the PI method decreased from ∼ 0.65 for the SU
index to∼ 0.48 for the txge25 index, an indication that using
the former index results in an underestimation of warm days
in the pre-industrial period.

August 2021 came with large amounts of precipitation in
southern Sweden. The most intense event resulted in more
than 100 mm in 24 h between 17 and 18 August for a large
area close to the city of Gävle, which was highly impacted
by the resulting flooding. For a relatively short-lived event
like this, we chose to define the Gävle 2021 event using the
Rx1day index (the maximum 1 d precipitation). Thus, for the
Gävle event, we used the daily precipitation flux between
1991 and 2021. For both the events, we chose to include the
events under investigation in the time series used in the fol-
lowing analysis.

https://doi.org/10.5194/nhess-24-2875-2024 Nat. Hazards Earth Syst. Sci., 24, 2875–2893, 2024



2878 E. Holmgren and E. Kjellström: Exploring the sensitivity of extreme event attribution

We calculated the indicators using the software Climix
(Zimmermann et al., 2023). For the summer 2018 event,
only days within the period from May to August (MJJA)
were used to calculate txge25, while Rx1day was calculated
over the entire year. Furthermore, for the index describing
the summer 2018 event, we calculated the domain average
for each year. Since heavy-precipitation events are generally
more localised compared to heat waves, we instead opted to
calculate the annual domain maxima for the index describing
the Gävle 2021 event.

2.2 Attribution using the WWA method

The rapid attribution framework from Philip et al. (2020) is
a risk-based approach to attribution. It consists of steps out-
lining the preparations, analysis, and communication of an
attribution study. In the following section, we will describe
parts of the statistical method outlined in the framework.

The final result of a probabilistic attribution study is the
probability ratio (PR),

PR=
p1

p0
, (1)

or fraction of attributable risk (FAR),

FAR= 1−
p0

p1
= 1−

1
PR
, (2)

where p1 and p0 are the probabilities of observing an event
of a magnitude equal to or greater than the event threshold
(exceedance probability) in the factual (current climate) and
counterfactual (pre-industrial climate) worlds (see Fig. 2).
PR and FAR are interchangeable, and which one to use de-
pends on how the results will be presented. PR is interpreted
as how many times more likely (or unlikely if < 1) an event
with the same magnitude has become. FAR instead describes
the proportion of events of the same or greater magnitude that
can be attributed to the changed forcing. For instance, if the
PR of an event is 2, the interpretation would be that it has be-
come twice as likely. On the other hand, the interpretation of
the corresponding FAR= 0.5 is that half of the occurrences
of similar events can be attributed to the changed forcing.

To calculate p1 and p0, ideally long observational datasets
and climate model output records, which contain periods
that represent both the current and the pre-industrial climate,
should be used. The exceedance probability of a class of
events, in either of the two periods, can then be sampled from
the continuous density function (CDF) of a theoretical distri-
bution fit to data representing the period (see Fig. 2). In most
cases, data describing the current climate are readily avail-
able, from either observations, reanalysis products, or mod-
els, and retrieving p1 is relatively trivial.

Computing p0 requires data covering the pre-industrial pe-
riod. Unfortunately, continuous observations with good spa-
tial coverage from pre-industrial times are rare. Instead, one
option is to use the output of climate models. For instance,

Figure 2. Conceptual image describing the relationship between
CDF and probability. Here, the two CDFs describe the distributions
of the annual number of days with Tmax≥ 25°C in a factual and
counterfactual world. An event threshold of 20 d is indicated by the
vertical grey line. The corresponding event probabilities p1 and p0
are visualised as square brackets. In this case, p1 is larger than p0,
which indicates that a summer with 20 d or more with a daily max-
imum temperature ≥ 25°C is more likely in the factual world.

general circulation models (GCMs) that are part of the Cou-
pled Model Intercomparison Project (CMIP; Eyring et al.,
2016) have a pre-industrial control run which could be used
to represent the pre-industrial climate in attribution studies.
A drawback of the GCMs is that their resolution is gener-
ally too low to properly represent many extreme weather
events. The increased resolution of regional climate models
(RCMs), for instance members of the CORDEX (Jones et al.,
2011) ensemble, enables better representation of extreme
weather events. However, the high-resolution runs completed
in CORDEX traditionally do not include the pre-industrial
control period, and thus they only cover a period from the
middle of the 20th century onwards.

A third option used to represent the pre-industrial climate,
which is used in this and many other attribution studies, is
to shift or scale the distribution that represents the current
climate. This relies on the assumption that the variable used
to describe the event shifts or scales with a forcing that has a
known climate change signal and historical record. An exam-
ple of this is the global mean surface temperature (GMST),
commonly used as a key indicator of climate change (e.g.
Gulev et al., 2021).

The location µ of a distribution is shifted following

µ= µ0+β1T . (3)

Hereµ0 is the initial location, β is the coefficient of the linear
regression between the variable and GMST, and 1T is the
change in GMST between the current and pre-industrial pe-
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riod. If the variable is instead assumed to scale with GMST,
which is the case for precipitation, µ and the standard devia-
tion σ are changed following

µ= µ0exp(β1T/µ0) (4)

and

σ = σ0exp(β1T/σ0). (5)

Either of these approaches will result in a distribution that
represents the pre-industrial climate, where the CDF can be
sampled to retrieve p0 (see Fig. 2).

We computed the linear regression between the 4-year
rolling mean GMST (Hansen et al., 2010) and the 30-year
annual time series of each index. For all datasets, we used
the regression coefficients to detrend the index series of the
current climate. For each index series, we then fit and eval-
uated a number of common extreme-value distributions and
selected one for further analysis (see Sect. 2.4). We then used
the regression coefficients (β) to shift and scale, respectively,
the index distributions describing the summer of 2018 and
Gävle 2021 events according to Eqs. (3), (4), and (5). This
differs slightly from Philip et al. (2020), where they esti-
mate β, µ, and σ , along with any other model parameters,
directly from Eqs. (3), (4), and (5), using the longest time
series available rather than a subset as used here. However,
since the distributions used in this analysis were found to
be invariant to linear transformations (not shown), this does
not affect the outcome. For the CORDEX ensemble, the re-
gression coefficient of each ensemble member was used as
an additional quality control, where we removed any ensem-
ble member where the regression coefficient exceeded the
95 % confidence interval of the regression in the reference
dataset (GridClim). For each dataset, the distribution of the
current climate and the pre-industrial (shifted/scaled) distri-
bution formed a pair from which p1 and p0 could be retrieved
and used to calculate FAR/PR (Eqs. 1 and 2). The threshold
used for the summer 2018 event was based on the 2018 do-
main average txge25 in the GridClim product, whereas we
used the 2021 domain maximum Rx1day in PTHBV for the
Gävle 2021 event. For the gridded observations (GridClim,
PTHBV, E-OBS, ERA5) we calculated confidence intervals
with a bootstrap of randomly re-sampling the 30-year index
series and performing the previous steps 1000 times. For the
CORDEX data, instead of bootstrapping the confidence in-
tervals, FAR from each ensemble member was used to form
the distribution from which the confidence intervals could be
retrieved.

2.3 Attribution using the PI method

As an alternative to the WWA method, we performed an at-
tribution analysis employing several stations with long ob-
servational records of daily data. First, we merged a set of
stations parameters, as is commonly done at SMHI, to extend

and fill the gaps in the observational records for temperature
and precipitation (e.g. Joelsson et al., 2022). This approach
merges nearby stations which are assumed to be representa-
tive of the same geographic location but have different tem-
poral coverage. The observational records were checked for
missing values, and any stations missing ≥ 15% of the days
in the investigated period, during at least 1 year, were flagged
in the subsequent analysis.

For each event, we selected all stations located inside the
domain on the Swedish mainland and the island Gotland
(Fig. 1). For both events, the pre-industrial period was de-
fined as 1882 to 1911. This represents a period largely un-
affected by anthropogenic climate change, yet it is relatively
well covered in the observational records. The current cli-
mate period for the summer of 2018 was defined as 1989
to 2018 and for the Gävle 2021 event as 1992 to 2021.
We calculated the same climate indices as for the gridded
datasets (see Sect. 2.1) for each station. Following the in-
dex calculations, we further refined the station selection by
requiring each station to provide a continuous 30-year pe-
riod for both the pre-industrial and the current period. The
selection procedure resulted in 15 stations for the 2018 event
and 10 stations for the 2021 event. The locations and names
of these stations are shown in Fig. 1. We checked the two
separate periods of each station dataset for stationarity using
the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and aug-
mented Dickey–Fuller (ADF) tests (see Appendix A).

The two periods representing the pre-industrial climate
and that of the recent past were then used to calculate PR
and FAR following Eqs. (1) and (2), in the same way as done
in the probabilistic event attribution (Sect. 2.2). Here, the
threshold for the summer of 2018 was set to the 2018 station-
averaged txge25, while the value of Rx1day for Gävle-
Åbyggeby in 2021 was used as a threshold for the Gävle
event. Furthermore, we also computed FAR for each station
using the WWA method.

2.4 A note on distributions

In this study, we used the Python package SciPy (Virtanen
et al., 2020) to fit, evaluate, and sample the distributions used
to represent the data. There are multiple distributions suit-
able to represent extreme distributions, for instance gener-
alised extreme value (GEV), Gaussian, generalised Pareto
distribution (GPD), or Gumbel, and we refer to Philip et al.
(2020) for further details on the selection of distributions. It
is common practice to use a goodness-of-fit test, such as the
Kolmogorov–Smirnov test (KS test), to evaluate the suitabil-
ity of the different distributions to represent the data. How-
ever, we have found that relying solely on the KS test for
selecting the appropriate distribution insufficient. Most no-
tably, while the GEV distribution tends to show the high-
est performance in the KS test, it often results in division
by zero errors in Eq. (1) for very high quantiles. The right-
skewed Gumbel distribution does not lead to the same divi-
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Figure 3. Histograms of the txge25 index for the periods 1882–1911 and 1989–2018. Dashed lines show the probability density function
(PDF) of the Gumbel distribution fit to each period. † indicates that at least 1 year misses 15 % of the days in the pre-industrial period. ‡ is
the equivalent for the current period.

sion by zero errors, while it still shows good performance in
the KS test. A theoretical explanation for this is that the GEV
distribution has a finite upper bound when the shape param-
eter is negative, which can result in events becoming theo-
retically impossible. The Gumbel distribution, on the other
hand, has no upper bound since its shape parameter is fixed
at zero, and events are never theoretically impossible. Be-
cause of this, we opted to use the right-skewed Gumbel dis-
tribution for all probability estimations in this analysis. It is
worth noting that neither the Gumbel nor the GEV distribu-
tion is theoretically justified for count data, as is given by the

txge25 index. However, the results of the KS test indicated
that both the GEV and the Gumbel distributions were able to
represent the txge25 data.

3 Results and discussion

3.1 Summer of 2018

Almost all the stations employed in the analysis (Fig. 1)
recorded ≥ 50 d with daily maximum temperatures ≥ 25°C
(summer days) during the summer of 2018 (Fig. A2), here
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Figure 4. FAR for the summer of 2018 at the stations used in the
study. The marker colour represents the median FAR, while the
marker size shows the uncertainty in FAR as the range between the
95th and 5th percentile.

defined as May to August (MJJA). There are only a few sta-
tions where this is not, by some margin, the highest num-
ber of summer days recorded between 1989–2018. Between
1882–1911, there are no years that equal the number of sum-
mer days in 2018 among any of the stations (Fig. A3).

Histograms, along with the distributions, generally show a
positive difference between the distributions of the current
and the pre-industrial climate for txge25 (Fig. 3). Conse-
quently, the PI method generally yields positive values for
FAR, with medians > 0.8 for most of the stations (Fig. 3).
It is only Kristianstad, Karlshamn, and Linköping-Malmslätt
(LM) that exhibit FAR medians < 0. Here, a FAR ≤ 0 im-
plies that no occurrences of an event of similar or greater
magnitude can be attributed to the changed forcing. Further-
more, there are no spatial patterns over southernmost Sweden
that could explain the negative FAR of LM and Karlshamn
(Fig. 4).

Taking the average of the stations included in the
PI method for the summer 2018 event gives a median FAR∼
0.50 with the 5th percentile (Q5) ∼−0.78 (Fig. 5). The
FAR distributions (Fig. 5) further highlight the anomalous
behaviour of LM, where neighbouring stations Skara, Glad-
hammar A, and Örebro Flygplats (see Figs. 1 and 4) display
FAR distributions centred ≥ 0.75. For an adjusted average of
the PI method (Fig. 5), where Karlshamn, Kristianstad, and
LM are excluded, the median FAR∼ 0.78 and Q5 > 0.1.

The deviating results of these two stations are likely not
the result of a local response to changes in climate. Instead,
they are more likely a result of the station merging. In some
cases, merging means that the station was moved to a new
location. For LM, the station was moved a few kilometres
west of central Linköping to the airfield at Malmslätt in 1943.
Since temperatures are generally higher in urbanised areas
due to the urban heat island effect (Rizwan et al., 2008), mov-

Figure 5. FAR synthesis for the summer of 2018, as described by
the txge25 index during MJJA. The bars represent the percentiles
and median of the FAR distribution as described in the inset. Green
bars denote the average for each method (PI and WWA). The WWA
average here includes GridClim, E-OBS, ERA5, and the CORDEX
ensemble. The green bar with crossed hatching (appearing as tri-
angles) shows the adjusted average for the PI method, whereas the
bars with parallel hatching (blue and green) display results from the
WWA method. Note that the x axis is limited for increased read-
ability.

ing the station to a more rural area could introduce erroneous
trends into the series (e.g. Tuomenvirta, 2001; Dienst et al.,
2017). On the other hand, Karlshamn is an example of a sta-
tion that provides a continuous observational record without
merging or changes in location. Here, the implementation of
thermometer screens during the 20th century, which gener-
ally results in reduced recorded temperatures, could be a part
of the explanation.

These are examples of inhomogeneities in the observa-
tional record that make the investigation of trends and cli-
mate change difficult. Ideally, when working with signals of
climate change in observational data, the data should first be
homogenised; however, for daily data, this is currently not
available in Sweden. Joelsson et al. (2022) present monthly
averages of the 2 m temperature in Sweden from 1860, based
on homogenised data from a high number of stations. The
stations used in this study are a subset of the stations used
in Joelsson et al. (2022). Since this study makes use of daily
temperatures, we cannot directly utilise their results. How-
ever, their findings can help to further evaluate our results.
In general, they found the required temperature corrections
to be negative, with larger corrections during summers at the
end of the 19th and beginning of the 20th century. This means
that, generally, temperatures in the historical records were
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Figure 6. Histograms of annual Rx1day for periods 1882–1911 and 1992–2021. Dashed lines show the PDF of the Gumbel distribution fit
to each period. ‡ indicates that at least 1 year misses 15 % of the days in the current period.

overestimated. For instance, their analysis indicates a homo-
geneity break in maximum temperature during 1890 for the
station of Karlshamn, which coincides with the pronounced
shift towards lower numbers in txge25 in Fig. A3. This im-
plies that the estimated event probabilities during the pre-
industrial period in this study are likely too high, which in
turn results in an underestimation of FAR.

The analysis using the WWA method exhibits FAR simi-
lar to, albeit lower than, FAR estimated using the PI method
(bottom five bars, Fig. 5). The FAR distributions for Grid-
Clim, E-OBS, and ERA5 all exhibit a median of 0.4–0.6
and a low spread, with 5th percentiles well above 0. The
CORDEX ensemble FAR distribution, here with 62 mem-
bers, shows a higher median (∼ 0.8), albeit with a greater
spread (Q5 ∼−4,Q95 ∼ 0.99) compared to the observation-

based products (Q5 ∼−0.8, Q95 ∼ 0.9). The WWA average
(Fig. 5) shows the average FAR distribution of the datasets
(GridClim, E-OBS, ERA5, CORDEX ensemble) used in the
WWA method. Here, the median FAR is lower compared to
the adjusted station average of the PI method, but uncertainty
ranges overlap.

3.2 Gävle 2021

During the event on 17–18 August 2021, the station Gävle-
Åbyggeby measured 121 mm of precipitation in 24 h. This
was also the annual maximum 1 d precipitation (Rx1day) at
that station in 2021. In 2021, none of the other assessed sta-
tions in the study area (Fig. 1) recorded a similar amount of
precipitation in a single day. However, there are years in the
recent past with annual daily maxima similar to the Gävle
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Figure 7. FAR synthesis for the heavy-precipitation event in
Gävle in 2021 described by the annual maximum 1 d precipita-
tion (Rx1day). The bars represent the percentiles and median of
the FAR distribution as described in the inset. Green bars denote
the average for each method (PI and WWA). The WWA average
here includes PTHBV, GridClim, E-OBS, and the CORDEX en-
semble. The hatched bars (blue and green) display results from the
WWA method. Note that the x axis is limited to −1 for readability.
The ERA5 FAR distribution lies below this range and is not dis-
played.

2021 event, both in Gävle and at other stations (Fig. A4).
In the pre-industrial period, there were only two recorded
events, both in Härnösand, with similar magnitudes to the
2021 event (Fig. A5).

For an event like the heavy-precipitation event in Gävle
in 2021, differences between the distributions of the pre-
industrial and current climate are small at most of the 10
stations used to investigate the event (Fig. 6). There are a
few stations (e.g. Gävle-Åbyggeby, Härnösand, Sveg A) that
exhibit larger differences between the two periods, most no-
tably in the tails of the distributions.

The FAR synthesis of the PI method (Fig. 7) shows
the large variability among the stations. Here, Uppsala is
the only station where the confidence interval does not in-
clude 0, Q5 ∼ 0.2. When looking at the median, however,
Gävle-Åbyggeby, Sveg A, Uppsala, Västerås, and Örebro D
all exhibit FAR> 0. The remaining stations (Falun-Lugnet,
Härnösand, Malung A, Stockholm-Observatoriekullen) show
a median FAR≤ 0. These differences are reflected by the
large spread and negative median (Q50 ∼−0.2) of the aver-
age of the stations used in the PI method for the Gävle event
(Fig. 7).

FAR distributions from the WWA method for the Gävle
2021 event are shown with the hatched bars in Fig. 7.

PTHBV, GridClim, E-OBS, and CORDEX exhibit similar
medians (0.78–0.98), and Q5 ≥ 0.6. The results from ERA5
do not match the other datasets, with a median FAR ∼−2.5
and Q95 ∼−2. We also note that ERA5 exhibits a nega-
tive regression to GMST, as opposed to the other datasets
where the regression is generally positive. A contributor to
this could be the overall underestimation of Rx1day in ERA5
found by Lavers et al. (2022). This requires further investiga-
tion, and we chose not to include ERA5 in the datasets used
in the WWA average (PTHBV, GridClim, E-OBS, CORDEX
ensemble).

For the Gävle event, there is some disagreement between
the WWA method and the PI method. For stations such as
Gävle-Åbyggeby, Sveg A, Uppsala, Västerås, and Örebro D,
the median FAR derived by the PI method is of the same
magnitude as that of the WWA method. However, the un-
certainties are generally greater for the stations used in the
PI method, with 5th percentiles < 0 for multiple stations.
Here, the difference in the magnitude of uncertainty between
the two methods can likely be attributed to the fact that
gridded data typically do not represent extreme precipitation
events as well as local observations and thus have an overall
lower variability. Furthermore, the relatively short 30-year
period used to represent the current climate further limits
how accurately the gridded datasets can represent the vari-
ability. This can lead to unstable estimates of p0 and p1 and
unreliable estimates of FAR.

The question of homogeneity in the station data also ap-
plies to the precipitation measurements. During the later
parts of the 20th century, many stations were converted from
manual to automatic operation in Sweden. Here, the place-
ment of automatic stations was generally in areas more ex-
posed to wind compared to manual stations, and compar-
isons have shown that automatic measurements generally
show less precipitation compared to those of manual stations
(Alexandersson, 2003).

The two 30-year periods used to represent the pre-
industrial (1882–1911) and the current (1992–2021) climate
were found to be stationary at most of the stations (Figs. A5
and A4). Based on this, we decided not to detrend the sta-
tion data. This also kept the following analysis (PI method)
closer to the actual observations, not adding a dependence
on regressions to, for example, GMST. Comparing the pre-
industrial and current climate, most of the stations show dis-
tributions with very similar means (Fig. 6). In these cases, the
results are more sensitive to the randomness of the bootstrap,
resulting in the large uncertainties for some stations in Fig. 7.

3.3 Comparing the PI and WWA methods

With the long observational time series, we can further eval-
uate to what degree the PI method and WWA method agree.
Here, in addition to using the PI method to estimate FAR, we
applied the WWA method to the observations of the current
climate (1989–2018 and 1991–2021, respectively) at each of
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Figure 8. Comparison of FAR distributions for the summer of 2018
from the PI method and WWA method applied to txge25 observa-
tions of the recent past. The first of the two bars (blue) in every pair
shows the FAR distribution of the PI method, equivalent to what is
shown in Fig. 5. The second bar (green, hatched) shows the FAR
distribution from applying the WWA method to the time series of
observations of the recent past for each station.

the stations for the two events. The results are presented as
FAR distributions for the two events in Figs. 8 and 9.

The results clearly show that the two methods generally
yield similar results for the summer of 2018 (Fig. 8), albeit
with somewhat lower FAR numbers for the WWA method
compared to the PI method. This is likely a result of the
weak regression coefficient between the variable (txge25)
and GMST (Fig. A1). Figure 3 gives some indication that
the scale of the distributions varies between the pre-industrial
climate and that of the climate of the recent past for a few
stations (e.g. Halmstad Flygplats, Vänersborg). This con-
flicts with the notion that temperature distributions shift fol-
lowing the regression to GMST, which is utilised in the
WWA method. An implication of this is a shifted distri-
bution that is too wide, giving higher estimates of p0 and
consequently a lower FAR, which could explain the differ-
ences we observe between the two methods here. There are
two stations, Karlshamn and Linköping-Malmslätt, where

Figure 9. Comparison of FAR distributions for the Gävle 2021
event from the PI method and WWA method applied to Rx1day
observations of the recent past. The first of the two bars (blue) in
every pair shows the FAR distribution of the PI method, equivalent
to what is shown in Fig. 7. The second bar (green, hatched) shows
the FAR distribution from applying the WWA method to the time
series of observations of the recent past for each station.

the WWA method results in a higher estimation of FAR com-
pared to the PI method. Interestingly, for both these sta-
tions, the WWA method yields FAR distributions that are
more aligned with the FAR (WWA and PI) of the other
stations used in the analysis. Overall, this suggests that
the WWA method, even when applied to only 30 years of
data, can capture changes in probabilities for a larger-scale
temperature-related event such as the one in the summer of
2018. Furthermore, this indicates that the relationship be-
tween GMST and local temperature extremes in this area has
remained relatively constant throughout the 20th century.

For the Gävle event, differences between the FAR distri-
butions for the WWA method and the PI method are more
varied (Fig. 9). For several stations, the FAR distributions of
the WWA method and PI method generally agree (e.g. Gävle-
Åbyggeby, Sveg A, Uppsala, Örebro D). At the other sta-
tions, the median FAR from the two methods does not agree,
but the uncertainty ranges of the FAR distributions still over-
lap, mostly due to the large uncertainty in FAR distributions
of the PI method. Furthermore, the much smaller uncertainty
in FAR distributions of the WWA method is an indication
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Figure 10. Gridded maps showing the regression coefficients between GMST and GridClim for (a) the txge25 index over the summer
2018 domain during 1989–2018 and (b) the Rx1day index over the Gävle event domain during 1989–2018. Crosses indicate significance at
p ≤ 0.05. For the summer 2018 domain, the spatial variability is relatively low, with few grid points showing a significant regression. While
the Gävle domain shows a cluster of points with a significant regression along the coast between 60 and 62° N, the overall spatial variability
is greater compared to the summer of 2018.

that the short time periods can lead to distributions that do
not encompass the whole variability, as discussed above.

Figure 10 shows maps of the regression coefficients be-
tween GMST and the index series at the grid points in the two
domains representing the events. For the domain represent-
ing the Gävle event, the regression between Rx1day (Grid-
Clim) and GMST (1989–2018) is relatively strong along and
in proximity to the coast between 60 and 62° N (Fig. 10).
Outside this sub-area, the regression is generally weaker and
not statistically significant, with no distinguishable spatial
patterns. In comparison, the regression between txge25 and
GMST in the domain representing the summer 2018 event
exhibits relatively small spatial variations over the domain
(Fig. 10), but with fewer grid points showing a significant re-
gression. This indicates that the extreme precipitation event
is more sensitive to the choice of domain compared to the
extreme temperature event.

4 Conclusions

We have applied two sets of attribution analysis to two no-
table extreme weather events in Sweden: the warm summer
of 2018 and the heavy-precipitation event in Gävle in 2021.
For the WWA method we made use of a number of grid-
ded datasets covering the last few decades and assumed that
the variable describing the event either shifted or scaled with
GMST. This allowed us to calculate the exceedance probabil-
ities, and their change, for the events from distributions that
represent the climate in a pre-industrial period and during
the recent past. For the PI method, we instead relied solely
on observations to represent the climate during both the pre-
industrial and the current periods to retrieve corresponding

probabilities. We found the extensive observational record
available in Sweden a valuable source of data that, if ho-
mogenised, could help to further clarify some uncertainties
arising from using non-homogenised data.

For the summer of 2018, results from the PI method,
excluding stations affected by inhomogeneities, exhibit
a stronger attribution compared to the results of the
WWA method. When applied to the station data used in the
PI method, the WWA method also results in slightly lower
values for FAR. The systematic difference between the two
approaches using temperature data from the long-term sta-
tions indicates that this may be related to the regression
between the temperature index (txge25) and GMST or the
fixed-scale parameter of the shifted distributions. However,
these differences are rather small, and overall, our results
suggest that the WWA method can capture changes in proba-
bilities for large-scale temperature-related events even when
applied to only 30 years of data, which is shorter than what
is recommended.

We also note that since high temperatures tend to be over-
estimated in historical observations, using homogenised ob-
servations is likely to result in a higher FAR for heat-wave-
related extremes using the PI method. Furthermore, based on
these results, we can conclude that one out of every two heat
waves similar to the summer of 2018 can be attributed to
changes in the climate. Alternatively, such heat waves have
become twice as likely due to changes in the climate. When
only using station data, the previous statement increases to
more than two out of three and would likely be even higher
using homogenised data.

Regarding the precipitation event in Gävle in 2021, results
from the PI method are highly variable, making the attribu-
tion of the event uncertain. Here, 5 out of 10 stations exhibit
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a median FAR> 0.5, but only 1 displays FAR that is sig-
nificantly above 0. On the other hand, except for the ERA5
dataset, there is a fairly good agreement among the gridded
datasets analysed using the WWA method, and the method
shows a stronger attribution compared to the PI method.
Applying the WWA method to the station data used in the
PI method does not reveal any positive or negative tendency
when comparing the results of the two methods. These large
variations within and between the two methods make it diffi-
cult to draw any conclusions regarding the attribution of the
extreme precipitation event in Gävle in 2021.

Comparing the two events, the regression maps indicate
that a precipitation event like the one in Gävle appears to
be more sensitive to the choice of domain than a more
widespread and uniform heat wave like the one in the sum-
mer of 2018. This also agrees with previous findings indicat-
ing that extreme precipitation events are more sensitive to the
event definition.

Regarding the more generally applicable WWA method
for attribution, future studies should try to utilise as many
data as possible and continue to explore how the regional
variations in relationships, such as that between the local
Clausius–Clapeyron scaling and GMST, affect the outcome
of studies on extreme event attribution.

Appendix A: Additional figures

Figure A1. Regression between the index series and GMST at the respective stations. The strength and sign of the regression coefficient are
indicated by the colour, while the size of the markers indicates the p value.
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Figure A2. Trend analysis of the current period (1989–2018) for the txge25 index. KPSS≤ 0.05 indicates that a series is non-stationary.
ADF≤ 0.05 indicates that a series is trend stationary.
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Figure A3. Trend analysis of the historical period (1882–1911) for the txge25 index. KPSS≤ 0.05 indicates that a series is non-stationary.
ADF≤ 0.05 indicates that a series is trend stationary.
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Figure A4. Trend analysis of the current period (1991–2021) for the Rx1day index. KPSS≤ 0.05 indicates that a series is non-stationary.
ADF≤ 0.05 indicates that a series is trend stationary.
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Figure A5. Trend analysis of the historical period (1882–1911) for the Rx1day index. KPSS≤ 0.05 indicates that a series is non-stationary.
ADF≤ 0.05 indicates that a series is trend stationary.
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