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Abstract. Floods are extreme hydrological events that can
reshape the landscape, transform entire ecosystems and alter
the relationship between living organisms and the surround-
ing environment. Every year, fluvial and coastal floods claim
thousands of human lives and cause enormous direct dam-
ages and inestimable indirect losses, particularly in less de-
veloped and more vulnerable regions. Monitoring the spa-
tiotemporal evolution of floods is fundamental to reducing
their devastating consequences. Observing floods from space
can make the difference: from this distant vantage point it is
possible to monitor vast areas consistently, and, by leverag-
ing multiple sensors on different satellites, it is possible to ac-
quire a comprehensive overview on the evolution of floods at
a large scale. Synthetic aperture radar (SAR) sensors, in par-
ticular, have proven extremely effective for flood monitoring,
as they can operate day and night and in all weather condi-
tions, with a highly discriminatory power. On the other hand,
SAR sensors are unable to reliably detect water in some
cases, the most critical being urban areas. Furthermore, flood
water depth – which is a fundamental variable for emergency
response and impact calculations – cannot be estimated re-
motely. In order to address such limitations, this study pro-
poses a framework for estimating flood water depths and en-
hancing flood delineations, based on readily available topo-
graphical data. The methodology is specifically designed to
accommodate, as additional inputs, masks delineating water
bodies and/or no-data areas. In particular, the method relies
on simple morphological arguments to expand flooded ar-
eas into no-data regions and to estimate water depths based
on the terrain elevation of the boundaries between flooded
and non-flooded areas. The underlying algorithm – named
FLEXTH – is provided as Python code and is designed to
run in an unsupervised mode in a reasonable time over ar-

eas of several hundred thousand square kilometers. This new
tool aims to quantify and ultimately to reduce the impacts of
floods, especially when used in synergy with the recently re-
leased Global Flood Monitoring product of the Copernicus
Emergency Management Service.

1 Introduction

Floods are among the most devastating of natural disasters,
causing widespread destruction and loss of life across the
globe (EMDAT, 2022; Douris and Kim, 2021). Accurate and
timely flood mapping is essential for effective disaster man-
agement, facilitating early warnings, evacuation planning,
proactive response and subsequent recovery (Voigt et al.,
2016). In the past, flood mapping relied heavily on ground-
based observations, which often proved insufficient for real-
time monitoring due to limitations in spatial and temporal
coverage. The advent of satellite remote sensing technology
and advancements in data processing techniques have revolu-
tionized flood mapping, offering substantial benefits in terms
of accuracy, coverage and timeliness of information delivery
(Schumann and Moller, 2015; Salamon et al., 2021). With
satellites, floods can be monitored remotely and continuously
over vast and inaccessible areas. These aspects are especially
relevant for vulnerable regions where risk mitigation strate-
gies are lacking and the response to disasters is often inad-
equate. The data obtained from satellites provide valuable
insights into flood dynamics, such as water extent and the
progression of inundations over time (Spasova and Nedkov,
2019). This information is crucial for emergency response
planning and post-event recovery, ultimately contributing to
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saving human lives and mitigating social and economic im-
pacts.

Among the satellite-borne sensors, optical sensors
(i.e., those operating in the optical range of the electro-
magnetic spectrum) have long been used to map floods
(e.g., Grimaldi et al., 2016). However, despite the extensive
coverage of optical satellite imagery, it is still challenging to
map floods from space under certain circumstances, either in
a supervised or an unsupervised mode. For example, optical
sensors cannot “see” at nighttime or through clouds. The lat-
ter limitations are especially problematic, since adverse me-
teorological conditions may be expected during extreme hy-
drological events.

More recently, synthetic aperture radar (SAR) sensors
have offered an effective alternative for flood mapping,
thanks to their high capacity to discriminate surface wa-
ters (Clement et al., 2018; Jo et al., 2018; Pulvirenti et al.,
2011). Operating in C-band microwave frequencies (i.e., be-
tween 4 and 8 GHz), SAR sensors such as the one on board
the Copernicus Sentinel-1 satellites allow for an efficient
and comprehensive assessment of floods worldwide, day and
night, and regardless of the weather conditions. Despite these
advantages, the efficacy of SAR sensors can be limited in cer-
tain situations: (i) low sensitivity, where dry or wet areas may
be misclassified due to the presence of dense vegetation or
urban areas, and (ii) water look-alike conditions, where the
ground surface interacts with the incoming radar signal as if
it were water (e.g., smooth, very dry surfaces or wet snow).

Masking areas where flood mapping is not feasible is not
only a matter of scientific realism but ultimately increases
the trust of users in the flood delineation products. In this
context, one of the “output layers” provided by the Coper-
nicus Emergency Management Service’s recently released
Global Flood Monitoring (GFM) is an “exclusion mask”,
which excludes areas that challenge SAR-based flood map-
ping (https://emergency.copernicus.eu/, last access: 5 August
2024). In practice, the mask is equivalent to no-data in areas
where the system is unable to confidently discriminate flood-
waters.

GFM is an online system that provides, as its main output,
worldwide flood delineations by automatically ingesting and
processing in near-real time all incoming Sentinel-1 SAR ac-
quisitions. As part of the GFM methodology, as soon as a
new Sentinel-1 image is available, the raw SAR backscatter
data are promptly processed by three separate state-of-the-art
flood classification algorithms, in an unsupervised manner.
The final flood map is generated via an ensemble approach
that increases the robustness and reliability of the final prod-
ucts (Salamon et al., 2021; Krullikowski et al., 2023), to-
gether with a series of additional output layers (including the
exclusion mask).

Water depth is considered to be the most informative proxy
variable for quantifying flood impacts. In fact, empirical
depth–damage curves have traditionally been designed to
quantify economical losses as a function of water depth for

different exposed assets in different regions (Jongman et al.,
2012; Huizinga et al., 2017). Despite the best practices and
most recent advances, water depth cannot be estimated by
satellite-based flood mapping. Water depth estimation and
the accurate identification of flood extent are critical tasks,
not only for disaster risk management, but also for other sci-
entific disciplines, including geomorphology, hydrology and
climate change analysis (e.g., Feyen et al., 2020; Rossi et al.,
2023). Traditional approaches for estimating water depth and
flooded area rely on ground-based observations and manual
measurements, which suffer from limitations such as time-
consuming data collection and limited spatial coverage. Re-
mote sensing technologies and digital terrain models (DTMs)
have opened promising avenues for addressing these chal-
lenges (Fuentes et al., 2019; Khattab et al., 2017). For exam-
ple, Cohen et al. (2018) developed an effective and widely
used framework to compute water depth from the intersec-
tion of flood delineation polygons and a DTM (Teng et al.,
2022; Penton et al., 2023). A second release of the methodol-
ogy improved some of the limitations of the first release, such
as the computational inefficiency and the impossibility to
properly consider the boundaries between floods and perma-
nent water bodies (Cohen et al., 2019). However, the frame-
work still suffers from substantial processing times over very
large areas (or with high-resolution rasters) and can pro-
vide unrealistic water levels and depths in certain conditions
(Cohen et al., 2019). Other approaches for estimating flood
depths at a local scale have proved effective (Bryant et al.,
2022; Cian et al., 2018). Nevertheless, their applicability for
large-scale assessments has not yet been demonstrated. Fur-
thermore, these approaches are rather elaborate and are un-
likely to be suitable for unsupervised use over large areas.
Finally, none of the current methodologies takes advantage
of topographical information to enhance flood delineations
in a non-trivial manner (i.e., other than with so-called “bath-
tub model” approaches). They have also not been tested in
complex riverine environments with irregular topographies,
or they employ closed-source and/or commercial software
(Rodriguez Enriquez et al., 2023).

To address the aforementioned limitations, the present
study introduces a novel algorithm called FLEXTH. The spe-
cial feature of FLEXTH is its utilization of topographic in-
formation to effectively handle flood maps with gaps arising
from areas with no data or seasonal or permanent water bod-
ies. FLEXTH aims to expand flood delineations and provide
estimates of water level and water depth seamlessly across
the entire study area. The combined use of satellite-derived
inundation maps and DTMs not only improves the overall
accuracy and reliability of the flood assessment, but also en-
hances the ability to model and predict flood dynamics in ar-
eas prone to inundation. Furthermore, the framework is suit-
able for any flooding mechanism, namely riverine, coastal
and pluvial. Other key features of the methods described in
this paper are (i) a limited requirement for supervision since
FLEXTH is designed to operate automatically over large ar-
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eas and (ii) computational efficiency, which is achieved using
computer vision algorithms that entail reasonable processing
times, for areas on the order of up to 109 pixels.

The workflow that is presented in this study provides a
comprehensive and efficient approach to enhancing (satellite-
based) flood maps and complementing flood extent informa-
tion with estimates of water level and water depth, with po-
tential improvements to flood assessment, impact calculation
and disaster response strategies.

2 Methods

The required and optional input data for the workflow illus-
trated in Fig. 1 are introduced in Sect. 2.1. Section 2.2 de-
scribes the procedure that estimates water level and water
depth in areas initially delineated as flooded. Section 2.3 de-
scribes the routine that propagates the flood water inside the
no-data areas by taking advantage of a DTM. Note that this
final aspect is only relevant if a no-data mask is provided as
input.

The underlying algorithm – named FLEXTH – is available
as an open-access Python script: see the code availability sec-
tion. An additional script is provided for easily preprocessing
the input data (i.e., cropping, resampling and reprojecting the
DTM to the same grid as that of the flood delineation raster).

2.1 Input and output products

The processing chain has, as a minimum requirement, two in-
puts: (i) a binary raster map delineating the flooded areas and
(ii) a DTM (Fig. 1). Additionally, users can take advantage of
two optional input data layers: (iii) a binary no-data mask de-
lineating all areas excluded from flood mapping and (iv) a bi-
nary map identifying permanent and seasonal water bodies.
The no-data mask is particularly relevant when a satellite-
borne sensor is unable to discriminate reliably flooded areas
due to, for example, low sensitivity or water-look-alike con-
ditions. A no-data mask may correspond to clouds in the case
of optical image data (e.g., from Sentinel-2) or to densely
vegetated and urbanized areas in the case of SAR sensors
(e.g., Sentinel-1).

All processing steps are computed on georeferenced arrays
(GeoTIFF) with matching pixels: the inputs share the same
spatial extent, pixel size and projected reference system. As
outputs, FLEXTH delivers water level and water depth maps,
possibly expanding throughout no-data areas, if provided.

2.2 Water level and water depth estimation

Water level (WL) refers to the elevation of the water surface
above an arbitrary vertical datum, while water depth (WD)
is the difference between the elevation of the water surface
and the underlying terrain. The idea behind the water level
estimation method presented here is that within each con-
tiguous (or connected) flooded area, the water level can be

inferred based on the ground elevation along the correspond-
ing wet–dry boundary. In particular, along the borders of
flooded areas, the water level must fall in the interval be-
tween the elevation of neighboring flooded/non-flooded pix-
els (see Fig. 2a). The elevation of the terrain around flooded
areas, including neighboring flooded (i.e., wet) and non-
flooded (i.e., dry) pixels, is therefore critical. The following
steps describe how to link the wet–dry boundaries (obtained
from flood inundation maps) with topographical information
(from DTMs) in order to estimate water levels inside con-
tiguous flooded areas.

The workflow, as illustrated in detail in Fig. 2, consists
of three main phases. The first phase, shown in Fig. 2c, fo-
cuses on identifying the reference outline of each contiguous
flooded area. The second phase uses the reference outline in
combination with a DTM to compute water level and water
depth inside the flooded areas (Fig. 2d). The third phase em-
ploys the water level estimates and topographical informa-
tion to propagate flood water across hydraulically connected
no-data regions (Fig. 2e). On a computational level, the pro-
cedure takes advantage of the Open Source Computer Vi-
sion Library (https://opencv.org/, 5 August 2024), which was
developed to facilitate efficient image processing operations
over large raster datasets (opencv, 2015).

As a pre-processing step (Fig. 1a), two rounds of “mor-
phological” closing using a 3× 3 cross kernel are performed
on the initial flood delineation (Gonzalez and Woods, 2018;
Haralick and Shapiro, 1992). This procedure can be rele-
vant especially for automatically derived flood maps, where
flooded areas may feature small inaccuracies and noisy bor-
ders. In fact, the procedure regularizes the wet–dry contour
and fills small gaps that could otherwise negatively affect the
following steps.

At this point, the borders of flooded areas, including neigh-
boring wet and dry pixels, are identified by subtracting (log-
ical XOR) a morphological erosion of the flood map from
its morphological dilation (Gonzalez and Woods, 2018).
Both operations are performed using a 3× 3 box kernel (see
Fig. 2b, steps i to iv).

However, flooded areas may not simply be enclosed by
“valid” wet–dry boundaries, but they can also share borders
with no-data regions or with permanent water bodies. In the
first case, the true location of the wet–dry divide is unknown,
as it may be hidden inside the “blind” no-data areas. In the
second case, when a flood merges with a water body, the
shared wet–wet boundary does not provide any topographic
information useful for determining the water level. For the
identification of reliable water levels, it is therefore crucial to
consider just the informative borders and to exclude the spu-
rious ones. For this purpose, a dilation of both no-data areas
and water bodies (with a 3×3 kernel) is used to mask the con-
terminous wet–dry contours identified previously (Fig. 2c,
steps iv to vi). This operation combines with a logical AND
the initial outline of flooded areas with the complement (i.e.,
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Figure 1. Workflow conceptualizing the main processing steps and the final/intermediate products: (a) identification of valid wet–dry bound-
aries of flooded areas and (b) computation of the water level and water depth in the initial and expanded flooded areas. Asterisks denote
optional inputs; see Sect. 2.1.

logical NOT) of the union between the dilated exclusion and
water bodies masks, as illustrated in Fig. 1a.

Additionally, border pixels corresponding to topographic
gradients larger than the user-defined threshold Smax are ex-
cluded from the following computations (Fig. 1a). In fact,
large topographic gradients along the wet–dry boundaries,
especially in combination with coarse resolutions of the in-
put flood map and/or DTM, can lead to erroneous estimates
of representative water levels (Cohen et al., 2022).

Because water level ideally lies between the elevations of
neighboring wet–dry pixels (Fig. 2a), the DTM values cor-
responding to the remaining valid contour pixels are pro-
cessed with a moving average filter (3×3 box kernel) in order
to compute the representative water level along the outlines
of the flooded areas (dashed red boxes in panels vii–viii of
Fig. 2d; see also Fig. 2b).

The representative water level corresponding to the
flooded/non-flooded boundaries is now used to extrapolate
the water level inside each flooded area (step ix in Fig. 2d).
Contiguous flooded areas are identified by means of a con-
nected component analysis and processed independently
(Stockman and Shapiro, 2001).

The water level of each flooded pixel can then be esti-
mated based on two alternative methodologies. Method A es-
timates water level at a target pixel as the distance-weighted
arithmetic mean of the Nmax closest pixels (in the Euclidean
sense) belonging to the border of the corresponding flooded
area. The weight w = 1/dα is controlled by the parameter α,
which modulates the range of influence of each pixel of the
border having a distance d from the target location. Alter-
natively, Method B requires the selection of a percentile P
of the distance-weighted distribution of the elevations along
the border pixels as a reference for assigning water levels.
Inverse-distance-weighted percentiles are computed by scal-

ing the frequency of the elevation of each pixel along the
border by a factor 1/dα . In general, Method A tends to pro-
vide smoother estimates of water levels. However, Method B
can be more robust and versatile when the altimetry of the
pixels along the border is biased or is poorly representative
of the actual water level. This may be due, for example, to in-
accuracies in the delineation of flooded areas and/or errors in
the DTM or in case of coarse raster resolutions (Cohen et al.,
2022).

If the number of pixels along the wet–dry boundary is
too small to provide robust estimates of the water level (say
they are less than Nmin), an alternative approach is adopted.
Specifically, in these cases, the water level is set as the
Pin percentile of the distribution of DTM values inside that
flooded region. Such an alternative approach is more likely
to be required in the presence of small flooded areas located
in steep topographies surrounded by extensive water bodies
and/or no-data areas.

Finally, where the estimated water level is lower than the
ground elevation, a fictive water depth WD∗ is assigned. For
consistency, the same WD∗ is added to the remaining wa-
ter depth estimates. Water level estimates lower than ground
elevation can occasionally occur in practice as a result of,
for example, the following: (i) imprecise flood delineation,
(ii) inaccuracies in the DTM and (iii) vertical curvatures of
the water surface due to hydrodynamic effects.

2.3 Flood expansion

Once water levels are computed in the delineated flooded ar-
eas, water is recursively spread from flooded locations into
neighboring masked (i.e., no-data) areas, provided that the
ground elevation of the no-data pixel is lower than the wa-
ter level in the nearby source pixel (see Fig. 2e, step x). To
prevent unlimited and unrealistic spreading of flood water,
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Figure 2. Schematic representation of the main steps of the procedure to estimate water depths and to expand floods inside excluded areas:
(a) principle behind the water depth estimation combining a flood map and a DTM, (b) sample DTM with elevation values in each pixel,
(c) identification of valid wet–dry boundaries of a flooded area, (d) water level and water depth estimation inside the initially flooded areas,
and (e) flood propagation in the no-data mask. See Sect. 2.2 and 2.3 for details.
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a routine regulates water levels and allows water to spread
up to a maximum distance (computed from the point along
the initial flood boundary where flood propagation began). In
fact, without a constraint on flood spreading – such as in the
case of a horizontal water level propagation as in a bathtub-
filling approach (e.g., Nobre et al., 2016) – flood water could
propagate indefinitely. Such a risk may especially arise when
extensive excluded areas are combined with regional topo-
graphical gradients or in large-scale assessments.

A maximum propagation distance dmax is assigned to
each contiguous flooded area as a function of its exten-
sion A (km2), allowing large flooded areas potentially to
spread further. Specifically, flood expansion is controlled via
the following exponential relationship:

dmax(A)=Dmax

(
1− 2

−
A

A1/2

)
, (1)

where Dmax (km) corresponds to the maximum allowable
propagation distance for an arbitrarily large flooded area, and
A1/2 (km2) establishes the flood extent for which dmax =

Dmax/2. This simple parameterization is heuristically rooted
in the mass conservation principle: large flooded areas con-
tain more water that can potentially propagate further. How-
ever, a sill is enforced as – in reality – flood propagation can-
not increase indefinitely.

To improve computational speed, flood propagation fol-
lows a forward explicit scheme which ensures a progressive
decrease of water depth as the flood spreads. The numerical
method begins by propagating water levels to neighboring
excluded pixels starting from the contours of each flooded
area, and it continues until a set of conditions is met. In par-
ticular, starting from a generic pixel at position i,j , the algo-
rithm estimates water levels in neighboring excluded pixels
at position i± 1, j ± 1 (WLi±1,j±1) based on the ground el-
evation DTMi±1,j±1, the initial water level WL0 at the ori-
gin of the propagation and the distance di±1,j±1 computed
along the propagation route until position i± 1, j ± 1. Valid
pixels where flood propagation is performed are those ful-
filling all the following conditions: (i) belong to the no-data
mask; (ii) DTMi±1,j±1 <WLi,j ; (iii) WLi±1,j±1 <WLi,j ;
and (iv) no flood propagation has yet been performed on the
target location. All the eight pixels surrounding each start-
ing location are considered as neighbors (8-connectivity).
Specifically, the routine follows this expression:

WLi±1,j±1 =WL0−
(
WL0−DTMi,j

) di±1,j±1

dmax
. (2)

Figure 3 illustrates the behavior of the flood propagation rou-
tine in a few one-dimensional sample cases. Specifically, the
figure shows how an initial water depth WD0 propagates on
different land surface topographies characterized by a start-
ing value DTM0 and a combination of a linear, a sinusoidal
and a random trend parameterized via si, ss and sr as

DTM(x)= DTM0+ six+ ss sin(2πx)+ srzrand, (3)

where x is a longitudinal dimension (in kilometers) and
zrand is a uniformly distributed random number in the inter-
val [−0.5, 0.5] (see caption of Fig. 3 for details).

As a final post-processing step (Fig. 2e, panel xi), water
level estimates in the expanded regions are smoothed in or-
der to do the following: (i) reduce potential discontinuities
between the elevation of the water surface and the ground
elevation in contiguous non-flooded pixels and (ii) homoge-
nize water levels where floodwaters spreading from different
sources merge together. For this purpose, a 5×5 circular con-
volutional smoothing filter is slid 20 times over WL′, i.e., the
union between the estimated water level map and the DTM
in non-flooded areas. Specifically, WL′ =WL(flood= 1)∪
DTM(flood= 0), where WL can in turn be seen as the union
between water levels estimated inside the initially flooded
areas (WL0) and the water levels in the expanded flooded ar-
eas (WLe). At each recursive application of the filter, the ini-
tial values of DTM(flood= 0) and WL0 are re-established,
ensuring this post-processing step to be limited to WLe. The
procedure terminates with the step xii of Fig. 2e, where water
depth is estimated as the difference between water level and
the DTM.

3 Results: the Pakistan 2022 case study

The framework described in Sect. 2 is tested for the use case
of the devastating flood that hit the Indus valley in Pakistan
between July and September 2022. The flood caused severe
destruction and affected about 33 million people, claiming
over 1700 victims and causing about EUR 20 billion of di-
rect damages (Nanditha et al., 2022). Given the severity and
the wide extent of the event – which was by far the world’s
largest flood during the period of the current study – it is well
suited as a proof of concept for the methodology introduced
in Sect. 2.

Specifically, the procedure described in the previous sec-
tion is coupled with the maximum flood extent derived by
aggregating over the months of July, August and Septem-
ber all flood delineations provided by GFM over an area
of 2.43× 106 km2, resulting in about 108 flooded pixels at
20 m resolution. The exclusion mask and water bodies are
also based on GFM, whereas topographic information is pro-
vided by FABDEM, a recently released DTM, whose goal
is to remove vegetation and buildings from the Copernicus
DEM by using AI and ancillary satellite data (ESA, 2022;
Hawker et al., 2022).

Figure 4 displays the flooded area and the correspond-
ing water depth computed as described in Sect. 2 over the
most severely affected region. The result – featuring the
morphology-based flood expansion – covers a total flooded
area of 61 331 km2 (including neighboring flooded areas not
shown in the figure), which is about 50 % larger than the ini-
tial GFM-based flood delineation (39 333 km2). The results
correspond to the parameterization summarized in Table 1.

Nat. Hazards Earth Syst. Sci., 24, 2817–2836, 2024 https://doi.org/10.5194/nhess-24-2817-2024



A. Betterle and P. Salamon: Enhancement of satellite derived flood maps 2823

Figure 3. One-dimensional examples of the flood expansion routine over synthetic land surfaces featuring different topographies. Topogra-
phies are parameterized combining a linear trend si (‰), a sinusoidal component with amplitude ss (m) and period 2π , and a random com-
ponent (zrand ∼ srU(−0.5,0.5) with sr (m) as scale). Flood water propagates from left to right, starting from WD0 = 5 m and DTM0 = 10 m
until the maximum assigned propagation distance dmax = 10 km. Note that dmax can be reached just under some topographical conditions.

The sensitivity of the proposed methodology on model pa-
rameters is discussed in Sect. 6.

For the use case, computations are run in parallel in
batches of 10 of the native 300× 300 km tiles constituting
the tiling system of GFM (see Bauer-Marschallinger et al.,
2014, and https://extwiki.eodc.eu/GFM/PDD, last access: 5
August 2024). The full running time featuring flood expan-
sion and water depth estimation required to generate the re-
sult displayed in Fig. 4 is about 1.5 h on a dual six-core CPU
workstation (Intel Xeon C5-2620 v2) with 44 GB of RAM.

3.1 Evaluation of the flood extent and water depth
estimates

In this section, the performance of the framework presented
in Sect. 2 is evaluated quantitatively. In particular, Sect. 3.1.1
and 3.1.2 focus on evaluating the flood extent and the flood
depth, respectively. It is worth noting that ground truth de-
rived via observations acquired during field surveys is rarely
available for flood extents and is even scarcer for water level
and depth – especially at the scales considered in this study.
Furthermore, despite the long timescale of the event, refer-
ence data might display flood conditions at different stages.

3.1.1 Evaluation of the flood extent

The accuracy of the flood extent is evaluated using, as
a reference, the flood maps produced by the Coperni-
cus Emergency Management Service (CEMS) correspond-
ing to the three areas of interest (AOIs) delineated in
Fig. 4 (EMSR629 activation, https://emergency.copernicus.
eu/mapping/list-of-components/EMSR629, last access: 5
August 2024). The maps cover 3000 km2 in total and aim
to capture the maximum flood extent around the cities of
Larkana (AOI 1), Shikarpur (AOI 2) and Jacobabad (AOI 3).
The CEMS maps in vector format were produced in a semi-
automatic/semi-supervised way with expert knowledge re-

finement starting from the imagery acquired by the SPOT6/7
sensor on 30 August 2022 (Roth et al., 2023).

Figure 5 compares the CEMS flood delineation against the
flood classification obtained by the temporal merging of the
GFM flood extent layers (first row), as well as the GFM-
based flood expansion procedure performed as described in
Sect. 2 (second row). For completeness, the third and the
fourth rows of Fig. 5 display the water level and the water
depth estimated as described in Sect. 2. Table 2 summarizes
the performances of the classification for the two different
scenarios (i.e., with and without flood expansion).

3.1.2 Evaluation of water depth estimates with
ICESat-2

This section describes the approach developed to assess the
water depth estimates computed in Sect. 2, using as a bench-
mark the altimetric data acquired by the ICESat-2 satellite
mission of NASA (https://icesat-2.gsfc.nasa.gov, last access:
5 August 2024). ICESat-2 features ATLAS, an accurate laser
altimeter designed for worldwide recording along six paral-
lel tracks of ground points at a sampling frequency of up to
about one point per meter and a revisit time of 91 d (Neuen-
schwander and Pitts, 2019; Dandabathula et al., 2023; Wang
et al., 2019; Li et al., 2021).

ICESat-2–ATLAS delivers 22 standard products
(i.e., ATL00–ATL21) divided into four levels (i.e., lev-
els 0–3) characterized by increasing levels of processing.
The current analyses employ ATL03, a level-2 product
that maintains the full altimetric information after basic
post-processing steps on the initial raw telemetry data (Zhu
et al., 2022). ICESat-2 acquires altimetric data along three
pairs of tracks, each pair being characterized by a weak and
strong beam of photons (4 : 1 energy ratio). Pairs of tracks
are 3.3 km apart in the across-track direction, while strong
and weak beams have a transversal offset of 90 m. For the
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Table 1. Parametrization of the workflow used in the case study. Water depths and water levels are estimated using Method A (see Sect. 2).

Parameter Description Value Units

Smax Maximum admissible slope for the wet–dry reference border pixels 0.1 –

Nmax Maximum number of border pixels used to estimate WL 100 –

Nmin Minimum number of valid border pixels required to estimate WL based on the 10 –
default procedure

Pin Percentile of the distribution of ground elevation underneath a flooded area used 0.98 –
as a reference to estimate WL (alternative procedure)

α Inverse distance weighting rate for WL interpolation within flooded areas 2 –

WD∗ Additional water depth assigned to account for WL estimates lower than ground 0.1 m
elevation

Dmax Maximum propagation distance for an arbitrarily large flooded area 10 km

A1/2 Initial size of a flooded area for which dmax =Dmax/2 100 km2

Table 2. Classification accuracy metrics of the extended flood maps displayed in Fig. 5: critical success index (CSI); F1 score, user accu-
racy (UA) and producer accuracy (PA) with respect to the “flood” class; relative frequency of true positive (TPs), true negatives (TN), false
positives (FPs) and false negatives (FNs). The subscripts are the metrics for the GFM flood delineation without flood expansion (i.e., first
column in Fig. 5). In parentheses is the percent change of the extended flood maps relatively to the case without flood expansion.

CSI (%) F1 (%) UA (%) PA (%) TP (%) TN (%) FP (%) FN (%)

AOI 1 6965 (6) 8279 (4) 7781 (−5) 8877 (14) 5144 (16) 2631 (−16) 1611 (45) 713 (−46)
AOI 2 6858 (17) 8273 (12) 8588 (−3) 7663 (21) 5443 (26) 2124 (−13) 96 (50) 1526 (−42)
AOI 3 6363 (0) 7777 (0) 6568 (−4) 9489 (6) 5248 (8) 1823 (−22) 2822 (27) 36 (−50)

analysis, only medium- and high-confidence photons from
the strong beams are used.

On 3 September 2022, ICESat-2 acquired data along a
500 km track through the study area (see Fig. 4). The tim-
ing of the acquisition is compatible with the maximum flood
extent in the area, estimated to be around the end of August
(Nanditha et al., 2022; Roth et al., 2023). Such data are used
as a reference altimetry during the flood. Furthermore, two
of the three strong tracks acquired by ICESat-2 on 3 Septem-
ber have a good spatial match (i.e., they are about 50 m apart
in the across-track direction) with two of the strong tracks
acquired by ICESat-2 on 6 June 2021. Each pair of spatially
matching ICESat-2 tracks during the flood period (Septem-
ber) and during the dry period (June) are denoted as I iwet
and I idry, respectively, with i = 1,2 denoting the two spatially
matching tracks and I∗ = I 1

∗ ∪ I
2
∗ . The wet (dry) tracks fea-

ture a total of about 1 (0.8) million points, with an average
spacing of 0.31 (0.62) m and similar interquartile ranges of
about 0.71 m for both tracks.

The altimetric data acquired by ICESat-2 during the dry
and wet conditions are used to assess water depth estimates
computed as described in Sect. 2. In particular, Idry serves as
a reference ground topography, whereas Iwet is expected to
be positively biased by flood water.

As a preparatory step for the analyses, the Idry and
Iwet tracks are processed with a moving median filter (with
a window over 100 photons) in order to minimize the noise
which characterizes the data and to reduce potential biases
caused by vegetation and/or buildings. The filtered photons
– which are irregularly spaced along the tracks – are then
resampled on the same 5× 10−5° latitude intervals (about
5 m). As ICESat-2 follows a north–south orbit, altimetric ob-
servations at resampled locations correspond to the same lat-
itudes, while longitudinal differences are due to the ∼ 50 m
offset between Idry and Iwet. As a result, resampled data from
the dry and wet tracks represent surface elevation at approx-
imately the same locations.

Considering the water depths computed as described in
Sect. 2 and sampled in correspondence with the Iwet pho-
tons, Fig. 6a and b display the distribution of the difference
1= Iwet− Idry and 1= Iwet− (Idry+WD) for all flooded
pixels delineated in Fig. 4. The distribution of the elevation
differences highlights that including water depth estimates
based on the proposed procedure substantially reduces both
the bias and the variability in the distribution of 1. Further-
more, the mode of the distribution correctly matches 0 when
water depth estimates are added to the ground elevation mea-
sured by ICESat-2 during dry conditions.
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Figure 4. Flood delineation featuring flood expansion and water
depth calculation as described in Sect. 2 over the most affected
area along the Indus valley (Pakistan) during the flood of July–
September 2022. Permanent and seasonal water bodies are depicted
in gray. The three areas of interest (AOIs) are also highlighted.

As a complement, the distributions in Fig. 6c–e compare
ICESat-2 altimetry both in absence of flooding (Idry) and in
flood condition (Iwet) with FABDEM. Figure 6c shows that
along the sampled points FABDEM has a small positive bias
compared to ICESat-2 and a fairly symmetrical distribution
during dry conditions. On the other hand, as expected, during
the flood the distribution shifts towards larger values of Iwet
with a substantial skewness in the distribution. Adding the
water depth estimates effectively reduces the bias (Fig. 6e),
but underestimated flood depths remain.

4 Evaluation of FLEXTH-derived water depth and
water level estimates against hydrodynamic
simulations

This section compares the water level and water depth com-
puted by FLEXTH with the results of hydrodynamic sim-
ulations in two use cases: (i) along a 40 km stretch of the
Brazos River near Houston, Texas (30.18° N, 96.18° W) and
(ii) along a 150 km river network corresponding to the con-
fluence of the rivers Tera, Órbigo and Esla in northwestern
Spain (41.95° N, 5.67° W). Dedicated simulations are per-
formed for the Brazos River case, whereas the national flood
hazard maps are used for Spain. Section 4.1 describes the
benchmark data.

The hydrodynamic simulations do not aim to reproduce
specific observed events. Yet, they do offer physically based
and realistic scenarios that can effectively serve as bench-
marks for the methods presented in this study. In fact, simu-
lations readily provide water level and water depth estimates,
as well as a clear delineation of the flood extent, bypassing
some of the limitations of remote-based flood mapping (see
Sect. 1).

FLEXTH is also compared against the latest version of
FwDET GEE v2, the Google Earth Engine implementa-
tion of the Floodwater Depth Estimation Tool (Cohen et al.,
2022, 2019). FwDET GEE v2 is an updated and improved
version of FwDET GEE (Peter et al., 2020) and is a widely
used tool to rapidly estimate flood water depth based on flood
delineations and terrain topography (e.g., Penton et al., 2023;
see also Sect. 1).

The water depth and water level estimated by FLEXTH
and FwDET are obtained providing the two algorithms with
the same inputs: the topography of the area and a binary map
covering all areas denoted as flooded as per the reference hy-
drodynamic model. As no-data masks are unavailable for the
two sites, the flood propagation routine of FLEXTH is not
performed (see Sect. 2.3).

4.1 Hydrodynamic benchmark data

4.1.1 Brazos River – USA

Water level and water depth are simulated in steady-state
conditions across an unstructured triangular mesh with 4.5×
106 elements (average element size of 50 m2) with the free-
ware software BASEMENT 4.0.2 HPC © (https://basement.
ethz.ch, last access: 5 August 2024). BASEMENT solves the
2-D shallow-water equations across the flow domain using a
finite volume approach under a set of boundary conditions
(Vanzo et al., 2021). In the simulation, the model is forced
with the 4500 m3 s−1 peak discharge recorded at the USGS
gage near Hempstead (ID: 08111500) during the May 2016
flood event (Zhang et al., 2018). The input discharge is ho-
mogeneously distributed along the upstream section, impos-
ing a uniform flow with a 0.5 ‰ hydraulic gradient. The
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Figure 5. Classification results of (i) aggregated flood delineations obtained by merging GFM products over the months of July, August
and September 2022 (first row) and (ii) the flood expansion procedure described in Sect. 2 (second row) for the three AOIs considered.
Classification performances are displayed in terms of true positives (TPs), true negatives (TN), false positives (FPs) and false negatives (FNs)
with respect to the reference CEMS rapid mapping products. Panels in the third and fourth rows: water level and water depth computed
following the procedure outlined in Sect. 2.

same 0.5 ‰ hydraulic gradient is assigned at the outlet sec-
tion. Input and output sections span across the entire flood-
plain, which is visible from the topography of the area (see
Fig. 7c). Two Strickler roughness coefficients are assigned
to the flow domain: 35 m1/3 s−1 in the main channel and
20 m1/3 s−1 in the floodplain (Chow, 2009). The morpho-
logical characterization of the area is acquired from the lat-

est release of USGS 3D Elevation Program (3DEP) datasets
at 1/3 arcsec (approximately 10 m) available at https://www.
sciencebase.gov/catalog/ (last access: 5 August 2024). Note
that, although a recorded discharge is used as an input for the
simulation, roughness coefficients are not calibrated. In fact,
the goal of the simulation is not to accurately reproduce an
observed event but to provide a virtual – yet realistic – sce-
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Figure 6. Distribution of the difference between altimetric data acquired by ICESat-2 during wet and dry conditions along a 500 km track
across the study area with (or without) considering water depth estimates (a, b). Comparison of the ICESat-2 altimetric data with FABDEM
in wet and dry conditions including (or not) water depth estimates (c, d, e). The red vertical line marks the ideal condition, where the
water depth reconstructed by FLEXTH perfectly matches the one computed with ICESat-2. The dashed line corresponds to the mean of the
distribution.

nario to be used for benchmarking purposes. The simulation
resulted in a flooded area of 103 km2 with an average wa-
ter depth of 1.34 m (standard deviation: 2.41 m). Ultimately,
water level and water depth are resampled from the native
BASEMENT’s triangular mesh to a regular 10 m grid, result-
ing in 1.04× 106 flooded pixels.

4.1.2 Tera, Órbigo and Esla confluence – Spain

In this case, the water depth is provided by the offi-
cial Spanish flood hazard maps at a 100-year return pe-
riod, openly available at https://centrodedescargas.cnig.es/
CentroDescargas (last access: 5 August 2024). The maps are
a steady-state numerical solution of the 2D shallow-water
equation obtained with the software InfoWorks RS ©. The
simulations are performed based on a 1 m hydraulically con-
ditioned DTM with all major artificial structures removed
from the floodplain, while the final results are provided at
2 m resolution. The extensive technical documentation un-
derlying the simulations is accessible in Sánchez and Las-
tra (2011). As water level is not provided, it is derived by
adding the topography to the water depth estimates. For
this purpose, a 2 m lidar-derived DTM of the area was used
(https://centrodedescargas.cnig.es/CentroDescargas, last ac-
cess: 5 August 2024).

The flood covers 256 km2 (63.97×106 pixels) with an av-
erage water depth of 1.29 m (standard deviation: 1.46 m).

4.2 Results: FLEXTH vs. hydrodynamic simulations

The results delivered by FLEXTH in this section are obtained
using the same parameterization as in Pakistan (see Sect. 3
and Table 1). FwDET GEE v2 on the other hand relies on

two key parameters: (i) a threshold which excluded steep pix-
els along the border of the flooded areas and (ii) the num-
ber of times the borders of the flooded areas are recursively
smoothed with a low-pass filter, which reduces noisy and ir-
regular topographical fluctuations (Cohen et al., 2022; Peter
et al., 2020). Among the parameter values suggested by the
authors, those found to perform the best across the two case
studies analyzed here are 5° (about 9 %) for the threshold on
the slope and 5 for the number of iterations of the low-pass
smoothing filter.

The average running times to generate results with
FLEXTH on the same hardware described in Sect. 3 are 30 s
for the Brazos River (standard deviation: 15 s; n= 10) and
45 min for the Tera–Órbigo–Esla confluence (standard devi-
ation: 2 min; n= 5). Average running times to generate the
maps with FwDET on Google Earth Engine and different pa-
rameterizations are 9 min for the Brazos River (standard de-
viation: 2 min; n= 10) and 7.6 h for the Tera–Órbigo–Esla
confluence (standard deviation: 2.3 h; n= 5).

Figure 7 compares the water level and water depth es-
timated by the reference hydrodynamic model (first row),
FLEXTH (second row) and FwDET (third row) for the Bra-
zos River case. The results show how the FLEXTH estimates
agree with the reference data. In particular, the fluctuations in
the water level are smooth and realistic, as they do not present
steep variations.

Analogously, Fig. 8 displays the results in the lower part
of the Tera–Órbigo–Esla confluence (about half of the overall
flooded area). Also in this case, the water level and the water
depth estimated by FLEXTH appear reasonable and in line
with the reference hydrodynamic simulations.
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Figure 7. Brazos River: water level (a, d, g) and water depth (b, e, h) as estimated via the reference hydrodynamic simulation (first row,
panels a and b), using FLEXTH (second row, panels d and e) and using FwDET (third row, panels g and h). Panel (c) shows the topography
of the area (https://www.sciencebase.gov/catalog/, last access: 5 August 2024). Panels (f) and (i) display the deviation from the reference
data (blue: underestimation; red: overestimation).

Figure 9 quantifies the accuracy of the water depth esti-
mates in both test sites. The results highlight the accurate
estimates of FLEXTH, particularly in the Brazos River case,
without displaying any substantial bias and showing reduced
dispersion along the 1 : 1 line as compared to FwDET.

5 Evaluation of the flood propagation component of
FLEXTH

A key feature of FLEXTH is its capability to propagate flood
water across the areas where data are missing (see Sect. 2.3).
This section systematically evaluates the flood propagation
routine by quantifying how the final flood extent and water
depth are impacted by the “invasiveness” of the no-data mask
in the Brazos River case.

For this purpose, 5 realizations of a set of 20 syn-
thetic no-data masks are generated with increasing degree of
masking. Each mask Mi , with i = {1, 2, . . .20}, is obtained
by recursively overlaying on the Mi−1 mask, a stochas-

tic mask m. The mask m is produced by first seeding
500 uniformly distributed centroids across the study area
(i.e., {xc,yc}j , with j = {1, 2, . . .500}, xc ∼ U(xmin,xmax)

and yc ∼ U(ymin,ymax), where ∗c is the locations of the cen-
troids and ∗min, ∗max delimits the spatial extent of the study
area). Then, each centroid is associated with a stochastic ra-
dius rj sampled from an exponential distribution with aver-
age R = 100 m. The area enclosed by each circumference of
center {xc,yc}j and radius rj is masked. The initial baseline
with no masking is denoted as M0.

Some of the stochastic masks generated with this proce-
dure are displayed in Fig. 10, together with the correspond-
ing flood propagation and water depth estimated by FLEXTH
and the corresponding deviations from the reference dataset.
For such simulation, FLEXTH receives the following as in-
put: (i) the DTM of the area, (ii) the synthetic no-data masks
and (iii) the flood extents derived as described in Sect. 4 with
no-data areas removed. The parameterization for the analy-
sis is as in Table 1, except for A1/2, which is set to 10 km2.
The results show how both the flood extent and the estimated
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Figure 8. Tera–Órbigo–Esla confluence: water level (a, d, g) and water depth (b, e, h) as estimated via the reference hydrodynamic simulation
(first row, panels a and b), using FLEXTH (second row, panels d and e) and using FwDET (third row, panels g and h). Panel (c) shows
the topography of the area (https://centrodedescargas.cnig.es/CentroDescargas, last access: 5 August 2024). Panels (f) and (i) display the
deviation from the reference data (blue: underestimation; red: overestimation).

water depths reconstructed via the flood propagation compo-
nent of FLEXTH correspond with the unmasked case, even
for extremely extensive no-data coverage.

Figure 11 systematically evaluates the effect of increas-
ing masking on (i) the absolute deviation from the reference
flood extent and (ii) the deviation of the water depth in corre-
spondence with the masked areas. The figure shows that the
initial unmasked flood extension could be reconstructed by
the flood propagation routine of FLEXTH with a 10 % accu-
racy up to a masking of 70 %, and a mean absolute error of
just 20 cm is committed even when half of the initial flood
extent is missing data.

6 Discussion

Despite the complex flooding pattern in Pakistan, the water
depth and water level estimates, together with the enhanced
flood extent displayed in Figs. 4 and 5, appear to be re-
alistic, highlighting the potential of the procedure outlined

in this study. The quantitative evaluation of the results con-
firms this first impression. Figure 5 shows that the Sentinel-1-
derived flood delineation delivered by GFM already matches
the CEMS maps well for all three AOIs (Table 2). Enhancing
the flood delineation following the procedure described in
this study expands the flooded areas further and reduces false
negatives. Despite the increased number of false positives
due to the flood expansion, it should be noted that CEMS
flood maps (used as “ground truth”) are likely to suffer from
underestimations, as they are derived based on the Airbus
SPOT 6/7 optical sensor. In fact, similar to radar sensors, op-
tical sensors may be inadequate to detect flood water under
vegetation and in urban areas. Despite the efforts to identify
and exclude areas where flood mapping cannot be performed
reliably, CEMS products still have difficulty identifying all
such areas, and some areas that are not excluded may actu-
ally be flooded. In contrast, the flood expansion procedure of
FLEXTH may be better suited for capturing floods in non-
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Figure 9. Density scatterplots comparing FLEXTH and FwDET water depth estimates against the reference data (i.e., hydrodynamic simula-
tions) for the two test sites. RMSE,E and MAE denote the root-mean-square error, bias and mean absolute error, respectively. The histograms
in panels (c) and (f) display the distribution of the differences 1WD between the reference and the estimated water depths (positive values
correspond to underestimations). Note that the performance metrics for the water level are identical to those for water depth because water
depth and water level are linked via the same underlying topography.

sensitivity areas, because it has a physically based compo-
nent relying on ground topography.

Evaluating water depth estimates in flood maps is a chal-
lenging task: no direct or indirect measures of water level
and/or water depth are generally recorded, especially over
large areas and in underdeveloped regions. Nonetheless, the
methodology proposed here to estimate and assess water
depth highlights the value of ICESat-2 as a source of bench-
mark water depth data. The 91-day revisit time of ICESat-
2 reduces the chances of a temporal match between a flood
peak and an altimetric acquisition. Furthermore, for the mid-
latitudes (approximately 60° S to 60° N) laser beams operate
off-nadir in order to increase spatial sampling. Considering
the narrow diameter of laser pulses (about 17 m), repeated
cycles of the very same locations are practically impossi-
ble. Nonetheless, the current procedure, which considers two
closely located acquisitions during the flood and non-flood
periods, is reasonable for benchmarking purposes – at least
on floodplains – because of the reduced topographic gradi-
ents. The methodology developed to extract the reference al-
timetry with ICESat-2 described in Sect. 3.1.2 appears robust
for the Pakistan case (Fig. 6c). However, other geographical
conditions may require alternative procedures in order to re-
move buildings, vegetation and background noise from the
raw ICESat-2 data (e.g., Neuenschwander and Pitts, 2019; Li

et al., 2020), and further research is warranted to explore the
full potential of ICESat-2 in remotely evaluating flood depth.

The limitations of FLEXTH are related to the accuracy
and resolution both of the input flood delineation and of the
underlying DTM. Although flood depth at each pixel is es-
timated using the elevation of multiple locations along the
contours of flooded areas in order to improve robustness, in-
accuracies in the identification of the correct wet–dry divide
may lead to erroneous water depth estimates, particularly in
steep terrains. Large errors in water depth estimates are less
likely in flat areas because of the reduced sensitivity of water
level to potentially erroneous flood delineations. However,
where topographical gradients are reduced, even small differ-
ences in water level estimates can lead to floods propagating
over very different extents. The DTM accuracy and resolu-
tion are also critical, as they are key in water level, and in
turn in water depth estimation. In fact, even assuming a per-
fect delineation of floodwaters, a coarse DTM in steep areas
can strongly affect the resulting water levels.

It is also worth noting that the spatiotemporal merging of
multiple flood delineation products can be inaccurate as it
can generate singular features (e.g., sharp edges). This aspect
is particularly relevant when the spatial scale of the flood is
much larger than the imagery footprint and in the case of low
revisit times of the satellites.
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Figure 10. Water depth reconstructed via the flood propagation routine of FLEXTH and deviation with respect to the water depth estimated
in the unmasked case for different levels of no-data masking (positive numbers correspond to underestimations).

The underestimated water depths shown in Fig. 6b and
e are likely to be related to underestimated flood extents
and/or to the fact that the ICESat-2 acquisition was closer
to the flood peak, compared with the Sentinel-1 imageries
used by GFM to compute the initial flood extent. In fact,
even using a larger percentile (say 0.75) of the distribution
of ground elevation along the contour between flooded and
non-flooded areas to estimate water levels, as per Method B
(see Sect. 2.2), alleviates but does not solve the problem. This
suggests that the underestimation is associated with the avail-

able input data, rather than a systematic negative bias of the
methodology (as it is confirmed by Fig. 9).

Figure 9 displays the good performance of the method-
ology in the more controlled scenarios provided by hydro-
dynamics simulations. The results are consistent, despite the
reference benchmark dataset being derived from various geo-
graphical regions and obtained independently using different
methodologies and resolutions. FLEXTH captures the vari-
ability of simulated water levels and water depths display-
ing a reduced bias (Fig. 9). The relatively lower performance
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Figure 11. Dashed red line: percent of the reference flood ex-
tent which is not captured by the flood propagation component of
FLEXTH for different degrees of masking. Solid blue lines: mean
absolute error of the water depth with respect to the reference case
in the masked areas. The lines are the results of five realizations of
the stochastic no-data mask (the thick lines are the medians.

obtained in Spain is likely due to the different topographi-
cal information used for the current analysis (2 m DTM) as
compared to that used by the Spanish authorities to perform
the hydrodynamic simulations (i.e., 1 m DTM with extensive
removal of bridges and other structures from the floodplain;
see Sect. 4.1.2).

The reconstructed water level is fundamental to evaluating
the plausibility of the results because it discounts for the ad-
ditional variability introduced in the water depth by the un-
derlying topography. Figures 7 and 8 show how FLEXTH
properly simulates a slow-varying water level across the
study areas, particularly in the Brazos River case. The dis-
continuities in the Tera–Órbigo–Esla confluence can be at-
tributed to the aspects noted in the previous paragraph and
can be reduced simply by increasingNmax and/or reducing α.
On the other hand, FwDET is more vulnerable to local fea-
tures in the DTM and/or in the flood delineation, resulting
in unrealistic abrupt discontinuities in the estimated water
depth. This aspect – noted by the authors in Cohen et al.
(2019) – was attributed to the use of a single nearest-neighbor
reference elevation during the interpolation phase. Despite
the fact that the evolution introduced in the latest release of
FwDET increases the robustness of the results by filtering
and smoothing the elevation of the outlines of the flooded
areas (see Sect. 4), some artifacts still persist.

The flood expansion routine described in this study re-
quires, as optional inputs, a no-data and a water body mask.
While water depth estimation can still be performed in the
absence of such inputs, it is worth noting that water level
and water depth may be underestimated in areas featuring ex-
tensive interfaces between flood water and permanent waters
and/or where accurate flood mapping is impeded by dense
vegetation or buildings. If the borders between flood water

and no-sensitivity areas are not excluded, they will contribute
to the estimation of water levels. In these settings, ground
elevations used as a reference to compute water level will
not correspond to the real wet–dry border (which in reality
would be outside the delineated flooded area and at higher
elevation), therefore leading to underestimated water levels.
Thus, especially in coastal flooding, it is paramount for the
sea mask to cover (or properly match) the seaward outline of
the flood delineation.

FLEXTH includes several user-defined parameters. Such
parameters can enhance the power and the flexibility of the
framework. The heuristically selected set of parameters in
Table 1 led to adequate performances in multiple case stud-
ies, and, overall, results are consistent across a wide range
of parameter values. However, parameter selection may suf-
fer from a degree of arbitrariness. For the water level and
water depth estimation routine, the most critical parameters
are found to be Smax, Nmax and α (and P if Method B is
used; see Sect. 2). The threshold for terrain slope, Smax, used
to exclude steep pixels from being used as a reference for
water level estimation has to be a trade-off between too con-
servative (low) and too permissive (large). Low Smax will re-
duce the number of pixels available for water level estima-
tion, ultimately losing valuable altimetric information. On
the other hand, a high Smax may allow non-representative
pixels to contribute to water level estimation. The selection
of Smax also has to account for the pixel size, as even a small
threshold associated with a coarse DTM can lead to large
vertical inaccuracies. The maximum number of pixels used
to estimate water level at a target flooded location (Nmax)
is also relevant. Our tests showed that results are consis-
tent, for Nmax in a range between 50 and 500 (larger val-
ues are suitable for higher resolutions), but at the upper end
of the interval the role of α also becomes critical. Appropri-
ate results have been found for α ∈ [1,3]. Lower values of α
use more information on the altimetry along a larger share
of the flood borders and provide smoother water level esti-
mates. However, they may also include distant borders that
do not well represent water level at a given target location.
On the contrary, by giving more weight to the nearest border
pixels, high α can capture better the smaller-scale variabil-
ity of the water level, although water level estimates can be
more prone to local errors in the DTM and/or flood delin-
eation. Larger Nmax and smaller α may be required to pro-
duce smoother and more realistic water level and water depth
estimates when Method B is employed. The percentile P of
the distance-weighted distribution of reference pixels eleva-
tions used to estimate water level according to Method B
(see Sect. 2.2) is also relevant. This parameter offers addi-
tional flexibility as it can be used to compensate for poten-
tial systematic biases of flood extent maps, or it can be em-
ployed to assess different scenarios. Water level estimates us-
ing Method B can be more robust when flooded areas are sur-
rounded by steep terrains, as water level is computed based
on the percentiles of the altimetric distribution of the wet–
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dry contour. However, under some topographical conditions,
using large percentiles (say above 75 %) may lead to erro-
neous and exaggerated flood propagation, triggered by over-
estimated initial water levels. On the other hand, our tests
showed limited sensitivity of the results on the shapes and
sizes of the filtering kernels, as well as on the type of con-
nectivity used for the spatial analyses (see Sect. 2.2 and 2.3).

The flood propagation routine itself should also be crit-
ically assessed. Despite following simple physically based
principles, it extrapolates information where no flood map-
ping is available. Especially in the presence of regional to-
pographical gradients and extensive excluded areas, floods
can potentially propagate across large areas and up to large
distances. Improved flood mapping, DTMs and limiting the
extent of no-data regions will constrain flood propagation
and limit potential misbehavior. Nonetheless, the two param-
eters controlling flood propagation offer adequate flexibility
to control flood propagation under different circumstances
and can be tweaked as desired. The systematic analysis of the
impacts of no-data on the performance of FLEXTH (Sect. 5)
clearly shows the added value of the methodology. In fact,
the original flood extent and water depth in the use case are
adequately reproduced even for extremely invasive no-data
areas.

Additional analyses are envisaged to further explore the
role of model parameters. However, it has to be stressed that
ideal parameter values may depend on local conditions and
in particular on the accuracy and resolution of both the avail-
able flood delineation map and of the underlying DTM. For
this reason, a “one-fits-all” approach in selecting the optimal
parameter might be unrealistic.

Finally, it is worth stressing that the approach can be
applied to any flood delineation (not necessarily satellite-
based) and to any flooding mechanisms, including floods in
coastal settings. In fact, coastal areas can present favorable
conditions for the application of the methodology. In gen-
eral, coasts do not display topographical gradients, which
may challenge the flood propagation routine as the regional
ground elevation tends to increase landward (constraining
flood expansion). Furthermore, in coastal areas, FLEXTH
has to ingest a reduced variability of initial water levels
as compared to riverine environments as surge runup can
range up to about 10 m (Fritz and Okal, 2008; Fritz et al.,
2009, 2010; Liu et al., 2005). On the other hand, water levels
along a flooding river can span hundreds of meters, depend-
ing on the regional slope and the scale of the event (e.g., over
100 m in the Pakistan case study).

7 Conclusions

The study presented a robust methodology – named
FLEXTH – to estimate flood depth and to improve flood de-
lineation based on inundation maps, readily available DTMs
and open-source tools. The procedure requires minimum su-

pervision and can run over extremely large areas in a reason-
able amount of time.

The workflow starts by identifying suitable wet–dry
boundaries from flood maps, which can be derived by any
means (e.g., by satellites, aerial sensors or ground surveys).
By combining flood boundaries that are altimetrically infor-
mative with digital models of the land surface, the procedure
extracts the ground elevation along the borders of connected
flooded areas, regardless of the complexity of the flood out-
lines and the surrounding topography. At each flooded lo-
cation, water levels are computed based on the distance-
weighted reference elevations of multiple points along the
wet–dry border. Water is then propagated in contiguous low-
lying no-data areas via a novel procedure, which results in
new dry–wet borders informed by the topography. Hydraulic
connectivity is guaranteed by a recursive propagation algo-
rithm, which additionally enforces a routine to realistically
decrease water levels as propagation advances. Finally, flood
water depths are obtained subtracting the underlying topog-
raphy from the water surface elevation.

Flood extents, computed for the 2022 flood disaster that hit
the Indus valley in Pakistan, are shown to match the available
benchmark data adequately. Furthermore, the reconstructed
water depths match the reference data obtained with a pro-
cedure employing the data acquired by the spaceborne lidar
on board the ICESat-2 mission. Additional tests against hy-
drodynamic simulations in different settings provided good
results, particularly highlighting the capabilities of the flood
propagation component of FLEXTH, which can reconstruct
flood extent and water depth even when extensive areas lack
thematic information.

These results are an encouraging starting point for a sys-
tematic application of the framework over large-sized data
sources of flood extent maps, such as those from the re-
cently released Global Flood Monitoring of the Copernicus
Emergency Management Service. Future development of the
methodology will focus on systematically optimizing the pa-
rameters of the algorithm under different geographical con-
ditions. Fine-tuning the architecture of the algorithm is also
envisaged for future releases, possibly targeting the computa-
tional speed of the flood propagation component. It is finally
worth mentioning that FLEXTH can also be effectively ap-
plied to coastal flooding, provided that a mask is assigned
that covers the sea surface.

Overall, the presented methods can assist in emergency re-
sponse planning and flood impact assessment. They can also
contribute to reduce the disastrous consequences of floods
worldwide, especially in vulnerable regions where flood risk
is exacerbated by a changing climate.

Code availability. FLEXTH is available as a Python script at https:
//code.europa.eu/floods/floods-river/flexth (Betterle, 2024). An ad-
ditional script named “DTM_2_floodmap.py” is also provided to
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easily resample/reproject and align input data into the same grid
and projected reference system as the flood delineating raster.

Data availability. All data used for this study are publicly available
in the links provided throughout the text. The results of the hydro-
dynamic simulations in the Brazos River are available upon request
to Andrea Betterle.
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