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Abstract. Avalanche warning services increasingly employ
snow stratigraphy simulations to improve their current under-
standing of critical avalanche layers, a key ingredient of dry
slab avalanche hazard. However, a lack of large-scale valida-
tion studies has limited the operational value of these sim-
ulations for regional avalanche forecasting. To address this
knowledge gap, we present methods for meaningful compar-
isons between regional assessments of avalanche forecast-
ers and distributed snowpack simulations. We applied these
methods to operational data sets of 10 winter seasons and 3
forecast regions with different snow climate characteristics
in western Canada to quantify the Canadian weather and
snowpack model chain’s ability to represent persistent crit-
ical avalanche layers.

Using a recently developed statistical instability model as
well as traditional process-based indices, we found that the
overall probability of detecting a known critical layer can
reach 75 % when accepting a probability of 40 % that any
simulated layer is actually of operational concern in real-
ity (i.e., precision) as well as a false alarm rate of 30 %.
Peirce skill scores and F1 scores are capped at approximately
50 %. Faceted layers were captured well but also caused most
false alarms (probability of detection up to 90 %, precision
between 20 %–40 %, false alarm rate up to 30 %), whereas
surface hoar layers, though less common, were mostly of
operational concern when modeled (probability of detection
up to 80 %, precision between 80 %–100 %, false alarm rate
up to 5 %). Our results also show strong patterns related to
forecast regions and elevation bands and reveal more sub-
tle trends with conditional inference trees. Explorations into

daily comparisons of layer characteristics generally indicate
high variability between simulations and forecaster assess-
ments with correlations rarely exceeding 50 %. We discuss
in depth how the presented results can be interpreted in light
of the validation data set, which inevitably contains human
biases and inconsistencies.

Overall, the simulations provide a valuable starting point
for targeted field observations as well as a rich complemen-
tary information source that can help alert forecasters about
the existence of critical layers and their instability. However,
the existing model chain does not seem sufficiently reliable to
generate assessments purely based on simulations. We con-
clude by presenting our vision of a real-time validation suite
that can help forecasters develop a better understanding of
the simulations’ strengths and weaknesses by continuously
comparing assessments and simulations.

1 Introduction

Understanding snow avalanche hazard conditions re-
quires information about the layered snow stratigraphy
(LaChapelle, 1980; McClung, 2002b). Traditionally this in-
formation is gathered with manual snow pit observations at
targeted point locations (McClung, 2002a; Campbell et al.,
2016). Avalanche forecasters then combine this information
with their prior mental model of the snow conditions and
information about the weather as well as avalanche occur-
rences to evaluate the conditions at the scale of the fore-
cast application (e.g., regional public forecast) (LaChapelle,
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1980). Of particular interest are the distribution and sensi-
tivity of persistent weak layers and crusts (Statham et al.,
2018a) that were buried over the course of the winter sea-
son and persist across the region, since these layers can
cause enduring avalanche problems with multiple recurrent
avalanche cycles. While assessing the current snowpack con-
ditions (i.e., nowcasting) for entire regions based on limited
data availability is already an exercise that demands consid-
erable expertise, forecasting for snowpack changes several
days ahead requires considerable subjective judgment that
can be associated with substantial uncertainty (McClung,
2002a; Statham et al., 2018b). This paper examines the effec-
tiveness of the Canadian operational weather and snowpack
model chain to identify critical avalanche layers that are es-
sential for regional-scale avalanche forecasting.

Weather and snowpack model chains represent an addi-
tional, independent data source for detailed snow stratigra-
phy information with high spatiotemporal availability (Morin
et al., 2020). Snowpack simulations can therefore help fill
data sparsity gaps occurring during the early winter season
and in remote regions (Storm, 2012; Storm and Helgeson,
2014), or they can complement assumptions about the evo-
lution of the sensitivity to triggering avalanches on known
critical layers (Reuter et al., 2021; Mayer et al., 2022). How-
ever, the simulations inherently accumulate errors from the
weather inputs – precipitation being the main source of
uncertainty for snowpack structure and instability (Raleigh
et al., 2015; Richter et al., 2020) – and from deficiencies in
the snow model formulations (Lafaysse et al., 2017). Thus,
avalanche forecasters are concerned about the validity of
the simulations and only hesitantly integrate these novel in-
formation sources in their operational assessment processes
(Morin et al., 2020).

Over the last 20 years, extensive research has been con-
ducted to improve the capabilities of snowpack models and
explore their application for avalanche forecasting. Many
studies that validated simulated snow stratigraphy applied a
process-based approach (e.g., Brun et al., 1992; Fierz, 1998;
Durand et al., 1999; Lehning et al., 2001, 2002b; Fierz and
Lehning, 2004; Bellaire and Jamieson, 2013; Reuter and
Bellaire, 2018; Richter et al., 2019; Calonne et al., 2020;
Viallon-Galinier et al., 2020). These process-based studies
tested the capabilities of the models to represent specific
physical processes, mostly using high-quality validation data
sets at the point scale. On the regional scale, much effort has
gone into validating bulk snow properties such as snow depth
or snow water equivalent (Vionnet et al., 2012; Lafaysse
et al., 2013; Quéno et al., 2016; Vionnet et al., 2019; Morin
et al., 2020; Horton and Haegeli, 2022). Several studies eval-
uated the model capabilities to simulate snowpack instabil-
ity based on regional observations to support its application
in avalanche forecasting (Schweizer et al., 2006; Schirmer
et al., 2010; Vernay et al., 2015; Bellaire et al., 2017; Mayer
et al., 2022).

Despite this large body of snowpack validation studies, the
operational needs of (Canadian) avalanche forecasters have
not been satisfied yet. While process-based validations at in-
dividual point locations based on high-quality data are cru-
cial for model development and improvement, these valida-
tion results do not provide sufficiently tangible and relevant
guidance for forecasters who forecast for different locations
or regions. In addition, these validation results are not nec-
essarily representative of the real skill of operational simula-
tions which might rely on different data sources or model
configurations. Regional-scale validation studies of simu-
lated snowfall further contribute essential information to the
valuation of snowpack simulations for avalanche forecasting,
particularly with respect to snow surface avalanche problems
(e.g., storm snow problems) and characteristics of the slab,
which is primarily influenced by precipitation (Richter et al.,
2020). Nevertheless, the existing research does not paint a
comprehensive picture yet: to our knowledge no large-scale
study exists that created a specific link between simulated
layers and known critical avalanche layers. Forecasters there-
fore only have a limited understanding of how to interpret
individual critical layers in the simulations. To address these
validity concerns and increase the operational adoption of
snowpack simulations in avalanche forecasting, forecasters
need an application-specific validation approach at the re-
gional scale that evaluates the detailed hazardous layering
of the snowpack, most optimally in an operational, real-time
format. The only study that followed a similar approach is
that of Horton and Jamieson (2016), who uncovered substan-
tial uncertainties in the prediction of hazardous surface hoar
formation and its post-burial evolution during two winter sea-
sons. All of these observations highlight the importance of
an updated validation study and future real-time validation
tools.

The objective of this study is to evaluate the performance
of operational snowpack simulations to represent persistent
weak layers and crusts in support of operational avalanche
forecasting at the regional scale. Based on forecaster assess-
ments in 10 winter seasons and 3 mountain ranges, we char-
acterize the overall model performance with the probability
that hazardous layers are captured by the simulations (i.e.,
probability of detection) and the probability that modeled
critical layers are actually of concern in reality (i.e., model
precision). To make our results the most informative for fore-
casters, we explore patterns in the presence or absence of
persistent weak layers and crusts that can be explained with
attributes of the layers themselves, and we present the re-
sults in tangible ways that help forecasters interpret daily
model scenarios. We also quantify the degree of agreement
between simulated and reported layer instability using indi-
cators of the variation and timing of instability. By relying
on operationally available data from human avalanche haz-
ard assessments, the methods developed in this study can be
used to design future operational validation suites. Overall,
our study quantifies the capabilities of an operational weather
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and snowpack model chain to represent critical avalanche
layers that are prone to cause dry slab avalanches, which con-
tributes to making snowpack simulations more transparent
and applicable for operational applications.

We continue this paper by introducing the used data sets
in Sect. 2 before explaining our methodology in detail in
Sect. 3. Section 4 presents the results from their highest level
to the most detail. We direct our discussion in Sect. 5 first to
avalanche practitioners and share the insights gained through
this study for operational applications as well as sharing our
vision for the future development of operational tools before
discussing insights relevant for the snowpack modeling com-
munity.

2 Data

The data sets used in this study consist of snowpack simu-
lations and operational avalanche hazard assessments from
avalanche forecasters in western Canada over 10 winter sea-
sons (2013/2014–2021/2022). This section provides the nec-
essary background information on the study area (Sect. 2.1),
the snowpack simulations employed for this study (Sect. 2.2),
and the human hazard assessments used as the validation data
set (Sect. 2.3). In the paper, each winter season is defined to
span December of the previous year through March of the
stated year (e.g., winter season 2021/2022 will be referred to
as 2022).

2.1 Study area

The study focuses on three data-rich public avalanche fore-
cast regions in British Columbia and Alberta, Canada, each
one characterized by a different snow climate: Whistler in the
Sea-to-Sky region (S2S) in the maritime Coast Mountains,
Glacier National Park (GNP) in the transitional Columbia
Mountains, and Banff–Yoho–Kootenay National Park (BYK)
in the continental Rocky Mountains (Shandro and Haegeli,
2018). A comprehensive table of abbreviations (Table B1)
and table of variables (Table B2) can be found in Ap-
pendix B.

While the human assessment data set is inherently com-
piled for these distinct forecast regions, we had to select
model grid points to represent these regions in the simula-
tions. We used all grid points within the region boundaries
that were within 10 km of accessible roads for GNP and BYK
and within 20 km of Highway 99 for S2S. Since Canadian
national parks prohibit motorized terrain access, such as via
sleds, we assumed the hazard assessments to be highly bi-
ased towards these parts of the regions. Overall, we selected
1004 grid points (Fig. 1) covering an area of 6275 km2.

We classified each grid point into an elevation band
class, “alpine” (ALP), “treeline” (TL), and “below tree-
line” (BTL), to match the terrain classification in the hu-
man assessments. To create the best possible match in el-

Figure 1. The public avalanche forecast regions of western Canada.
The model grid points selected for this study are visualized by
their elevation band (alpine (ALP), treeline (TL), below tree-
line (BTL)) and lie within the forecast regions Sea-to-Sky (S2S),
Glacier National Park (GNP), and Banff–Yoho–Kootenay National
Park (BYK). The grid has a 2.5 km spacing.

evation between assessments and simulations, we used the
forecaster consensus of TL elevation for the classification:
1600–1800 m a.s.l. in S2S, 1800–2100 m a.s.l. in GNP, and
2000–2400 m a.s.l. in BYK. Table 1 describes the distribution
of model grid points across the forecast regions and elevation
bands. Due to the configuration of our snowpack simulations
(flat field, no wind transport; see next section, Sect. 2.2), we
do not discuss slope aspects or prominent wind directions
across our study areas.

2.2 Snowpack simulations

The snowpack simulations used in this study mirror the setup
of the operational simulations that are provided to Cana-
dian avalanche forecasters. The raw output of the numerical
weather prediction model HRDPS (High Resolution Deter-
ministic Prediction System; Milbrandt et al., 2016) is fed into
the detailed snow cover model SNOWPACK (Bartelt et al.,
2002; Lehning et al., 2002a, b) (v3.4). HRDPS is run opera-
tionally by the Meteorological Service of Canada on a 2.5 km
horizontal grid. SNOWPACK is run with weather data lead
times of 6–12 h, using air temperature and relative humidity
at 2 m above ground, wind speed at 10 m above ground, in-
coming shortwave and longwave radiation fluxes at the sur-
face, and accumulated precipitation. The simulations were
initialized in September without any snow on the ground.
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Table 1. Number and percentage of model grid points in each region and elevation band.

Total Alpine Treeline Below
(ALP) (TL) treeline

(BTL)

Sea-to-Sky (S2S) 476 48 (10 %) 54 (11 %) 374 (79 %)
Glacier National Park (GNP) 233 30 (30 %) 102 (44 %) 101 (43 %)
Banff–Yoho–Kootenay (BYK) 295 7 (2 %) 163 (55 %) 125 (42 %)

We used the atmospheric stability scheme by Michlmayr
et al. (2008) implemented in SNOWPACK and turned off any
snow redistribution by wind. Lastly, we turned off SNOW-
PACK’s layer aggregation feature of merging similar and ad-
jacent layers to preserve exact knowledge of the formation
dates of individual layers. The need for this decision will be-
come apparent in Sect. 3.1.2 and 3.1.3, where we explain our
approach of grouping and matching layers based on date con-
siderations. All simulated profiles were valid between 16:00–
17:00 LT (local time), representing flat field conditions.

To visualize the grain types of snow layers, this paper
uses the hazard-focused color coding suggested by Horton
et al. (2020a). We abbreviate grain types as follows: precip-
itation particles (PP), decomposing and fragmented precip-
itation particles (DF), surface hoar (SH), depth hoar (DH),
faceted crystals (FC), rounding faceted particles (FCxr),
rounded grains (RG), rain crust (IFrc), sun crust (IFsc),
temperature/melt–freeze crust (MFcr), and melt forms (MF).
All grains types are defined in the International Classifica-
tion for Seasonal Snow on the Ground (Fierz et al., 2009).
Figure 2 visualizes the output of the snowpack model at an
individual grid point. The time series view illustrates how the
seasonal snowpack builds up from the beginning of the win-
ter season in a layered structure (Fig. 2a), while each layer
is associated with structure–mechanical properties at every
time step, such as layer hardness (Fig. 2b).

2.3 Avalanche hazard assessments

Avalanche hazard assessments compiled for this study were
issued by public avalanche forecasters every day of the
winter season. The assessments represent forecasters’ best
knowledge of the current conditions (i.e., nowcasts) and were
issued in the afternoon for one elevation band (ALP, TL,
BTL) in one forecast region. Applying the conceptual model
of avalanche hazard (Statham et al., 2018a), forecasters par-
titioned the avalanche hazard into different avalanche prob-
lems and characterized each problem by its type, location,
likelihood of avalanches (resulting from spatial distribution
and sensitivity to triggering), and destructive avalanche size
(Fig. 3a).

In addition to avalanche problems, the hazard assessments
also contain records about persistent weak layers and crusts
(Fig. 3b). Forecasters typically track the evolution of these
layers and associate them with the relevant avalanche prob-

Figure 2. A demonstration of a simulated snow profile at an individ-
ual model grid point. (a) A time series view that illustrates how the
snowpack builds up over the winter season in a layered structure.
(b) Profile view at a single time step highlighting layer hardness.
Colors refer to snow grain types; abbreviations for these grain types
are defined in the text and Table B1.

lems at their times of concern. To facilitate the tracking
across space and over time, avalanche forecasters name these
layers with date tags and their grain type(s), e.g., “January 17
surface hoar layer”. Reported date tags mostly represent the
beginning of snowfall periods that bury layers that were ex-
posed to the snow surface before the snowfall and are there-
fore likely to contain weak grain types. Sometimes the date
tags can also represent rain events that form a crust at the
snow surface. While the date tags provide general markers to
simplify communication, the actual formation or burial dates
can vary within a forecast region due to differences in local
weather and its timing. When a tracked layer is associated
with an avalanche problem on a given day, the forecaster ex-
pects the problem to be governed by that layer.

The grain types of the tracked layers were reported as ei-
ther one specific grain type or a mix of grain types, such
as SH, FC, DH, IFrc, IFsc, or more generically MFcr, where
each layer is usually primarily a persistent weak layer (SH,
DH, FC) or a crust layer (IF, MFcr).
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Figure 3. Screenshots of the dashboard used by avalanche forecasters for recording hazard assessments. (a) The entry tool for avalanche
problem characteristics, which allows linking specific avalanche problems to the weak layers documented in (b) the weak-layer tracking tool.
Both tools integrate assessments with forecast subregions selected through an interactive map.
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3 Methodology

Our validation approach consists of three main components.
First, we assessed the general performance of the simulations
with regard to modeling persistent weak layers and crusts
(Sect. 3.1) by examining two practical questions: (a) what
is the probability that a layer of operational concern is cap-
tured by the simulations and (b) how likely is it that a mod-
eled critical layer also exists in reality? Second, we explored
whether there are distinguishable patterns between layers of
concern that were captured well by the model and those that
were not (Sect. 3.2). Finally, we examined the agreement be-
tween simulated and reported layers in more detail, taking
into account the timing of and variation in layer instability
(Sect. 3.3).

3.1 Assessing the general simulation performance

We used a confusion matrix approach to quantify the perfor-
mance of the simulations to represent persistent weak layers
and crusts. A confusion matrix, or a 2× 2 contingency ta-
ble, presents the joint frequency distributions of binary fore-
casts and observations (Wilks, 2019, p. 374f) as the foun-
dation for calculating various performance attributes. In our
case, the binary events were the presence or absence of per-
sistent weak layers and crusts at some point during the sea-
son in the human hazard assessments and snowpack simu-
lations. To identify present and absent layers in both data
sets and properly fill the four cells of the confusion matrix,
we had to perform several preprocessing steps. This involved
(a) identifying the relevant layers in both data sets, (b) match-
ing the corresponding layers, and (c) translating the spatially
distributed simulation information into a binary variable rep-
resenting presence or absence at the regional scale. We de-
scribe each of these steps in detail in the following sections,
and Fig. 4 provides a concise summary of the process.

3.1.1 Preprocessing human data set

We identified relevant layers in our human hazard assessment
data set by filtering all layers that were tracked by avalanche
forecasters to give only those that were associated with either
storm slab, persistent slab, or deep persistent slab avalanche
problems at least once during a season. Since these layers
are a key ingredient in these avalanche problems, we refer
to them as layers of concern throughout the paper. In addi-
tion, we will refer to persistent and deep persistent avalanche
problems simply as persistent problems.

To account for the various degrees of concern and level of
confidence in the human assessments, we manually reviewed
all forecaster comments associated with the identified layers
of concern and summarized them in a qualitative data qual-
ity rating. The forecaster comments often include informa-
tion about observed avalanches, associated triggers, other in-
stability observations, the absence of observed instability, or

mere assumptions. Combining the qualitative comments with
the number of avalanche problem days and the assessed like-
lihood of triggering avalanches on these layers, we assigned
each layer of concern to one of four data quality classes.
Class 1 (excellent) contains all layers with consistent report-
ing, evidence that the layer caused avalanches, and more than
10 persistent avalanche problem days. Class 2 (good) repre-
sents layers that were still of operational concern, but either
the reporting was slightly inconsistent, the layer was associ-
ated with a persistent problem for less than 10 d, or the com-
ments showed that the layer was rather unreactive to trigger-
ing. Class 3 (uncertain) contains layers whose assessments
hold substantial uncertainty. While the assessments suggest
that these layers existed, they were only linked to very few
storm or persistent avalanche problems, showed very incon-
sistent reporting, or were of only limited operational concern
due to missing avalanche reactivity. Class 4 (unsure) consists
of layers that were barely reported upon, making it question-
able whether they existed at all.

3.1.2 Preprocessing simulations

To identify relevant layers in the snowpack simulations, we
searched all simulated snow profiles for layers that were
characterized by persistent grain types and poor stability. Per-
sistent grain types included all faceted layers (FC, DH), sur-
face hoar layers (SH), and crust layers (MFcr, IF). Since crust
layers are strong layers, we counted crust layers as unsta-
ble if unstable weak layers (FC) were present in the vicin-
ity of the crusts. We employed two different approaches to
assess dry snow instability: a recently developed statistical
approach and a process-based approach based on our current
understanding of avalanche release. Since the existing litera-
ture does not yet provide any guidance on which of these ap-
proaches is superior or more appropriate for our application,
we evaluated the entire confusion matrix analysis described
in Sect. 3.1 twice, once employing the statistical approach
and once the process-based approach. To improve readabil-
ity of our paper, layers or grid points with poor stability are
also referred to as unstable layers or grid points.

The statistical approach used the random forest classi-
fier developed by Mayer et al. (2022). This model was
trained with a high-quality data set of observed snow pro-
files recorded around Davos, Switzerland. Based on the ob-
served instability of the weakest layer in each profile, the
model learned to predict the probability of layer instabil-
ity (punstable) from a set of six simulated predictor variables.
These predictor variables included characteristics of both the
weak layer and the slab, namely the viscous deformation rate,
the critical cut length, the sphericity and grain size of the
weak layer, the skier penetration depth, and the cohesion of
the slab. As suggested by Mayer et al. (2022), we considered
layers with punstable ≥ 77 % as critical avalanche layers with
poor stability.
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Figure 4. (a) A flowchart for assembling the four cells of the confusion matrix from the human and modeled data sets. The human data set
is displayed in green boxes, snowpack simulations in turquoise, and data points informed by both data sets in dark blue. (b) The resulting
confusion matrix categorizes all critical layers into two dimensions: whether they are of human concern and whether they are identified by
the simulation. All processes visualized by this figure are explained in detail in Sect. 3.1.1–3.1.5.

Inspired by the work of Monti et al. (2014) and Reuter
et al. (2021), our process-based approach used a combination
of three indices to assess the instability of a layer: (a) the rel-
ative threshold sum approach (RTA) (Monti and Schweizer,
2013; Monti et al., 2014), (b) the multi-layered skier stabil-
ity index SK38 (Monti et al., 2016), and (c) the critical crack
length rc (Richter et al., 2019). Each of these indices con-
sists of a variety of weak-layer and slab characteristics, such
as macroscopic properties (e.g., layer depth), microstructural
properties (e.g., grain type and size), and mechanical proper-

ties (e.g., shear strength). While potential weak layers were
pre-selected based on RTA, their propensity for failure ini-
tiation and crack propagation was assessed based on SK38
and rc, respectively, which account for the two main pro-
cesses governing slab avalanche release (Schweizer et al.,
2003, 2016). While the literature agrees on thresholds for
RTA and SK38, less consensus exists for rc. Hence, we ap-
plied two thresholds to rc and therefore identified critical
avalanche layers with poor stability if RTA≥ 0.8 (Monti
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and Schweizer, 2013), SK38≤ 1 (Reuter et al., 2021), and
rc ≤ 0.3 (Reuter et al., 2021) or rc ≤ 0.4 (Reuter et al., 2015).

While the relevant layers of human concern represent re-
gional assessments with a single date tag (Sect. 2.3), the
layers identified in the simulations consist of observations
from different grid points and at different times that have not
been connected yet. To make the simulated layers compara-
ble to the regional layers of concern, we grouped the sim-
ulated layers using model-derived date tags. These model-
derived date tags represent regional markers for times when
layers with the potential to become critical avalanche layers
got buried. Analogously to human date tags, these regional
markers are primarily represented by the onset dates of pro-
nounced storms with substantial snowfall.

To establish the model-derived date tags, we first high-
lighted dry periods by identifying all days with less than a
trace amount of snowfall or rain for each season and region.
The actual model-derived date tags are defined by the start
of substantial storm periods following dry periods. However,
since potentially critical layers can also be buried by small
amounts of snow over multiple days, we inserted additional
date tags in between these main storm periods if the non-
storm periods were sufficiently long and characterized by
substantial accumulations of small daily snowfall amounts.
The exact rules and thresholds for establishing the model-
derived date tags are described in detail in Appendix A.

Once the model-derived date tags were established, we as-
signed each simulated unstable layer to the closest date tag
older than the layer’s formation date. This means that all
the layers associated with the same date tag can be found
within a narrow band of the snow stratigraphy that got buried
close to the associated date tag. This set of rules allowed us
to meaningfully group simulated layers across each region
and season based on precipitation patterns and their forma-
tion and burial times similarly to how forecasters label layers
of concern.

In the final step, we determined the grain type class of
each group of simulated layers. To label the layer groups
with either a single grain type (FC, SH, or MFcr) or a mix
of two classes (e.g., SH–FC), we first identified the two most
prevalent grain types within the group of layers associated
with a date tag at each grid point for each day. This allowed
us to identify the two most prevalent grain types across all
grid points for each day and eventually for the entire life-
time of the layer. To address the well-known SNOWPACK
behavior of transforming most SH layers into DH layers after
they have been buried for several days to weeks, we judged
DH layers as FC layers if only a negligible amount (less than
10 %) of SH was encountered during the layer’s lifetime. If
the fraction of SH layers was higher than 10 %, we judged all
DH layers as SH layers. Finally the layer groups were labeled
with the resulting one or two prevalent grain types.

3.1.3 Matching of layers of concern and simulated
layers: how and when?

The matching of layers between the human data set and the
simulations is arguably the most important step in the deriva-
tion of the confusion matrix because it influences all four
cells of the matrix. To ensure that all layers were classified
meaningfully, our matching approach consisted of two steps.
We first identified layers of human concern at individual grid
points before checking at the regional level to ensure we did
not miss any relevant layers based on the grouping of layers
by model-derived date tags. The following paragraphs ex-
plain these two steps in detail.

To identify layers of human concern in the simulated pro-
files at individual grid points, we constructed search windows
around the human date tags of individual layers of concern.
SNOWPACK creates labels that store the date and time when
a particular layer is formed or deposited. Following Richter
et al. (2019), we also computed burial date labels based on
the deposition date label of the overlying layer. To account
for biases in the reported date tags and errors in the sim-
ulated precipitation patterns, a simulated layer was consid-
ered matched if it formed within the formation window or
got buried within the burial window of a layer of human con-
cern. The formation window ranged from the last day of the
prior storm event to the day of the human date tag, and the
burial window ranged from 1 d prior to the human date tag to
the first day of the actually simulated storm event (Fig. 5). We
used thresholds for cumulative amounts of new snow (10 cm)
and liquid precipitation (5 mm) to identify the end of the pre-
ceding storm event for the start of the formation window (ac-
cumulating backward) and to identify the start of the next
snowfall event for the end of the burial window (accumulat-
ing forward). To avoid unreasonable matches, we limited the
length of the formation window to 30 d and the length of the
burial window to 5 d.

While the search windows identified all simulated layers
that align with a specific human date tag, the layers still
needed to be filtered for the reported grain types to produce
a meaningful match. To accomplish this, we employed up to
four different grain type searches for each layer of concern:
(a) a strict grain type search that only accepted the specific
reported weak grain types (e.g., SH, SH–FC) in the simulated
layers, (b) a relaxed grain type search that accepted all per-
sistent weak grain types (SH/DH/FC) in the simulated layers,
and a grain type search for (c) any crust layer (IF, MFcr) or
(d) any crust layer with an adjacent unstable weak layer if
crusts were reported to play a role in the given layer of con-
cern.

The final consideration for the matching of the layers was
the timing of the matching. Since persistent layers persist for
a long time, there are several possible options for when to
match the layers from the two data sets (e.g., at their time of
burial, first concern, most concern). To account for temporal
variability in the presence and instability of these persistent
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Figure 5. An illustration of the search windows for layers of human
concern around the human date tag. The panel zooms in on the near-
surface layers of a time series of a simulated snow profile (daily
time step). The extents of the formation and burial windows are
highlighted by horizontal lines, where the solid lines indicate the
extent of each window based on the timing of the storms. The black
boxes highlight all layers that either formed within the formation
window or got buried within the burial window. To better illustrate
the effect that different lengths of (potentially fixed) time windows
have on the selection of layers, the hatched gray areas highlight
layers that would result from time windows extended by the dashed
horizontal lines. Colors refer to snow grain types; abbreviations for
these grain types are defined in Sect. 2.2 and Table B1.

layers, the matching routine was run daily from 5 d before
the reported date tag up to 90 d after. All layers of concern
that were matched to simulated layers at any time within this
96 d validation window were considered captured.

As described above, the first step of the layer matching
routine requires a threshold for the accumulated precipita-
tion amounts to identify the formation and burial windows.
We purposely chose a low threshold to ensure that only layers
within a narrow band of the snow stratigraphy were matched.
However, our initial explorations revealed that approximately
5 %–10 % of unstable layers were erroneously assigned to
model-derived date tags that were only a few days apart from
the relevant human date tag. This situation can occur at grid
points that experienced either a slightly lagged arrival of
the storm producing later model-derived date tags or above-
average precipitation amounts which result in earlier model-
derived date tags. Since these layers are actually part of the
same group of layers that were assigned to the correct human
date tag, we changed the assignment from the model-derived
date tag to the human date tag for these layers if (a) the date
tags were only 1 d apart regardless of snowfall amounts or
(b) the date tags were up to 3 d apart and no more than 10 cm
of new snow was simulated in between.

3.1.4 Applying a threshold criterion to fill the
confusion matrix

After the preprocessing and matching of the data sets, we
can compute the counts for each cell of the confusion ma-
trix (Fig. 4a). All layers of concern that remained unmatched
by the simulations were counted as missed layers of concern
and directly contributed to the false negative cell of the ma-
trix. Analogously, all potential model-derived date tags with-
out any simulated unstable layers (rightmost arrow in Fig. 4,
Sect. 3.1.2) were counted as absent layers and directly con-
tributed to the true negative cell of the matrix. While these
missed layers of concern and absent layers conceptually only
exist at the regional scale and do not have a direct link to
the simulations at individual grid points, the captured lay-
ers of concern and the remaining grouped unmatched unsta-
ble layers are linked to the simulations at grid points, and
we can calculate the daily proportion of unstable grid points,
which we call the proportion unstable. To translate this con-
tinuous variable into a binary variable and decide whether a
layer should be counted as simulated (or not), we applied a
threshold criterion. If the maximum daily proportion unsta-
ble within the 96 d validation window was greater than the
threshold, the layer was counted as simulated but otherwise
as not simulated. Hence, the captured layers of concern either
added to the false negative cell or informed the true positive
cell. Likewise, the grouped unmatched unstable layers either
added to the true negative cell or informed the false positive
cell.

To summarize our methodology, we illustrate the concepts
applied so far with the 2019 winter season in GNP at TL
(Fig. 6). The time series of the average profile (Herla et al.,
2022) for the region, shown in the bottom left panel, provides
context for the date tags that mark the beginning of impor-
tant snowfall periods (Sects. 2.3, 3.1.2, 3.1.3). Date tags that
were reported by forecasters are visualized by solid vertical
red lines, while the additional model-derived date tags are in-
dicated by dashed vertical gray lines. For each regional layer
represented by its date tag, a bar in the bar chart of the top left
panel represents the maximum daily proportion unstable. Us-
ing 50 % as our threshold criterion for this example, each bar
is colored according to its corresponding cell in the confusion
matrix in the bottom right panel. The violin plots shown in
the top right panel present the distributions of the maximum
daily proportion unstable in more detail while also adhering
to the same colors. In this particular case, all six layers of
concern (represented by the red bars, vertical red lines, red
violin, and dark red cell of the confusion matrix) were well
captured, and all the other simulated layers (represented by
all gray features) generally had lower proportions of unstable
grid points. However, there are five layers that were consid-
ered critical by the model using the 50 % threshold but not
the human forecasters.
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Figure 6. An illustration of the concepts applied to a case example of the 2019 season in Glacier National Park (GNP) at treeline eleva-
tion (TL). (a) Maximum daily proportion unstable for each regional layer (red: of human concern; gray: not of human concern) and an
exemplary threshold criterion of 50 % (horizontal black line; shades of gray bars depend on the threshold criterion: dark gray corresponds to
“not modeled”, and light gray corresponds to “modeled”) and (b) the resulting distributions (colors are shared with panels (a) and (d); box-
plots within violins represent the median and interquartile range). (c) The average profile for the region and season (only shown to improve
context; black shading highlights times and layers of modeled instability) with the human and model-derived date tags (vertical red and gray
lines, respectively). (d) The confusion matrix evaluated for this specific example. Abbreviations of snow grain types listed in the legend are
defined in Sect. 2.2 and Table B1.

3.1.5 Statistical performance measures

According to Wilks (2019, p. 374f), three complementary
attributes are required to comprehensively capture the model
performance. We present the probability of layer detection,
the model precision, and the false alarm rate. Probability
of detection, also known as recall or model sensitivity, is
the ratio of true positives/(true positives+ false negatives),
which describes the probability that a layer of concern is
captured by the simulations. This addresses the first prac-
tical forecaster question we outlined in our research objec-
tives. Model precision, also called positive predictive value,
is the ratio of true positives/(true positives+false positives).
It represents the probability that a modeled critical layer
is indeed of operational concern, which corresponds to the
second practical forecaster question. Finally, the false alarm
rate, also referred to as 1−model specificity, is the ratio of
false positives/(false positives+ true negatives). It expresses
the probability that a layer that the human forecasters are not
concerned about is identified as a critical layer by the model.

To present our results, we computed the three performance
attributes for all possible threshold criteria between 0 %–

100 % The attributes were then visualized in a precision–
recall curve and a relative operating characteristic (ROC,
historically also known as receiver operating characteristic)
curve using the software package “ROCR” by Sing et al.
(2005) written for the R language and environment for sta-
tistical computing (R Core Team, 2020). Each point on these
curves describes the model performance for one specific
value of the threshold criterion, which can then be compared
against a no-skill baseline. The no-skill baseline represents
the performance of a random model in the ROC curve and
the climatological frequency of critical layer formation in
the precision–recall curve. To account for uncertainty in the
assessment of model performance, we computed 95 % con-
fidence bands around each curve by bootstrapping the con-
fusion matrix results at each threshold following Davison
and Hinkley (1997) and using the R package “boot” (Canty
and Ripley, 2022). To provide insight into the effect of grain
type, elevation band, and forecast region on performance, we
stratified the overall model performance by these variables
and visualized them in additional precision–recall and ROC
curves.

Nat. Hazards Earth Syst. Sci., 24, 2727–2756, 2024 https://doi.org/10.5194/nhess-24-2727-2024



F. Herla et al.: A critical layer validation of snowpack simulations 2737

In addition to the three performance attributes, we com-
puted two skill scores, the Peirce skill score (PSS) and the
F1 score, that summarize the different aspects of model per-
formance in a single measure. Both scores express model
performance relative to a perfect model using different ways
of combining the cells of the confusion matrix. While these
scores are less tangible to interpret, they simplify compar-
ing model performance at different threshold criteria and for
different approaches of modeling instability. The PSS, also
known as the true skill statistic, accounts for all cells of the
confusion matrix to express the actual skill of the simulations
(Eq. 1), whereas the F1 score disregards the true negative
cell and is therefore biased towards the prediction of events
(Eq. 2). Since the prediction rate of rare events can be high
simply by chance, PSS is the preferred score for our applica-
tion (Ebert and Milne, 2022). Despite this limitation of F1, it
provides a complementary view on model performance that
is independent of our approach to compute the true negative
cell based on model-derived date tags. For more information
on skill scores in rare-event forecasting please refer to Ebert
and Milne (2022), who provide a comprehensive overview
and discussion.

The PSS and F1 scores are defined as

PSS=
(TP ·TN)− (FP ·FN)
(TP+FN) · (FP+TN)

, (1)

F1 =
2TP

2TP+FP+FN
, (2)

where TP and TN are true positive and true negative counts,
and FP and FN are false positive and false negative counts,
respectively (Fig. 4).

3.2 Finding more detailed patterns in all missed or
captured layers of concern

The next components of our persistent layer validation ana-
lyze all missed or captured layers of human concern in more
detail. This section describes how we searched for patterns in
these two groups of layers to better understand the subtleties
of model performance.

While the confusion matrix analysis described in the last
section only included layers with poor stability, the analysis
described here also includes layers of concern that were cap-
tured structurally but remained stable. Analogously to our
approach of using proportion unstable to characterize rele-
vant layers in the last section, we use proportion captured to
characterize the mere structural presence of each missed or
captured layer independently of its simulated stability. The
computation and analysis of the proportion captured follows
the same steps as the analysis of the proportion unstable as
illustrated in Fig. 4 except that it skips the first preprocessing
step of filtering for unstable layers. Identically to the confu-
sion matrix analysis, we computed the maximum daily val-
ues for the proportion captured and proportion unstable for
the 96 d validation window. By including both the proportion

captured and the proportion unstable, we acknowledge that
the simulations first need to structurally capture the layers of
concern before they can provide insight about instability.

To provide insight into what layer attributes and contex-
tual factors influenced the maximum proportion captured
and unstable, we used conditional inference trees (CTrees)
(Hothorn et al., 2006), a type of classification tree that uses a
statistical criterion for finding splits. CTrees recursively par-
tition the distribution of a response variable based on the
statistically most significant splits along a set of explana-
tory variables. For the present analysis, we used the CTree
function in the R package “partykit” (Hothorn and Zeileis,
2015). Due to their ease of use and easily interpretable re-
sults, CTrees have already been used several times in snow
and avalanche research for exploratory analyses (e.g., Horton
et al., 2020b). While the top node of a CTree represents the
most significant split that divides the entire sample, the re-
sulting subsamples are recursively split into smaller subsam-
ples until the algorithm cannot find any significant splits in
the response variable anymore. The resulting terminal nodes
describe subsets of the data set with distinct distributions of
the response variable that can be linked to specific combina-
tions and thresholds of the explanatory variables.

We included the following potential explanatory variables
in our analyses, which contained both direct layer attributes
as well as more contextual information:

– grain type (and grain type search routine)

– grain size of the simulated layer at burial

– data quality class

– month of burial

– number of associated avalanche problem days

– simulated length of the dry spell before burial

– season

– region and elevation band.

Since the CTree analysis required the explanatory vari-
ables to remain constant over the lifetime of the layer, we did
not include any other specific weak-layer or slab variables.

3.3 Estimating agreement indicators between modeled
and reported instability of captured layers of
concern

The analysis described so far validated the existence and in-
stability of persistent weak layers and crusts purely based on
the assumption that layers tracked by forecasters were of op-
erational concern at some point during the seasons. However,
the daily assessments of the avalanche problems according to
the conceptual model of avalanche hazard provide more de-
tailed information about the associated layers. In particular,
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the reported likelihood of a persistent avalanche problem is
closely related to the instability of the linked layer of con-
cern.

To assess the quality of the simulated unstable layers in
more detail, we compared the layers’ simulated proportion
unstable to the reported likelihood of the associated persis-
tent avalanche problem. Forecasters expressed the likelihood
of an avalanche problem on a five-level ordinal scale ranging
from unlikely, over possible, likely, and very likely, to almost
certain (Statham et al., 2018a). To quantify the agreement in
layer instability 9, we defined several agreement indicators
related to the variation and timing of instability. For varia-
tion, we used the Spearman rank correlation (ρ9 ) (Wilks,
2019, p. 59f) between the proportion unstable and the as-
sessed likelihood. ρ9 ranges between [−1, 1] with a perfect
positive correlation at 1 and no correlation at 0. For the tim-
ing we used (i) the lag in the onset of the layer starting to be
a problem (3onset), (ii) the lag between the layer ceasing to
be an issue in the simulations and forecasters removing the
associated avalanche problem in the bulletin (3turn-off), and
(iii) the difference in the total number of days that the layer
appeared to be a problem (1duration). To quantify the rele-
vant times in the simulations we used the proportion unstable
with different thresholds. After initial explorations with 5 %,
20 %, and 50 % for the threshold, we settled on using 20 %
for all calculations.

To offer insights into possible reasons for why certain lay-
ers were modeled better than others, we performed a series of
CTree analyses on the individual indicators similar to how we
used CTrees in the previous section. To focus this analysis,
we reduced our data set to layers of concern at TL and layers
for which all agreement indicators could be calculated. For
example, we removed all layers that were characterized by a
constant likelihood, which prevented calculating the correla-
tion coefficient ρ9 . We also removed all layers whose maxi-
mum proportion unstable was lower than the chosen thresh-
old for3. For a threshold of 20 %, for example, the resulting
data set contained 96 layers of concern.

4 Results

4.1 Inventory of all layers of concern

Our database contained a total of 167 layers of concern, of
which 107 layers were identified to be primarily of weak
grain type (SH, DH, FC) and 60 to be primarily crust lay-
ers (MFcr, IF). Most layers of concern were reported and
tracked in GNP (on average 8.4 layers per season), followed
by BYK and then S2S (on average 4.7 and 2.2 layers per sea-
son, respectively) (Fig. 7b, d, and f). While GNP and BYK
reported twice as many weak layers than crust layers, S2S re-
ported an equal ratio. The data quality of the layers was as-
sessed as excellent or good in 50 %–60 % of cases. The de-
tailed annual inventory of all layers of concern revealed a

high inter-seasonal variability in the number of reported lay-
ers without a long-term trend (Fig. 7a, c, and e).

The number of days with persistent avalanche problems
showed a slightly different pattern (solid lines in Fig. 7a, c,
and e). While S2S experienced persistent avalanche problems
at about 30 % of all days of forecasting operations, 60 % and
70 % of the days in GNP and BYK had a persistent avalanche
problem. In S2S and GNP the vast majority of issued per-
sistent problems were linked to tracked layers of concern,
whereas in BYK these problems were linked to tracked layers
in only 70 % of the cases (dashed lines in Fig. 7b, d, and f).
The number of persistent problem days fluctuated substan-
tially from year to year in S2S and BYK (Fig. 7a and e).
Although the number of persistent problem days was more
steady in GNP, two seasons deviate substantially from the
seasonal average (Fig. 7c).

4.2 General simulation performance

We first discuss the overall performance of the simulations
for representing layers of weak grain types (SH, DH, FC)
using the statistical approach of simulating layer instability
for all regions, seasons, and elevation bands combined. The
maximum daily proportion of unstable grid points obtains
significantly different distributions for layers that were of op-
erational concern and for those that were not (Wilcoxon rank
sum test: P < 0.001; Fig. 8). Most layers of concern tend
to be associated with more unstable grid points than layers
that were not of concern. The resulting performance curve
shows a linear decrease in precision with increasing proba-
bility of detection (Fig. 9a). As expected, the maximum pre-
cision of 60 % is attained with a high threshold for proportion
unstable of 95 %, and precision drops slightly under 40 % for
proportions unstable below 20 %. In contrast, the probabil-
ity of detection increases with decreasing proportion unsta-
ble and maxes out slightly above 80 % (Fig. 9a and b). The
false alarm rate increases with decreasing proportion unsta-
ble, first slowly for high proportions and then more strongly
for low proportions unstable. The precision–recall and ROC
curves both indicate that the simulations have skill in cap-
turing layers of concern, but their performance is far from
perfect. A perfect model would produce a horizontal line at
the top of the precision–recall curve, and the line in the ROC
curve would follow the y axis to the upper left corner and
then across at the top of the chart. On the other side, the no-
skill base line is represented by a horizontal line in the lower
part of the precision–recall curve and by the diagonal in the
ROC curve (dashed lines in Fig. 9).

Analyzing the overall model performance with the
process-based approach to assessing layer instability reveals
several findings. Overall, the process-based approach yields
better results with a threshold for the critical crack length of
rc ≤ 0.3 compared to rc ≤ 0.4 (Fig. 9c and d). The perfor-
mance of the process-based approach with the higher thresh-
old is significantly lower than the statistical approach at the
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Figure 7. An inventory of tracked layers of concern that were extracted from the human hazard assessments for the regions Sea-to-Sky (S2S),
Glacier National Park (GNP), and Banff–Yoho–Kootenay (BYK). Detailed inter-seasonal patterns are visualized for each region in (a), (c),
and (e), and seasonal averages are shown in (b), (d), and (f) for weak layers (wkl) and crusts. The colored bars sum up the number of layers
in each data quality class, and the lines show the percentage of days per season where a persistent avalanche problem was issued (solid line
and open circles), which is linked to a tracked layer of concern (dashed line and filled circles).

95 % confidence level. The process-based approach with the
lower threshold, however, yields comparable results to the
statistical approach and lies within the confidence band as the
statistical approach (Fig. 7a and c). Furthermore, while the
process-based precision–recall curve with the higher thresh-
old remains constant at approximately 40 % for all propor-
tions unstable, the process-based approach with the lower
threshold follows a similar slope as the statistical approach
and reaches a comparable maximum precision. At equal pro-
portions unstable both process-based curves show a proba-
bility of detection 10–15 percentage points lower than the

statistical approach, which can be seen in all panels of Fig. 9.
Lastly, the false alarm rate of the process-based approach
with the lower threshold follows the same pattern of the sta-
tistical approach, but at identical proportions unstable the
process-based approach yields a false alarm rate approxi-
mately 8 percentage points lower.

Condensing the three performance attributes into the
Peirce skill score (PSS) reveals a very flat peak of the sta-
tistical approach at a threshold of approximately 20 % for
the proportion of unstable grid points and a PSS of 0.41
(Fig. 10a). The process-based approach with the lower
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Figure 8. The overall distributions of the maximum daily propor-
tion unstable for all weak layers (surface hoar, depth hoar, facets)
that were and were not of operational concern.

threshold obtains a maximum PSS that is 5 percentage points
higher, albeit only for very low thresholds of the maximum
proportion unstable of around 3 %. For higher proportions
the PSS of the process-based approach decreases linearly be-
low the PSS of the statistical approach. The F1 curves show
a similar pattern but with an even flatter peak and a slower
decrease with increasing proportions unstable. For our sub-
sequent analysis, we focus on the statistical approach and ne-
glect the process-based approach.

Calculating separate performance curves for grain types
revealed that SH layers are modeled with a precision be-
tween 80 %–100 %, whereas FC layers are only between
25 %–40 %. False alarm rates are also significantly lower for
SH layers. The probability of detection, however, is slightly
better for FC (Fig. 11a and b). Crust layers are poorly rep-
resented in the simulations with probabilities of detection
below 50 % at a low precision of 10 %–20 %. All perfor-
mance measures for crusts closely follow the no-skill base
line (Fig. 11a and b). To make the stratification by elevation
bands and forecast regions more insightful, we computed
Fig. 11c–f without the influence of crust layers. The perfor-
mance curves for the different elevation bands highlight that
the simulations at TL score substantially better than in the
ALP with higher precision at higher proportions unstable and
a generally slightly better probability of detection (Fig. 11c
and d). False alarm rates remain comparable. The perfor-
mance curves for BTL are between the TL and ALP but more
closely aligned with TL. The curves for the different forecast
regions show that precision is substantially higher in GNP
(50 %–90 %) than in S2S and BYK (20 %–50 %), while the
probability of detection is identical or slightly lower in GNP
(Fig. 11e and f). False alarm rates are also lower in GNP than
in S2S and BYK, although the effect is not as pronounced as
for precision. The confidence bands highlight a substantially
higher uncertainty in S2S than in BYK and in GNP, which is
due to differences in sample sizes.

4.3 Patterns in representing layers of concern

4.3.1 Missed or structurally captured layers of concern

The CTree analysis examining the differences between lay-
ers that were structurally captured and those that were not
revealed that the proportion captured most significantly de-
pends on the grain type (Node 1 – first split of the CTree;
Fig. 12). While sun crusts (IFsc) are virtually absent from
our simulations (Node 13), rain crusts and temperature
crusts (IFrc, MFcr) are more likely to be captured, par-
ticularly when they formed in the early season (Nodes 11
and 12). The proportion captured of SH layers is substantially
influenced by the length of the dry spell before the layer got
buried. While the majority of SH layers that got buried af-
ter a dry spell of at least 7 d is structurally captured by our
simulations (Node 7), the proportion captured varies widely
within the entire spectrum if the dry spell is shorter than 7 d
(Node 8). In contrast to crusts and SH layers, all FC layers
of concern are structurally present in the large majority of
grid points (Nodes 4 and 5), although some FC layers of the
lower-data-quality class are represented by lower proportions
captured (Node 5).

While the CTree algorithm found additional significant
splits in the terminal nodes shown in Fig. 12, many of them
became difficult to interpret and did not provide additional
insight. Hence, we are not showing the full tree. However,
some splits revealed patterns worth mentioning. For exam-
ple, FC was almost always present next to SH in GNP and
BYK even if they were not reported. Early-season IFrc and
MFcr (October, November, December) were well captured
at BTL and moderately well captured at ALP and TL (albeit
with large variability). Mid- and late-season IFrc and MFcr
were less well captured in all elevation bands.

4.3.2 Missed or structurally captured and unstable
layers of concern

Due to the poor model performance in capturing crust lay-
ers, we limited the CTree analysis of all missed or struc-
turally captured and unstable layers of concern to weak grain
types (SH, DH, FC). Upon fitting a CTree with the full list of
potential explanatory variables, we found that “season” con-
tinuously emerged as an important significant variable, high-
lighting that model performance varies substantially between
seasons. Seasons with good performance include 2014, 2016,
and 2019, whereas 2017 and 2020 were characterized by par-
ticularly poor performances (not shown). Since the influence
of “season” made the resulting CTree challenging to inter-
pret, we removed it from the list of potential explanatory
variables for the analysis presented in Fig. 13.

After removing the season effect, the governing variables
were the same as in the CTree for just structurally captured
layers: grain type, length of the dry spell, and data quality.
Hardly any SH layers became unstable in any grid points

Nat. Hazards Earth Syst. Sci., 24, 2727–2756, 2024 https://doi.org/10.5194/nhess-24-2727-2024



F. Herla et al.: A critical layer validation of snowpack simulations 2741

Figure 9. (a, c) Precision–recall and (b, d) ROC curves characterizing overall model performance for weak grain types in all forecast regions
and at all elevation bands given different thresholds of the maximum daily proportion unstable (color), (a, b) for the statistical approach of
simulating layer instability and (c, d) for the process-based approach employing two different thresholds for the critical crack length rc. Gray
bands indicate 95 % confidence bands, and gray lines shadow the curves of the other panel.

Figure 10. Skill scores for the statistical and process-based approaches to modeling layer instability as a function of the threshold for
maximum daily proportion of unstable grid points. The process-based approach in this curve uses a threshold of the critical crack length
rc ≤ 0.3. Gray confidence bands represent the 95 % level. Color refers to the same value as the x axis and is shown only to facilitate cross-
referencing to Fig. 9.
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Figure 11. (a, c, e) Precision–recall and (b, d, f) ROC curves characterizing model performance for different grain types, elevation bands,
and forecast regions given different thresholds of the maximum daily proportion unstable (color). Due to the performance of crust layers,
panels (c)–(f) show the combined effect of SH and FC layers without the consideration of crust layers. All panels were computed with the
statistical approach of modeling layer instability. Gray bands indicate 95 % confidence bands.
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Figure 12. CTree for proportion captured examining the differences between layers of concern that were structurally captured by many
grid points and those that were captured by few grid points or none. Terminal nodes are labeled with the number of distinct layers they
contain (nWKL).

Figure 13. CTree for proportion unstable examining the differences between layers of concern that were modeled as unstable by many grid
points and those that were modeled as unstable by few grid points or none. Terminal nodes are labeled with the number of distinct layers
they contain (nWKL).

if the length of the preceding dry spell was shorter than 7 d
(Node 9). If the dry spell was longer, the proportion unstable
was substantially larger for most SH layers (Node 8). Layers
that consisted of FC or mixtures of SH–FC became unsta-
ble at most grid points and for most layers of concern if the
length of the dry spell exceeded 8 d or was shorter but asso-
ciated with a high-data-quality class (Nodes 3 and 5). Layers
that were characterized by a shorter dry spell and lower-data-
quality class showed substantially more spread (Node 6).

Although the simulated grain size of SH layers at their
time of burial did not show up as a significant variable in
the CTrees that were fitted with multiple variables, a univari-

ate analysis confirmed a significant relation with the propor-
tion unstable: larger grain sizes tended to be associated with
higher proportions unstable (not shown).

4.3.3 Agreement indicators between modeled and
reported instability of captured layers of concern

The agreement in modeled and reported variation in insta-
bility ρ9 was primarily influenced by the number of days
each layer was associated with a persistent avalanche prob-
lem (Fig. 14a). A strong negative correlation tended to be
attributed to layers whose instability was very short-lived
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(Node 2) and can likely be attributed to phase lags of the
peak instability. The best agreements were found with lay-
ers that were of concern for more than 14 d (Node 5) and
among those for layers whose modeled onset of instability
was close to their reported onset (not shown). The remain-
ing layers were characterized by a highly variable agreement,
and many appeared to be even uncorrelated (Node 4). The
agreement was not influenced by grain type or data qual-
ity class. However, a qualitative inspection of all layers that
were of concern for more than 14 d but characterized by a
ρ9 < 0.4 suggested the following possible reasons for the
poor agreement:

– The instability was primarily reported for crust layers,
none of which were properly captured by the simula-
tions (five layers, all in BYK).

– The reported instability tapered off, while the mod-
eled instability remained high (four layers of good-data-
quality class).

– The modeled instability at the time of concern was dom-
inated by a different weak layer (two layers of poor-
data-quality class).

– The proportion unstable followed the variation in the
danger rating, while the reported likelihood remained
constant and therefore yielded worse correlations (two
layers of good-data-quality class).

– A modeled precipitation event was underestimated,
which led to underestimated instability in buried weak
layers (two layers of good-data-quality class).

– The modeled instability tapered off earlier than the re-
ported instability (one layer of good-data-quality class).

The agreement indicator 3onset for the onset of the layer
starting to be of concern was found to be independent of the
threshold used for the analysis. Furthermore, for almost all
layers the modeled onset of the instability was earlier than
or at the time of the reported onset (Fig. 14b). For FC layers
or SH and SH–FC layers with pre-burial dry spells longer
than 14 d, the onset date tended to be modeled substantially
earlier than reported, often up to 3 weeks earlier (Nodes 2
and 4). The smallest deviation in the onset date and therefore
best agreement were found for SH and SH–FC layers, whose
dry spell was shorter than 14 d (Node 5).

Similarly to 3onset, the agreement indicator 3turn-off for
the timing of when layers ceased to be of concern was not
affected by the threshold used.3turn-off, however, was evenly
distributed around lag zero, which means that the modeled
instability sometimes healed sooner and sometimes later than
the reported instability. The number of problem days was the
only driver influencing the distribution (Fig. 14c): while lay-
ers that were of concern for more than 17 d tended to be mod-
eled stable sooner (Node 3), layers that were of concern for

less long tended to be modeled stable later than what the hu-
man forecasts had suggested (Node 2).

Consistent with the results for the timing of when layers
started and ceased to be of concern, the agreement indica-
tor 3duration was influenced more heavily by a potential lag
of the final phase of the layers’ concern than during its on-
set. The combined effects led to most layers being modeled
as unstable for more days than they were associated with
avalanche problems (Fig. 14d). Only layers that were of con-
cern for more than 16 d and were characterized by a dry spell
shorter than 12 d tended to be modeled as unstable for fewer
days (Node 9). However, any layer associated with a long
dry spell tended to be modeled as unstable for more days
(Nodes 3 and 8). Layers that were of concern for less than
16 d without a long dry spell tended to be modeled as unsta-
ble for only a few more days (Nodes 5 and 6).

5 Discussion

5.1 Insights for the application of snowpack modeling
in operational avalanche forecasting in Canada

Our results have shown that the Canadian weather and snow-
pack model chain is able to skillfully represent weak layers
that are of operational concern. However, comparison against
human assessments also demonstrates substantial differences
between the two data sets. Both data sets are characterized
by uncertainty, and both forecasts – modeled and human –
are far from perfect. While this fact is discussed in detail
in the subsequent section (Sect. 5.2 Limitations), the current
section interprets the results of our validation from a practi-
cal perspective of applying snowpack simulations to support
avalanche forecasting in Canada. To address avalanche fore-
casters and snowpack modelers, who strive to develop tools
for avalanche forecasters, we focus on a wide range of tan-
gible model scenarios that cover different regions, elevation
bands, and grain types and a varying degree of simulated in-
stability, which we express as the proportion of unstable grid
points within a forecast region. These take-home messages
will help forecasters and modelers understand and interpret
occurrences of weak layers and crusts in the current Cana-
dian weather and snowpack model chain.

5.1.1 A tangible interpretation of overall model
performance

When using model simulations for assessing avalanche con-
ditions, avalanche forecasters need to decide at what propor-
tion of unstable grid points they should be concerned about
a particular simulated layer. Naturally, the simulations cap-
ture more layers of operational concern when employing a
lower threshold, but they also issue more false alarms. For a
higher threshold, the number of false alarms decreases sub-
stantially, but also the number of captured layers decreases
and therefore more layers of concern are missed. To illus-
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Figure 14. CTrees for different agreement indicators between modeled and reported instability. (a) CTree for the indicator of variation ρ9
examining the differences between layers of concern whose reported instability agreed well and poorly. (b, c, d) Similar CTrees but for
the indicators of timing 3onset, 3turn-off, and 3duration, respectively. Terminal nodes are labeled with the number of distinct layers they
contain (nWKL).
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trate this trade-off, let us examine an average season, which
typically includes 20 date tags of which 4 are associated with
a layer of concern. Using a threshold of 20 % for the propor-
tion unstable, eight date tags are identified as unstable lay-
ers in the simulation, but only three are actually of human
concern, whereas five are not of human concern. With this
threshold, only one layer of human concern (out of four) is
missed (Fig. 15a). Using a higher threshold of 95 % unstable
grid points, only 2 out of 20 date tags are associated with sim-
ulated unstable layers. Of these two simulated layers, one is
identical to the layers of human concern, while one is not re-
ported to be of concern. Three layers of human concern (out
of four) are missed (Fig. 15b). These examples are informed
by the more general performance results presented in Fig. 9a
and b. Forecasters can use these curves to understand the in-
teraction between the proportion of unstable grid points and
the resulting model performance, which can help them make
informed decisions about how to integrate the simulated in-
formation into daily decisions. The precision–recall curve is
particularly important for forecasters who find unstable lay-
ers in the simulations and ask themselves whether or not to
act upon them. If the encountered layer is unstable in 20 %
of grid points and the forecasters decide to take the layer
seriously, the probability of capturing all layers of concern
is 75 % (i.e., probability of detection), while the probability
that the encountered layer is actually of concern is only about
40 % (i.e., precision) (blue circle and dashed blue lines in
Fig. 9a). If the forecasters decide to take only layers with as
many as 95 % unstable grid points seriously, the probability
of capturing all layers of concern decreases to almost 20 %,
while the probability that each of those layers will actually
be of concern rises to 60 % (red circle and dashed red lines
in Fig. 9a). Hence, only taking layers seriously that are un-
stable in the majority of grid points and ignoring layers that
are represented by a small proportion of grid points means
missing many layers of concern. By contrast, when acknowl-
edging any simulated layer with a date tag, even if the layer
is only present in a small proportion of grid points, forecast-
ers can be confident that they have narrowed in on a subset of
layers that captures the majority of layers of concern. They
can then focus on examining observational data (e.g., field
observations, avalanche observations) to discern which lay-
ers are truly layers to be concerned about and which ones are
false alarms. In this way the simulations provide a valuable
starting point for targeted observations.

5.1.2 Performance variations by grain types, elevation
bands, and forecast regions

The performance of the simulation strongly depends on grain
type. Simulated layers whose prevalent grain type is SH – or
at least a mix of SH–FC – were very often of concern. If fore-
casters encounter a regionally grouped, unstable layer in the
simulations that is labeled as SH or SH–FC, they can there-
fore assume that the layer is very likely of concern if it is

Figure 15. A visual representation of the confusion matrix results
for different thresholds of unstable grid points. Filled circles indi-
cate the average number of date tags per season that are associated
(or not) with a layer of human concern and with a simulated layer
unstable in (a) 20 % of grid points (corresponds to red circle and
dashed red lines in Fig. 9a and b) and (b) 95 % of grid points (cor-
responds to blue circle and dashed blue lines in Fig. 9a and b).

unstable in more than 10 % of grid points. In contrast, pure
FC layers are modeled more often than they are of concern.
This causes regular false alarms from FC layers on the one
hand, but on the other it causes the simulations to capture
slightly more FC layers of concern than SH layers. These
findings are consistent with the results of the CTree analysis,
which showed that the vast majority of FC layers was struc-
turally captured at most grid points, even if FCs were not
reported and particularly if a long dry period without precip-
itation preceded the burial of the layer. We therefore hypoth-
esize that our simulations tend to overpredict the structural
existence and instability of FC layers.

Crust layers of concern were heavily underrepresented
and underestimated in our simulations. Rain and temperature
crusts of concern were sometimes structurally present by a
limited number of grid points, most often in the early sea-
son and at lower elevations. Although sun crusts were regu-
larly discussed by forecasters, they were never captured by
the simulations. Since the formation of sun crusts is substan-
tially influenced by aspect-dependent exposure to solar ra-
diation, we believe that the lack of simulated sun crusts in
our study is primarily caused by the fact that we only used
flat field simulations. Given the poor model performance in
capturing any type of crust, while modeling many additional
crust layers that were never reported upon, we advise using
the Canadian operational weather and snowpack model chain
only for assessing weak layers (such as SH, DH, FC) and not
crusts, at least until the model chain includes slope simula-
tions and further testing has been carried out.

The performance of the simulations also varies with ele-
vation band and forecast region. In the ALP, the model tends
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to produce many false alarms at any proportion of unstable
grid points, while at BTL and TL, layers are considerably
more likely to be of concern when they are unstable in more
grid points. These effects could be influenced by grain type,
since there are likely fewer SH layers and more FC layers in
the ALP than at lower elevations. The forecast region had a
strong effect on model performance, which made simulations
in GNP substantially more trustworthy than in S2S and BYK.
This strong effect is likely influenced by the regions’ snow
climates, as well as forecast practices by different agencies
in different snow climates. Due to its transitional snow cli-
mate GNP is characterized by substantial snowfall amounts
interspersed with frequent periods of critical layer formation
(Haegeli and McClung, 2007; Shandro and Haegeli, 2018).
Therefore many persistent avalanche problems exist each
season, most of which can usually be linked to specific thin
critical layers (Fig. 7c and d). In the maritime snow climate
of S2S, critical layers form much less often and cause less
persistent problems (Fig. 7a and b). Although continental
BYK experiences the most days per season with persistent
avalanche problems, less persistent problems can actually be
linked to specific critical layers (Fig. 7e and f). Instead of
thin critical layers, the continental snowpack is often char-
acterized by thick bulk layers of low cohesion. Since these
thick layers often get deposited by different snowfall events
and facet over the course of many dry spells, it can be chal-
lenging to name these layers, let alone distinguish them in
the field. Our analysis approach of focusing on specific iden-
tifiable layers of concern may therefore be most applicable
to GNP. For all these reasons our data set of tracked layers of
concern is skewed towards GNP and leaves BYK and partic-
ularly S2S underrepresented. Our results for S2S and BYK
therefore have to be interpreted with more caution and in
light of their regional peculiarities. For example, Horton and
Haegeli (2022) found that BYK (and other forecast regions in
the Canadian Rockies) consistently receives underestimated
modeled snowfall amounts, which increases the temperature
gradients in the snowpack and helps explain the overesti-
mated faceting we see in our results of BYK, which in turn
leads to a low model precision in BYK. In contrast, the low
model precision in S2S could be due to an underrepresenta-
tion of layers of concern. Since instabilities are often short-
lived when persistent weak layers get buried by big storms,
many critical layers potentially never get associated with a
persistent avalanche problem.

5.1.3 Detailed comparisons of human and modeled
data sets

Although our analysis of agreement indicators between mod-
eled and reported instabilities likely pushed the limits of
our data sets (see Limitations section, Sect. 5.2), the find-
ings still suggest that the simulations could be used as a
complementary information source for the critical assess-
ment of buried weak layers. Overall, most indicators that

describe the timing of instability agreed on average, but we
observed large variations. Furthermore, our analyses showed
that forecasters tended to be concerned about layers that
were associated with a persistent avalanche problem for
longer than 17 d, consistently longer than suggested by the
simulations. This is in line with interviews with Canadian
avalanche forecasters who acknowledge the challenges of
taking persistent avalanche problems off the bulletin (Hor-
dowick and Haegeli, 2022). The simulations could therefore
provide forecasters with valuable insight for when to remove
persistent avalanche problems. Lastly, we found encourag-
ing results in the indicator that describes the correlation be-
tween modeled and reported instability. The longer the lay-
ers tended to be assessed, the better the agreement turned out
on average. Our more detailed qualitative follow-up analy-
sis of layers of long-lived concern found that poor correla-
tions were usually caused by an instability that was mod-
eled more severe than it was assessed. In other words, either
the simulations tend to give a conservative recommendation,
which is desirable, or forecasters underestimated the insta-
bility and would therefore benefit from model guidance. In
other instances poor correlations could mostly be explained
by other apparent reasons, such as an underestimated snow-
fall event, which highlights the need for continuous real-time
model validation (see Sect. 5.3 for a discussion on potential
future validation and monitoring).

5.2 Limitations

While the present results provide interesting insights for
avalanche forecasters in Canada, our data sets have several
limitations that need to be considered when interpreting the
results. Two of these limitations have already been discussed
in the previous section – the large influence of the GNP study
area on the results due to the large number of persistent weak
layers in a transitional snow climate and the limitations im-
posed by the flat field simulations – but the primary limitation
of our analysis is the fact that the validation data set consists
of human assessments that do not necessarily represent an
objective truth.

Our validation data set consists of human assessments that
represent filtered and synthesized data from a comprehensive
range of relevant observations such as weather, snowpack,
and avalanche observations from different sources, locations,
and times. The resulting data set is available daily during the
winter season and describes regional-scale conditions. There
are no other data sets that describe the avalanche conditions
in such a structured and consistent manner for so many sea-
sons and over such large areas. However, since human as-
sessments are subjective judgments that can be influenced by
operational requirements and practices, they can contain bi-
ases and inconsistencies (Statham et al., 2018b; Techel et al.,
2018; Horton et al., 2020b). Particularly since the Conceptual
Model of Avalanche Hazard (Statham et al., 2018a) is purely
qualitative and does not suggest any quantitative links be-
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tween observations and hazard components (e.g., likelihood
of an avalanche problem), the assessment requires substantial
human judgment and expertise. While the binary assessments
of layers of concern are likely one of the more straightfor-
ward and therefore reliable aspects of the used assessments,
more intricate attributes such as onset or turn-off dates of
avalanche problems and particularly the reported likelihood
of a layer to cause avalanches are more susceptible to biases
and inconsistencies.

In addition to potential human error, sparsity of observa-
tions in general can impact the quality of the human assess-
ments. Although we chose three relatively data-rich study re-
gions and assessed each layer of concern for its data quality
to alleviate the limitations, it remains unclear whether the
simulations or the human assessments were closer to reality
when the two data sets disagreed. For example, while several
modeled critical layers that were not reported in the assess-
ments may be attributed to the model being overly sensitive,
some could also have been missed by human observers. Sim-
ilarly, while most layers of concern that were not captured by
the simulations can likely be attributed to model deficiencies,
a few might actually not have been as reactive as initially
expected by the forecasters, or it might have been another
layer that was the main cause of instability on a given day.
Hence, our results can be interpreted as the lower limit of
expected model performance. Lastly, any temporal compar-
isons between simulations and assessments are additionally
impacted by uncertainties in snowfall frequency and magni-
tude, which in turn impact weak-layer and slab characteris-
tics alike. Again, it often remains unclear which data source
is closer to reality when new snow amounts differ (Lundquist
et al., 2019; Horton and Haegeli, 2022).

5.3 A vision for the future use of snowpack simulations
in operational avalanche forecasting

Based on the insights from the present study and our practi-
cal experience with the tools developed for this research, we
have developed a vision of how snowpack modeling can be
embedded into operational avalanche forecasting dashboards
more informatively. Despite the encouraging results found
by our persistent layer validation, we do not believe that
the existing model chain is sufficiently reliable to generate
assessments purely based on simulations. Instead, we view
the simulations as a rich complement to other information
sources that can help alert forecasters about the existence of
specific critical layers or provide an additional, independent
perspective on their instability. To enable their full potential
as a complementary information source, snowpack simula-
tions need to be embedded in a validation suite that allows
forecasters to continuously compare past assessments to past
and future simulations in real time. Continuously judging the
model performance will allow forecasters to develop a bet-
ter understanding of the strength and weaknesses of this data
source over time.

To be useful for forecasters and fit into their already busy
forecasting days, such a validation suite must present the in-
formation in an intuitive way that integrates seamlessly with
their existing practices (Horton et al., 2020a). Hence, we sug-
gest presenting simulated layers in a grouped format similar
to layers of human concern. The methods described in this
paper can be used to group and compare layers in such a for-
mat. Figures 16 and 17 illustrate how we envision the dash-
boards of a potential validation suite to look like using the
2019 winter season at TL in GNP as an example.

On any given day, a seasonal overview as shown in Fig. 16
could show the entire history of the season and potentially the
future forecast simulations for the next 3 d. The information
presented in this view combines human assessment data with
simulated information. Relevant human assessment data in-
clude the danger rating, the tracked layers of concern, and the
likelihood of their associated avalanche problems (Fig. 16a–
c). Relevant simulated information includes the proportion
captured, the proportion unstable, and the time series of a
representative snow profile (Herla et al., 2022) (Fig. 16d
and e). While the profile gives a familiar and comprehensive
overview of the snow stratigraphy including snow height,
new snow amounts, prevalent layers, and their times of insta-
bility, the proportion captured and proportion unstable offer
insight into how many grid points contain the current layer
of human concern or suggest instability in that layer (colored
circles and bars, Fig. 16d). To acknowledge other layers that
are modeled as unstable on the same day, we also show the
proportion unstable of all persistent layers on each day (gray
bars, Fig. 16d).

A dashboard view like this effectively summarizes the
large number of simulated observations and allows forecast-
ers to easily put their assessments of specific layers in rela-
tion to the simulated data. For example, the reported likeli-
hood of avalanches of persistent avalanche problems shows
less variation than the corresponding proportion of simulated
unstable grid points (Fig. 16c and d). Focusing on the pe-
riod from 3 December to 5 January, both bar charts show
an almost identical progression. However, while the mod-
eled proportion unstable spans the entire scale from 0–1,
the reported likelihood of avalanches only varies between
possible–likely/very likely. Simultaneously, the reported dan-
ger level is low at first (when the proportion unstable is close
to 0) and then increases to high within 3 d (13 December)
(when the proportion unstable also increases to almost 1 at
the same time). The danger rating remains constant at con-
siderable/high for roughly 1 week (when the proportion un-
stable also lingers between 0.8–1). Starting on 21 December
the danger rating drops to moderate and then low for a total of
6 d (when the proportion unstable also tapers off to 0 within
the same time frame) before two snowfall events on 29 De-
cember and 3 January bring the danger rating back up to con-
siderable and high. The last two peaks of the danger rating
are reflected in the proportion unstable at the same times,
but the magnitude remains lower. This aligns with the hu-
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Figure 16. A dashboard view that provides a seasonal overview of (a–c) human assessments and (d, e) model simulations. (a) The danger
rating at treeline elevation (TL), (b) times when tracked layers of concern were associated with an avalanche problem, (c) the likelihood
of associated avalanche problems, (d) the proportion of unstable model grid points in the forecast region, and (e) the time series of a
representative simulated snow profile, where 〈HS〉 and 〈NEW〉 refer to the median height of snow and the median amount of new snow,
respectively. Abbreviations of snow grain types are defined in Sect. 2.2 and Table B1.

man assessments that dropped the persistent avalanche prob-
lem on 3 January and only called it a storm snow problem.
At the same time, the average profile (Fig. 16e) highlights
substantial amounts of unstable new snow. Interestingly, it
also shows a thin layer of unstable facets that got buried on
28 December. This layer is not mentioned in the human haz-
ard assessments that still attribute the persistent problem to
the 21 November SH and the 9 December SH layers. Both of
these layers are also present in the average profile, but their
main activity was modeled between 10 and 23 December.
Besides these nuanced comparisons at times of agreement
between modeled and human data sets, the dashboard view
makes any serious discrepancies easy to spot. For example,
during the early season when no human assessment data are
available yet, the proportion unstable highlights times of in-
stability in early-season weak layers, such as around 17 and
24 November, which are caused by the 14 and 21 Novem-
ber layers (Fig. 16d and e). The opposite is possible as well.
Starting with 16 March, the assessments indicate high hazard
and a persistent avalanche problem on the 7 March FC layer.
However, the simulations show no signs of instability at all.
Despite this dramatic discrepancy, the visualized informa-
tion can still be beneficial for forecasters who get prompted
to think critically about the current situation. Investigating
the underlying reasons for the disagreement may help them
make a more informed decision. In this specific example,
additional hazard and weather information (not shown in

Fig. 16) uncovered that this situation coincided with the first
wet avalanche cycle of the year, a process not captured by the
stability measure used in this paper.

The second dashboard we envision would focus on a single
layer of concern (Fig. 17). Analogously to before, the view
combines human assessment information with relevant sim-
ulated information. Relevant assessment information could
include the times of concern and the likelihood of triggering
avalanches due to the associated avalanche problems. To pro-
vide meaningful context for the information specific to the
layer, the view still includes the proportion captured and the
proportion unstable of the specific layer as well as the over-
all proportion unstable of all persistent layers analogously to
the previous view (Fig. 17c, black line with circles, black
bars, gray bars, respectively). In addition, the view shows
daily summaries of the simulated characteristics of the spe-
cific layer of concern, including the layer depth; the statistical
stability measure punstable (Mayer et al., 2022); the process-
based stability measures RTA, SK38, and rc; and other se-
lect variables of interest, such as the cohesion of the overly-
ing slab expressed by the average density over grain size of
all slab layers

〈
density

grain size

〉
slab

. These characteristics are visual-
ized as daily distributions in the form of violin plots. To pre-
vent loss of context in this highly zoomed-in view and allow
forecasters to relate to information of other potential layers
of concern, we also show persistent unstable layers that are
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Figure 17. A dashboard view that zooms into the details of an individual layer of concern. (a) Times when the layer was associated with
an avalanche problem; (b) the likelihood of associated avalanche problems; (c) the proportion of unstable model grid points in the forecast
region; and daily summaries of simulated characteristics of the target layer (violin distributions) and other layers (point clouds) like (d) layer
depth (m), (e) cohesion of the slab

〈
density

grain size

〉
slab

(kg m−3 mm−1), (f) statistical approach to layer instability punstable, (g) critical crack
length rc (m), (h) stability index SK38, and (i) relative threshold sum approach RTA.
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not associated with the specific layer of concern. These other
layers are visualized as separate point clouds color-coded ac-
cording to their native grain types. The novelty of this view
is that it selects conceptually equivalent layers based on the
methods described in this paper and then visualizes all indi-
vidual data points from multiple grid points and dates in an
accessible way.

The dashboard views shown in Figs. 16 and 17 focus on
the information contained in the data sets of our present
study. In an operational context, additional information will
be available that is highly relevant for the proposed validation
suite. In particular, adding specific observations like snow-
fall, snow depth, or avalanche observations will be critical
for providing forecasters with the full range of available ev-
idence. For example, since the proportion unstable will have
to be interpreted in light of new loading due to added snow-
fall as currently indicated only in the representative profile,
the view could be complemented with observed and modeled
snowfall amounts to alert forecasters to situations when mod-
eled snowfall might be substantially under-/overestimated or
delayed.

5.4 Implications for further development of snowpack
modeling

While improving insight for further development of snow-
pack modeling was not the main objective of this paper,
our explorations offer a few interesting observations for this
community.

Our large-scale persistent layer validation offered an op-
portunity to compare the overall performance of two re-
cently promoted approaches to estimate dry snow layer in-
stability: the process-based approach promoted by Monti and
Schweizer (2013), Monti et al. (2014, 2016), Reuter et al.
(2015, 2021), and Reuter and Schweizer (2018) and a sta-
tistical approach developed by Mayer et al. (2022). Our re-
sults from using the process-based approach are in line with
recent research that suggested decreasing the threshold for
the critical crack length rc to 0.3 m (Reuter and Schweizer,
2018; Reuter et al., 2021; Mayer et al., 2022). Furthermore,
although the statistical approach was fitted with Swiss data,
our results demonstrate that it can be employed in western
Canada, where it performs at a similar level as the process-
based approach. The proportion of unstable grid points in a
forecast region based on the statistical approach turned out to
be a valuable predictor of instability. Future research might
want to investigate whether a combination of the proportion
of unstable grid points with the individual magnitude of in-
stability at each grid point yields improvements.

A further side observation outside of the scope of this pa-
per but nevertheless interesting for developers of snowpack
models was brought up by the length of the dry period before
the burial of the potential weak layer, which emerged as a
variable with strong explanatory power in many of our CTree
analyses (Sect. 3.2 and 3.3). Since longer dry periods con-

ceptually increase the chance of weak-layer formation and
growth on the snow surface, these findings seem plausible at
first. However, in sum all of the following observations ap-
pear slightly odd: (1) if the dry period before the burial of a
SH layer was shorter than 7 d, the proportion of grid points
that structurally contained the layer was significantly lower
than for longer dry periods (Fig. 12; Nodes 6–8). (2) Barely
any SH layer was modeled as unstable when buried after a
dry period shorter than 7 d, whereas significantly more SH
layers were modeled as unstable when the dry period was
longer (Fig. 13; Nodes 7–9). A less strong but similar effect
was observed for FC and combinations of SH–FC (Fig. 13;
Nodes 2, 3, 6). (3) Weak layers that were buried after a dry
period longer than 12 d were simulated unstable for a sig-
nificantly longer duration than human assessments suggest
than weak layers that were buried after a shorter dry period
(Fig. 14d). Based on this strong influence of the variable
in several different CTree analyses we hypothesize that the
model is biased towards overestimating the structural preva-
lence and instability of weak layers that were buried at the
end of long dry periods. Since both structural existence and
instability show the same patterns, we further believe that this
effect originates in the SNOWPACK model itself and propa-
gates through the stability module by Mayer et al. (2022). To
dig even deeper, the variables in the stability module that are
potentially affected by the length of the dry period are grain
size, density, and sphericity of the weak layer (Mayer et al.,
2022). Interestingly, the median simulated grain size at the
time of burial was substantially less impactful in our CTree
analyses. Hence, we hypothesize that the suggested bias is
caused by density or sphericity.

Our data set of human assessments reported multiple
SH layers with grain sizes beyond 10 mm, while the me-
dian simulated grain sizes at the time of burial rarely ex-
ceeded 2.5 mm. Although grain sizes were simulated sub-
stantially smaller than reported in many cases, our findings
still suggest that the simulated grain sizes were consistent
within the simulations. Our CTree analysis has shown that
median simulated grain sizes at the time of burial that ex-
ceeded 0.9 mm were associated with a higher proportion un-
stable than smaller grain sizes. This is in line with Mayer
et al. (2022), who report an increased influence of the simu-
lated grain size on layer instability for grain sizes above 1–
1.5 mm (Fig. B2d in Mayer et al., 2022).

6 Conclusion

We evaluated the performance of an operational weather
and snowpack model chain to represent persistent weak lay-
ers and crusts based on human hazard assessments from 3
avalanche forecast regions in western Canada and 10 winter
seasons. By developing methods to identify layers of human
concern in the simulations and to group simulated critical
layers from different times and grid points by their time of
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burial, we could quantify (i) the probability that a layer of
human concern was captured by the simulations (probabil-
ity of detection), (ii) the probability that a simulated criti-
cal layer was indeed of concern in reality (precision), and
(iii) the probability that the model simulated a critical layer
that is not of concern (false alarm rate). Furthermore, we em-
ployed conditional inference trees (CTrees) to (a) identify
patterns between layers of concern that were well captured
from those that were not and (b) examine the agreement be-
tween simulated and reported layers in more detail taking
into account the variation and timing of instability.

While we presented model performance curves that will
allow forecasters to interpret any model scenario at hand, the
overall model performance can be summarized with a sensi-
tivity of 75 % at a precision of 40 % and a false alarm rate
of 30 % when 20 % of model grid points suggest instability
in a specific weak layer. While the performance was substan-
tially better for surface hoar (SH) layers than facets (FC),
the model had no skill in representing any type of crust
layer (IFrc, IFsc, MFcr), neither structurally nor when tak-
ing adjacent unstable facets into account. The CTree analyses
confirmed the strong influence of grain type. While the anal-
ysis of agreement indicators between reported and simulated
instability approached the limits of our data sets, it suggested
that the simulations and human assessments tended to agree
for the majority of captured weak layers.

The presented research contributed to addressing a knowl-
edge gap in snowpack validation, which has primarily fo-
cused on process-based model validation at the point scale
and validation of bulk properties at the regional scale. By
evaluating the detailed hazardous layering at the regional
scale in a way that is informative for forecasters, this con-
tribution will help make snowpack simulations more trans-
parent and applicable for operational avalanche forecasting.
Future research may benefit from a more in-depth analysis of
the temporal agreement between modeled and reported insta-
bility.

We acknowledge that our human validation data set does
not represent an objective truth, and the results therefore rep-
resent a lower limit of expected model performance. Never-
theless, we believe that the models offer a valuable comple-
mentary information source for avalanche forecasting, but we
discourage the standalone use of the simulations without any
field observations. The methods presented in this paper aim
to provide a starting point for designing informative simula-
tion dashboards that enable forecasters to better understand
this novel information source by comparing assessments and
simulations in real time.

Appendix A: Rules and thresholds to identify
model-derived date tags

We used modeled precipitation amounts to identify model-
derived date tags (i.e., potential layers of concern). To de-
scribe the precipitation in a study region, we aggregated all
solid and liquid precipitation from all model grid points ac-
cumulated over 24 and 72 h by calculating their 25th and
75th percentiles (〈HN24〉75, 〈HN72〉25, 〈RAIN24〉75, and
〈RAIN72〉25). Days with less than a trace amount of pre-
cipitation were identified by 24 h amounts of the 75th per-
centiles:

〈HN24〉75 < 2cm and (A1)
〈RAIN24〉75 < 2mm. (A2)

We refer to these days as “Days 0”. To determine which of
these Days 0 were followed by a major storm, we scanned
the 5 subsequent days “Days 1–5” for substantial 72 h precip-
itation amounts using the 25th percentiles and the following
thresholds:

〈HN72〉25(at Days 1–5) > 10cm or (A3)
〈RAIN72〉25(at Days 1–5) > 5mm. (A4)

Whenever any day of Days 1–5 satisfied the above rule, we
counted a major storm event. While the above rules recognize
the onset of major storms, they can also accidentally identify
situations when a major storm tapered off. To exclude these
times of tapering off, we added another set of rules to en-
sure that the 72 h precipitation amounts were increasing (i.e.,
higher than on Day 0) and not decreasing:

〈HN72〉25(at Days 1–5) > 〈HN72〉25(at Day 0)+ 5cm or (A5)
〈RAIN72〉25(at Days 1–5) > 〈RAIN72〉25(at Day 0)+ 2mm. (A6)

All Days 0 that satisfied the above rules were recorded as
model-derived date tags ahead of major storms. To account
for long periods in between these main storm events that
could have buried persistent weak layers by substantial cu-
mulative accumulations from small daily snowfall amounts,
we inserted additional date tags when a period longer than
10 d accumulated more than 25 cm of 〈HN24〉75.

Appendix B: Tables of abbreviations and variables

This appendix provides a table of abbreviations (Table B1)
and a table of variables (Table B2) for abbreviations and sym-
bols used throughout the paper.
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Table B1. Descriptions of abbreviations used throughout the paper.

Abbreviation Description

ALP Alpine elevation band
BTL Below treeline elevation band
BYK Banff–Yoho–Kootenay National Park
CTree Conditional inference tree
DF Decomposing and fragmented particles
DH Depth hoar
FC Faceted crystals
FCxr Rounding faceted particles
F1 F1 skill score
FN False negative result
FP False positive result
GNP Glacier National Park
HRDPS High Resolution Deterministic Prediction System,

a numerical weather prediction model
IFrc Rain crust
IFsc Sun crust
MF Melt forms
MFcr Melt–freeze crust
nWKL Number of weak layers
PSS Peirce skill score
PP Precipitation particles
RG Rounded grains
ROC relative operating characteristic curve
RTA Relative threshold sum approach (snow stability index)
S2S Sea-to-Sky avalanche forecast region
SH Surface hoar
SK38 Skier stability index
TL Treeline elevation band
TN True negative result
TP True positive result

Table B2. Names, units, and description of variables used throughout the paper.

Variable Name (unit) Description

1duration Difference (days) Agreement indicator of layer instability〈
density

grain size

〉
slab

Slab cohesion (kg m−3 mm−1) Average ratio of density over grain size of the slab

〈HN24〉75 Solid precipitation (m) 75th percentile of 24 h new snow amounts
〈HN72〉25 Solid precipitation (m) 25th percentile of 72 h new snow amounts
3onset Lag (days) Agreement indicator of layer instability
3turn-off Lag (days) Agreement indicator of layer instability
punstable Probability of layer instability (unitless) A snow stability index
〈RAIN24〉75 Liquid precipitation (m) 75th percentile of 24 h rain amounts
〈RAIN72〉25 Liquid precipitation (m) 25th percentile of 72 h rain amounts
rc Critical crack length (m) A mechanical snow layer property
ρ9 Spearman rank correlation (unitless) Agreement indicator of layer instability
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