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Abstract. Landslides are complex phenomena that cause im-
portant impacts in vulnerable areas, including the destruction
of infrastructure, environmental damage, and loss of life. The
occurrence of landslide events is often triggered by rainfall
episodes, single and intense ones or multiple ones occurring
in sequence, i.e., clustered in time. Landslide prediction is
typically obtained via process-based or empirical thresholds.
Here, we develop a new approach that uses information on
the temporal clustering of rainfall to detect landslide events
and compare it with the use of classical empirical rainfall
thresholds. In addition, we evaluate the performance of the
two approaches combined together as a case study in the re-
gion of Lisbon in Portugal. We consider a dataset that cate-
gorizes landslides into shallow and deep events and a review
of empirical rainfall thresholds that makes a good benchmark
for testing our novel method. We show that the new approach
based on temporal clustering overall has a good power of
detecting landslide events but has a skill comparable with
the classic rainfall threshold method. While there is no clear
outperformance of one method, the novel clustering-based
method has a higher sensitivity despite a lower precision than
the threshold-based method. For all approaches, the potential
detection is better for deep landslides than for shallow ones.

The results of this study could help to improve the prediction
of rainfall-triggered landslides.

1 Introduction

Landslides are complex phenomena modulated by several
interacting factors which often cause catastrophic conse-
quences in susceptible areas (Herrera et al., 2018; Maraun
et al., 2022). Factors playing a role in landslide occurrences
can be classified into two main categories (Dai and Lee,
2002): (a) static predisposing variables, like surface-related
characteristics (e.g., soil type and slope, lithology, aspect, to-
pography), and (b) triggering (dynamic) variables, like rain-
fall. Static variables describe factors such as surface-related
characteristics which do not immediately cause the land-
slides but shape the landslide occurrence probability given
certain conditions, e.g., weather conditions. Triggering vari-
ables describe factors that actually cause the landslides, for
example intense precipitation events. Landslides often occur
due to multiple factors, i.e., the combination of static and
triggering variables or the combination of multiple trigger-
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ing variables. Such combinations fall in the category of com-
pound events, defined as “the combination of multiple drivers
and/or hazards that contributes to societal or environmental
risk” (Seneviratne et al., 2012; Leonard et al., 2014; Zscheis-
chler et al., 2020). Hence, compound event analyses can help
detect and predict this natural hazard. For example, a com-
pound event perspective allows for understanding the prob-
ability of landslides after wildfires, since wildfires change
soil characteristics, thereby increasing landslide likelihood
(Di Napoli et al., 2020). Notably, temporally compounding
precipitation events, i.e., temporal clustering of moderate
to extreme rainfall events, can trigger landslides by raising
groundwater levels of deep soil and rock layers (Bevacqua
et al., 2021).

The latter example is relevant since one of the most im-
portant drivers of landslides is rainfall, either short and high-
intensity episodes or long-lasting ones (Van Asch et al.,
1999). Deep landslides, characterized by a slip surface
deeper than about 1.5 m, are usually initiated by multiple
moderate-intensity storms occurring over weeks or months
(Trigo et al., 2005). Such wet periods can result in high soil
moisture and pore water pressure, which are necessary to
trigger deep movements (Chen et al., 2017). In contrast, shal-
low landslides and debris flow take place under a broader
range of rainfall conditions, and they are more often asso-
ciated with short-duration and high-intensity rainfall events
(Corominas and Moya, 1999). In line with the above, for the
north of Lisbon region, Bevacqua et al. (2021) showed about
70 %–83 % of deep landslides were preceded by a tempo-
ral cluster of precipitation events (over 23–90 d before the
event). In contrast, only 7 %–9 % of shallow landslides were
preceded by a cluster of precipitation (over 4–25 d before the
event).

In addition, recent works have considered the combined
role of antecedent and peak precipitation in the initiation of
landslides (Kim et al., 2021; Nocentini et al., 2024). An-
tecedent rainfall, inducing a gradual increase in soil moisture
and groundwater level, is an important factor in the determi-
nation of the slope stability and, therefore, the initiation of
landslides (Rahardjo et al., 2001; Rahimi et al., 2011; Lee
et al., 2012). Deep landslides, for example, may often be as-
sociated with monthly to seasonal fluctuations in the ground-
water table. When the water table is high, light to moderate
rainfall may provide sufficient water to trigger slope move-
ment (Fuhrmann et al., 2008).

Despite the advances in our comprehension of the major
drivers of landslides (Tehrani et al., 2022), processes linking
rainfall and landslide occurrence are not yet fully understood,
and thus modeling the occurrence of this natural hazard is
not straightforward (Guzzetti et al., 2007; Tehrani et al.,
2022). The prediction of landslides is mainly approached
by defining rainfall thresholds that separate critical and non-
critical rainfall events, i.e., events that are more or less likely
to trigger landslides (Guzzetti et al., 2007; Segoni et al.,
2018). Thresholds for landslide occurrence can be classified

in two main typologies: (i) process-based and (ii) empirical.
(i) Process-based thresholds are derived from slope stability
models and allow for deriving the precipitation amount nec-
essary to trigger the landslide, its date, and its location. How-
ever, obtaining such thresholds is often difficult due to data
limitations. (ii) Empirical thresholds are estimated by study-
ing past landslides. They are mainly obtained (a) from pre-
cipitation measurements during specific rainfall events caus-
ing (or not) landslides or (b) from antecedent conditions,
i.e., the total precipitation preceding a landslide over differ-
ent durations. Additional typologies of thresholds were pro-
posed in the literature, and we refer to Guzzetti et al. (2007)
for a complete overview. An innovative rainfall threshold is
the one by Nocentini et al. (2024), which instead of consid-
ering thresholds based on either antecedent rainfall or peak
intensity rainfall proposes a 3D threshold implementing both
conditions.

The main drawback of empirical rainfall thresholds is that
they are calibrated for a specific region, therefore implicitly
including geomorphological and meteorological character-
istics of the specific site. This prevents having a threshold
that can be readily applied to different regions (Abbate et al.,
2021). To overcome this limitation, global empirical rainfall
thresholds have been developed; however they result in lower
performance with a high rate of false alarms (Guzzetti et al.,
2007). Hence, a proper general rule is still missing (Zêzere
et al., 2008).

Building on the association of temporal clustering of
rainfall events and landslides identified by Bevacqua et al.
(2021), we investigate whether a compound event perspec-
tive may benefit the estimation of the probability of the oc-
currence of rainfall-triggered landslides, both shallow and
deep ones. To this end, we develop a new approach that uses
information on the temporal clustering of rainfall to detect
landslides, and we compare it with the use of classical em-
pirical rainfall thresholds. In addition, we evaluate the perfor-
mance of the two approaches combined together. The newly
proposed method is an empirically based approach, i.e., does
not require any data beyond precipitation and landslide oc-
currence data. While it does not require a regression fitting,
it still requires the definition of a quantile-based threshold
of precipitation to identify critical precipitation events. The
dependence on the quantile is however investigated to assess
whether it may be more easily exported to other sites with
respect to regression-based thresholds.

We apply our approach to two landslide datasets in the re-
gion of Lisbon in Portugal. For the Lisbon region, Zêzere
et al. (2015) provide a collection of landslide events, subdi-
vided into shallow and deep events, and a review of empiri-
cal rainfall thresholds, making it a good benchmark to test
the novel method. An interesting characteristic of the two
datasets is that they deal with areal and not single landslides.
Older datasets, like the AVI dataset (Guzzetti et al., 1994),
an inventory of landslides and floods that occurred in Italy,
record landslides triggered by the same precipitation system
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as separate events. This is an important limitation when inter-
ested in identifying the landslides’ triggers; therefore the sub-
division between single landslide events and multiple land-
slide events has been gaining consensus recently. For exam-
ple, this is the case of the new catalog FraneItalia by Calvello
and Pecoraro (2018), the LAND-deFeND database (Napoli-
tano et al., 2018), and the work of Crozier (2017).

The paper is organized as follows: in Sect. 2 we discuss the
data and the methodology, results and discussions are pro-
vided in Sects. 3 and 4, and conclusions are given in Sect. 5.

2 Methodology

Here, we assess the ability of temporal clustering of rain-
fall to estimate the probability of landslide occurrence, and
we compare it with the use of classical rainfall thresholds.
This was done for two landslide datasets in the Lisbon re-
gion (described in Sect. 2.1) in four steps: (i) rainfall thresh-
olds are estimated (Sect. 2.2); (ii) the presence of temporal
clustering of rainfall before each landslide event and before
each day is studied (Sect. 2.3); (iii) alarm and non-alarm pe-
riods, with the selected approaches, are identified (Sect. 2.5);
and (iv) the performance of the different approaches in land-
slide detection are assessed with the help of different metrics
(Sect. 2.5).

2.1 Landslide and precipitation data

High levels of destruction caused by natural disasters of
hydro-geomorphologic origin have been recorded in Portugal
since the late 19th century (the DISASTER database; Zêzere
et al., 2014). Until 2015, 281 disastrous landslide records
registered considerable adverse consequences in mainland
Portugal, such as loss of life (273 deaths) or injury, dis-
placed people (> 1600), property damage, economic dis-
ruption, or environmental degradation (Pereira et al., 2020).
In this context, the Portuguese western Meso-Cenozoic bor-
der, in which the north of Lisbon and the Lisbon region
are included, is recognized as one of the most high-risk ar-
eas (Fig. 1). In this region the number of deaths and miss-
ing people represents 21 % of the total in the country, but
the displaced people due to landslides reaches almost 70 %,
mainly associated with slow-moving deep-seated rotational
and translational slides (Zêzere et al., 2014). Regionally,
landslides are primarily controlled by lithology, geological
structure, hydrogeological conditions, and slope. In the latter,
shallow soil slips tend to concentrate on slopes steeper than
15° and deep-seated landslides on gentle to moderate slopes
(5–15°), which are more favorable to water infiltration and
storage (de Brum Ferreira and Zêzere, 1997).

We selected the events from two datasets of landslides in
the Lisbon region by Zêzere et al. (2015), since they were
characterized by both shallow and deep events (Fig. 1). The
first dataset covers the area of Lisbon from 1865 until 2010,

and it includes 39 events which were collected from news-
papers (Vaz et al., 2013). For this inventory, the landslide
type is estimated based on the associated critical pair of rain-
fall intensity and duration preceding the landslide. The sec-
ond dataset covers the north of Lisbon region from 1956 un-
til 2010, and it includes 25 events (Zêzere and Trigo, 2011).
Data were obtained from multiple sources: technical and
scientific documents, fieldwork, and interviews with the lo-
cal population. The distinction between deep and shallow
landslides is based on the slip surface depth, with depths
lower than 1.5 m associated with shallow landslides. For ad-
ditional information about the two datasets, please refer to
Zêzere and Trigo (2011), Vaz et al. (2013), and Zêzere et al.
(2015). It is important to highlight that we are working here
with landslide event dates and not with individual landslides;
i.e., multiple landslides can occur during a landslide event
(see Sect. 4.3).

A daily precipitation time series for the Lisbon area dur-
ing 1863–2018 was obtained from the meteorological station
of Lisboa-Geofísico, and it can be downloaded from the Por-
tuguese Institute for Sea and Atmosphere (IPMA). To study
the north of Lisbon region, the daily IBERIA02 dataset was
employed (Belo-Pereira et al., 2011). The dataset has a 0.2°
resolution (approx. 19.6 km), and the grid cell closest to the
landslide events was chosen.

After an examination of the yearly distribution of land-
slide events in both datasets, we narrowed the analysis to the
November–March period, when the majority of landslides
occurred.

2.2 Empirical rainfall threshold estimation

The new method proposed in this work was compared with
the empirical rainfall thresholds. One of the critical steps in
the evaluation of rainfall thresholds is the definition of the
critical rainfall period associated with each landslide event.
We follow the approach of Zêzere et al. (2015), who assess
the critical pair duration–quantity of rainfall preceding the
landslide event as the one associated with the highest return
period. The method works as follows: (i) the precipitation to-
tal along the whole time series for each time window of size
from 1 to 90 d is calculated; (ii) for each duration the max-
imum over each year is computed; (iii) the series of max-
ima is fitted using a Gumbel distribution; (iv) the precipita-
tion total preceding the landslide events, for windows of 1 to
90 d ending the day of the event, is computed (see Fig. 2);
(v) the return period of each of these duration–quantity pairs
is evaluated using the parameters of the Gumbel distribu-
tion estimated in step (iii); and (vi) for each landslide event
the duration–quantity pair with the highest return period is
considered the critical rainfall return period. Once the criti-
cal duration–quantity pair for each event is collected, a re-
gression is fitted to these data to obtain the critical rainfall
for each possible duration. For the north of Lisbon region,
Zêzere et al. (2015) fitted a linear regression, while for the
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Figure 1. North of Lisbon and Lisbon study areas. Dots represent the landslide cases associated with the different landslide events described
in the DISASTER database available from Zêzere et al. (2022). Red dots represent shallow landslide events and blue dots the deep landslide
events. Rainfall gauges (blue circles): (1) Lisboa Geofísico and (2) São Julião do Tojal. The landslides associated with the north of Lisbon
dataset were not included to improve readability.

Lisbon area they fitted a potential regression: a lower-limit
linear threshold that limits rainfall conditions below which
no landslides occurred in the record and an upper-limit po-
tential threshold above which landslides have been system-
atically observed. These regression curves are the rainfall
threshold for landslide initiation.

In this work, we computed the empirical thresholds for the
two datasets following the same procedure of Zêzere et al.
(2015). We selected the potential regression for the Lisbon
area and the linear regression for the north of Lisbon region,
based on the results of Zêzere et al. (2015), for comparison
with the proposed method based on precipitation clustering.

2.3 Identification of temporal clustering of rainfall

In order to evaluate the occurrence of temporal clustering
of rainfall before each landslide event, we employed the ap-
proach proposed by Banfi and De Michele (2022), extending
the method of Bevacqua et al. (2021), with a different con-
sideration of the effective window size as discussed below.
The method is based on the idea that, once high-frequency
clustering is removed, the number of precipitation events in
a window is distributed as a binomial distribution in the ab-
sence of lower-frequency clusters.

The binomial distribution is the discrete probability dis-
tribution of the number of successes in n independent trials.
Each trial can have only two outcomes, yes or no, and the

probability of having a yes in each individual trial is equal to
p. The parameters of the distribution are therefore p and n.
In this case each day is a trial, and the outcome for each day
is wet (yes) or dry (no). The probability of having a yes or no
in a day is independent of the same probability in the other
days; as an example, if day i is wet, it is not more probable
that the following days are wet. This is true if the precipita-
tion events are not clustered. If they are clustered, then if day
i is wet, it is more probable that the following days are wet.
The assumptions of the binomial distribution are therefore
not respected.

This method requires a series of independent precipitation
events (i.e., stemming from different perturbations). To iden-
tify the events, a threshold u of daily precipitation is used.
To assure independence between them we adopt a (high-
frequency) declustering procedure (Coles, 2001): when two
events are separated by less than r days (see Ferro and
Segers, 2003, for its estimation), only the first event is re-
tained. Then, the probability of exceedance above u, p, is
computed as N

L−D
, where N is the total number of indepen-

dent events, L the total length of the series, and D is the
number of days in which events were removed with high-
frequency declustering.

Let x be the day for which the occurrence of a preceding
temporal clustering of rainfall needs to be tested, w a time
window ending the day x, and n the number of exceedances
inside w. A statistical test for the presence of clusters can be
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Figure 2. Illustration of step (iv) (presented in Sect. 2.2) for the computation of rainfall thresholds. The first row represents the time series
of precipitation prior to the occurrence of the landslide (shown as a red dot). The following rows show the accumulated precipitation (in
orange) over time windows of different lengths prior to the landslide. By expanding the time window, more precipitation before the landslide
is considered.

defined (Fig. 3): the null hypothesis H0 is defined as the ab-
sence of temporal clustering of precipitation insidew and the
alternative hypothesis H1 as the presence of temporal clus-
tering of precipitation inside w. H0 is rejected if n is larger
than what is expected from a binomial distribution of param-
eters weff and p, with a α% significance level. Here, weff is
the effective window that takes into account the effect of the
(high-frequency) declustering on the low-frequency cluster-
ing, equal to w− d , where d is the number of days exceed-
ing u in w but already proceeded by at least 1 d exceeding u
and at most r .

In the declustering procedure explained in Barton et al.
(2016), we set r to 2 d, and we tested different values for u:
namely, the 70th, 75th, 80th, 85th, 90th, and 95th percentile
of above-zero daily precipitation. To compute u, we con-
sidered only the November–March period, during which the
selected landslide events occurred. Regarding the time win-
dow w, we tested window sizes varying from 4 to 90 d (Be-
vacqua et al., 2021). The window size is chosen to include the
temporal scales affecting both shallow and deep landslides.

Windows shorter than 4 d were not considered since, after
high-frequency declustering, more than 3 d are required to
have at least two precipitation events. Given that the max-
imum window size is 90 days, the probability p was com-
puted considering the period August–March.

To obtain the region of significance of the test, we must
take into account both the discreetness of the p value
and the presence of multiple dependent tests. We therefore
adopted the Benjamini–Hochberg procedure (Benjamini and
Hochberg, 1995) applied on mid-p values (Heller and Gur,
2011), with a significance level of 5 %. The procedure is
the following: (i) the p values pi = P(X ≥ xi) and pi− =
P(X ≥ xi+1) are computed; (ii) the mid-p value is obtained
summing pi and pi− ; (iii) the critical value for each indi-
vidual mid-p value is obtained as i/m×α, where i is the
rank of the p value and m the number of tests; and (iv) the
overall critical p value is obtained as the largest individual
mid-p value smaller than the critical one. The correction was
applied separately on each day with temporal clustering and
considering together all the windows from 4 to 90 d.
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Figure 3. Illustration of the detection method adopted for temporal clustering identification (Bevacqua et al., 2021; Banfi and De Michele,
2022). The top curve represents the rainfall time series and the peaks on the second line the selected heavy rainfall events after high-frequency
declustering. r is the minimum number of days between two peaks. u is the threshold for heavy rainfall. w represents the time window (in
days, red shading) before the occurrence of a landslide (red cross). We count n the number of events in the window w.

This procedure was applied with two different goals:
(a) investigating the atmospheric drivers of the clustered pre-
cipitation events triggering landslides (see Sect. 2.4) and
(b) testing the added value of the temporal clustering in land-
slide detection (see Sect. 2.5).

2.4 Connection between landslides

If two landslide events are triggered by the same precipitation
clustering event, the second landslide event does not bring
additional information about the triggering conditions. We
therefore investigated the connection between multiple land-
slide events that occurred during the same season (Fig. 4).
First, we selected seasons with more than one landslide event
associated with precipitation clustering. Then, for each sea-
son, (i) we removed all the precipitation events preceding the
first landslide event, (ii) we computed the presence of rain-
fall clustering preceding the second event with the modified
series, (iii) we removed all the precipitation events preceding
the second landslide event, and (iv) we computed the pres-
ence of rainfall clustering preceding the third event with the
modified series – and so on for all the events in the same
season. If two (or more) consecutive events are associated
with temporal clustering of precipitation in the original se-
ries, while with the modified series they are not, then the
two (or more) consecutive events are considered connected
(Fig. 4).

2.5 Landslide detection

We considered three approaches to estimate the probability
of the occurrence of landslides: (a) the presence of tempo-
ral clustering of rainfall, (b) a rainfall duration-quantity pair
above the rainfall threshold, and (c) the “and” combination
of (a) and (b). The approach (a) was tested for different
thresholds u (Sect. 2.3). The approach (b) was tested with
the rainfall thresholds reported in Sect. 2.2.

To evaluate the performance of the methods, we separated
the dataset into a training and a validation set. Due to the
limited length of the sample we used a leave-one-out cross-
validation. This procedure consists of performing a number
of experiments equal to the number of seasons in the record,
and for each experiment 1 year is used for testing and all the
remaining ones for training.

In this way we had a number of regression parameters
equal to the number of years (Fig. 5). For the method based
on temporal clustering we have different threshold values for
each year since the value of the quantile would be different.

Then we computed three metrics to summarize the results,
reported in Table 1. These metrics are based on four quanti-
ties: (a) the true positive (TP), which is the number of events
accurately predicted; (b) the true negative (TN), which is the
number of accurate predictions of the absence of an event;
(c) the false positive (FP), which is the number of predicted
events that did not occur; and (d) and the false negative (FN),
which is the number of non-predicted events. The three met-
rics are (1) the sensitivity (also called probability of detec-
tion), which is the percentage of events that are forecasted;
(2) precision (also called success ratio), which is the ratio
of hits to the total number of events forecasted; and (3) the
critical success index (CSI), which is the ratio of the num-
ber of hits to the total number of forecasts that were made
or needed and can be computed from the previous two mea-
sures. Two components therefore contribute to the CSI: one
that depends on TP and FN, thus highlighting the methods
that have a high hit rate and miss few landslides, and the
other one on TP and FP, thus highlighting the methods that
have a high hit rate and produce few false alarm.

The sensitivity, the precision, and the CSI highlight and
summarize different aspects of the methods’ performance.
We did not consider the true negative in our metrics because
we wanted to focus on the detection of extreme events. There
are many “0” events but predicting the absence of events is
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Figure 4. Workflow to determine whether the triggering conditions of two landslide events (or more) are related. We gradually remove the
precipitation events prior to each landslide (in chronological order) and check whether it removed the presence of temporal clustering of
precipitation triggering the following landslide.

Figure 5. Empirical thresholds obtained from the calibration procedure. Panel (a) Lisbon area and panel (b) the north of Lisbon region. In
the bottom right the equation of the regression curve with the average parameters is reported.

Table 1. Performance metrics of predictive methods. The
acronyms TP, FP, and FN stand respectively for true positive, false
positive, and false negative.

Sensitivity (POD) Precision (SR) Critical success index (CSI)

TP
TP+FN

TP
TP+FP

TP
TP+FN+FP or 1

POD−1
+SR−1

−1

not central here. We want to focus on landslides, their occur-
rence, and how often we caught them or had a false alarm.

For each day and for each method, we checked whether the
method detected a potential landslide event. To compute true
positives, we checked how many times the potential landslide

detected occurred on the day of a real landslide event or on
one of the 7 d preceding it. False positives were computed as
the number of November–March periods without landslides
during which at least one potential landslide event was erro-
neously detected.

3 Results

3.1 Temporal clustering of rainfall

The relation between the presence of multiple precipitation
events in succession and the occurrence of landslide events
is explored in the following, with a particular distinction be-
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Figure 6. Percentage of windows with temporal clustering of rainfall preceding landslide events for the two datasets separated between
shallow and deep landslides. Results are reported for u equal to the 80th quantile of daily positive precipitation.

tween deep and shallow landslide types. In line with the re-
sults of Bevacqua et al. (2021), we observed a different be-
havior between deep and shallow landslides in both datasets
(Fig. 6). In particular, shallow landslides are associated with
a lower percentage of rainfall clustering, mainly relegated to
shorter windows. In contrast, the presence of clusters pre-
ceding deep landslides is a recurrent feature, mainly when
window sizes greater than 10–15 d are considered. For the
north of Lisbon, considering precipitation events larger than
the 80th quantile, we found a higher presence of clusters for
deep landslides, compared to the Lisbon area, and a signif-
icantly lower presence of clusters for shallow landslides. In
this dataset, in fact, the presence of temporal clustering of
rainfall in time periods longer than 70 d was never observed
before shallow landslides. In the north of Lisbon region, 91 %
of deep landslides (10 out of 11) and 36 % of shallow land-
slides (4 out of 11) were associated with a cluster of rainfall
in at least one window. In the Lisbon area, 95.6 % of deep
landslides (22 out of 23) and 63.6 % of shallow landslides
(7 out of 11) were associated with a rainfall cluster in at least
one window.

3.2 Sequence of landslides

In both datasets, landslide events occurring in sequence,
i.e., multiple landslides in the same season, were recorded

(Fig. 7). The Lisbon area has around 14 % of seasons with
at least one landslide and 4 % with more than one; the same
percentages for the north of Lisbon region are 24.5 % and
7 %.

For the seasons with more than one landslide event we
looked whether the events were connected, i.e., associated
with the same cluster of precipitation, and we found that
many of these multiple events are indeed connected (Figs. 8
and 9). In the north of Lisbon region (Fig. 8), we found a
sequence of connected deep landslides in the November–
March seasons 1995–1996 and 2000–2001. In the period
1958–1959, two unconnected shallow landslide events were
recorded of which only the first one is characterized by the
presence of temporal clustering. In the period 1989–1990, in-
stead, we observed a combination of deep and shallow land-
slide events with and without a preceding temporal cluster-
ing of rainfall. Here, with the approach reported in Sect. 2.4,
we associated the second and third landslide with the same
rainfall cluster. The most frequent combination of multiple
events in the Lisbon area (Fig. 9) is the occurrence of mul-
tiple connected deep landslides (periods 1891–1892, 1958–
1959, 1962–1963, and 1995–1996). One exception is the suc-
cession of two connected shallow landslides during the pe-
riod 1937–1938. The two remaining periods (1946–1947 and
1968–1969) are characterized by the presence of both typolo-
gies, shallow and deep, with different combinations of cluster
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Figure 7. Fraction of season with one, two, three, four, or five landslides (y axis) and absolute number (label above bars).

Figure 8. Precipitation time series (light-blue line) and exceedances (blue bars) above the 80th quantile of wet days (dotted line) for the north
of Lisbon region in some selected periods. Points corresponding with the occurrence of landslides are reported with crosses. The color of the
crosses indicates the presence of precipitation clustering prior to the landslide.

presence or absence. Also in these seasons, landslides were
associated with the same rainfall cluster.

3.3 Landslide detection

The approach based solely on cluster occurrence is compared
with the classical rainfall thresholds in Fig. 10. The approach
based on the combination of cluster occurrence and rainfall
thresholds is compared to the use of rainfall thresholds only
in Fig. 11. In both cases, we report the performance by the
validation procedure.

In a nutshell, introducing the method based on the tempo-
ral clustering of precipitation and comparing it to the regres-
sion curve from Zêzere et al. (2015), we have better perfor-
mance with the new method for both sites and types of land-
slides in terms of sensitivity and for nearly all quantile lev-
els. However, the performance in terms of precision is fairly
different depending on the site, with better performance us-
ing the method based on temporal clustering with the Lisbon
area dataset and worse performance with the north of Lisbon
dataset.

Combining the two indexes with CSI, we have lower per-
formance with the proposed method for the north of Lisbon
region and deep landslides, while there is a higher perfor-

mance for the north of Lisbon region and shallow landslides
and both landslide event types for the Lisbon area.

To make the best out of the cluster-based approach and
rainfall thresholds, we combine the precipitation cluster
method with the rainfall threshold one and compare it with
the use of only rainfall thresholds (Fig. 11). To combine
them, we consider a landslide event to be detected when both
methods detect an event. By construction, this hybrid method
results in a number of TP and FP equal to or lower than the
one of rainfall thresholds alone. In the north of Lisbon region,
we obtain better or equal performance for all indices and all
landslide types for nearly all choices of the quantile level,
with a low influence of this last parameter. For deep land-
slides in the Lisbon area, we obtained a better performance
with respect to rainfall thresholds, regarding both precision
and CSI, but a lower one for sensitivity.

4 Discussion

4.1 Association between landslides and clustering of
rainfall

As already observed by Bevacqua et al. (2021), we found
different characteristics of the precipitation events trigger-

https://doi.org/10.5194/nhess-24-2689-2024 Nat. Hazards Earth Syst. Sci., 24, 2689–2704, 2024



2698 F. Banfi et al.: Temporal clustering of precipitation for detection of potential landslides

Figure 9. Same as Fig. 8 but for the Lisbon area.

Figure 10. Cluster occurrence approach (dots) compared to the use of rainfall thresholds only (lines) for (a) the north of Lisbon region and
(b) Lisbon area. The considered metrics for performance are critical success index (CSI), precision (SR), and sensitivity (POD). Points are
filled when the cluster-based approach outperforms the approach based solely on rainfall thresholds. Colors represent the subset of landslides
used (see legend).
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Figure 11. Cluster occurrence approach combined with rainfall thresholds (dots) compared to the use of rainfall thresholds only (lines) for
(a) the north of Lisbon region and (b) Lisbon area. The considered metrics for performance are critical success index (CSI), precision (SR),
and sensitivity (POD). Points are filled when the cluster-based approach outperforms the approach based solely on rainfall thresholds. Colors
represent the subset of landslides used (see legend).

ing deep and shallow landslides. Precipitation clustering was
observed before more than 90 % of deep landslides in the
record. In particular, it was significant more frequently when
longer time windows were considered. In contrast, clustering
is present to a lesser extent in shallow landslides and mainly
in smaller windows.

Investigating the connections between subsequent land-
slide events is important to properly understand the associ-
ated risk. Here, we observed that multiple landslides, occur-
ring close in time, can be almost always attributed to a com-
mon cluster of precipitation. Interestingly five landslides oc-
curred during the March–November period 1968–1969 in the
Lisbon area: three deep landslide events, a shallow one, and
again a deep one. Here we can see the different mechanisms
generating the two landslide event types; in fact, we found
a cluster associated with all deep movements and no cluster
associated with the shallow one that was instead preceded by
an intense precipitation event. We can also notice that the pe-
riod 1995–1996 was characterized by the occurrence of three
deep landslide events in both datasets. A further analysis that
takes into account also the spatial dimension may provide
further information about the interrelationship between land-
slide events.

The precipitation and meteorological conditions associ-
ated with landslide occurrence in Portugal, especially in the
Lisbon region, have been studied in the past (e.g., Zêzere
et al., 2005, 2015; Pereira et al., 2018). It was shown by
Zêzere et al. (2005) that landslide occurrence can be asso-
ciated with both the NAO index (North Atlantic Oscillation
index) and the monthly rainfall anomalies, considering a 3-
month moving average. Their analysis showed that months
characterized by the occurrence of deep-seated landslides
had very high values of average anomalous precipitation and
intense negative average values of the NAO index. However,
shallow landslide episodes are not critically associated with
NAO. In addition, Zêzere et al. (2015) showed the impor-
tance of the 30 d antecedent precipitation in the occurrence
of landslides in Portugal. This feature proves that landslides
in mainland Portugal are usually preceded by high rainfall in
the 30 d period before, thus confirming the role of antecedent
rainfall as a critical preparatory factor for landslide activity.

A closer look at the main meteorological conditions of the
precipitation regimes and extreme precipitation in Portugal
during winter shows a clear relationship with a few circula-
tion weather types (Trigo and DaCamara, 2000). In particu-
lar, the cyclonic (C) type and those with a westerly compo-
nent (southwest, west, northwest) contribute to a large per-
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Figure 12. Daily rainfall (light vertical gray bars) along with the corresponding circulation weather type (in colors) for the first months of
the 2000/2001 hydrological year. In addition, if the occurrence of the ARs takes place during this hydrological year, it is highlighted in green
in the daily rainfall bars. The red stars indicate the landslide occurrence.

centage of the monthly precipitation. These westerly types
are associated with the passage of frontal systems from west
to east over the North Atlantic basin (Cortesi et al., 2014;
Ramos et al., 2014). Recent studies also show that over
the western Iberian Peninsula extreme precipitation is of-
ten associated with the landfall of atmospheric rivers (ARs)
(Ramos et al., 2014; Trigo et al., 2014; Eiras-Barca et al.,
2016; Rebelo et al., 2018).

More recently, Pereira et al. (2018) analyzed a centen-
nial catalogue of hydro-geomorphological events (includ-
ing floods and landslides) and their atmospheric forcing. In
accordance with the previous results, they concluded that
the westerly flow and the cyclonic types are mainly associ-
ated with these hydro-geomorphological events. It was also
shown that around 45 % of the 130 events were somehow as-
sociated with the passage of an atmospheric river. For com-
parison purposes, we extracted the circulation weather types
from the same database used by Pereira et al. (2018) for the
trigger days of the landslides (62 d) analyzed in this paper.
The results show that 75 % of the landslide trigger days oc-
curred during cyclonic weather types and those with a west-
erly component, confirming the results previously found. An
example is given for the hydrological year 2000/2001. Fig-
ure 12 shows the daily rainfall (light vertical gray bars) from
the IBERIA02 dataset along with the corresponding circu-
lation weather type (in colors; Ramos et al., 2014) for the
hydrological year 2000/2001. In addition, if the occurrence
of the ARs (Ramos et al., 2015) takes place during a particu-
lar day, this is highlighted in green in the daily rainfall bars.
As mentioned before, some circulation weather types are as-
sociated with above-average days or extreme rainfall events,
especially the westerly circulation weather types like south-
west, west, and northwest and also the cyclonic types (Ramos
et al., 2014; Pereira et al., 2018).

Two landslide events occurred in January 2001 during
the winter season (marked with red stars in Fig. 12). By
the time of the landslide event occurrence, the accumulated
precipitation since the beginning of the hydrological year

(1 September) was above the 95th percentile of the hydro-
logical year climatology. From the results in Fig. 8 we can
see that the precipitation is associated with a temporal clus-
tering of events. In particular, temporal clustering was ob-
served over all the windows tested (up to 90 d) except for
the smaller ones (below 7 d). The large-scale conditions that
were associated with the anomalous accumulated precipita-
tion over the hydrological year and specifically with the pre-
cipitation clustering can be easily assessed by analyzing the
circulation weather types in Fig. 8 (in colors). Results show
that from November 2020 onward, different periods of west-
erly flows (southwest, west, northwest, light blue) dominate
the circulation over Portugal, which contribute to a large ex-
tent to the anomalous accumulated precipitation in this wa-
ter year. Extreme precipitation also occurred in December, a
month prior to the landslide events, and those days were also
associated with atmospheric river landfall (precipitation bars
highlighted in green) in accordance with Ramos et al. (2015).

The analysis of preconditioning meteorological variables
has confirmed the influence of the cyclonic (C) weather
types and those with a westerly component (southwest, west,
northwest) in the occurrence of landslides in Portugal, to-
gether with atmospheric river landfall.

4.2 Landslide detection

The results in Figs. 10 and 11 are summarize in Table 2. They
generally indicate that no method outperforms the other con-
sidering both datasets. The method solely based on the tem-
poral clustering of precipitation has better performance for
the Lisbon region in terms of both TP and FP; however, for
the north of Lisbon region it outperforms rainfall thresholds
only looking at sensitivity. For regional management, if the
interest is towards high sensitivity (number of correct posi-
tives as high as possible), the proposed approach based on
precipitation cluster occurrence is a better choice than rain-
fall thresholds. In contrast, the rainfall threshold approach
presents a higher precision (ratio of hits to the total number of
events forecast). When considering the CSI, which includes
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Table 2. Performance metrics of predictive methods. The performance of the temporal clustering method and its combination with the rainfall
thresholds are reported for a quantile of 0.8.

Method Sensitivity Precision Critical Area
success
index

Rainfall thresholds 0.67 0.24 0.22 Lisbon area
Temporal clustering (0.8) 0.85 0.37 0.35 Lisbon area
Combination (0.8) 0.53 0.46 0.33 Lisbon area
Rainfall thresholds 0.57 0.71 0.46 North of Lisbon region
Temporal clustering (0.8) 0.71 0.43 0.37 North of Lisbon region
Combination (0.8) 0.57 0.71 0.46 North of Lisbon region

both sensitivity and precision, there is not a method clearly
outperforming the other one for both sites.

Regarding the combination on the temporal clustering in-
formation and rainfall threshold, we obtained similar perfor-
mance for the north of Lisbon region and better performance
in terms of CSI and precision for the Lisbon region. Then, if
the interest is towards high precision (number of false neg-
atives as low as possible), the proposed approach based on
precipitation cluster occurrence and rainfall threshold is a
better choice than rainfall thresholds.

A cluster-based method depends on the choice of a quan-
tile level to identify precipitation events. However, for a
given index or region, we observed that the performance is
consistent among most of the tested quantile levels when
compared to the rainfall threshold methods. Therefore, the
dependence of the performance on the precipitation quantile
is weak. Nevertheless, for the two areas analyzed we suggest
a quantile level of 0.75 for overall better performance.

In general, for both methods, detecting shallow landslides
is more difficult than deep ones. Figure 6 showed the smaller
dependence of shallow landslides to precipitation clusters.
This might be due to the fact that a unique, heavy precip-
itation event may be enough to trigger shallow landslides
(Corominas and Moya, 1999).

It is worth noticing that the proposed approach based on
the temporal clustering of rainfall does not include any infor-
mation about rainfall totals except in the initial selection of
precipitation quantile. In contrast, it retains information on
the number of precipitation events preceding a landslide and
therefore their closeness in time. The temporal dynamic of
rainfall may therefore be important, together with the cumu-
lated volume over a window, in the occurrence of landslides.
The same precipitation amount falling in a single event rather
than distributed over multiple events may result in higher to-
tal runoff and less infiltration. In addition to rainfall, evapo-
ration may also influence the association between precipita-
tion clusters and landslide occurrence, with higher evapora-
tion weakening the precipitation–landslide statistical associ-
ation. If strong evaporation occurs between two consecutive
rainfall events belonging to the same cluster, then the effect

of the first event is not seen in the second one. So it is like it
occurred in isolation.

4.3 Regional landslide events datasets

We observe differences in the method performance depend-
ing on the dataset. This may be in part explained by the dif-
ferent nature of the inventories. For the Lisbon region, the
landslide dataset was collected from newspaper sources, and
a landslide event was considered to be an individual landslide
or a set of landslides that occurred on a precise date (day)
(Zêzere et al., 2014). In cases where different landslides oc-
curred on consecutive days, each day was considered a land-
slide event, and when the landslide activity was reported dur-
ing several days, the first day of the period was assigned
to the landslide event (Vaz et al., 2018). Such a database
is strongly dependent on consequences (landslides which
caused damage to people: fatalities, injuries, missing and
homeless people); hence in some cases the sign of the pre-
cipitation trigger was unclear. In general, only newsworthy
content is reported by newspapers, which means that land-
slides that caused human damage or occurred in an urban
environment are usually highlighted. For this reason, only
landslides with a rainfall threshold with a return period of
more than 3 years were used. The main aim was to reduce
the possibility of including landslides with a triggering fac-
tor other than rainfall (e.g., human activity). Landslides with
critical rainfall combinations with a return period of less than
3 years were assumed not to have been triggered by rainfall.
In contrast, rain-triggered landslides that did not cause social
or economic damage were unlikely to have been reported in
the newspapers (Zêzere et al., 2015; Vaz et al., 2018).

The second landslide dataset covers the region north of
Lisbon. For this field-based landslide dataset, the regional
criterion used to define a rainfall-triggered landslide is the
identification of at least five individual landslides on natu-
ral slopes on a given date (Zêzere and Trigo, 2011; Zêzere
et al., 2015). The temporal and spatial criteria for defining
a rainfall-triggered landslide in the dataset north of Lisbon
could be more difficult to apply regionally than the one as-
sociated with the single dates collected from the newspapers.
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The dataset distinguishes shallow (deep) landslide events as
events for which more than 50 % of the landslide area is asso-
ciated with slip surfaces below 1.5 m (above 1.5 m) (Zêzere
and Trigo, 2011).

In fact in both datasets we can have both shallow and deep
landslides occurring in the same landslide event. Neverthe-
less, that condition is more difficult to verify in the Lis-
bon area dataset, associated with the DISASTER database,
mostly because it considers single dates and single landslide
locations collected from newspapers.

The concept of a landslide event is not always straightfor-
ward. If we consider a landslide event associated with a sin-
gle landslide, generally it is less difficult to identify the date
of the event that will be then related to the daily rainfall data
for the rainfall threshold assessment (Vaz et al., 2018). This
is in fact what the DISASTER database, based on newspaper
records, made possible for the Lisbon area, i.e., a very ac-
curate definition of the temporal occurrence of the landslide
events. However, the number of landslide events could be bi-
ased by the consequence criteria considered in the DISAS-
TER database. Zêzere et al. (2015) point out that the number
of registered landslide events in each study area in Portugal
is relatively low, and this could make it difficult to establish
reliable relationships between rainfall and landslides. In ad-
dition, several landslides could be triggered over consecutive
days in a study area, and this may also be a potential source of
uncertainty regarding the rainfall threshold definition mostly
due to the selection of the landslide event date for which the
rainfall threshold is defined (Vaz et al., 2018).

We can conclude that the criteria to detect and collect land-
slides in the two datasets are not homogeneous, and there are
different problems and limitation, as detailed above. This re-
sults in non-homogeneous response data and in uncertainty
in the statistical model. Ideally, landslide datasets with the
same criteria could be a better benchmark, and they could be
used in further testing of the methods.

5 Conclusions

In the present work, we assess the effect of including in-
formation on the temporal clustering of rainfall for estimat-
ing the probability of landslide occurrence. We propose an
empirical method, alternative or complementary to classical
rainfall thresholds, that requires only precipitation data as
an input. Our parsimonious approach proved to have a good
power of detecting events compared with rainfall threshold,
with a maximum CSI, considering all landslides, of about 0.4
in both cases. It has a higher sensitivity to landslide occur-
rence compared to classical rainfall thresholds but lower pre-
cision, i.e., lower false negative (FN) but higher false pos-
itive (FP). One of the advantages of this method over rain-
fall thresholds is that it is not based on regression and does
not include regime information on rainfall totals. Although
it requires the selection of a precipitation quantile to iden-

tify precipitation events, we observed a weak dependence
on the quantile choice. Hence, it may prove a more general
and transferable approach, overcoming the main limitation
of absolute rainfall thresholds. This could be investigated by
testing the method on other inventories of rainfall-triggered
landslides in other countries. Different ways of combining
the information about the temporal clustering of rainfall and
rainfall totals could also be explored in future studies.
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