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Abstract. Global warming has enduring consequences in
the ocean, leading to increased sea surface temperatures
(SSTs) and subsequent environmental impacts, including
coral bleaching and intensified tropical storms. It is imper-
ative to monitor these trends to enable informed decision-
making and adaptation. In this study, we comprehensively
examine the methods for extracting long-term temperature
trends, including STL, seasonal-trend decomposition proce-
dure based on LOESS (locally estimated scatterplot smooth-
ing), and the linear regression family, which comprises the
ordinary least-squares regression (OLSR), orthogonal regres-
sion (OR), and geometric-mean regression (GMR). The ap-
plicability and limitations of these methods are assessed
based on experimental and simulated data. STL may stand
out as the most accurate method for extracting long-term
trends. However, it is associated with notably sizable com-
putational time. In contrast, linear regression methods are far
more efficient. Among these methods, GMR is not suitable
due to its inherent assumption of a random temporal com-
ponent. OLSR and OR are preferable for general tasks but
require correction to accurately account for seasonal signal-
induced bias resulting from the phase–distance imbalance.
We observe that this bias can be effectively addressed by
trimming the SST data to ensure that the time series becomes
an even function before applying linear regression, which
is named “evenization”. We compare our methods with two
commonly used methods in the climate community. Our pro-
posed method is unbiased and better than the conventional
SST anomaly method. While our method may have a larger
degree of uncertainty than combined linear and sinusoidal

fitting, this uncertainty remains within an acceptable range.
Furthermore, linear and sinusoidal fitting can be unstable
when applied to natural data containing significant noise.

1 Introduction

Global warming refers to the long-term increase in the
Earth’s average surface temperature due to the accumula-
tion of greenhouse gases in the atmosphere, including car-
bon dioxide, methane, and nitrous oxide. Global warming
has long-term consequences in the ocean, specifically ris-
ing sea levels and increased sea surface temperatures (SSTs).
The former is mainly driven by the expansion of seawater
due to higher temperatures and the melting of land ice. El-
evated sea levels pose risks to coastal communities, infras-
tructure, and ecosystems (Hinkel et al., 2010; Le Cozan-
net et al., 2014; Ranasinghe, 2016) due to the increased
threat of coastal flooding, erosion, and saltwater intrusion.
Moreover, global warming has led to increased sea surface
temperatures. Rising sea temperatures have the potential to
cause changes in ocean circulation patterns. Research has
shown that the Kuroshio and the Gulf Stream, two impor-
tant subtropical western boundary currents in the North Pa-
cific and North Atlantic, could become stronger (Sakamoto
et al., 2005; Cheon et al., 2012; Chen et al., 2019; Wang
and Wu, 2019) and weaker (Levermann et al., 2005; Chen
et al., 2019), respectively. This can ultimately impact the At-
lantic Meridional Overturning Circulation (AMOC), as the
Gulf Stream is a key system component. The impact of SST
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warming on tropical cyclones has been a top concern in re-
cent decades (Emanuel, 2005). As global warming contin-
ues, we see fewer cyclones overall, but those that do oc-
cur are more powerful, longer-lasting, larger, and more de-
structive (Emanuel, 2005; Maue, 2011; Lin et al., 2014; Sun
et al., 2017). This increase in destructive potential is due to
the combination of longer storm lifetimes and greater storm
intensities resulting from warmer sea surface temperatures.
However, the situation may be more nuanced, as other at-
mospheric conditions such as increased wind shear could
counteract or even reverse this trend of heightened destruc-
tion (Lin and Chan, 2015). Coral reefs are facing an increas-
ing threat due to rising ocean temperatures (Pandolfi et al.,
2011). This has resulted in the unprecedented mass bleach-
ing of corals, which has been triggered by rising sea sur-
face temperatures (Frieler et al., 2013; Hughes et al., 2017;
Hoegh-Guldberg et al., 2017; Sully et al., 2019). Although
some mitigation has been observed through small-scale local
upwellings or mixing of cold water (Tkachenko and Soong,
2017; Safaie et al., 2018; Davis et al., 2021), the overall situ-
ation remains concerning.

Therefore, studying and monitoring these long-term
change trends is essential to understand and address the
challenges associated with global warming. It is crucial for
decision-making and adaptation strategies (Mimura, 2013).
Trends in sea surface temperature changes are obtained by
analyzing long-term data collected from various sources, in-
cluding satellite remote sensing, buoys, ships, and coastal
monitoring stations. This approach involves methods such as
linear regression to determine the temperature change slope
over a specific period. Such data can generally be decom-
posed (Cleveland et al., 1990) as

ST= STLT+STSV+STR, (1)

where ST is the measured SST and STLT, STSV, and STR
are the long-term trend, seasonal variations, and remainder
component, respectively. STSV is often the most predominant
component in the collected ST data. STR primarily encom-
passes the signals of tides and minor signals of sub-seasonal
variations (e.g., mesoscale and sub-mesoscale processes and
inertial oscillations), day–night variation (e.g., Chang et al.,
2023), and unresolved noise (measuring errors and turbu-
lence). Commonly used methods to extract STLT include lin-
ear regression methods (Emery and Thomson, 2001; Boretti,
2020; Sreeraj et al., 2022) and the seasonal-trend decompo-
sition procedure based on LOESS (STL; Cleveland et al.,
1990; Tseng et al., 2010; Nidheesh et al., 2013), where
LOESS refers to locally estimated scatterplot smoothing
(Cleveland and Devlin, 1988). Linear regression is a widely
used and efficient statistical technique to model the relation-
ship between a dependent variable (in this case, sea surface
temperature) and an independent variable (typically time).
STL is a robust and versatile method for decomposing time
series data into long-term trends, seasonal variations, and
residuals. STL algorithms use LOESS to smooth the data and

extract the long-term trend component, which has been rec-
ognized as a better method to extract the trend (Tseng et al.,
2010; Nidheesh et al., 2013). However, long computational
time is a primary concern when employing STL. Moreover,
while the STL method typically captures a nonlinear trend,
many practical applications necessitate a linear trend to de-
pict the overall scenario better. Linear regression methods are
a common choice for extracting the long-term trend in SST
increase. These methods are often applied without thorough
assessment due to their universal nature, which is well doc-
umented in statistics textbooks. However, SST data recorded
over long time periods possess unique characteristics that
could introduce bias, requiring careful attention to the details
of the analysis. Commencing with the fundamentals of lin-
ear regression and utilizing realistic and simulated data, this
study offers a systematic evaluation and comparison of linear
regression methods and STL.

2 Methodology

Linear regression analysis begins by considering the depen-
dent variable y and the independent variable x. The variables
y and x can be decomposed as y = Y + ε and x =X+ δ, re-
spectively. Here, (X,Y ) and (δ, ε) represent the deterministic
and random components, respectively, and the mean values
of ε and δ are 0 (µε = µδ = 0). Linear regression seeks to
determine a linear relationship between their deterministic
parts via the model Y = b0+ b1X by determining the value
of b0 and b1. The presence of the random component is un-
desirable and significantly affects the extraction of the linear
relationship within the deterministic parts. Here, the deter-
ministic component of y is STLT, and the random compo-
nent is intended to mimic STSV+STR. Note that STSV is in-
deed non-random, which could bias the estimate of b1 and b0.
Based on the likelihood estimate (Wong, 1989; Emery and
Thomson, 2001; Leng et al., 2007), the slope of the model b1
can be estimated as

b̂1 =
Syy − λSxx +

√
(Syy − λSxx)2+ 4λS2

xy

2Sxy
, (2)

where Sxx , Syy , and Sxy are the sample variance of x, the
sample variance of y, and the sample covariance between x
and y. The estimator described in Eq. (2) is also called
the Deming regression (Deming, 1943). However, Eq. (2) is
complicated by the value λ= σε

σδ
, where σε and σδ are the

variances of the random variables ε and δ, and these vari-
ances are generally unknown.

In practical applications, certain assumptions or ap-
proaches regarding λ are employed to simplify Eq. (2). The
most widely adopted approach is to set λ=∞ (σδ = 0), in
which x has only the deterministic part. This results in the
ordinary least-squares regression (OLSR), where b̂1 =

Sxy
Sxx

.
If λ= 0 (σε = 0) is taken, we obtain another OLSR that
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Figure 1. Topography and coastline surrounding Taiwan. The blue
dots denote three coastal buoys at the Chenggong, Linshan Cape,
and Magong stations, maintained by Taiwan’s Central Weather Ad-
ministration (CWA).

treats x as the dependent variable and y as the indepen-
dent variable, where b̂1 =

Syy
Sxy

. For convenience, the former
and the latter will be referred to as OLSR1 and OLSR2, re-
spectively. The regression lines obtained from OLSR1 and
OLSR2 typically differ, motivating the creation of a neu-
tral slope. This is achieved by calculating the geometric
mean of b̂1 derived from OLSR1 and OLSR2, yielding b̂1 =

sign(Sxy)
√
Syy
Sxx

, which is referred to as the geometric-mean
regression (GMR). Alternatively, the GMR can be deter-
mined by assigning λ to λ̂= Syy

Sxx
in Eq. (2). Finally, by as-

suming λ= 1, the orthogonal regression (OR) can be ob-

tained as b̂1 =
Syy−Sxx+

√
(Syy−Sxx )2+4S2

xy

2Sxy
. OLSR, OR, and

GMR are commonly used to find a linear relationship be-
tween two datasets. In this application, the SST variations
are designated y, and the time is assigned to x. Based on the
overview provided, OLSR1 is likely to be the most suitable
method within the linear regression family for capturing the
long-term trend, especially considering that time lacks a ran-
dom component. However, there has been a lack of careful
examination investigating the applicability of the regression
family.

STL is a robust iterative nonparametric regression employ-
ing the LOESS smoother, facilitating the decomposition of a
given time series into its long-term, seasonal, and remainder
components, as in Eq. (1). Like other nonparametric regres-
sion approaches, STL requires the subjective selection of a
smoothing parameter to delineate the lowest-frequency com-
ponent. STL comprises a sequence of intricate operations,

which are divided into an inner loop and an outer loop, re-
sulting in considerably longer computation times compared
to the linear regression methods. Furthermore, STL can also
process the nonlinear relationship between x and y. While
the specifics regarding the implementation of STL are not
addressed in this context, detailed information is reported in
Cleveland et al. (1990). We thus assess the applicability of
OLSR, OR, GMR, and STL for accurate temperature model-
ing.

3 Regression analysis of realistic data

Three sets of SST data (Chang, 2023) collected from three
coastal buoys located at the Chenggong, Linshan Cape, and
Magong stations (Fig. 1), all maintained by Taiwan’s Central
Weather Administration (CWA), were employed to assess the
effectiveness of linear regressions and STL. The Chenggong,
Linshan Cape, and Magong stations are located on the east-
ern coast of Taiwan; the northern coast of Taiwan; and the
coast of Magong, Penghu county, respectively. SST hourly
time series data from the three stations (Figs. 2a and 3a, b)
exhibit temperature fluctuations of 8 to 15 °C related to sea-
sonal variations over the 13-year measurement period. The
variations encompass a consistent trend, overlaid with a sea-
sonal cycle of approximately 1 year and short-term fluctua-
tions driven by tides and other oceanic processes. We sum-
marize three distinct features of the SST time series: (a) the
time (x) lacks a random component, (b) the time (x) covers
a significantly broader range than the SST (y), and (c) the
SST exhibits vigorous seasonal variations with amplitudes
exceeding the magnitude of the long-term SST increase. All
the above features significantly affect the applicability of the
regression family.

As depicted in Figs. 2a and 3a and b, the long-term trends
derived from the five methods are diverse, underscoring the
necessity of a thorough investigation into their applicability
for accurate temperature modeling. Using the SST time se-
ries data from the Chenggong station (Fig. 2a) as an illus-
tration, the long-term trends estimated by the OLSR1 (thick
dashed black line in Fig. 2a) and OR (red line) methods are
highly similar, revealing an SST increase of 0.198 °Cyr−1.
In contrast, the GMR method (green line) yields a different
long-term trend than the previous two methods, indicating a
rapid SST increase of 0.586 °Cyr−1. Moreover, the OLSR2
method (thin dashed black line in Fig. 2a) yields an SST in-
crease of 1.73 °Cyr−1. The outcome obtained with the GMR
and OLSR2 methods is clearly unsatisfactory due to the ex-
cessively high estimated rate. The failure of OLSR2 is in-
evitable due to its reliance on the assumption that time (x)
has a random component and SST (y) lacks such random-
ness. This assumption directly contradicts how to properly
model the dataset. As a result, the GMR method is also in-
appropriate because its slope involves taking the geometric
mean of b̂1 derived from OLSR1 and OLSR2, causing its
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Figure 2. (a) Time series (2010–2023) of sea surface temperature from Chenggong coastal buoy stations and the long-term trend estimated
using the OLSR1, OLSR2, GMR, OR, and STL methods. (b) The seasonal and remainder components of the STL result. The vertical magenta
lines and triangles denote the mean value of the time axis.

Table 1. Summary of the b̂1 (unit – °Cyr−1) estimated using a general linear regression, STL, evenized SST, the SST anomaly, and a com-
bination of linear and sinusoidal fitting. The slope derived from linear fitting of the STL nonlinear curve (blue lines in Figs. 2a and 3a, b)
represents the b̂1 value of STL. As for the evenized SST, SST anomaly, and combined linear and sinusoidal fitting methods, the repre-
sentative b̂1 is determined as the mean value during its stable period, marked by the dashed black lines in Fig. 7 (6 months of trimmed
time).

General linear regression methods STL Evenized SST SST anomaly Linear and sinusoidal

OLSR2 GMR OLSR1 OR method method fitting method

Chenggong 1.730 0.586 0.198 0.198 0.192 0.193 0.189 0.180
Linshan Cape 10.656 1.231 0.142 0.142 0.13 0.124 0.109 0.109
Magong 11.437 1.111 0.108 0.108 0.087 0.09 0.080 0.082

regression line (green line in Figs. 2a and 3) to fall between
those of the two methods. Similar conditions hold true for the
SST time series at the other two stations (Fig. 3). Thus, the
OLSR2 and GMR methods will be excluded from our subse-
quent analyses. These results are summarized in Table 1.

We next consider why OLSR1 and OR yield the same re-
sult despite having different estimators. Toward this explana-
tion, we consider the geometric distance between each data
point and the regression line. The slope of OLSR1 is deter-
mined by minimizing the sum of the squares of the vertical
distances (DOLSR1 in Fig. 4a) between the observed points
and the assumed regression line. However, OLSR2 employs
a similar approach but minimizes the sum of the squares of

the horizontal distances (DOLSR2 in Fig. 4a). The method of
OR minimizes the sum of squares of the orthogonal distances
(DOR in Fig. 4a) from the data points to the assumed regres-
sion line. Figure 4a also contrasts two regression lines with
larger and smaller slopes. When the regression line is nearly
flat (regression line 2),DOR is very close toDOLSR1. The or-
thogonal and vertical distances are very similar when the re-
gression line is nearly horizontal (close to flat); therefore, the
OR will closely approximate the OLSR1 regression. This set
of conditions is generally true for long-term measured data.
In estimating the regression lines depicted in Fig. 2a, we use
day as the time unit. Accordingly, the time span is 4745 d,
while the SST spans 10 °C, indicating that the slope would
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Figure 3. Time series (2010–2023) of sea surface temperature from (a) Linshan Cape Station and (b) Magong Station and the long-term
trends estimated using the OLSR1, OLSR2, GMR, OR, and STL methods. The vertical magenta lines and triangles denote the mean value of
the time axis.

Figure 4. (a) Schematic diagram showing the distances between the data points and the regression lines used for OLSR1, OLSR2, and OR.
Regression lines 1 and 2 represent steep and gentle slopes, respectively. (b) Regression lines derived from OLSR1 and OR with monthly and
yearly time units using SST data collected at Chenggong station.

be nearly flat and that the lines of OR and OLSR1 are almost
overlaid. The subsequent question is whether OR can con-
sistently match OLSR1. It is well established that OR is not
scale invariant. Changing the units of the variables will result
in different regression lines. We test this effect by changing
the unit of time to months and years. These changes do not
affect the estimate when using OLSR1. Thus, in Fig. 4b, only
the result of OLSR1 using days as the unit is plotted as a

representative line (thick dashed black line). In contrast, the
regression line from OR, utilizing months as the time unit,
results in an estimated slope that is 0.1 % larger (blue line
in Fig. 4b), which may still be deemed acceptable. If years
are used as the unit, implying that 13 (years) is comparable
to the SST variations of 10 (°C), the estimated SST increase
rate is 0.278 °Cyr−1 (magenta line in Fig. 4b). This is ap-

https://doi.org/10.5194/nhess-24-2481-2024 Nat. Hazards Earth Syst. Sci., 24, 2481–2494, 2024



2486 M.-H. Chang et al.: Revisiting regression methods for estimating long-term trends in sea surface temperature

proximately 40 % larger than that estimated using OLSR1, a
difference that should be deemed unacceptable.

Next, we proceed to the investigation of whether OLSR1
and OR genuinely capture the proper regression line. The
long-term trend in Chenggong SST extracted by STL, which
may be the most suitable method (Tseng et al., 2010; Nid-
heesh et al., 2013), is illustrated by the blue curve in Fig. 2a.
This curve exhibits a nonlinear trend characterized by a grad-
ual increase from 2010 to mid-2019 followed by a decline
until 2023. The 2–4 °C seasonal variation amplitudes are also
captured well by STL, as the black curve in Fig. 2b indicates.
The remainder of the curve encompasses the high-frequency
tidal fluctuations and interannual variability (gray curve in
Fig. 2b). The STL long-term curve (blue curve in Fig. 3a)
obtained using the SST data at Linshan Cape also exhibits
a nonlinear trend. In the above two cases, although OLSR1
and OR cannot capture the nonlinearity of the long-term vari-
ations, they align neutrally with the STL curves. At Magong
station, the nonlinearity of the curve (blue curve in Fig. 3b)
becomes weaker, allowing for better alignment between the
OLSR1/OR lines and the STL curve. Finally, it remains im-
perative to demonstrate that OLSR1 and STL effectively cap-
ture the “true” regression line, necessitating using simulated
data for validation.

4 Examination using simulated data

Following Eq. (1), we first generate the test SST data
ST=STLT+STSV+STR spanning 14 years (black curve in
Fig. 5). STLT is the long-term trend given by STLT+ 25+ qt ,
where t is the time in hours, and q is the rate of SST in-
crease. Here, q = 1.8754× 10−5 °Ch−1 is given, equivalent
to 0.1643 °Cyr−1. This equation signifies a linear tempera-
ture increase of 2.3 °C over the 14 years. The seasonal varia-
tion is represented as a sine function,

STSV = ASV sin(2πt/TSV), (3)

where ASV and TSV are 2.5 °C and 365 d, respectively. The
remainder component (STR) incorporates diurnal (24 h pe-
riod) and semidiurnal (12.42 h period) tidal variations, each
of which has an amplitude of 0.5 and 0.2 °C. The regres-
sion line of the test dataset (blue line in Fig. 5a) derived
from STL precisely overlays the long-term trend in STLT
that is not plotted because it would be covered. In addi-
tion, the seasonal variations and the remaining components
are effectively decomposed, as shown in Fig. 5b. OLSR1 un-
derestimates the slope at 0.14 °Cyr−1, which is 15 % lower
than the actual value (dashed black line in Fig. 5a). The ob-
tained result is unexpected, considering the good correspon-
dence observed between STL and OLSR1 in the realistic data
(Figs. 2a and 3a, b). We further clarify the mechanism be-
hind this underestimation by replacing the STSV with a co-
sine function,

STSV = ASV cos(2πt/TSV), (4)

in the test data. As a result, OLSR1 accurately predicts the
slope, indicating that the phase of the seasonal cycle holds
significance in this context.

The linear regression line must pass through the point of
sample mean of t and ST (t , ST). Therefore, we can model
the regression line as a lever with a fulcrum at (t , ST), ad-
justing its angle (or slope) to ensure that the positive residu-
als entirely cancel out the negative residuals. Similar to the
concept of torque, the greater the distance of a data point de-
viation from t , the more substantial its impact on adjusting
the line’s angle. In our original test data (Eq. 3), the seasonal
variation is modeled as a sine function, an odd function with
respect to t = 7 (Fig. 5b). The high-leverage points arising
from seasonally induced deviations (black line in Fig. 5a)
from the regression line play a role in determining the slope
of the line. This effect can be further illustrated by exam-
ining the seasonal variation depicted in Fig. 5b, specifically
focusing on the seasonal peaks. We consider the 14 peaks at
STSV< 0, which are labeled as 1–7 in blue and red on the
right-hand and left-hand sides of the fulcrum (t = 7; denoted
by magenta lines), respectively. The seven peaks on the right-
hand side favor clockwise rotation of the line. Consequently,
they tend to decrease the slope. In contrast, the seven peaks
on the left-hand side favor counterclockwise rotation of the
line, contributing to an increase in the slope. However, the
two opposing tendencies on the right- and left-hand sides are
unbalanced. Peak no.1 on the right-hand side is 3

4TSV away
from the fulcrum, and the corresponding peak no.1 on the
left-hand side is 1

4TSV away from the fulcrum. Overall, the
seasonal peaks on the right-hand side consistently have 1

2TSV
longer distance than their counterparts on the left-hand side.
Based on the concept of torque, this indicates that the overall
effect of the seasonal peaks at STSV< 0 is to lower the slope.
The peaks at STSV > 0 also act to lower the slope if the same
treatment is applied. Therefore, we can conclude that the net
effect of the 14 seasonal peaks is to lower the slope, so that
the long-term trend is underestimated. We call this “phase–
distance imbalance”.

The bias of phase–distance imbalance does not manifest
in the case of an even function, such as a cosine function
(Eq. 4 and Fig. 5c). The resulting data show that the new
STSV appears to be a mirror pattern with respect to t = 7,
which is a typical feature of an even function. Clearly, the
peak pairs distributed on both sides of the fulcrum at t = 7
have identical distances to the fulcrum. Our previous analy-
sis pointed out that the seasonal variations do not introduce
bias in estimating the long-term trend. It is suggestive that ad-
dressing the bias induced by phase–distance imbalance may
involve trimming the data to ensure that STSV (t − t) within
the dataset becomes an even function.

This task involves trimming the test data (black curve in
Fig. 5a) for the last N days (N = 0,1,2. . .365) and sub-
sequently conducting OLSR1 to obtain b̂1 (gray curve in
Fig. 6a) and b̂0 (black curve in Fig. 6b). When the trimmed
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Figure 5. (a) Time series of simulated SST using Eqs. (1) and (3) and the regressions using OLSR1 and STL. (b) Seasonal and remainder
components derived from STL. (c) Seasonal variations using the cosine function shown in Eq. (4). The numbers in (b) and (c) denote the
corresponding seasonal peaks on both sides of the midpoint (magenta lines).

time is 0 d, b̂1= 0.14 °Cyr−1 and b̂0= 25 °C, which repre-
sent the initial regression line shown as the dashed black
line in Fig. 5a. As the number of trimmed days increases,
b̂1 (black curve in Fig. 5a) gradually rises toward the cor-
rect value of 0.1643 °Cyr−1 (as marked by the dashed gray
line) at trimmed time= 182.5 d ( 1

2TSV) before subsequently
decreasing again. It is worth noting that STSV (t−t) becomes
an even function when the data in the last 1

2TSV are trimmed
off (Fig. 5b), supporting our proposed concept.

The value of b̂0 still deviates from the correct value
of 25 °C at trimmed time= 182.5 d ( 1

2TSV; gray curve in
Fig. 6b). This deviation is attributed to the change in ST
that is induced by trimming the data, which can be corrected
by vertically displacing the regression line to intercept the
original ST. Another example illustrates the case of an even

(cosine) function in the initial stage (Eq. 4). The trimming
of the data causes the initially correct b̂1 and b̂0 to deviate,
except for trimmed times of 1

2TSV and TSV. This example
also demonstrates that both b̂1 and b̂0 can be underestimated
or overestimated. We revisited the real data collected from
the three CWA stations, applying the insights obtained from
examining the simulated data. The seasonal cycle regularly
exhibits higher SST in August and a lower value in Febru-
ary (Figs. 2 and 3). To make SST an even function, it is de-
sirable that the midpoint (t) is located at the maximum or
minimum SST. The regression lines derived from our three
SST datasets using OLSR1 align reasonably well with the
STL curves because the datasets tend to approach an even
function, although not precisely. Highlighting the midpoint
line (magenta) in Figs. 2 and 3 can illustrate this. The mid-
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Figure 6. Relationship (a) between the trimmed time and b̂1 and (b) between the trimmed time and b̂0 for simulated SST (Eq. 1) with STSV
represented as a sine function (Eq. 3; gray curve) and a cosine function (Eq. 4; cyan curve). Panels (c) and (d) are the same as (a) and (b),
but the tidal signals, STR, have been removed. The black and blue curves depict the outcomes after correcting the seasonal bias through
steps 1–7.

point falls in June 2016, just 2 months away from the peak
SST in August 2016. Improving the slope estimation accu-
racy might involve data trimming to position the midpoint of
the dataset precisely in August 2016. Indeed, Fig. 6a and b
emphasize a significant uncertainty in estimating b̂1 and b̂0,
depending upon the seasonal phases and magnitudes. Conse-
quently, having a longer dataset does not necessarily guaran-
tee a more accurate outcome.

5 Implementation in correcting the seasonal bias

5.1 Methodology

To correct the seasonal bias, we consider a pre-processing
procedure that trims the data to ensure an even function be-
fore running the regression analysis. For convenience, we
name this procedure evenization, following an analogous
concept introduced in signal processing (Kahn, 1957; Kondo
and Kou, 2001). This could involve removing the initial por-
tion of the data until the remaining set reflects an even pattern
around its midpoint. This adjustment helps reduce or elimi-
nate the bias introduced by the seasonal patterns. Numerous

methods are expected to achieve this correction. Here, we
propose a procedure (Chang, 2023) as follows.

Step 1: detrending. The long-term trend is derived by ap-
plying the OLSR1 to the raw SST data. A detrended time se-
ries (DTR_DATA) is obtained by subtracting the long-term
trend from the raw SST data.

Step 2: data folding. DTR_DATA is split evenly at its mid-
point, forming two segments of equal length: the first half
segment, D1, and the “flipped” second half segment, D2.

Step 3: Hilbert transform. We convert D1 into the ana-
lytic signal AD1, a complex-valued function comprising the
real part D1 and the imaginary part D̂1. D̂1 is a π/2 shifted
function of D1 that can be obtained via the Hilbert transform
(Marple, 1999) of D1. AD2, the analytic signal for D2, can
be derived similarly.

Step 4: complex correlation. Computing the correlation
coefficient between AD1 and AD2 yields a complex corre-
lation, with magnitude C representing the maximum correla-
tion and phase angle θ where the maximum correlation oc-
curs. θ typically falls between −π and π . θ represents the
phase by which D1 leads D2.

Step 5: trimming the data. If θ ≥ 0, the raw SST data in
the period of the initial TSV − θ

2π TSV are trimmed off. If θ <
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0, the raw SST data in the period of the initial |θ |2π TSV are
trimmed off. These measures ensure that the remaining data
approximate an even function by trimming to the minimum
dataset length that is shorter than π/2 (3 months).

Step 6: obtaining the slope b̂1. The long-term slope is esti-
mated by applying OLSR1 to the trimmed SST dataset.

Step 7: obtaining the intercept b̂0. Data trimming induces
change in (t , ST). Therefore, the intercept is obtained by en-
suring that the new regression line passes through the origi-
nal (t , ST). Returning to step 1 for further detrending using
the derived long-term trend is an optional step that could be
carried out iteratively. However, this additional iteration did
not significantly impact the results in our case. Nevertheless,
this option remains open for datasets that may benefit from
further iterations.

The application of steps 1–7 of our procedure to the
simulated datasets, comprising a sine seasonal cycle and
a cosine seasonal cycle, is shown as the black and blue
lines in Fig. 6a and b, respectively. Our corrected b̂1 aligns
closely with the known b1 value shown as the dashed
red line (Fig. 6a). The seasonal bias-related uncertainty,
initially at O(10−2) °Cyr−1, has been notably reduced to
O(10−3) °Cyr−1. The wiggles and discontinuity observed
around the trimmed time of 184 d, contributing to uncertainty
at O(10−3) °Cyr−1, stem from tidal influences. This is ev-
idenced by re-examining the dataset using Eq. (1) after re-
moving the tidal component, STR, showing the absence of
the wiggles and discontinuity (Fig. 6c). These tidal signals
might slightly impact the determination of θ in step 4 of the
process. The corrected estimate of b̂0 converges closely to the
known b0 value of 25 °C (depicted as the dashed red line),
exhibiting a deviation smaller than 0.07 °C (Fig. 6b). Simi-
larly, the tidal effect could produce small wiggles but can be
corrected by excluding the tidal component in the analysis
(Fig. 6d).

Our approach is subsequently employed on the SST
datasets collected by the CWA (as shown in Fig. 7). While the
true b̂1 remains unknown within real data, we can assess the
coherence through data trimming from the end. It is generally
understood that the long-term trend of a 10-year or longer
time series does not significantly change when its length de-
creases by 6 months. At the Magong station, the estimated
range of b̂1 spans from 0.07 to 0.13 °Cyr−1 when employ-
ing the general OLSR (gray curve in Fig. 7a). In contrast,
our approach significantly reduces uncertainty to a range of
0.08 to 0.1 °Cyr−1 (red dots in Fig. 7a) within the initial 6-
month trimmed time period. The consistency of b̂1 can reach
10 months of trimmed time at the Linshan Cape (Fig. 7b) and
Chenggong (Fig. 7c) stations. These findings provide support
for the effectiveness of our proposed method. To maintain the
nature of the long-term trend behind the data, the trimmed
data length ought not exceed a seasonal cycle. The represen-
tative b̂1 could be the mean value during its stable period. The
recommended length of the stable period would be half of a
seasonal cycle, i.e., 6 months. As a result, the representative

Figure 7. b̂1 as a function of trimmed time using the SST data col-
lected at the (a) Magong, (b) Linshan Cape, and (c) Chenggong
stations. The OSLR1 method and our proposed method (steps 1–7)
are represented by the gray curves and red dots, respectively. The
black lines depict the averaged b̂1 values based on corrected data
within a trimmed time shorter than Tsv/2, indicated by the vertical
dashed line. The cyan and blue curves are the slopes estimated using
SST anomalies and combined linear and sinusoidal fitting methods,
respectively. The dashed magenta lines are the slopes derived from
linear fitting to the STL nonlinear curve.

b̂1 values at the Magong, Linshan Cape, and Chenggong sta-
tions are 0.09 °Cyr−1, 0.124 °Cyr−1, and 0.193 °Cyr−1 (Ta-
ble 1), respectively, as shown by the black lines in Fig. 7.

5.2 Comparison with conventional methods

We have demonstrated our proposed evenization method as a
feasible approach to estimate the long-term trend in SST. It
is desirable to compare our method with the commonly used
methods in the climate community. The first method involves
computing the daily climatological value of SST using the
available SST data. The long-term trend can be estimated by
applying OLSR1 to the SST anomalies derived by subtract-
ing the climatological SST from the original SST data. This
is expected to lower the bias resulting from seasonality. The
second method models the SST data as a combination of lin-
ear and sinusoidal functions (e.g., Park et al., 2022):

SST(t)= b0+ b1t +Acos
(

2πt
T

)
+B sin

(
2πt
T

)
. (5)
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The first two terms on the right-hand side are the lin-
ear function, representing the long-term trend. The third and
fourth terms on the right-hand side represent the seasonal
component, where the period is T = 365 d. The amplitude of
seasonal variations can be obtained as

√
A2+B2. Here, b̂o,

b̂1, Â, and B̂ are obtained using nonlinear least squares fit-
ting the SST dataset. Adding other periodic components such
as interannual variations may only sometimes be helpful due
to the increased number of fitting parameters, which could
lower the numerical accuracy and stability.

The performance of the three methods is evaluated us-
ing the 14-year time series as depicted in Fig. 5a, which
is generated using Eq. (3). The semidiurnal tidal amplitude
is increased from 0.2 to 0.3 °C to better investigate the im-
pacts of small fluctuations. Figure 8 shows how the estimated
slope changes with the different data lengths (3–14 years)
used for estimation, allowing for the evaluation of the un-
certainty in each method. Overall, as the data length in-
creases, there is a reduction in b̂1 uncertainty for both the
linear trends in SST anomalies (cyan curve in Fig. 8a) and
evenized SST (red curve). In both methods, the uncertainty
in b̂1 is significant when the data length is less than 7 years,
and the deviation could reach 0.01 °Cyr−1. The deviation
is less than 0.003 °Cyr−1 for data length > 7 years. The
b̂1 obtained from the evenized SST method closely aligns
with the correct value (represented by the dashed black line),
whereas the b̂1 obtained from the SST anomaly method tends
to be consistently lower than the correct value. This can
be clearly found in the probability density function (PDF)
shown in Fig. 8b. The PDF of b̂1 estimated using the evenized
SST is unbiased because it concentrates around the correct
value (0.1643 °Cyr−1; the vertical dashed line). In contrast,
the SST anomaly estimate (cyan line) is biased because its
PDF deviates from the correct value. This suggests that our
method could be a better estimator.

When using the combined linear and sinusoidal fitting
method, there is no clear relationship between the uncer-
tainty and data length, as depicted in Fig. 8a by the blue
line. The PDF shows a more concentrated distribution at
b̂1= 0.1643 °Cyr−1 (blue line in Fig. 8b), suggesting better
performance than our method. Figure 9a shows a success-
ful fitting curve of Eq. (5) (solid blue line), which overlaps
with the simulated data (solid red line) when the data length
used is 8 years. The resulting long-term trend (dashed blue
line) also aligns with that of the evenized SST (dashed red
line), but it is exactly covered by the dashed blue line. How-
ever, unexpected fitting failures can cause large deviations
(blue line in Fig. 8a), such as in the example when the data
length of 7 years is used (Fig. 9b). The fitting curve (solid
blue line in Fig. 9b) has a smaller seasonal amplitude and a
clear phase shift compared to the simulated data (solid red
line in Fig. 9b). The estimated slope of the long-term trend
(dashed blue line) is gentler than the known trend. In con-
trast, the known trend agrees with that estimated one using
evenized SST (dashed red line). We re-examine the PDF us-

ing b̂1 with a data length > 7 years, which is generally ap-
plicable for long-term trend estimates (Fig. 8c). The method
of SST anomalies remains biased. The methods of linear and
sinusoidal fitting are unbiased, and the peak value of PDF
slightly increases from 0.79 to 0.81. Similarly, the methods
of evenized SST are unbiased, but the peak value of PDF sig-
nificantly increases from 0.32 to 0.5. To summarize, our pro-
posed method is unbiased and better than the conventional
SST anomaly method. While our method may have a more
significant degree of uncertainty than linear and sinusoidal
fitting, this uncertainty remains within an acceptable range.
Furthermore, linear and sinusoidal fittings can be unstable
when applied to natural data containing significant noise.

The same examination using the CWA data for SST
anomalies (cyan lines in Fig. 7) and combined linear and
sinusoidal fitting (blue lines in Fig. 7) methods is carried
out. Again, we focus on the comparison in the stable pe-
riod, 6 months of trimmed time. The b̂1 obtained using SST
anomalies is 0.004–0.015 °Cyr−1 lower than that obtained
using evenized SST (cyan lines in Fig. 7 and Table 1). The re-
sult obtained agrees with the expected outcome based on the
simulated data, as shown in Fig. 8. Using the combined lin-
ear and sinusoidal fitting (blue lines), the obtained b̂1 roughly
aligns with the SST anomalies. The result differs from the
simulated data. It is anticipated that complex and diverse
natural signals could have interfered with the fitting results,
often considered noise. Indeed, unexpected peaks related to
the failed fitting occur for the data from Chenggong station
(Fig. 7c), where the tidal signal (Fig. 2a) is strongest among
the three stations. Finally, the slope obtained from linear fit-
ting to the STL nonlinear curve (dashed magenta lines in
Fig. 7 and Table 1) is close to the result obtained from ev-
enized SST.

6 Discussion and conclusions

Here, we systematically examine the methods of linear re-
gression and STL for their ability to extract the long-term
trend from an SST time series. STL may be the best method
to extract the long-term trend accurately. However, it comes
with a significantly long computational time. The runs con-
ducted here using idealized data require approximately 3–
5 min each. The linear regression methods are usually shorter
than 0.1 s. STL is not suited well for tasks that involve
lengthy loop operations, e.g., computing the global increase
rate of SST using satellite data. Instead, linear regression
methods are preferable for such tasks but are subject to the
nature of the long-term SST data. We summarize three dis-
tinct features of the SST time series: (a) the time axis lacks
a random component, (b) the time component covers a sig-
nificantly broader range than the SST one, and (c) SST ex-
hibits vigorous seasonal variations with amplitudes exceed-
ing the magnitude of the long-term SST increase. Feature (a)
indicates that the most suitable linear regression method is
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Figure 8. (a) b̂1 as a function of data length using the simulated SST data and the probability density function of b̂1 using data lengths of
(b) 3–14 years and (c) 7–14 years by applying the methods of SST anomalies (cyan lines), combined linear and sinusoidal fitting (blue lines),
and evenized SST (red lines). The dashed black lines denote the known b1 value.

Figure 9. Linear and sinusoidal fitting curve of Eq. (5) using simulated data lengths of (a) 8 years and (b) 7 years. The solid red and blue
lines represent the simulated data and their fitting curves, respectively. The dashed red and blue lines represent the long-term trends from the
evenized SST and fitting methods, respectively.
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OLSR, which considers SST as being composed of a deter-
ministic part and a random part, while time has only a de-
terministic part. The alternative OLSR that swaps the con-
sideration of SST and time is evidently unsuitable. GMR
is excluded because it also accounts for the randomness of
time. Feature (b) indicates that the slope is nearly flat be-
cause time spans a large interval, e.g., 3000 d, while the SST
range is typically smaller than 10 °C. When the regression
line is nearly horizontal, the OR will closely approximate the
OLSR. This is generally true for long-term measured data.

Accordingly, we propose that OLSR (and OR) can be em-
ployed to extract the long-term trend in SST data by address-
ing the bias arising from feature (c). The proper regression
to obtain the long-term trend depends on the effective can-
cellation of the strong seasonal signals. However, effective
cancellation only occurs when the seasonal signal is an even
function, indicating that it has a mirroring trend with respect
to the midpoint. The bias will be strongest when the sea-
sonal signal is an odd function. We refer to this temporal phe-
nomenon as phase–distance imbalance. This bias induced by
the seasonal signal can be appropriately corrected by trim-
ming the data, ensuring that the dataset becomes an even
function before conducting OLSR (or OR). Finally, we com-
pare our methods with two commonly used methods in the
climate community. Our proposed method is unbiased and
better than the conventional SST anomaly method. While our
method may have a more significant degree of uncertainty
than linear and sinusoidal fitting, this uncertainty remains
within an acceptable range. The fitting method generally per-
forms better, as seen in Fig. 8. However, linear and sinu-
soidal fittings can be unstable in occasional cases. The poor
fitting may be addressed by providing better initial guess val-
ues, constraining parameter intervals, changing the numeri-
cal method, filtering the data, and using other approaches. All
of these require additional trials. Our proposed method pro-
vides another robust and efficient method that can avoid this
disadvantage. Users can choose the method that best suits
their analysis needs.
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