

Supplement of

Rain-on-snow responses to warmer Pyrenees: a sensitivity analysis using a physically based snow hydrological model

Josep Bonsoms et al.

Correspondence to: Juan I. López-Moreno (nlopez@ipe.csic.es)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Height of snow (HS) monthly variation at 1500 m for the historical climate period (1980 – 2019) and different increments of temperature (colors) grouped by sector and precipitation changes (boxes).

9 Figure S2. Height of snow (HS) monthly variation at 1800 m for the historical climate period (1980 – 2019)

10 and different increments of temperature (colors) grouped by sector and precipitation changes (boxes).

Figure S5. Average ROS rainfall amount (mm/day). Data are presented for the historical climate period (1980 – 2019) with different increments of temperature (colors), grouped by month (x-axis), elevations and sectors (boxes). Data represent the average of the simulated precipitation changes (ranging from -10% to +

10%, with increments of 10%).

- 28
- 29

FSM2	Configuration name	Fortran compilation
Physics and driving data options		number
Albedo	Prognostic age function	2
Snow conductivity	Function of density	1
Snow density	Function of overburden	2
Turbulent exchange	Richardson number atmospheric stability adjustment	1
Snow hydrology	Gravitational drainage	2
Snow cover fraction	Linear function of snow depth	1

35

- 44

Table S2. ROS frequency, rainfall intensity and snow ablation average anomalies per °C over the historical climate period.

	Se et ere		ROS	
Elevation	Sector	ROS rainfall amount	irequency	ROS albation
1500 m	SW	+2.5	0	+0.5
	SE	+4.7	0	-0.2
	NW	+3.8	0	-0.2
	NE	+4.7	0	-0.3
1800 m	SW	+2.5	0	+0.8
	SE	+5.2	0	+0.1
	NW	+3.7	0	+0.4
	NE	+5.0	0	+0.4
2400 m	SW	+5.2	1	+0.4
	SE	+6.4	1	+0.1
	NW	+5.3	1	+0.5
	NE	+6	0	+0.7