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Abstract. Coastal regions face increasing threats from ris-
ing sea levels and extreme weather events, highlighting the
urgent need for accurate assessments of coastal flood risk.
This study presents a novel approach to estimating global
extreme sea level (ESL) exceedance probabilities using a
regional frequency analysis (RFA) approach. The research
combines observed and modelled hindcast data to produce a
high-resolution (∼ 1 km) dataset of ESL exceedance proba-
bilities, including wave setup, along the entire global coast-
line (excluding Antarctica).

The methodology presented in this paper is an extension
of the regional framework of Sweet et al. (2022), with inno-
vations introduced to incorporate wave setup and apply the
method globally. Water level records from tide gauges and a
global reanalysis of tide and surge levels are integrated with
a global ocean wave reanalysis. Subsequently, these data are
regionalised, normalised, and aggregated and then fit with a
generalised Pareto distribution. The regional distributions are
downscaled to the local scale using the tidal range at every lo-
cation along the global coastline obtained from a global tide
model. The results show 8 cm of positive bias at the 1-in-10-
year return level when compared to individual tide gauges.

The RFA approach offers several advantages over
traditional methods, particularly in regions with limited
observational data. It overcomes the challenge of short
and incomplete observational records by substituting

long historical records with a collection of shorter but
spatially distributed records. These spatially distributed
data not only retain the volume of information but also
address the issue of sparse tide gauge coverage in less
populated areas and developing nations. The RFA process
is illustrated using Cyclone Yasi (2011) as a case study,
demonstrating how the approach can improve the characteri-
sation of ESLs in regions prone to tropical cyclone activity.

In conclusion, this study provides a valuable resource
for quantifying the global coastal flood risk, offering an in-
novative global methodology that can contribute to preparing
for – and mitigating against – coastal flooding.

1 Introduction

Flooding represents one of the greatest threats to coastal
communities globally, with devastating impacts for affected
regions. Notable events which have caused significant coastal
flooding in recent years include Cyclone Amphan (2020),
which struck the Bay of Bengal and produced a storm surge
of up to 4.6 m along the coast of West Bengal, killing 84
people and causing total losses of over USD 13 billion (India
Meteorological Department, 2020; Kumar et al., 2021); Hur-
ricane Harvey (2017), the second most costly hurricane to hit
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the US after Katrina (2005), which impacted 13 million peo-
ple and hit the state of Texas with a maximum storm surge
of 3.8 m (Amadeo, 2019); and Typhoon Jebi (2018), driv-
ing storm surges of over 3 m in Osaka Bay, Japan, combined
with wave action which led to flooding exceeding 5 m above
mean sea level (Mori et al., 2019). Approximately 10 % of
the world’s population (768 million people) lives below 10 m
above mean sea level (McGranahan et al., 2007; Nicholls
et al., 2021). Coastal flooding is expected to increase dra-
matically in the future, predominantly caused by sea level
rise (Calafat et al., 2022; Taherkhani et al., 2020) and com-
pounded by continued growth and development in coastal
populations (Neumann et al., 2015). Therefore, continuing
to improve the understanding of coastal flooding is vital.

Coastal floods are driven by extreme sea levels, which
arise as combinations of (1) astronomical tides; (2) storm
surges (driven by tropical and extratropical cyclones) and as-
sociated seiches; (3) waves, especially setup and runup; and
(4) relative mean sea level changes (including sea level rise
and vertical land movement). Risk assessments of coastal
flooding require high-quality and high-resolution flood haz-
ard data, typically in the form of flood inundation maps.
Inundation maps are usually derived from hydraulic mod-
els, which use high-resolution extreme sea level (ESL) ex-
ceedance probabilities as a key input (e.g. Bates et al., 2021;
Mitchell et al., 2022). The development of coastal inundation
maps is reliant on coastal boundary condition points that vary
in resolution depending on the application. Previous studies
(e.g. Barnard et al., 2019) have used 100 m resolution at local
scales, while regional studies (e.g. Bates et al., 2021; Envi-
ronment Agency, 2018) have employed resolutions between
500 m and 2 km.

Traditional methods for computing ESL exceedance prob-
abilities involve extreme-value analysis of measurements
from individual tide gauges or wave buoys. However, long
complete records spanning numerous decades are neces-
sary to obtain robust estimates of ESL return levels (Coles,
2001). The Global Extreme Sea Level Analysis (GESLA-
3) database provides sea level records for over 5000 tide
gauge stations (Haigh et al., 2021), but these tide gauges
still cover only a small fraction of the world’s coastlines.
Wave buoys are even more sparse, largely restricted to the
Northern Hemisphere, and long historical records are marred
by discontinuities (Timmermans et al., 2020). Even in areas
with relatively high tide gauge or wave buoy density, there
are still large expanses of coastline which remain ungauged.
While rare extreme weather events (such as intense tropical
cyclones – TCs) are often many hundreds of kilometres in
size, the precise impact of the corresponding ESL can often
be highly localised (Irish et al., 2008), meaning that the peak
surge occurs at an ungauged location. The particular locale
of peak surge for an event is determined by storm charac-
teristics, local bathymetry, and coastal geography, amongst
other factors (Shaji et al., 2014). Therefore, relying on past
observation-based analyses of ESL exceedance probabilities

to characterise return levels across a region will likely lead
to underrepresentation of rare extreme events. Finally, an-
other limitation is that many previous analyses of ESL ex-
ceedance probabilities consider the still-water-level compo-
nent (i.e. tide plus storm surge) separately from the wave
setup and runup (Haigh et al., 2016; Muis et al., 2016; Ra-
makrishnan et al., 2022).

One solution to overcome sparse datasets is to use ESL
hindcasts created by state-of-the-art models. These include
regional (e.g. Andrée et al., 2021; Siahsarani et al., 2021;
Tanim and Akter, 2019) or global tide–surge (such as
Deltares’ Global Tide and Surge Model v3.0, hereafter re-
ferred to as GTSM; Muis et al., 2020) or wave models (e.g.
Liang et al., 2019). These are used to fill the spatial and tem-
poral gaps in the observation records via historical reanalysis
simulation. However, their ability to accurately capture ex-
treme events is hampered by the atmospheric forcing data
that are used to drive the models, as reanalysis products like
ERA5 (Hersbach et al., 2020) commonly contain biases in
representing meteorological extremes such as TCs (Slocum
et al., 2022), leading to an underestimation of event intensity.
Furthermore, the time period captured in reanalysis products
is not adequate to represent the characteristics (e.g. frequen-
cies) of particularly rare events such as intense TCs. To over-
come this limitation, some studies have used synthetic event
datasets representing TC activity over many thousands of
years (e.g. Dullaart et al., 2021; Haigh et al., 2014); however,
this approach is computationally expensive.

An alternative and less computationally demanding so-
lution that helps to address some of the problems inherent
to estimating ESLs around the world’s coastlines from the
observational record is regional frequency analysis (RFA).
The RFA methodology was originally developed to estimate
streamflow within a hydrological context (e.g. Hosking and
Wallis, 1997) but has since been used in many applications
requiring extreme-value analysis of meteorological param-
eters including coastal storm surge (e.g. Arns et al., 2015;
Bardet et al., 2011; Weiss and Bernardara, 2013) and extreme
ocean waves (e.g. Campos et al., 2019; Lucas et al., 2017;
Vanem, 2017). The principle of RFA is founded on the basis
that a homogenous region can be identified throughout which
similar meteorological forcings and resultant storm surge or
wave events could occur, even if the extreme events have
not been seen in part of that region in the historical record
(Hosking and Wallis, 1997). RFA has been used on a regional
scale to produce coastal ESL exceedance probabilities, e.g. in
France (Andreevsky et al., 2020; Hamdi et al., 2016), on the
US coastline (Sweet et al., 2022), in northern Europe (Frau et
al., 2018), at US coastal military sites (Hall et al., 2016), and
in the Pacific Basin (Sweet et al., 2020). However, an RFA
approach has not (to our knowledge) been applied globally.

The overall aim of this paper is to apply, for the first
time, an RFA approach to estimate ESL exceedance prob-
abilities, including wave setup, along the entire global coast-
line. These exceedance probabilities aim to better charac-
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terise ESLs driven by rare extreme events, such as those
from TCs, which are poorly represented in the historical
record. Uniquely, this study uses both measured and hindcast
datasets; includes tides, storm surges, and wave setup; and
calculates exceedance probabilities at high resolution (1 km)
globally. The specific objectives of this paper are

1. to develop and apply RFA globally (excluding Antarc-
tica) utilising both observational tide gauge and mod-
elled hindcast sea level and wave records;

2. to illustrate how the RFA methodology improves the
representation of rare extreme events in the ESL ex-
ceedance probabilities using Cyclone Yasi, which im-
pacted the Australian coastline in 2011, as a case study;

3. to validate the RFA against exceedance probabilities es-
timated from the GESLA-3 global tide gauge database;
and

4. finally, to quantify how much the RFA increases the es-
timation of ESL exceedance probabilities in areas prone
to TC activity when compared to single-site analysis us-
ing hindcast datasets (Muis et al., 2020; Dullaart et al.,
2021).

This paper is laid out as follows: the datasets used are de-
scribed in Sect. 2. The methodology is detailed in Sect. 3, ad-
dressing objective 1. The results and validation are described
in Sect. 4, addressing objectives 2, 3, and 4. A discussion of
the key findings and conclusions are then given in Sects. 5
and 6, respectively.

2 Data

We use seven primary sources of data in this study: (1) still-
water sea level observations contained in the GESLA-3 tide
gauge dataset, (2) global still-water sea level simulations
from the GTSM hindcast based on the ERA5 climate reanal-
ysis, (3) tidal predictions from the FES2014 finite-element
hydrodynamic model, (4) significant wave heights derived
from the ERA5 climate reanalysis, (5) mean dynamic to-
pography from HYBRID-CNES-CLS18-CMEMS2020, (6) a
Copernicus digital elevation model (DEM) to create a global
coastline dataset, and (7) the COAST-RP dataset from (Dul-
laart et al., 2021) to validate the RFA methodology. These
seven datasets are described below.

Still-water sea level records are assembled from the
GESLA-3 (Global Extreme Sea Level Analysis) tide gauge
dataset version 3 (Caldwell et al., 2015; Haigh et al., 2021).
The GESLA-3 dataset includes high-frequency water level
time series from over 5000 tide gauges around the globe,
collated from 36 international and national providers. Data
providers have differing methods of quality control; how-
ever, each record was visually assessed by the authors of the
GESLA-3 dataset and graded as having either (i) no obvious

issues, (ii) possible datum issues, (iii) possible quality con-
trol issues, or (iv) possible datum and quality control issues.
Only records with no obvious issues were used in this study.

As discussed in Sect. 3, the GTSM-ERA5 hindcast dataset
is used in all areas which are not covered by tide gauge ob-
servations. GTSM is a depth-averaged hydrodynamic model
built using the DELFT-3D hydrodynamic model, which
makes use of an unstructured global flexible mesh with no
open boundaries (Muis et al., 2020). The model has a coastal
resolution of 2.5 km (1.25 km in Europe) and a deep-ocean
resolution of 25 km. The GTSM-ERA5 dataset spans the pe-
riod from 1979 to 2018 and was developed by forcing GTSM
with hourly fields of ERA5 wind speed and atmospheric
pressure at 10 m (Hersbach et al., 2020). GTSM-ERA5 has
a 10 min temporal resolution and provides a times series
at locations approximately every 50 km along the coast-
line (10 km in Europe). Validation carried out by Muis et
al. (2020) shows that the dataset performs well against obser-
vations of annual maximum water level, exhibiting a mean
bias of −0.04 m and a mean absolute percentage error of
14 %.

We use the FES2014 tidal database to generate tidal time
series at GTSM-ERA5 locations and RFA output locations.
The RFA output resolution is much higher than the output
resolution of GTSM-ERA5, which is why FES2014 is used
instead. FES2014 is a finite-element hydrodynamic model
which combines data assimilation from satellite altimetry
and tide gauges (Lyard et al., 2021). The model solves the
barotropic tidal equations as well as the effects of self-
attraction and loading. The gridded resolution of the out-
put is 1/16°. The model was extensively validated against
tide gauges, satellite altimeter observations, and alternative
global tide models by Lyard et al. (2021) and was found to
have an improved variance reduction in nearly all areas, es-
pecially in shallow-water regions. The Python package dis-
tributed with the FES2014 data (https://github.com/CNES/
aviso-fes, last access: February 2022) was used to simulate
tidal time series.

To calculate wave setup we use significant wave heights
(Hs) from the ERA5 reanalysis (Hersbach et al., 2020) cov-
ering the period from 1979 to 2020. The spatial resolution of
the ERA5 wave model output is 0.5° by 0.5° and the tem-
poral resolution is hourly. Independent validation of hourly
Hs performed by Wang and Wang (2022) finds little bias in
the dataset (−0.058 m); however, the authors go on to con-
clude that Hs of extreme waves tends to be underestimated
(by 7.7 % in the 95 % percentile), a conclusion supported by
Fanti et al. (2023).

We use mean dynamic topography (MDT) to convert wa-
ter levels from mean sea level as measured by tide gauges
to mean sea level as referenced by a geoid for use in sub-
sequent studies involving inundation assessments using hy-
draulic modelling. MDT describes the change in sea surface
height due to the effects of winds and currents in the ocean.
Digital elevation models (DEMs), a key input to hydraulic
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models, typically use a geoid as a vertical datum. A geoid is
an equipotential surface of mean sea level under the sole ef-
fect of gravity in the absence of land masses, currents, and
tides (Bingham and Haines, 2006). To convert water lev-
els from the tide gauge mean sea level to the geoid mean
sea level, the HYBRID-CNES-CLS18-CMEMS2020 MDT
dataset is used (Mulet et al., 2021). The spatial resolution of
this dataset is 0.125° by 0.125°. Errors associated with this
dataset are largely caused by the input satellite altimetry data
and can be up to 10 cm in some areas. The MDT at the shore-
line is illustrated in Fig. A1 in the Appendix.

The Copernicus 30 m DEM (European Space Agency,
2021) is used to create a high-resolution global coastline.
This is used to define the RFA output points at approximately
1 km intervals along the global coastline (excluding Antarc-
tica), resulting in over 3.4 million points.

Finally, in addition to GTSM-ERA5, we use the COAST-
RP dataset from Dullaart et al. (2021) to validate the RFA
methodology. COAST-RP uses the same hydraulic mod-
elling framework as GTSM-ERA5 but simulates extratrop-
ical and tropical surge events separately using different forc-
ing data. In areas prone to TC activity, synthetic TCs repre-
senting 3000 years under current climate conditions from the
STORM dataset (Bloemendaal et al., 2020) are used. These
synthetic TC model runs have been validated against ob-
served IBTrACS-forced model runs and were found to show
differences in ESLs at the 1-in-25-year return level of less
than 0.1 m at 67 % of the output locations in TC-prone ar-
eas (Dullaart et al., 2021). In regions impacted by extrat-
ropical storms only, a 38-year time series of ERA5 data is
used (Hersbach et al., 2020). The surge levels from each set
of simulations are probabilistically combined with tides to
result in a global database of dynamically modelled storm
tides.

3 Methods

The first objective of this study is to develop and apply an
RFA approach globally, encompassing still-water levels and
wave setup. In Sect. 3.1 we describe the methods used to
process the data used in this study. In Sect. 3.2 we lay out the
global application of the RFA approach using observational
and modelled data. The methods used to validate the results
are explained in Sect.3.3.

An overview of our methodology is illustrated in Fig. 1.
This study broadly follows the methodology of Sweet et
al. (2022) and applies RFA to both tide gauge and GTSM-
ERA5 records. As such, the terms “water level record” and
“record location” are used to describe both tide gauge records
and GTSM-ERA5 data. The method can be summarised in
five key steps: (i) collation and preprocessing of tide gauge,
GTSM-ERA5, FES2014, and ERA5 Hs data; (ii) spatial dis-
cretisation of water level records into regions; (iii) applica-
tion of RFA to regional water level records (in areas unsuit-

able for RFA because there are fewer than three gauges in a
region or the regional water level records are heterogenous,
a peaks-over-threshold analysis of individual GTSM-ERA5
water level records is used); (iv) conversion (downscaling) of
RFA exceedance levels to local exceedance levels at the out-
put coastline points using the FES2014 tidal range (in areas
unsuitable for RFA, nearest-neighbour interpolation is used
to assign local exceedance levels); and (v) correction of bias
and datums to convert water levels to geoid mean sea level
using FES2014 mean higher high water and global MDT data
(HYBRID-CNES-CLS18-CMEMS2020). The final subsec-
tion of the Methods section (vi) describes the validation tech-
niques. These steps are described in detail below.

3.1 Data processing

The GESLA-3 dataset was filtered to sample appropriate in-
put data by removing duplicates, gauges located in rivers
(away from the coast), and gauges that failed quality control
checks carried out by the authors of the dataset (such as sus-
pected datum jumps). The surge component of GTSM-ERA5
at each record location is isolated from the water level time
series using a tide-only simulation and superimposed onto a
tidal time series created with FES2014, as the FES2014 tidal
elevations performed better than those of GTSM in initial
testing against in situ observations. The decision to use tides
from FES2014 is further supported by the conclusion from
Muis et al. (2020), in which the authors state the follow-
ing. “It appears that biases increase in regions with a high
tidal range, such as the North Sea, northern Australia, and
the northwest of the United States and Canada, which could
indicate that GTSM is outperformed by the FES2012 model
that was used to develop the GTSR dataset.” Tidal time series
were also computed at each of the coastline output locations
for use in downscaling the regional outputs and for the bias
and datum corrections of the local ESL.

Wave setup is the static increase in water level attributed
to residual energy remaining after a wave breaks (Dean and
Walton, 2010) and is therefore only observed in areas ex-
posed to direct wave action. In this study, wave setup is ap-
proximated as 20 % Hs from the ERA5 reanalysis, following
the recommendation from a review of numerous laboratory
and field experiments (Dean and Walton, 2010, and previous
related studies; Bates et al., 2021; Vousdoukas et al., 2016).
Wave setup is assigned to the nearest record location using
a nearest-neighbour approach. Wave setup is assumed to be
absent in sheltered areas (e.g. bays and estuaries). To account
for this, the global coastline is classified as either sheltered or
exposed, and the final extreme water levels are drawn from an
RFA that is processed with or without wave setup added in.
To classify the coastline, each coastline point is evaluated to
determine whether it is exposed from a minimum 22.5° angle
over a fetch of 50 km. A total of 16 equal-angle transects are
drawn, extending 50 km from each coastline point. If two or
more adjacent transects do not intersect with land, the coast-
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Figure 1. Schematic flow diagram detailing the data sources and processes involved in producing a global set of extreme water levels.

line point is considered exposed. Applying wave setup us-
ing this approach is an obvious simplification that has been
used for ease of global application. In reality, wave setup is
impacted by local bathymetry and coastal geometry, as well
as by local wind and wave conditions. There are, however,
other more complex methods for estimating wave setup that
incorporate some aspects of bathymetry and coastal geome-
try, such as Stockdon et al. (2006).

To process the RFA with wave setup, daily maximum wave
setup is added to the daily highest water levels. Where tide
gauge records fall outside of the temporal range of the ERA5
data, a copula-based approach was used to fit a simple sta-
tistical model between daily peak water levels and daily max
Hs, providing a prediction of the daily max Hs. The RFA is
then executed as described below. Tide gauges are assumed
to be located in sheltered regions, such as bays and estuaries;
thus, tide gauge records are not impacted by wave setup.

3.2 Spatial discretisation of water level records into
regions

Water level records are spatially clustered to form a poten-
tial pool from which regional exceedance levels can be char-
acterised. To do this, the global coastline is divided into 1°
by 1° grid cells, which are used as the regions to apply the
outputs for each RFA. All record locations within a 400 km
radius (as in Hall et al., 2016 and Sweet et al., 2022) of the

grid cell centroid that have at least 10 consecutive years of
good (>90 % completeness) data are identified (minimum of
3 water level records, maximum of 10; as in Sweet et al.,
2022). This step is illustrated in Fig. 2a. Record locations
which are geographically within range but are separated by
a large expanse of land and thus likely forced by different
storm patterns are removed from the record location selec-
tion. To achieve this, a line is drawn between the grid cell
centroid and each record location. The land intersected by
the line is divided, and the areas of land on either side of the
line are summed. A ratio of the length of the line to the area
of land segmented by the line is then calculated. A thresh-
old of 100 was empirically evaluated using expert judge-
ment based on a number of test cases, above which records
are removed from the grid cell analysis. This approach en-
sures that, for example, record locations located on the east
coast of Florida (e.g. Mayport) are not grouped with those on
the west coast (e.g. Cedar Key) when characterising regional
growth curves, despite the relatively short straight-line dis-
tance between them. Figure 2a exemplifies three tide gauges
which have been excluded from possible selection despite
lying within a 400 km radius of the grid cell centroid, as the
area of land that separates them is large when compared to
the distance. This spatial discretisation of regions results in a
total of 836 tide gauge records (with a mean record length of
17 years) and 18 628 GTSM-ERA5 records for use in appli-
cation of the RFA.
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Figure 2. Selection of the steps in the RFA. (a) The 1° by 1° grid cells along the East Coast of the US, along with the locations of the tide
gauges and the tide gauges selected for the RFA of the example grid cell. The tide gauges excluded from possible selection by the distance
to land area ratio are also indicated. (b) The aggregated, declustered, normalised peak regional water levels over a threshold for each of the
tide gauges used in the example grid cell. The colours indicate peak water levels from the individual tide gauges in the region. (c) Regional
extreme water levels ascertained by fitting a generalised Pareto distribution to the data displayed in panel (b). (d) Index flood values of the
example grid cell found by linearly interpolating the u value from the two closest tide gauges and scaling by tidal range. The locations of two
coastline points used to produce local extreme water levels in panel (e) are also highlighted. (e) Local extreme water level at two shoreline
points inside the example grid cell, each with different index flood values, as indicated in panel (d).

The RFA is preferentially applied to tide gauges in ar-
eas where the gauge density is sufficient (minimum of three
gauges within a 400 km radius, as in Hall et al., 2016, and
Sweet et al., 2022). Outside of these areas, the RFA is imple-

mented using data from GTSM-ERA5. In some regions, the
density of homogenous record locations from GTSM-ERA5
is also too low for the RFA to function, in which case the ESL
exceedance probabilities are interpolated from a single-site
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Figure 3. Map showing the global distribution of the areas in which
the tide gauge RFA is used and in which the GTSM-ERA5 RFA is
used, as well as the areas which represent interpolations of single-
site analyses of GTSM-ERA5.

peaks-over-threshold analysis of the nearest GTSM-ERA5
record location. The geographical locations of these areas
are shown in Fig. 3. From the 5975 global coastal grid cells,
ESLs at 851 are computed using tide gauge data, 4555 are
calculated using RFA of GTSM-ERA5 data, and 569 are cal-
culated using GTSM-ERA5 data from the nearest record lo-
cation.

3.3 Application of the RFA

Tide gauge records are referenced to different vertical da-
tums. Therefore, in order to ensure consistency, the mean
taken over the most recent 19-year epoch is subtracted from
the water level record, and the time series is linearly de-
trended to the centre year of the most recent available epoch
(2002 to 2020), resulting in 2011. GTSM-ERA5 records are
referenced to MSL over the period from 1986 to 2005, and so
the time series are linearly detrended to reference the same
tidal epoch as the tide gauge records centred on 2011. Within
each cluster of gauge (or model) records, the water level time
series are resampled to hourly resolution and converted to
mean higher high water, defined as the mean daily highest
water level over a 19-year epoch, to account for differences
in tidal range between record locations. In the case of records
with fewer than 19 years of data available, the maximum con-
tinuous epoch is used instead.

Daily highest water level is determined from the hourly
time series of each measured or modelled record. The time
series are then declustered using a 4 d storm window to en-
sure event independence. This window length was used by
Sweet et al. (2020, 2022) and is of a similar length to the
storms that cause surge events in the UK (Haigh et al., 2016).
The index flood u, defined as the 98th percentile of the
declustered daily highest water levels (Sweet et al., 2022),
is used as the exceedance threshold at which to normalise the
water level at each record location as follows:

Normalised water level= (observed exceedance

water level− u)/u . (1)

The normalised datasets are then aggregated and further
declustered to ensure that only one peak water level is re-
tained for each regional event. This is shown in Fig. 2b for
an example grid cell. Following Hosking and Wallis (1997),
a statistical heterogeneity test (H ) is undertaken to ensure
the homogeneity of the region. If the H score is less than 2,
then the region is considered sufficiently homogenous. If the
H score is greater than 2, then the furthest water level record
from the grid cell centroid is removed from the region, and
the test is rerun. This process is repeated until the H score
is less than 2. In a minority of cases, the heterogeneity test
fails due to an anomalous record that lies within the clos-
est three sampling locations to the grid cell centroid. In this
instance, the test is rerun, except after the furthest record is
removed, all the remaining records are sequentially removed
and replaced until the H score is less than 2.

After the region has been confirmed to be homogenous,
a generalised Pareto distribution is fitted to the aggregated,
declustered, and normalised regional water levels using a pe-
nalised maximum likelihood method to estimate regional ex-
treme water levels (REWLs). This is illustrated by an ex-
ample in Fig. 2c. This is repeated for the aggregated re-
gional water levels for each 1° by 1° grid cell. While theoreti-
cally correct, applying distribution fits to real-world data can
sometimes give unrealistic results, particularly in terms of
the estimation of the lower-frequency space. In these cases,
growth curve optimisation is undertaken to ensure that the
output local extreme water levels are plausible in real-world
scenarios. To ensure consistency, an empirical threshold of
0.35 for the shape parameter is used to determine which
curves will generate unrealistic extreme water levels. The
empirical threshold of the shape parameter is determined
based on expert judgement of plausible real-world maximum
surge heights in the low-frequency events. To correct these
curves, wherever this threshold is exceeded, we use the shape
and scale parameters of the nearest grid cell which does have
a shape parameter of less than 0.35. In total, 34 grid cells
had their shape and scale parameters adjusted, most of which
were concentrated in the Gulf of Mexico and Japan.

3.4 Downscaling to local extreme water levels

Local extreme water levels (LEWLs) are then estimated from
the regional growth curves using the following relationship:

LEWL= (REWL · u)+ u. (2)

This is done for each coastal point along the coastline con-
tained within the grid cell represented by the REWL records.
The index u is estimated at the coastline points using an in-
verse distance weighting interpolation of the u values for the
two closest record locations scaled by tidal range. This de-
viates from the methodology set out in Sweet et al. (2022),
in which the authors recommend drawing u values from a
linear regression of u against tidal range values from record
locations across a region. We found this approach to lead to
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significant differences in LEWLs at record locations when
compared to single-site analysis of water level records, and
we have hence modified the methodology. Figure 2d exhibits
an example of the index flood for every shoreline point in
an example grid cell. Tidal ranges are calculated as the dif-
ference between the mean higher high water and the mean
lower low water. Tidal harmonics from FES2014 are used to
predict mean higher high water and mean lower low water
at each coastline point. The index flood u is used to down-
scale the REWLs, which represent the ESL characteristics of
the entire grid cell. The LEWLs are output in the format of
return levels for a range of exceedance probabilities. Two ex-
ample LEWL curves are shown in Fig. 2e, which have been
computed using different index flood values, as indicated in
Fig. 2d.

3.5 Bias and datum corrections

The last stage of the LEWL calculation involves character-
isation and removal of bias in the high-frequency portion
of the exceedance probability curves relative to a single-
site analysis of water level records (within which we expect
the high-frequency water levels to be accurately modelled).
Other surge RFA studies also concluded that the approach
generally yields higher estimated surge heights when com-
pared to single-site analysis, because during the regionalisa-
tion process, an extreme event that occurred in one location is
assumed to have the same probability of occurring at another
location within the homogeneous region (Bardet et al., 2011;
Sweet et al., 2022). Bias is quantified based on the diver-
gence in the 1-in-1-year return period at each tide gauge or
GTSM-ERA5 location and the corresponding LEWL predic-
tions. This bias is used as a correction term and is removed
from the LEWLs. As the density of the coastline points is
much higher than the density of the tide gauges and model
output locations, the correction term is interpolated across
all coastal LEWL points based on the correlation between
monthly values of the 99th percentile of tidal elevations –
produced over a 3-year period centred on 2011 computed us-
ing FES2014 at the tide gauge or GTSM-ERA5 location –
and the neighbouring coastline points. The mean bias correc-
tion across all gauges is 8 cm.

Datum corrections are applied to ensure that the LEWLs
are correctly referenced to a vertical datum which can be
used for hazard assessment applications, such as inundation
modelling. Inundation models utilise digital elevation mod-
els, which typically reference a geoid as the vertical datum.
The output water levels from the RFA are transformed from
mean higher high water to mean sea level (m.s.l.) values by
adding the approximation of mean higher high water (above
m.s.l.) from the FES2014 simulations to each of the bound-
ary condition points. The corrected MDT dataset from Mulet
et al. (2021) is applied to convert water levels from MSL
from the FES2014 model to the “MSL” of a commonly used
geoid, EGM08.

3.6 Validation methods

In this section we define the range of validation techniques
used to address objectives 3 and 4. To validate the RFA ESLs
against tide gauge records from GESLA (objective 3), a com-
parison is performed against ESL exceedance probabilities
calculated at the individual tide gauges used to inform the
RFA. To quantify the degree to which the RFA approach im-
proves the estimation of ESL exceedance probabilities com-
pared to single-site analysis (objective 4), two assessments
are made.

Firstly, the divergence between GTSM-ERA5 RFA ESLs
and GTSM-ERA5 single-site ESLs for the entire global
coastline is quantified. These are then contrasted against the
differences between return levels from GTSM-ERA5 (Muis
et al., 2020) and COAST-RP (Dullaart et al., 2021). The com-
parison can then identify regions in which the historical ESLs
are poorly represented due to the limited record lengths.

Secondly, a leave-one-out cross-validation is undertaken
using GTSM-ERA5 data. Leave-one-out cross-validation
aims to address the common issues involved with validating
statistical models. One common method to validate models
is split-sample validation, in which the data are split into two
groups, a training set and a validation set, which generally
comprise 70 % and 30 % of the data, respectively. The model
is then trained on the larger set and validated against the
smaller set. The drawbacks of this method include a highly
variable validation error due to the selection of the training
and validation sets, as well as a validation error bias caused
by training the model on only 70 % of the available data
(James et al., 2013).

Instead of using a 70 : 30 split of the data, leave-one-out
cross-validation uses a larger proportion of the data to train
the model, while validating against a smaller subsample, but
repeats this process multiple times to generate a robust vali-
dation. To do this, we identified 1000 grid cells which use 10
GTSM-ERA5 records for the RFA and contain three GTSM-
ERA5 record locations inside the grid cell (and therefore the
RFA can be used to directly estimate ESLs at the record lo-
cations). One of the GTSM-ERA5 records from inside the
grid cell is removed from the RFA process, and the REWL
is calculated using the nine remaining gauges. The LEWL is
then predicted at the record location which has been left out
using the index flood u at the record location. These LEWLs
are then contrasted with a single-site analysis of the water
level record that was removed from the RFA. The process is
then repeated for the two other GTSM-ERA5 record loca-
tions which lie within the grid cell. This means that each of
the 1000 models is tested three times – against 90 % of the
available data – thus giving a more robust realisation of the
model when trained on 100 % of the data.
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4 Results

The Results section is divided into four subsections. Sec-
tion 4.1 presents the results of the global application of the
RFA, showing both the global view of two return periods
and the return levels for selected sites around the world. Sec-
tion 4.2 illustrates how the RFA methodology improves the
characterisation of rare extreme events based on the exam-
ple of Cyclone Yasi (objective 2). In Sect. 4.3 we validate
the RFA against estimates of ESL from GESLA tide gauges
(objective 3). Finally, in Sect. 4.4 we quantify the improve-
ments made by using an RFA approach when compared to a
single-site analysis of water levels (objective 4).

4.1 Global application of RFA

The final ESL exceedance probabilities (including wave
setup) created at high resolution around the global coast-
line are displayed in Fig. 4 for the 1-in-10- and 1-in-100-
year return periods. Both the 1-in-10-year (Fig. 4a) and 1-
in-100-year (Fig. 4b) return periods show similar spatial pat-
terns, with the 1-in-100-year return periods exhibiting greater
increases, as expected, in areas prone to TC activity (e.g.
the Gulf of Mexico, Australia, Japan, and China). ESLs are
higher in regions with large tidal ranges such as the Bay
of Fundy, the Patagonian Shelf, the Bristol Channel in the
UK, the northern coast of France, and the northwest coast
of Australia. The return levels for six selected tide gauge lo-
cations, three of which are characterised by a positive and
three of which are characterised by a negative shape param-
eter from the generalised Pareto distribution, are shown in
Fig. 4c and d, respectively, relative to mean higher high wa-
ter. The locations of the six tide gauges are indicated in both
Fig. 4a and b. Regions exhibiting positive shape parame-
ters are typically prone to TC activity and associated surge
and wave events. As a result, these regions experience more
significant increases in return levels at higher return periods
than regions with negative shape parameters. Regions char-
acterised by negative shape parameters have different drivers
of ESL events, for instance extratropical storm surges or tide-
dominated ESLs (Sweet et al., 2020).

4.2 Tropical Cyclone Yasi

Our second study objective is to illustrate how the RFA
methodology previously described can draw upon a few rare
events to provide a more realistic representation of low-
frequency ESL exceedance probabilities across a region.
This is done using the case study of Cyclone Yasi, which im-
pacted the Australian coastline in 2011. Cyclone Yasi made
landfall on the northeastern coast of Australia, in the Queens-
land region, between 14:00 and 15:00 UTC on 2 Febru-
ary 2011. It was the strongest cyclone to have impacted the
region since 1918, with possible wind speeds of 285 km h−1

and a minimum recorded pressure centre of 929 hPa (Aus-

tralia Bureau of Meteorology, 2011). When it made landfall,
Yasi was a category 4 storm on the Saffir–Simpson scale. The
path and strength of the storm are shown in Fig. 5a.

The total water levels relative to mean higher high water
are shown in Fig. 5b for all the tide gauges in the region.
Compared to neighbouring tide gauges, Cardwell had the
highest surge and the highest total water level by a consider-
able margin, receiving a surge of over 3 m above mean higher
high water. Clump Point also showed a definitive but less
substantial surge signal, whereas the other gauges showed
much smaller surge effects or even no surge at all. The his-
torical water level records of all the gauges in the regions
are included in Fig. 5c. The tide gauges span different tem-
poral ranges, and many have years which are incomplete.
The longest record is at Townsville, which started in the late
1950s. Despite this long record, the largest documented event
is Cyclone Yasi by over 1.5 m (at Cardwell).

Based on this historical record, no other surge event of
this magnitude has impacted this section of coastline since
records began. There are, however, records of other histor-
ical extreme events affecting the region that predate tide
gauges. For example, Cyclone Mahina, which made landfall
in Princess Charlotte Bay (approximately 100 km north of
Cooktown) in 1899, reportedly had a surge height approach-
ing 10 m (Needham et al., 2015). The idea that this stretch of
coastline is at risk of TC-generated ESLs is further supported
by STORM, a dataset of 10 000 years of synthetic hurricane
tracks (Bloemendaal et al., 2020). IBTrACS shows just eight
category 4 and 5 hurricanes impacting this 700 km stretch
of coastline between 1980 and 2022 (shown in Fig. A2 in
the Appendix; Knapp et al., 2010). In contrast, the STORM
dataset has 333 events affecting the area, producing a more
continuous spread of landfall locations along the coastline.
In addition, large surges are sometimes not captured in this
region due to the lack of gauges in rural areas (Needham et
al., 2015).

The return period curves for each of the 10 gauges in the
region, calculated by fitting a generalised Pareto distribution
to the peaks-over-threshold water levels at each individual
tide gauge, are shown in Fig. 5d. As expected, Cardwell has
the largest return levels and the steepest curve. All the other
gauges, except Bowen, exhibit negative shape parameters,
characterised by a decreasing gradient of the return period
curves. In a region which is prone to TCs, this represents a
dangerous underestimation of the risk from cyclone-induced
surges. In some coastal ESL studies, ESLs are calculated at
each gauge and then interpolated along the coastline, such as
in the UK (Environment Agency, 2018). In this case, the lat-
ter approach would lead to a gross disparity from the actual
risk of storm surges to coastal communities in the area.

In contrast, Fig. 5e shows the return period curves esti-
mated from the RFA at the tide gauge locations. All of the
curves now have positive shape parameters, characterised by
increasing gradients of the curves. The curves of Cardwell
and Bowen have been reduced somewhat, while all the other
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Figure 4. The final global output of RFA results at approximately 1 km resolution along the entire global coastline (excluding Antarctica)
for RP10 (a) and RP100 (b). Return levels are referenced to DEM MSL and thus represent surge, waves, and tide. Return levels (relative to
mean higher high water) for six tide gauges in regions characterised by either a positive or negative shape parameter from the generalised
Pareto distribution are shown in panels (c) and (d), respectively. The locations of the six tide gauges are indicated by the diamonds plotted in
panels (a) and (b).

curves have been increased significantly. This demonstrates
the regionalisation process by which the extreme event at
Cardwell can be used to propagate the risk along the coast-
line to areas which do not have an extreme event on record
or which have short, incomplete, or nonexistent tide gauge

records. This reinforces the key strengths of RFA, namely
(1) the ability to spatially account for rare extreme events,
(2) the use of short and incomplete tide gauge records to pro-
duce robust parameter fits, and (3) the ability to downscale
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Figure 5. Tropical Cyclone Yasi. (a) Storm track of Cyclone Yasi, covering a 24 h period over the landfall event. The locations of the 10
closest tide gauges along the Queensland coast are also included. Times are in UTC. (b) Observed water level time series for the same 24 h
period at each of the 10 tide gauges in the region. Times are in UTC. (c) Entire historical record of all 10 gauges in the region. (d) Return
period curves of individual gauges fit with the generalised Pareto distribution. (e) Return period curves at the gauge locations from the RFA.

the results into regions which are not covered by tide gauges
at all.

4.3 Comparisons with GESLA

The third objective is to validate ESLs calculated using our
RFA against those calculated directly from the measured
GESLA-3 global tide gauge database. Contrasting the RFA
results with ESL exceedance probabilities calculated through

a generalised Pareto distribution fit at individual tide gauges
yields promising results. Figure 6a shows the spatial distri-
bution of the difference at the 1-in-10-year return period for
Europe, the United States, and the eastern Pacific. In areas
impacted by TCs (e.g. the Gulf of Mexico, the northeastern
coast of Australia, and Japan) we broadly see that the RFA
has increasing return levels across most gauges. Increases in
the 1-in-10-year return level are also observed in areas usu-
ally associated with extratropical storms (e.g. Europe), sug-
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gesting that gauges in these regions also suffer from under-
sampling of rare surge events. Extreme surge events can be
undersampled for two reasons. Firstly, by their very nature,
they are rare and might never have occurred at a specific lo-
cation. Secondly, as a result of the scarcity of in situ tide
gauges, surges can occur and remain unrecorded.

In all areas shown in Fig. 6a, some gauges show de-
creases in the return levels. These could be driven by either
shape parameter limiting (to prevent unrealistically large wa-
ter levels); an anomalously large number of events impact-
ing the gauge; or a single anomalously large event impact-
ing the gauge, which is then smoothed out through the re-
gionalisation process, as was the case in Cardwell, Australia
(Fig. 5e). Of the gauges shown in Fig. 6a, only five had lim-
ited shape parameters, and these were located in the Gulf of
Mexico. The distribution of the differences at RP10 is shown
in Fig. 6b with a positive skew, detailing the 5th and 95th
percentiles as −8 and 27 cm, respectively. The spread of the
data increases across the three selected return periods (1-in-
2-, 1-in-10-, and 1-in-100-year return periods), as presented
in Fig. 6c, as does the mean bias, which increased from 2 cm
in the 1-in-2-year return level to 21 cm in the 1-in-100-year
return level.

4.4 Quantifying the increases caused by RFA as
compared to single-site analysis

The fourth objective is to quantify the increases in ESL ex-
ceedance probabilities in TC-prone areas caused by RFA as
compared to single-site analysis. Figure 7a shows the devia-
tion in the 1-in-100-year return period between the GTSM-
ERA5 RFA carried out across the global coastline and a
single-site peaks-over-threshold analysis of GTSM-ERA5
water level records. Only differences greater or less than 0.25
and −0.25 m, respectively, are plotted. There are evident in-
creases in RFA ESLs in areas prone to TCs. The Gulf of
Mexico, the East Coast of the US, southern China, and the
northeast coast of Australia show the largest increases. Spo-
radic negative differences are also observed in Fig. 7a, which
are driven by a smoothing of ESL exceedance probabilities
at locations which have experienced anomalously high ESLs
compared to the local region. From this we see that the RFA
is capable of incorporating the influence of TCs that were not
present in the historical record but statistically could occur,
as indicated by the regional characteristic.

These findings are supported by the results presented
in Fig. 7b, which shows the differences between COAST-
RP and GTSM-ERA5. COAST-RP is GTSM forced with
STORM (10 000 years of synthetic TCs) in areas prone to TC
activity rather than with ERA5 (Dullaart et al., 2021). The ar-
eas of positive difference highlight locations where COAST-
RP is greater than GTSM-ERA5 and thus give an indication
of the areas in which the synthetic hurricanes make landfall.
These patterns are broadly similar to those of the RFA shown
in Fig. 7a. However, there are two areas which stand out for

Figure 6. Comparison of RFA water levels against extreme wa-
ter levels calculated at individual gauges from GESLA by fitting a
generalised Pareto distribution to peaks-over-threshold water levels.
(a) Spatial distributions of the differences at RP10 for (i) the con-
tiguous US; (ii) Europe; and (iii) Japan, Malaysia, Australia, and
New Zealand. (b) Histogram of the distribution of differences at
RP10, including the locations of the 5th and 95th percentiles and 1
standard deviation from the mean. (c) Scatter plot of EWLs (RP2,
RP10, and RP100) from the RFA and EWLs calculated using a
single-site generalised Pareto distribution fit. The black line indi-
cates a 1 : 1 perfect fit.

being poorly characterised by the RFA: the Bay of Bengal
and the western Gujarat region of India. Large differences
are also observed in Hudson Bay, Canada; however, we sus-
pect that these discrepancies are the result of differences in
the approach to modelling extratropical regions, as TCs do
not make landfall here.

Figure 8 shows the results of the leave-one-out cross-
validation of the global coastal LEWLs. In general, the RFA
tends to increase return levels due to the regionalisation pro-
cess. These findings match those of Sweet et al. (2022, 2020),
the work upon which our approach is based. This is evident
throughout the world, with the majority of gauges exhibiting
increases of less than 5 cm at the 1-in-10-year return period
(Fig. 8a). The central 90th percentile band of the data for
the 1-in-10-year return period ranges from −3 to 18 cm, as
shown in Fig. 8b. However, the spread of the data is more
pronounced at the higher return periods, as shown in Fig. 8c.
Some regions of the world have greater increases, of the or-
der of 30 to 40 cm, for the 1-in-10-year return period. These
gauges are mostly concentrated in TC basins, namely the
Caribbean, the Gulf of Mexico, Japan, China, and the Philip-
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Figure 7. Spatial distribution of (a) the differences between the GTSM-ERA5 RFA 1-in-100-year return period (RP100) and the RP100 of
single-site GTSM-ERA5 data fitting with a generalised Pareto distribution to the peaks-over-threshold water levels and (b) the differences in
RP100 published by the COAST-RP (GTSM forced with STORM) paper (Dullaart et al., 2021) and RP100 published by the original GTSM
paper (Muis et al., 2020). Only differences greater or less than 0.25 and −0.25 m, respectively, are plotted.

pines, as well as on the east and west coasts of Australia. This
demonstrates the process by which the RFA better represents
extreme rare events that are typically undersampled in the
historical record. By drawing on all the events captured by
gauges across the region, the RFA reveals that a greater risk
of extreme events manifests upon considering their potential
occurrence in areas that, by chance, have not been previously
impacted according to historical records. Similarly, oversam-
pling is clearly evident at the 1-in-100-year return period, for
which nearly one-third of locations show decreases in ESL
exceedance probabilities compared to the single-site anal-
ysis. The magnitude of these decreases tends to be much
smaller than the increases seen.

5 Discussion

The ESL exceedance probability dataset presented in this pa-
per is, to our knowledge, the first global dataset to be derived
using an RFA approach employing a synthesis of observed
and modelled hindcast data. The resulting data are output
at high resolution (∼ 1 km) along the entire global coastline
(excluding Antarctica); they include wave setup data and bet-

ter capture the coastal flood risk from TCs. This approach
is notable for being computationally inexpensive compared
to more traditional approaches for deriving ESL exceedance
probabilities via hydrodynamic modelling.

As previously discussed in the Introduction section, re-
lying solely on observational records to estimate ESL ex-
ceedance probabilities can significantly bias results. To fit
robust parameter estimates and obtain confident exceedance
probabilities sufficient for informing flood risk managers,
long-term and consistent high-quality observational records
are needed (Coles, 2001). While some tide gauge and wave
records span numerous decades, many records only cover
a handful of recent decades (e.g. 10 to 30 years) or have
significant gaps in their historical records. This means that
high-quality data are often excluded from analyses as their
records are too short to produce robust parameter estimates.
Furthermore, gauges are relatively sparse, especially in less
populated areas and developing nations. While surges and
waves typically impact large regions, peak water levels are
usually only observed over smaller areas (i.e. a single bay,
estuary, or beach). As a result, measured records can easily
miss the maximum of an extreme event and thus mischar-
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Figure 8. Results of the leave-one-out cross-validation of the RFA
on GTSM-ERA5 gauges. (a) Spatial distribution of differences be-
tween the leave-one-out cross-validation RFA RP10 (1-in-10-year
return period) and the single-site generalised Pareto distribution
RP10. (b) Histogram of the distribution of the differences in RP10,
including the locations of the 5th and 95th percentiles and 1 stan-
dard deviation from the mean. (c) Scatter plot of EWLs (RP2, RP10,
and RP100) predicted using the leave-one-out cross-validation RFA
and the EWLs calculated using a single-site generalised Pareto dis-
tribution fit. The black line indicates a 1 : 1 perfect fit.

acterise the extreme water levels of the event. As such, rare
extreme events that characterise the upmost tails of the distri-
butions of ESLs, such as TCs, are repeatedly undersampled
in the historical record in terms of both frequency and mag-
nitude.

Using an RFA approach, we demonstrate how we have
improved these issues. The RFA can be viewed as a space-
for-time approach, where long historical records (which give
robust parameter estimates) are substituted for a collection
of shorter records that cover a larger area. The volume of
data (and subsequent extreme events) is retained, but the in-
dividual records can be much shorter. In this study, records as
short as 10 years have been utilised. Furthermore, the region-
alisation process works to overcome the issues with gauge
density by disseminating the hazard presented by rare ex-
treme events, as shown using the example of Cyclone Yasi.
Of the 10 gauges in the region, the only record to have cap-
tured an historical extreme surge event of the magnitude ob-
served during Cyclone Yasi was Cardwell, despite this sec-
tion of coastline being at a known risk of TC activity. A
single-site analysis of tide gauge data in this region would
likely underpredict the real risk of ESLs generated by TCs in
areas which have not experienced a direct impact according

to the observational record. On the other hand, the damping
of the return levels in the RFA output at Cardwell and Bowen
could result in an underprediction of the risk from surges in
these locations.

Global hydrodynamic models that simulate tide and surge
(e.g. GTSM) or waves have been developed to substitute ob-
servational records, especially in regions not covered by tide
gauges. These models have been demonstrated to represent
historical extreme events to a high degree of accuracy when
forced using historical observational data pertaining to the
event (Yang et al., 2020). However, using these models for
characterisation of exceedance probabilities is limited by the
availability of long-term high-quality global reanalysis data
that capture the full extent of meteorological extremes that
drive large surge events. The RFA aims to address this by
using a space-for-time approach; however, it is still limited
by the bounds of the GTSM-ERA5 data. As demonstrated in
Fig. 7, the distribution of increases to local return levels re-
sulting from RFA broadly follows the same patterns globally
as the differences between COAST-RP and GTSM-ERA5.
As the TC hazard is typically underrepresented due to short
records, it can be inferred that the increases observed across
these regions are an improvement over single-site analysis.

While RFA is capable of identifying areas at increased
risk from TC activity, it is still constrained by the available
training data. This is demonstrated in Fig. 7. Two distinct
areas lack increased water levels in the RFA difference plot
(Fig. 7a): the Bay of Bengal and the northwestern coasts of
India and Pakistan. ERA5, the source of the forcing data used
for GTSM-ERA5, has been found to consistently underesti-
mate TC intensity in terms of both minimum sea level pres-
sure and maximum wind speed (Dulac et al., 2023). Conse-
quently, the intensity of extreme events in GTSM-ERA5 in
these regions could underrepresent the potential hazard from
TC activity. If the maxima of extremes are not captured in the
reanalysis data, then the full magnitude of the surge cannot
be simulated by GTSM-ERA5. As such, the RFA will have
smaller or fewer extremes from which to draw data when
characterising rare extreme events, thus leading to a persis-
tent underestimation of the return levels.

Coastal flood hazard mapping is usually carried out us-
ing inundation models that simulate the propagation of wa-
ter over the coastal floodplain. To accurately capture the
footprint of the surge on the land, inundation models re-
quire high-resolution boundary conditions at regular inter-
vals along the coastline. The density of boundary condi-
tion points must be sufficient to capture local variability in
ESLs along a coastline, which can be caused by bathymetri-
cal and topographical features such as narrow channels, en-
closed bays, barrier islands, and estuaries. The spatial res-
olution of tide gauges, even in the areas of highest gauge
density, is insufficient for direct use in inundation modelling
and therefore requires some form of interpolation and/or ex-
trapolation. Similarly, while GTSM-ERA5 is run at a rea-
sonably high coastal resolution, publicly available data are

Nat. Hazards Earth Syst. Sci., 24, 2403–2423, 2024 https://doi.org/10.5194/nhess-24-2403-2024



T. P. Collings et al.: Global application of a regional frequency analysis to extreme sea levels 2417

only output at approximately 50 km resolution outside of
Europe and therefore do not meet the standards necessary
for coastal floodplain inundation modelling. Using RFA to
downscale the regional extreme water levels allows for the
possibility of implementing tide gauge data and the outputs
from GTSM-ERA5 as boundary conditions for subsequent
inundation models. In addition, the downscaling process in-
volves scaling the water levels by tidal range and thus enables
dynamic characteristics of the surge, such as amplification
at the head of estuaries, to be reproduced in the inundation
models. This downscaling process is, however, limited by the
resolution of the tide model used to obtain the tidal range
values. In the case of the current study, FES2014 is output at
1/16th of a degree (approximately 7 km at the Equator).

Ultimately, the future of delineating the flood hazard from
TCs lies in multi-ensemble models using hundreds of thou-
sands of years’ worth of synthetically generated storms forc-
ing high-resolution tide–surge–wave models. However, the
computational cost of running such simulations is enormous
when compared to the cost of running an RFA on a relatively
short hindcast record. In the same way, dynamically mod-
elled waves are usually excluded from global simulations that
consider exceedance probabilities due to the computational
expense. At the same time, failing to consider the joint de-
pendence of surge and waves can lead to an underestimation
of ESL exceedance levels by up to a factor of 2 along 30 %
of the global coastline (Marcos et al., 2019). This reinforces
the significance of the RFA methodology for characterising
global coastal flood risk.

Validating the RFA is nuanced, as assessing metrics com-
pared with the observed record (a) comprises a validation of
the RFA against the data used to build the RFA in the first
place and (b) does not recognise the inadequacies of the tide
gauge records that the RFA is attempting to mitigate. Leave-
one-out cross-validation highlights the strengths of the RFA
without succumbing to the shortfalls inherent in the obser-
vational record. The increased LEWLs in the regions prone
to TC activity once again demonstrate the ability of RFA
to spatially disperse the hazard of low-probability extreme
events across a region. It is worth noting that the leave-one-
out cross-validation is the best possible representation of the
RFA, as only grid cells that use data from 10 record loca-
tions are used, and each model is thus trained on the max-
imum amount of data possible. In some areas, the number
of records used can be as low as three, and so the ability of
the RFA to reproduce water levels in these regions could be
compromised.

Applying the RFA as done in this study does have its lim-
itations. Firstly, changing our definition of a homogeneous
region would likely have a great impact on our results. In fu-
ture iterations of this study, we recommend carrying out a
sensitivity analysis to understand how using different max-
imum radii to select water level records impacts estimated
extreme water levels within the region. Secondly, delineating
the global coastline into 1° by 1° tiles and evaluating a differ-

ent RFA for each tile results in some complex areas of coast-
line being summarised by a single regional growth function.
Examples of this are seen in Japan, where exposed coastlines
of the north coast are contained in the same tile as a sheltered
bay that is open to the south coast. A solution to this would
be to classify coastlines based on descriptors, as carried out
by Sweet et al. (2020). These descriptors could include char-
acteristics such as the dominant forcing type, geographic lo-
cation, and/or local coastal dynamics. The method used to
incorporate wave setup is another constraint, as it has been
greatly simplified for ease of global application. Improving
upon this should also be a focus of future studies. Lastly,
another limitation of the approach used in this study is the
static shape parameter limiter. It is probable that the maxi-
mum shape parameter varies by location around the world
and that by implementing a fixed threshold globally, we are
perhaps limiting some of the most extreme events in some
regions. Improving this section of the methodology is a high
priority for future updates.

The outputs from the RFA should be supplemented with
local knowledge wherever possible, and the uncertainties in
the results should be considered before the data are used.
While RFA is a powerful tool for estimating return levels
in ungauged locations or in locations where the historical
records are short or incomplete, there are risks associated
with both over- and underprediction of surge heights. Under-
prediction can lead to complacency among coastal managers
and the potentially dangerous assumption that communities
are safe from surge risk. Conversely, overprediction can re-
sult in unnecessary costs for risk mitigation measures and
potential economic loss driven by a lack of investment in a
region deemed to be at risk. Disseminating the risk of TC-
generated surges over a region could lead to overprediction
in some locations; therefore, conducting sensitivity analyses
to understand the robustness of findings is recommended, es-
pecially in the context of coastal management and safety as-
sessments. The RFA has been developed in this study as a
method for regional- to continental- to global-scale risk anal-
yses from globally available data and not for local studies.
The results give a first-order approximation of extreme wa-
ter levels in ungauged locations. It is not expected that they
would be used for design of local flood defences, for exam-
ple.

Going forward, the RFA framework developed in this
study can easily be updated upon availability of new data.
Possible next steps could also include using GTSM simu-
lations of future climate scenarios and applying measured
wave data. To this end, a global wave dataset similar to
GESLA would be instrumental in collating wave data from
the numerous global buoys. Future updates could also in-
clude an assessment of using different extreme-value dis-
tributions, perhaps following the mixed-climate approach of
O’Grady et al. (2022).

In the near future, we plan to use the global exceedance
probabilities derived in this paper as boundary conditions for
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inundation modelling of the coastal floodplain of the entire
globe using the 2D hydraulic model LISFLOOD-FP (Bates
et al., 2010). This presents an exciting opportunity to provide
an invaluable resource that will help to better quantify global
coastal flood risk.

6 Conclusions

In this paper we have demonstrated using an RFA approach
utilising both measured and modelled hindcast records to es-
timate ESL exceedance probabilities, including wave setup,
at high resolution (∼ 1 km) along the entire global coast-
line (with the exception of Antarctica). Our methodology
is computationally inexpensive and is more effective in ac-
curately estimating the low-frequency exceedance probabil-
ities that are associated with rare extreme events compared
to approaches that consider data from single sites. We have
demonstrated, using the example of Cyclone Yasi (2011)
which impacted the Australia coast, the ability of RFA to
better characterise ESLs in regions prone to TC activity. Fur-
thermore, on the global scale we have exemplified how the
RFA, when trained on relatively short-term reanalysis data,
can reproduce patterns of increased water levels similar to
those present in dynamic simulations of 10 000 years of syn-
thetic hurricane tracks. The RFA methodology shown pro-
vides a promising avenue for improving our understanding
of coastal flooding and enhancing our ability to prepare for
and mitigate its devastating impacts. In the future, we plan
to use the exceedance probabilities from this study as bound-
ary conditions for an inundation model covering the global
coastal floodplain.

Appendix A

Figure A1. HYBRID-CNES-CLS18-CMEMS2020 MDT dataset from Mulet et al. (2021), extracted at the shoreline for use in correcting the
output from the RFA for future uses such as inundation modelling.
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Figure A2. (a) Category 4 and 5 IBTrACS hurricanes impacting the Queensland coastline between 1980 and 2022 (Knapp et al., 2010) and
(b) equivalent STORM events impacting the same the stretch of coastline (Bloemendaal et al., 2020).

Figure A3. Number of water level records used per grid cell (a) as a scatter plot showing the distribution globally and (b) as a bar plot
showing the number of water level records vs. the number of grid cells.
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Code availability. The Python scripts used for handling the
GESLA dataset can be downloaded at https://github.com/philiprt/
GeslaDataset (Thompson, 2022). The Conda package (Python) used
for creating the FES2014 tidal time series can found at https:
//anaconda.org/fbriol/pyfes (AVISO and CNES, 2022).

Data availability. GESLA tide gauge data are available at
https://doi.org/10.5285/d21a496a-a48f-1f21-e053-6c86abc08512
(Haigh et al., 2022).

GTSM data are available at
https://doi.org/10.24381/cds.8c59054f (Yan et al., 2020).

ERA5 wave hindcast data are available at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2022).

FES2014 tidal heights can be downloaded from
https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/
global-tide-fes/description-fes2014.html (NOVELTIS, LEGOS,
CLS Space Oceanography Division and CNES, 2022).

HYBRID-CNES-CLS18-CMEMS2020 is available at
https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/
mdt.html (AVISO, 2022).

The Copernicus 30 m DEM is found at
https://doi.org/10.5069/G9028PQB (European Space Agency,
2021).

The COAST-RP dataset can be downloaded from
https://doi.org/10.4121/13392314.V2 (Dullaart et al., 2022).

The data produced in this study are available for academic non-
commercial research only. Please contact the corresponding author
for access.
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