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Abstract. Communities downstream of burned steep lands
face increases in debris-flow hazards due to fire effects
on soil and vegetation. Rapid postfire hazard assessments
have traditionally focused on quantifying spatial variations in
debris-flow likelihood and volume in response to design rain-
storms. However, a methodology that provides estimates of
debris-flow inundation downstream of burned areas based on
forecast rainfall would provide decision-makers with infor-
mation that directly addresses the potential for downstream
impacts. We introduce a framework that integrates a 24 h
lead-time ensemble precipitation forecast with debris-flow
likelihood, volume, and runout models to produce probabilis-
tic maps of debris-flow inundation. We applied this frame-
work to simulate debris-flow inundation associated with the
9 January 2018 debris-flow event in Montecito, California,
USA. When the observed debris-flow volumes were used to
drive the probabilistic forecast model, analysis of the simu-
lated inundation probabilities demonstrates that the model is
both reliable and sharp. In the fully predictive model, how-
ever, in which debris-flow likelihood and volume were com-
puted from the atmospheric model ensemble’s predictions of
peak 15 min rainfall intensity, I15, the model generally under-
forecasted the inundation area. The observed peak I15 lies
in the upper tail of the atmospheric model ensemble spread;
thus a large fraction of ensemble members forecast lower
I15 than observed. Using these I15 values as input to the
inundation model resulted in lower-than-observed flow vol-
umes which translated into under-forecasting of the inunda-
tion area. Even so, approximately 94 % of the observed in-
undated area was forecast to have an inundation probability

greater than 1 %, demonstrating that the observed extent of
inundation was generally captured within the range of out-
comes predicted by the model. Sensitivity analyses indicate
that debris-flow volume and two parameters associated with
debris-flow mobility exert significant influence on inundation
predictions, but reducing uncertainty in postfire debris-flow
volume predictions will have the largest impact on reduc-
ing inundation outcome uncertainty. This study represents a
first step toward a near-real-time hazard assessment product
that includes probabilistic estimates of debris-flow inunda-
tion and provides guidance for future improvements to this
and similar model frameworks by identifying key sources of
uncertainty.

1 Introduction

Debris flows threaten life and property in mountainous ar-
eas worldwide (Dowling and Santi, 2014). In the first few
years following fire, debris-flow hazards are greater relative
to nearby unburned areas due to reductions in soil infiltration
capacity (Ebel, 2020; Larsen et al., 2009; McGuire and You-
berg, 2020), decreased vegetation cover (Cerdà and Doerr,
2005; Hoch et al., 2021; Stoof et al., 2012), increases in sed-
iment availability (Nyman et al., 2013), and reduced thresh-
olds for sediment entrainment (Moody et al., 2005). Post-
fire debris flows are typically initiated when short-duration,
high-intensity rainfall generates runoff that rapidly entrains
sediment from hillslopes and channels (DeGraff et al., 2015;
Gabet and Bookter, 2008; Kean et al., 2011; McGuire et
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al., 2017). Fire-related debris flows pose hazards globally,
including in Europe (Conedera et al., 2003; Diakakis et
al., 2023; Esposito et al., 2023; García-Ruiz et al., 2013;
Lourenço et al., 2012), Asia (Jin et al., 2022; Lee et al.,
2022; Touge et al., 2023), western North America (e.g., Jor-
dan, 2015; Jordan and Covert, 2009; Kean et al., 2019),
and Australia (Nyman et al., 2011). Due to the potential for
widespread (i.e., within hundreds of different watersheds) in-
creases in debris-flow susceptibility following fire, it is criti-
cal to rapidly identify the downstream areas most threatened
by debris-flow runout and to quantify the uncertainty associ-
ated with their identification.

Empirical models that assess debris-flow likelihood and
volume at the drainage basin scale have been developed for
the western United States in the 1–2 years immediately fol-
lowing wildfire (Gartner et al., 2014; Staley et al., 2017).
These models can be used to produce rapid hazard assess-
ments in response to design rainstorms with spatially uni-
form intensity (e.g., Staley et al., 2016). Past studies demon-
strate that, in addition to factors related to topography and
soil burn severity, rainfall intensity over a 15 min duration
(I15) controls the likelihood of debris-flow initiation within
a basin (Staley et al., 2017) as well as debris-flow volume
(Gartner et al., 2014). Forecasts of debris-flow volume are
highly uncertain, especially when applied in settings not rep-
resented within their training datasets (Gorr et al., 2023; Wall
et al., 2023), and may exceed a factor of 10 (Gartner et
al., 2014). Debris-flow likelihood and volume both increase
with I15, which indicates that variations in rainfall intensity,
even over small spatial (i.e., a low-order basin) and temporal
(15 min) scales, will play an important role in determining
the likelihood and spatial extent of debris-flow impacts. As-
sessing the downstream impact of debris flows, however, re-
quires information about their runout and inundation extent.

Rapid postfire hazard assessments (e.g., Staley et al.,
2016) do not currently provide information about down-
stream impacts, although recent debris-flow events (Kean et
al., 2019) and surveys of the postfire hazard emergency man-
agement community highlight the need for such a product
(Barnhart et al., 2023; Gourley et al., 2020). The probabil-
ity that a downstream area will be impacted by a debris flow
depends, in part, on the likelihood of a debris flow being initi-
ated in a basin upstream, the size (volume) of the debris flow,
and the movement of the flow as driven by topography and
flow dynamics. Several debris-flow inundation models have
been applied to simulate a recent series of postfire debris
flows following the 2017 Thomas Fire in southern California
(Barnhart et al., 2021; Gibson et al., 2022; Gorr et al., 2022).
The models used in these studies vary in their representa-
tion of debris-flow physics, from those that account for mul-
tiphase flow dynamics and pore–pressure feedbacks (George
and Iverson, 2014; Iverson and George, 2014) to those that
use a semi-empirical approach to route flow across the land-
scape (Gorr et al., 2022). All the inundation models require
debris-flow volume as an input, although some models re-

quire an inflow hydrograph (Barnhart et al., 2021), whereas
others require volume to be specified as a single number at
each initiation point representing the total volume mobilized
(Gorr et al., 2022). The model proposed by Gorr et al. (2022),
the Progressive Debris-Flow routing and inundation model
(ProDF), performed similarly to other inundation models but
required less run time for equivalent simulations. This makes
it a promising tool for evaluating runout for a large number of
forecast precipitation scenarios in a rapid-hazard-assessment
framework.

Existing debris-flow likelihood, volume, and runout mod-
els therefore provide the necessary components to create
a framework for postfire hazard assessments that includes
probabilistic estimates of inundation area in response to
a forecast or design rainstorm, but such a framework has
yet to be developed and explored. Probabilistic frameworks
for predicting debris-flow runout have been explored in un-
burned settings, although runout models have not been di-
rectly linked with others designed to predict debris-flow like-
lihood and volume (Aaron et al., 2022; Sun et al., 2021). As a
result, fundamental questions remain regarding the propaga-
tion of uncertainty through various model components (i.e.,
from rainfall to flow volume to runout) as well as the bene-
fits and limitations of such an approach at forecast lead times
(≥ 24 h) needed for decision-making (e.g., evacuation, allo-
cating resources).

A postfire debris-flow inundation hazard assessment
should reflect uncertainty in the forecast inundated area
(Barnhart et al., 2023), and past work identifies at least three
ways through which substantial uncertainty is likely to arise:
(1) the forecast peak I15 needed as input for debris-flow like-
lihood and volume models (Oakley et al., 2023), (2) the sim-
ulated debris-flow volume given a peak I15 (Gartner et al.,
2014), and (3) the flow mobility parameters needed to drive
a debris-flow runout model (Aaron et al., 2019). Precipita-
tion forecasts in the weeks to hours ahead of an event include
considerable uncertainty regarding short-duration and high-
intensity rainfall rates (Oakley et al., 2023). Assuming a per-
fect rainfall forecast, debris-flow volume models have order-
of-magnitude uncertainty around a given prediction (Gart-
ner et al., 2014). Lastly, debris-flow runout model parame-
ters that influence flow mobility require calibration, a process
subject to observation biases, model assumptions, and sub-
jective user decisions (Aaron et al., 2019). Runout model pa-
rameter uncertainty can be considerable, particularly in areas
without data from prior events to calibrate against (Zeng et
al., 2023), resulting in poor predictive performance of debris-
flow runout (e.g., Gorr et al., 2023). Because prior studies
have found that debris-flow runout is sensitive to flow vol-
ume (e.g., Barnhart et al., 2021; Gorr et al., 2022) and given
that uncertainty in rainfall intensity propagates forward into
debris-flow volume predictions, we propose a framework
for generating probabilistic debris-flow inundation maps that
links atmospheric modeling with debris-flow models.
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The main objectives of this work were to (1) develop
an integrative atmosphere–debris-flow model framework to
generate a spatially distributed forecast of inundation prob-
ability, (2) apply the proposed framework to assess debris-
flow inundation downstream of burned basins using an atmo-
spheric model ensemble designed to mimic a 24 h lead-time
forecast, and (3) quantify the relative importance of key input
parameters using global sensitivity analyses. A probabilistic
inundation map is the final product of our model framework.
In practice, this product is one that could be used to improve
situational awareness for decision-makers. This study is a
first step toward the development of a near-real-time frame-
work for probabilistic assessments of debris-flow inundation
downstream of recently burned areas and provides guidance
for future work aimed at further quantifying and reducing
uncertainty.

2 Study area

We focused our study on a portion of the 2017 Thomas
Fire near the community of Montecito, California, USA,
which was impacted by postfire debris flows in January
2018, causing 23 fatalities and substantial economic losses
(Kean et al., 2019; Lancaster et al., 2021) (Fig. 1). The
Thomas Fire burned more than 1100 km2, including a se-
ries of steep basins in the Santa Ynez Mountains upstream
of Montecito. The fire ignited in December 2017 and had not
yet been contained when a weak atmospheric river with an
embedded narrow cold frontal rainband (NCFR) impacted
the area on 9 January 2018 (Oakley et al., 2018). As the
NCFR propagated over the burned basins upstream of Mon-
tecito, it produced rainfall with peak I15 between 78 and
105 mm h−1 (Kean et al., 2019). Runoff entrained sediment
from burned hillslopes and channels (Alessio et al., 2021;
Kean et al., 2019; Morell et al., 2021), producing debris flows
that traveled several kilometers down the alluvial fan (Lan-
caster et al., 2021). We focused on six of these debris-flow-
producing basins where approximately 679 000 m3 of sedi-
ment was mobilized and debris-flow inundation extent (more
than 2 600 000 m2) was mapped shortly following the event
(Kean et al., 2019). Debris flows in the Montecito Creek
basin were sourced from two upstream burned basins, while
the remaining four creeks had a single upstream source. All
simulations were run using topography from a 5 m resolution
digital elevation model derived from airborne lidar collected
before the event (Fig. 1).

3 Methods

3.1 Overview of model framework

We coupled rainfall output from an atmospheric model en-
semble with debris-flow likelihood, volume, and runout mod-
els to generate a probabilistic forecast of postfire debris-

flow inundation downstream of the six debris-flow-producing
basins (Fig. 2). We used a 100-member atmospheric model
ensemble representing a 24 h lead-time forecast of the 9 Jan-
uary 2018 precipitation event (Oakley et al., 2023). For each
ensemble member, we computed basin-averaged values of
peak 15 min rainfall intensity (I15) and used this as input into
debris-flow likelihood (Staley et al., 2017) and volume (Gart-
ner et al., 2014) models to predict (1) whether each basin
would produce a debris flow as well as (2) the volume of
sediment a debris flow, if initiated, would mobilize. We then
used the ProDF debris-flow runout model (Gorr et al., 2022)
to estimate the downstream inundation extent and peak flow
depths. In this step, we incorporated uncertainty in debris-
flow volume for a given I15 as well as uncertainty in ProDF
flow mobility parameter values into the forecast by utilizing
Monte Carlo sampling methods. Finally, we produced a map
of spatially variable forecast probabilities of inundation by
averaging the inundated area results from each ProDF simu-
lation.

3.2 Atmospheric model ensemble design

The 24 h lead-time, 100-member ensemble rainfall forecast
for the 9 January 2018 event (Oakley et al., 2023) was gener-
ated using the Weather Research and Forecasting (WRF) at-
mospheric model version 4.3 (Skamarock et al., 2021). The
ensemble produced a distribution of precipitation rates that
reflects forecast uncertainty (Fig. 1c). Output consisted of
spatially variable rainfall depths in 5 min intervals with 1 km
horizontal resolution across the study area. We spatially av-
eraged rainfall intensities over each of the six basins (ranging
from 0.45 to 8.94 km2; Kean et al., 2019) and used a 15 min
moving window to calculate the peak I15 for each basin for
every ensemble member. In this way, variability in the tim-
ing, location, and spatial structure of forecast precipitation
translates into variability in the I15 subsequently used to pre-
dict debris-flow likelihood, volume, and runout.

3.3 Debris-flow likelihood and volume models

We used empirical models for postfire debris-flow likelihood
(Staley et al., 2017) and volume (Gartner et al., 2014) to de-
termine if a basin would produce a debris flow and how large
it would be. The Staley et al. (2017) M1 model determines
debris-flow likelihood, whereas the Gartner et al. (2014)
emergency assessment volume (EAV) model predicts debris-
flow volume. These models use basin-averaged metrics re-
lated to topography, soil properties, soil burn severity, and
peak I15 as input. In this study, all input parameters for the
M1 and EAV models were fixed for each basin, with the ex-
ception of I15.

Using the basin-averaged I15 from each WRF ensemble
member, we computed debris-flow likelihood for each of the
six basins using the M1 model. If debris-flow likelihood was
less than 0.5, we assumed that a debris flow would not be ini-
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Figure 1. (a) Site map of the 9 January 2018 Montecito debris-flow event. Burned basins drain into (M) Montecito, (O) Oak, (SY) San
Ysidro, (BV) Buena Vista, and (R) Romero creeks (note that two burned basins drain into Montecito Creek); (b) site location in context
of the USA; (c) histogram of peak I15 extracted from the atmospheric model ensemble. Dashed lines show observations at the KTYD and
Doulton Tunnel (DT) rain gauges. Ticks along the boundaries of (a) give coordinates in NAD83 UTM zone 11N. The base map was sourced
from Esri and the U.S. Department of Agriculture Farm Service Agency, the hillshade layer was generated from the 10 m resolution National
Elevation Dataset (U.S. Geological Survey, 2020), and the soil burn severity layer was sourced from U.S. Forest Service (2020).

tiated. If likelihood was greater than 0.5, we assumed a debris
flow would be initiated and determined its volume using the
EAV model. We defined a log-uniform distribution centered
on the EAV-predicted volume with an order-of-magnitude
envelope above and below the predicted volume (Supplement
Fig. S1). This range of support is consistent with the predic-
tion uncertainty in the EAV model, as well as similar models
(Gartner et al., 2014). For a given ProDF simulation, we drew
input volumes from these distributions by sampling from a
log-uniform random variable over the range [0.1, 10.0] and
multiplying the six EAV-predicted volumes (one for each of
the six basins) by this scalar.

3.4 Debris-flow inundation model

We used ProDF to simulate debris-flow runout and inun-
dation (Gorr et al., 2022). The model requires two flow
mobility parameters and input debris-flow volumes at user-
defined flow starting points, from which flow is iteratively
routed downstream. The two flow mobility parameters, χ
[s−1 m−0.5] and τy [Pa], control the flow depth and the mini-
mal basal shear stress that permits flow motion, respectively.

It is common to calibrate models by choosing a single set
of “best” parameters based on some objective function opti-
mization tied to an observation dataset and to then use this
optimal parameter set in forward-model applications (e.g.,
Pirulli, 2010). A limitation of this methodology is that it
precludes exploration of a wider range of equifinal possi-

ble parameter sets, and different observation datasets may
lead to different choices about which parameters are opti-
mal. Instead, we used a statistical inference procedure sim-
ilar to that of Aaron et al. (2019) to define a joint posterior
distribution over the flow mobility parameters that uses the
similarity index (Gorr et al., 2022; Heiser et al., 2017) as the
objective of the maximum likelihood estimator function for
nonlinear systems (Hill and Tiedeman, 2007). The similar-
ity index varies from −1 to 1, with 1 indicating a perfect
match between the simulated and observed area inundated.
We generated samples from this distribution using the “em-
cee” Python implementation (Foreman-Mackey et al., 2013)
of the Markov chain Monte Carlo (MCMC) affine-invariant
ensemble sampler (Goodman and Weare, 2010). This method
is advantageous as we were able to sample uniformly from
the MCMC output to gather flow mobility parameters for
ProDF simulations. We calibrated the posterior distribution
to the Oak, San Ysidro, Buena Vista, and Romero Creek
basins and reserved Montecito Creek to test the calibrated
distribution. Additional details on the ProDF calibration are
given in Sect. S1 in the Supplement.

3.5 Inundation forecast

We generated a forecast of inundation probability by averag-
ing together many individual ProDF simulations that were
run with input parameters drawn repeatedly and indepen-
dently from the calibrated distributions (Fig. 2). We ran 50
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Figure 2. Schematic of the probabilistic debris-flow inundation forecast model.

simulations for every WRF ensemble member’s prediction
of peak I15 (i.e., a total of 5000 ProDF simulations). Debris-
flow volumes for all six basins were drawn from the log-
uniform distributions defined in Sect. 3.3, and the flow mo-
bility parameters (χ , τy) were drawn from the calibrated joint
posterior distribution defined in Sect. 3.4. Every simulation
produced a map of peak debris-flow depth. Depth maps from
all simulations were converted to binary maps of inundation
presence using a threshold depth of 10 cm (e.g., Gorr et al.,
2022). Averaging the binary inundation maps together with
equal weights produced a map with values between zero and
1 representing the fraction of simulations that inundated each
grid cell, which we interpret as an inundation probability.

To investigate the role of input debris-flow volume in the
joint distribution of forecasts and observations (described
further in Sect. 3.6), we also generated probabilistic inun-
dation maps for two additional scenarios, referred to as sce-
narios A and B. In scenario A, we use observed debris-flow
volumes as input for all simulations. In this scenario, we min-
imize uncertainty in debris-flow volume, so we expect model
performance to improve relative to the forecast. In scenario

B, we assigned a debris-flow volume to each basin using
the EAV prediction with the observed peak I15 as the input
(Kean et al., 2019). This scenario also does not utilize any
data from the atmospheric model ensemble. The peak I15 at
each debris-flow initiation point was computed with inverse
distance weighting of the observed rainfall rates at the KTYD
and Doulton Tunnel (DT) rain gauges (78 and 105 mm h−1,
respectively; Kean et al., 2019) (Fig. 1c). Evaluating model
performance when debris-flow volume (scenario A) or rain-
fall (scenario B) is known is useful for identifying the source
of any observed over- or underestimation of inundated area
in the forecast.

3.6 Comparing simulated and observed inundation

Debris-flow inundation model results are commonly assessed
one simulation at a time by optimizing an objective function
of the mapped debris-flow deposits and simulated inundation
zones (e.g., Barnhart et al., 2021; Gibson et al., 2022; Gorr
et al., 2022). Probabilistic forecasts cannot be directly eval-
uated with a similar binary classification and optimization
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procedure. Instead, we classified grid cells as inundated or
not using a threshold probability pt to explore the extent to
which the observation was contained within the range of in-
undation scenarios represented by the ensemble forecast. If
a given cell’s forecast probability of inundation p satisfied
p ≥ pt, it was classified as inundated, and otherwise it was
not. For values of pt between zero and 1 (discretized at inter-
vals of 0.01), we classified each cell in the domain and then
computed the similarity index.

Probabilistic forecasts can also be evaluated using a
distribution-oriented approach. A distribution-oriented ap-
proach considers the entire joint distribution of forecasts
and observations, f (p,I ), where f is the joint probabil-
ity density function and I is the observed binary inunda-
tion outcome (i.e., I = 1 if a debris flow actually occurred
in the grid cell, else I = 0). The joint distribution contains
all the relevant information about the forecasts and observa-
tions needed for a complete verification of a forecast model
(Wilks, 2019). It can be factored in two ways into conditional
and marginal probabilities that are more practical for analy-
sis, one of which is the calibration-refinement factorization
(Murphy and Winkler, 1987):

f (p,I )= f (I |p)f (p). (1)

This factorization allows the inspection of two desirable
properties of probabilistic forecasts: (i) they should be re-
liable in that the forecast event actually happens with a
frequency close to the forecast probability, f (I = 1|p)∼= p
(e.g., a forecast probability of 30 % comes true ∼ 30 % of
the time), and (ii) the distribution of forecast probabilities
f (p) should be dispersed toward the extreme values of zero
and 1, indicating that the model has confidence in its own
predictions (Gneiting et al., 2007; Murphy, 1993). The prop-
erty of (i) is referred to as calibration (i.e., reliability), and
the property of (ii) is referred to as refinement (i.e., sharp-
ness), and a general goal with probabilistic forecast mod-
els is for them to be as sharp as possible without sacrific-
ing calibration (Gneiting et al., 2007; Wilks, 2019). We bor-
rowed distribution-oriented methodologies developed in the
weather modeling community over the last several decades
(e.g., Bröcker and Smith, 2007; DeGroot and Fienberg, 1983;
Gneiting et al., 2007; Murphy, 1993; Murphy and Winkler,
1987) to graphically assess the calibration-refinement factor-
ization. Specifically, we used a reliability diagram (Bröcker
and Smith, 2007; Wilks, 2019) to separately visualize the cal-
ibration and the refinement of the forecast model.

The first component of a reliability diagram is the calibra-
tion curve, a function of the conditional distribution f (I |p)
that provides a visual assessment of the fit between the dis-
tribution of forecast probabilities and the observed zones of
inundation (Bröcker and Smith, 2007; Gneiting et al., 2007).
Quantities on the x axis answer the question, “what is the
mean probability of inundation, pk , of all grid cells in the
kth bin?” On the y axis is the frequency of observed inun-
dation conditioned on the binned forecast probabilities, also

referred to as the observed relative frequency, which provides
an estimate of the calibration distribution: yk ≈ f (I = 1|p)
(Murphy and Winkler, 1987). These yk values answer the
question, “given a forecast probability of p, how often is
it correct?” With a perfect probabilistic forecast, the bin-
averaged probabilities will exactly match the observed rel-
ative frequencies, yk = pk , and points will fall along the 1 : 1
line in the calibration curve (Bröcker and Smith, 2007). In
reality, sampling variability causes deviations from the 1 : 1
line even for a perfectly reliable model (Wilks, 2019). Points
that fall above the 1 : 1 line indicate that the model is under-
predicting the observed extent of inundation, referred to as
under-forecasting, while points below the line indicate over-
forecasting. The

(
pk,yk

)
values are computed as

pk =
1
|ωk|

∑
ωk⊂�

p, (2)

yk =
1
|ωk|

∑
ωk⊂�

I, (3)

where � is the set of all grid cells in the spatial modeling
domain, ωk is the subset of � that satisfies p ∈ Bk , Bk is
the kth bin interval, and |ωk| is the number of model grid
cells in ωk . In all cases, we used bin widths of 10 percentage
points. Figure S2 provides a visual demonstration of ωk and
the computation of yk . Forecast reliability was assessed with
the mean residual, a measure of bias, and the residual sum of
squares, a measure of accuracy, between the (pk,yk).

The second component of a reliability diagram shows the
refinement distribution of the forecasts, answering the ques-
tion, “how often is each probability of inundation predicted
by the forecast model?” This plot shows the histogram of
f (p) using the same bins as used in constructing the calibra-
tion curve. A sharp forecast will predict probabilities close to
zero or 1 most of the time and will therefore have the high-
est counts near the boundaries of the histogram. We used the
standard deviation of forecast probabilities, σp, as a measure
of forecast sharpness because a larger standard deviation in-
dicates greater dispersion toward the extreme values (Bradley
et al., 2019).

3.7 Sensitivity analyses

We performed two analyses to explore the sensitivity of in-
undated area to each of the three ProDF input parameters
(debris-flow volume, χ , and τy). The goals of these sensi-
tivity analyses were to apportion uncertainty in the model
output amongst the three parameters and to rank them in
terms of relative importance for determining inundated area
(Razavi and Gupta, 2015; Saltelli et al., 2008). We used inun-
dated area as a summary of model output because it serves as
a simple proxy for downstream impacts. We used the SALib
Python package (Herman and Usher, 2017; Iwanaga et al.,
2022) to implement the PAWN global sensitivity analysis
method (Pianosi and Wagener, 2018). The method returns a
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sensitivity index between zero and 1 for each input parame-
ter, with higher indices indicating greater influence on model
output.

First, we performed a domain-aggregated sensitivity anal-
ysis. To distinguish a significant sensitivity value from one
that is due solely to approximation error in the PAWN
method, we included a dummy parameter of random num-
bers in the analysis. Bootstrapping (n= 50) was used to com-
pute 95 % confidence intervals about the median sensitivity
index of each parameter. Parameters whose 95 % confidence
interval exceeded that of the dummy parameter were consid-
ered significant (Pianosi and Wagener, 2018).

Second, we computed spatially distributed sensitivity in-
dices in every grid cell where simulated inundation occurred
on a cell-by-cell basis. The sensitivity response variable was
taken to be the local binary inundation value, I , from each
ProDF simulation. This analysis allowed us to compare the
relative importance of debris-flow volume, χ , and τy as a
function of location, revealing patterns of model sensitivity
over the length of the debris-flow runout paths.

4 Results

The forecast probability of debris-flow inundation is shown
in Fig. 3. Areas that had a non-zero probability of inun-
dation overlapped with 99 % of the areas with observed
debris-flow inundation, and the region of probabilities ex-
ceeding 1 % overlapped with 94 % of the observed area inun-
dated (Fig. 3a), indicating that the observation was contained
within the range of outcomes represented by the ensemble.
However, estimates of area inundated and visual examina-
tion of the inundation maps created with different probability
thresholds (e.g., 84 %, 50 %, 16 %) indicate that the inunda-
tion extent was under-forecast (Fig. 4). The highest forecast
probabilities are restricted to the main channels of the Mon-
tecito, San Ysidro, and Buena Vista Creek basins. This can
be seen by examining the binary inundation map created us-
ing a threshold probability of 84 % (i.e., p ≥ 0.84), which
resulted in a total inundated area of just 63 000 m2 and a
poor similarity index of−0.95 (Fig. 4a). The inundation map
created using a threshold probability of 50 % also substan-
tially underestimated the extent of the observed inundation,
resulting in an inundated area of 760 000 m2 and a similar-
ity index of−0.51 (Fig. 4b). Using a threshold probability of
16 % resulted in a binary inundation map that compared best
with observations, inundating 3 070 000 m2 and producing a
similarity index of −0.02 (Fig. 4c). For comparison, vali-
dation of the flow mobility parameter posterior distribution
on Montecito Creek resulted in a similarity index of −0.047
(Fig. S3).

The calibration component of the reliability diagram
shows that the forecast average probabilities were small rel-
ative to the observed relative frequencies, which similarly
indicates that the forecast tended to underestimate the ob-

Table 1. Summary metrics of the reliability diagram for each debris-
flow inundation simulation. See Sect. 3.6 for definitions.

WRF ensemble Scenario A Scenario B
forecast

Bias, pk − yk −15.9 % 0.1 % 10.7 %
Accuracy,

∑(
pk − yk

)2 0.31 0.05 0.18
Sharpness, σp 0.14 0.22 0.25

served extent of inundation (Fig. 3b). For example, areas that
had a forecast inundation probability of approximately 25 %,
50 %, and 75 % were observed to be inundated at rates of
roughly 40 %, 75 %, and 90 %, respectively (Fig. 3b). The
mean residual between the binned forecast probabilities and
the observed frequencies was −15.9 %, with a residual sum
of squares of 0.31 (Table 1). The histogram of forecast prob-
abilities indicates a lack of forecast sharpness because the
probabilities are clustered near zero and monotonically de-
crease in frequency toward 1 (Fig. 3c). Approximately 84 %
of forecast probabilities were between 0 %–10 %, and only
0.1 % were between 90 %–100 %. While the debris-flow vol-
umes (summed across all six basins) ranged from 0 m3 to
over 5 500 000 m3 in the ensemble forecast, the median value
was 198 000 m3, only 29 % of the debris-flow volume ob-
served in the 2018 event.

In contrast, when debris-flow volume was set to the ob-
served value for each basin (scenario A), analysis of the prob-
abilistic inundation map shows forecast probabilities that
were well-calibrated to the observed frequencies (Fig. 5a–
b). The mean residual was 0.1 % and the residual sum of
squares was 0.05, demonstrating a lack of bias and improved
reliability (Table 1). The forecast generated from scenario A
was sharp in that the greatest frequency of forecast probabil-
ities was for those near zero and 1. This was evident visually
(Fig. 5b) and statistically, as the standard deviation of inun-
dation probabilities in scenario A (0.22) was greater than that
of the WRF ensemble forecast (0.14), indicating more disper-
sal toward the extreme values (Table 1). The improvement in
sharpness was largely due to a 25-fold increase in the area
predicted to have a probability of inundation between 90 %–
100 % relative to the ensemble forecast, as approximately
2.5 % of scenario A inundation probabilities were between
90 %–100 %.

Scenario B, where we used predictions of debris-flow vol-
ume based on observed peak I15, resulted in an over-forecast
of inundation extent (Fig. 5c–d). Forecast probabilities were
generally too high relative to the observed frequencies of in-
undation, as demonstrated by a mean residual of 10.7 % in
the reliability diagram (Fig. 5d; Table 1). The debris-flow
volume summed across all six basins totaled 1 114 000 m3,
or 164 % of the observed debris-flow volume.

The global sensitivity analysis revealed that the runout
model was significantly sensitive to all three parameters
(debris-flow volume, χ , τy), with volume being the most in-

https://doi.org/10.5194/nhess-24-2359-2024 Nat. Hazards Earth Syst. Sci., 24, 2359–2374, 2024



2366 A. B. Prescott et al.: Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall

Figure 3. Results from the debris-flow inundation simulation driven with the 100-member WRF ensemble predictions of peak I15. (a) This
map shows the forecast probabilities of debris-flow inundation, P (d–f inundation), in all model cells with probability greater than or equal
to 1 %. Dashed lines show the extent of observed debris-flow deposits. Ticks along the map boundaries give coordinates in NAD83 UTM
zone 11N. The base map was sourced from Esri and the U.S. Department of Agriculture Farm Service Agency, and the hillshade layer
was generated from the 10 m resolution National Elevation Dataset (U.S. Geological Survey, 2020). (b, c) The two-part reliability diagram
shows the calibration-refinement factorization of the joint distribution of forecasts and observations (described in Sect. 3.6). In the calibration
curve (b), a perfectly calibrated model will lie along the 1 : 1 line, and points above (below) the diagonal indicate that the model is under-
forecasting (over-forecasting) the observed frequency of inundation. The histogram in (c) demonstrates the refinement distribution of the
forecast probabilities. A sharp forecast will have the highest count of probabilities toward the extreme values of 0 and 1.

fluential (Table 2). The median PAWN sensitivity indices as-
sociated with volume, χ , τy , and the dummy variable were
0.38, 0.10, 0.09, and 0.05, respectively. Additionally, maps
depicting spatially distributed sensitivity indices indicate that
the relative importance of the input parameters varied in both
the downstream and the across-stream directions (Fig. 6).
The χ parameter had the greatest influence at higher ele-
vations in overbank areas removed from the primary chan-
nel, with latitudinally binned averages that are nearly twice
as high near the fan apex when compared to those near
the ocean (Fig. 6a). The τy parameter and debris-flow vol-
ume showed the opposite pattern, with greater importance at
lower latitudes near the distal portion of the fan close to the
ocean (Fig. 6b–c), although the flow volume also exerted a
strong control on inundation throughout the model domain.
Any of the three parameters may be the most influential in

Table 2. PAWN sensitivity indices (Pianosi and Wagener, 2018)
with 95 % confidence intervals from bootstrapping (n= 50 itera-
tions).

Parameter Median PAWN sensitivity index
(2.5th–97.5th percentile values)

χ 0.098 (0.082–0.111)
τy 0.094 (0.080–0.113)
Debris-flow volume 0.382 (0.360–0.403)
Dummy 0.049 (0.040–0.059)

determining whether an area will be inundated depending on
location (Fig. 6d).
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Figure 4. Binary maps of the area inundated created by thresholding
the forecast probabilities of debris-flow inundation, P (d–f inunda-
tion), at (a) 84 %, (b) 50 %, and (c) 16 %. A grid cell is marked as
inundated when the local forecast probability exceeds the threshold
value. The inundated area increases as the probability threshold de-
creases, producing similarity indices of −0.95, −0.51, and −0.02,
respectively. Ticks along the boundaries of each map give coordi-
nates in NAD83 UTM zone 11N. The base map was sourced from
Esri and the U.S. Department of Agriculture Farm Service Agency,
and the hillshade layer was generated from the 10 m resolution Na-
tional Elevation Dataset (U.S. Geological Survey, 2020).

5 Discussion

Our study results indicate that reducing uncertainty in debris-
flow volume predictions will have a substantial effect on re-
ducing uncertainty associated with inundation. Even in the

region for which it was developed, the prediction uncer-
tainty associated with the EAV model can exceed an order of
magnitude (Gartner et al., 2014; Barnhart et al., 2021), with
greater uncertainties likely when models are applied in land-
scapes that differ from where they were trained (e.g., Gorr
et al., 2023; Rengers et al., 2023). In the absence of suffi-
cient data to train local or regional postfire debris-flow vol-
ume models, it may be possible to apply a correction factor to
an existing model that was trained elsewhere (e.g., Rengers
et al., 2023). In addition, variations in forecast storm struc-
ture can result in highly variable precipitation intensity, du-
ration, timing, and spatial distribution (Fig. 1c) (Oakley et
al., 2023), driving further uncertainty in debris-flow volume
prediction through the forecast peak I15. This uncertainty
propagates from rainfall into a wide range of inundation out-
comes (Fig. S4). Improved prediction of postfire debris-flow
volume, whether through improved forecasts of I15 or im-
proved volume models, would reduce the uncertainty asso-
ciated with the inundation probabilities and result in a nar-
rower range of inundation outcomes. However, the modular
structure of the framework presented here makes it straight-
forward for the debris-flow likelihood and volume models to
be replaced with updated or region-specific alternatives as
they become available (e.g., Diakakis et al., 2023; Nyman et
al., 2015; Santi and Morandi, 2013; Staley et al., 2013; Wall
et al., 2023).

Calibration of the flow mobility parameters created a pos-
terior distribution with a range of support over χ–τy space
(Fig. S3a). Capturing the effect of this spectrum of possible
flow behaviors was important because the debris-flow prop-
erties that we expect to influence the flow mobility param-
eters (e.g., grain size distribution, sediment concentration)
are unknown before an event. Furthermore, it is common
for debris-flow properties to change as flows move downs-
lope (Iverson, 1997, 2003). ProDF uses constant values for
χ and τy across the simulation domain, limiting debris-flow
behavior to a single characteristic type. The forecast model,
however, enabled the representation of multiple flow rheolo-
gies in the probabilistic prediction of inundation by sampling
flow mobility parameters from the calibrated posterior distri-
bution. At sites without past events to aid in calibration, we
would expect greater uncertainty in any estimate of a poste-
rior parameter distribution. Gorr et al. (2023) found that the
best-fit calibrated value of yield strength for a small debris
flow in northern Arizona was more than 3 times greater rela-
tive to that calibrated for the Montecito debris flows in south-
ern California. Poor constraints on yield strength in forward-
modeling applications could result in greater uncertainty in
predictions of inundation, particularly in terms of total down-
stream travel distance, since the yield strength plays an im-
portant role in determining when the modeled flow comes
to rest (Fig. 6b). Still, the greater importance of debris-flow
volume in determining inundated area indicates that plac-
ing better constraints on debris-flow volume, including vari-
ations resulting from entrainment or deposition along the

https://doi.org/10.5194/nhess-24-2359-2024 Nat. Hazards Earth Syst. Sci., 24, 2359–2374, 2024



2368 A. B. Prescott et al.: Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall

Figure 5. Inundation probability maps and two-part reliability diagrams resulting from the constant-volume simulation scenarios A and B;
see the Fig. 3 caption for panel descriptions. (a–b) Scenario A uses the measured input debris-flow volumes for each drainage basin (Kean
et al., 2019). (c–d) Scenario B uses input debris-flow volumes predicted with the EAV model, which uses I15 values interpolated to each
ProDF starting point from observations at the KTYD and Doulton Tunnel rain gauges (78 and 105 mm h−1, respectively; Kean et al., 2019).
Ticks along the boundaries of each map give coordinates in NAD83 UTM zone 11N. The base map was sourced from Esri and the U.S.
Department of Agriculture Farm Service Agency, and the hillshade layer was generated from the 10 m resolution National Elevation Dataset
(U.S. Geological Survey, 2020).

travel path, warrants prioritization over constraints on flow
mobility parameters (Figs. 6 and S4; Table 2).

Analysis of the forecast inundation probabilities using the
reliability curve showed that the model tended to under-
forecast the observed frequencies of inundation (Fig. 3b). For
example, in areas with a forecast inundation probability of
40 %–50 %, the frequency of observed inundation was ap-
proximately 70 %. In other words, the model simulated inun-
dation less often than observed. We attribute this bias, at least
in part, to the extreme nature of the 2018 rainfall event and
the challenges of representing this event at a 24 h lead time
in the atmospheric model. We expect that the large spread in
peak I15 in the WRF atmospheric model forecast and the un-
certainties associated with it are not unique to our study area
or the modeled rainstorm and should be considered in fu-
ture applications of this and similar probabilistic debris-flow
inundation model frameworks. Uncertainties in mesoscale

precipitation forecasts of short-duration, high-intensity rain-
fall (e.g., peak I15) are well-documented, even at lead times
shorter than 24 h (Cannon et al., 2020; English et al., 2021).
The observed peak I15 values lie in the tail of the atmospheric
model ensemble spread (Fig. 1c) (Kean et al., 2019; Oak-
ley et al., 2023); thus, most I15 values in the ensemble are
lower than observed. This leads to lower ensemble predic-
tions of debris-flow volume and likelihood with the EAV and
M1 models and therefore less inundation than would be ex-
pected given the observed I15. This may also explain why
the best match of simulated inundation to the observed de-
posits occurs at a threshold probability level of 16 %, while
threshold probabilities of 50 % and 84 % resulted in substan-
tial underestimates of area inundated (Figs. 3 and 4).

Our interpretation that the ensemble distribution of pre-
dicted I15 led to under-forecasting is supported by compar-
ison with the reliability diagrams associated with forecast
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Figure 6. Spatially distributed PAWN sensitivity indices for forecast inundation against the model parameters (a) χ , (b) τy , and (c) debris-
flow volume. (d) The parameter that resulted in the maximum sensitivity index in each grid cell. The vertical plots on the right of panels
(a) through (c) show the longitudinally averaged sensitivity index as a function of binned latitude, demonstrating how parameter importance
varies with distance from the upstream basin outlets. Depending on the location in the simulation domain, each of the input model parameters
may be the most influential. Ticks along the boundaries of each map give coordinates in NAD83 UTM zone 11N. The base map was sourced
from Esri and the U.S. Department of Agriculture Farm Service Agency, and the hillshade layer was generated from the 10 m resolution
National Elevation Dataset (U.S. Geological Survey, 2020).

scenarios A and B, which were run using observed debris-
flow volumes and observed peak I15, respectively (Fig. 5).
The calibration curves from these two scenarios indicate high
sensitivity of the calibration to the input debris-flow vol-
umes, which are influenced by peak I15. When the volumes
predicted from I15 were too low, as in the fully predictive
model, the calibration curve lies above the 1 : 1 line, indicat-
ing under-forecasting (Fig. 3b). The calibration curve passes
through the 1 : 1 line when the observed volumes, which
are greater than those computed using the ensemble predic-
tions of I15, were used (scenario A; Fig. 5b). Finally, the
calibration curve drops below the 1 : 1 line, indicating over-
forecasting, when volumes were computed based on the ob-
served I15 (scenario B; Figs. 5d and S1). Volumes computed
from the observed I15 were greater than both the observed
volumes and those computed from the ensemble predictions
of I15. As a result, the model would have over-predicted in-
undation area if the atmospheric model yielded a perfect pre-
diction of peak I15.

While the sum of predicted volumes from scenario B was
164 % of the total observed volume, this amount of error is
within the range of what is expected. The EAV model pre-
dicts the natural logarithm of volume with a standard error
of 1.04 (Gartner et al., 2014), which translates to a 95 %

probability that the observed volume will be between 13 %
and 770 % of the modeled value (Barnhart et al., 2023). This
degree of uncertainty highlights the potential gains of im-
proving models for postfire debris-flow volume. When the
observed volumes were used (i.e., scenario A), the calibra-
tion curve is close to the diagonal, and the refinement dis-
tribution shows that extreme values were most commonly
forecast (Fig. 5b). This indicates that the calibrated forecast
model is both reliable and sharp when the volumes are well-
constrained. However, in the forecast model where debris-
flow volume was a function of the peak I15 derived from the
atmospheric model ensemble, the ultimate effects of having
a lower-than-observed peak I15 in many atmospheric model
ensemble members were likely at least partially offset by the
EAV model’s bias of over-predicting the debris-flow volumes
of the Montecito event (Barnhart et al., 2021; Kean et al.,
2019).

The methods presented here take a step toward near-real-
time assessments of postfire debris-flow hazards associated
with an incoming rainstorm. Our work builds on that of Oak-
ley et al. (2023), who used the same atmospheric model en-
semble to produce probabilistic predictions of debris-flow
likelihood and volume in watersheds burned by the 2017
Thomas Fire. They did not include predictions of postfire
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debris-flow inundation, but they identified that a product
linking together postfire debris-flow volume ensembles with
runout models was an important area of focus for future re-
search to support impact-based decision-making (Oakley et
al., 2023). Further, recent surveys demonstrate a need for
hazard assessment products that connect debris-flow inun-
dation models with forecasts of rainfall in the short period
of time between fire containment and the first precipitation
event (Barnhart et al., 2023; Gourley et al., 2020). Consider-
ing that decision quality improves when probabilistic infor-
mation is presented appropriately in weather forecasts (Rip-
berger et al., 2022), the types of maps generated by the model
framework presented here could be used to support decisions
regarding evacuations, staging of equipment and emergency
personnel, and debris-flow mitigation efforts.

Additional assessments of the integrated modeling ap-
proach presented here in different geographic and climatic
settings would help generalize findings and develop guide-
lines for constraining flow mobility parameters in areas
where there are no historical observations that can be used
to calibrate the runout model, ProDF. Computing resource
constraints present a challenge for future studies and real-
world use because the probabilistic forecast of debris-flow
inundation and the atmospheric ensemble forecast both re-
quire many core hours of computing time. Approaches to re-
ducing computation times include optimizing aspects of the
simulation for the task at hand (e.g., the number of ensem-
ble members, horizontal grid spacing; Oakley et al., 2023),
running debris-flow runout simulations massively in paral-
lel, and limiting the spatial extent of modeling efforts. The
framework proposed here could also be applied in a pre-fire
context to assess postfire hazards. In this case, the rainfall in-
tensity input could be determined from local climatological
data and soil burn severity characteristics could be simulated
(e.g., Kean and Staley, 2021; Staley et al., 2018; Wells et
al., 2023). Pre-fire assessments of postfire hazards provide
valuable insight into areas of greatest concern and could as-
sist with community planning, emergency management, and
debris-flow hazard mitigation (McCoy et al., 2016; Tillery et
al., 2014).

6 Conclusions

We created a computational framework for probabilistic pre-
dictions of rainfall-induced debris-flow inundation down-
stream of burned basins that integrates an ensemble fore-
cast of rainfall with existing models for postfire debris-flow
likelihood, volume, and runout. We applied this methodol-
ogy using a 24 h, 100-member atmospheric model ensem-
ble forecast of rainfall intensity associated with a destructive
debris-flow event that followed the 2017 Thomas Fire. When
debris-flow volumes were well-constrained, the probabilistic
model predictions were sharp and well-calibrated to the ob-
served area inundated. In the fully predictive model, approx-

imately 99 % of the observed inundation area was contained
within a region where the simulated probability of inunda-
tion was greater than zero. In general, however, we found
that the model under-forecasted the area inundated. We at-
tribute the under-forecasting of the inundation extent to the
fact that the observed peak 15 min rainfall rates were in the
upper tail of the atmospheric model ensemble distribution of
forecast rainfall rates.

A sensitivity analysis indicated that debris-flow volume
had the greatest influence on the simulated area inundated,
while the two flow mobility parameters had a lesser but still
significant influence. A spatially distributed sensitivity anal-
ysis showed that the importance of flow volume and the flow-
mobility parameters varied across the model domain in sys-
tematic ways, and it showed that each parameter may be
the most important locally depending on location within the
landscape. Future efforts to constrain flow mobility param-
eters in a range of postfire settings would assist with reduc-
ing uncertainty in debris-flow runout model predictions, but
the greatest gains in model performance are likely to result
from improving estimates of debris-flow volume. Applica-
tion of the proposed framework to other sites with differ-
ent topographical and climatological properties would help
assess the generalizability of findings related to parameter
sensitivity. While we focus on an application using forecast
rainfall, the proposed framework could also be used to assess
postfire debris-flow hazards in response to design rainstorms
before a fire starts.
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