
Nat. Hazards Earth Syst. Sci., 24, 2147–2164, 2024
https://doi.org/10.5194/nhess-24-2147-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

A downward-counterfactual analysis of flash floods in Germany
Paul Voit and Maik Heistermann
Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany

Correspondence: Paul Voit (voit@uni-potsdam.de)

Received: 18 December 2023 – Discussion started: 2 January 2024
Revised: 19 March 2024 – Accepted: 30 April 2024 – Published: 27 June 2024

Abstract. Counterfactuals are scenarios that describe alter-
native ways of how an event, in this case an extreme rainfall
event, could have unfolded. In this study, we present the re-
sults of a counterfactual search for flash flood events in Ger-
many. We used a radar-based precipitation dataset from Ger-
many’s national meteorological service (Deutscher Wetter-
dienst) to identify the 10 most extreme precipitation events
in Germany from 2001 to 2022 and then assumed that any
of these top 10 events could have happened anywhere in
Germany. In other words, the events were shifted around all
over Germany. For all resulting positions of the precipita-
tion fields, we simulated the corresponding peak discharge
for any affected catchment smaller than 750 km2. From all
the realizations of this simulation experiment, the maximum
peak discharge was identified for each catchment.

In a case study, we first focused on the devastating flood
event in July 2021 in western Germany. We found that a mod-
erate shifting of the event in space could change the event
peak flow at the Altenahr gauge by a factor of 2. Compared
to the peak flow of 1004 m3 s−1 caused by the event in its
original position, the worst-case counterfactual of that event
led to a peak flow of 1311 m3 s−1. Shifting another event that
had occurred just 1 month earlier in eastern Germany over
the Ahr River valley even effectuated a simulated peak flow
of 1651 m3 s−1.

For all analysed subbasins in Germany, we found that, on
average, the highest counterfactual peak exceeded the max-
imum original peak (between 2001 and 2022) by a factor
of 5.3. For 98 % of the basins, the factor was higher than 2.

We discuss various limitations of our analysis, which are
important to be aware of, namely, the quantification and se-
lection of candidate rainfall events, the hydrological model,
and the design of the counterfactual search experiment. Still,
we think that these results might help to expand the view of
what could happen in the case that certain extreme events oc-

curred elsewhere and thereby reduce the element of surprise
in disaster risk management.

1 Introduction

Flash floods constitute a relevant natural hazard in many re-
gions of the world. In comparison to river floods, the foot-
print of a flash flood event is small, yet the local impact can
be devastating. Flash floods combine low predictability, er-
ratic overflow behaviour, high flow velocities, and often mas-
sive debris loads. They are mainly caused by heavy precipi-
tation events (HPEs) with very high rainfall intensities and
characterized by a rapid concentration of runoff. Usually,
flash floods are defined by a response time of less than 6 h
(Borga et al., 2008; Marchi et al., 2010), which mostly con-
fines their occurrence to catchments smaller than 1000 km2.
The underlying HPEs often are highly variable in space and
time (Borga et al., 2008). In addition to the properties of the
HPE itself, the geographical context governs the nature of the
hydrological response and thus the resulting impact. Hence,
both atmospheric and hydrological processes interact across
various spatial and temporal scales during flash floods (Geor-
gakakos, 1986).

The management of flash flood risks often requires cor-
responding extreme value statistics. The robustness of such
statistics is contingent upon the length of historical records
(Woo, 2019) and might be compromised by the effects of on-
going climate change. Locally, flash floods are rare events;
observational data are scarce as the affected catchments are
typically small and ungauged (Gaume et al., 2008). This
makes it difficult to establish reliable extreme value statistics
for many locations. Worst-case flood scenarios and their de-
pendence on spatio-temporal characteristics of precipitation
as well as the catchment’s hydrological conditions have not
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yet been fully understood (Zischg et al., 2018; Marchi et al.,
2010). Spatio-temporal patterns of rainfall and their dynamic
interaction with topography and land use significantly influ-
ence the generation and propagation of flood peaks (Beven
and Hornberger, 1982; Singh, 1997; Tarolli et al., 2013; Em-
manuel et al., 2015; Zischg et al., 2018). This implies that
even slight changes in event realizations could significantly
affect the response. Yet, the sample size of the investigated
HPEs is often limited.

To enhance our understanding of the flash flood hazard in
Germany, we adopt an approach known as “counterfactual
thinking” (Roese, 1997; Woo, 2019) which was also pro-
posed recently by Montanari et al. (2023) in the context of
flood research. This approach involves considering alterna-
tive ways of how events could have unfolded. For risk assess-
ment, downward counterfactuals are particularly interesting:
they involve thought experiments about past events with out-
comes worse than what actually transpired (Roese, 1997).
Such thought experiments can provide valuable insights into
worst-case scenarios that have not (yet) occurred. This way
the level of preparedness could be increased, although the ap-
proach typically cannot underpin such worst-case scenarios
with occurrence probabilities.

Spatial changes, in particular, play a significant role in
counterfactual analysis (Woo, 2019): the coincidence of an
HPE with an area characterized by steep slopes, impervious
surfaces, and multiple stream intersections can trigger very
high flood peaks, which would be less pronounced in less
steep and more natural catchments.

Based on 16 years of radar observations, Lengfeld et al.
(2019) found that extreme daily precipitation is dependent
on the orography but that heavy hourly rainfall can occur
anywhere in Germany. Based on the – admittedly strong –
assumption that historical HPEs could have happened any-
where in Germany, we propose, in this study, a systematic
downward-counterfactual search for flash floods in Germany.
To that end, we adopted the following approach.

1. Based on radar-based precipitation estimates from
2001–2022, we created a catalogue of HPEs in Ger-
many and ranked these HPEs using a recently proposed
metric to assess the extremity of rainfall across spatial
and temporal scales (Voit and Heistermann, 2022).

2. We shifted the 10 most extreme HPEs from our cata-
logue to each subbasin in Germany and simulated the
corresponding quick runoff (QR) response for the whole
affected area. This way we created a total of 23 000
counterfactual scenarios for each HPE. Each of these
scenarios includes the QR simulations for hundreds of
subbasins.

3. Additionally we model, for each subbasin, the QR re-
sponse to all events contained in our catalogue, in their
original position. The corresponding results serve as a
reference for the maximum historical QR response in

each subbasin, to which we compare the results of the
counterfactual search.

Based on this groundwork, we first investigate, in a re-
gional case study, counterfactual scenarios of the devastat-
ing July 2021 precipitation event over the Ahr River catch-
ment (see Mohr et al., 2023, for details). We then expand our
analysis to all of Germany, explore the potential hydrological
response to rare HPEs in case they had happened anywhere
in Germany, and search for downward-counterfactual scenar-
ios. Based on this search, we try to answer how close actual
historical events (within the last 22 years) have already been
to the worst-case scenario and discuss the usefulness of this
information for flood risk management.

2 Data

In this section, we will describe the data that were used for
the extraction of HPEs as well as the data sources for our hy-
drological model. The overall study area is Germany. We will
also present a case study in which we focus on the catchment
of the Ahr River down to the runoff gauge at Altenahr. In our
hydrological model, this catchment consists of 37 subbasins
(details of this case study are presented in Sect. 4.2). Both
the overall study area and the case study area are illustrated
in Fig. 1.

2.1 Precipitation data

To allow for a detailed representation of the spatio-temporal
variability in rainfall, we used the radar climatology prod-
uct (Radarklimatologie, RADKLIM v2017.002) provided by
Germany’s national meteorological service (Deutscher Wet-
terdienst; DWD hereafter) between 2001 and 2022. RAD-
KLIM is a reprocessed version of the operational radar-based
quantitative precipitation estimation (QPE) product (Radar-
Online-Aneichung, RADOLAN; see Winterrath et al., 2012)
of the DWD since 2001. To minimize the occurrence of arte-
facts (Lengfeld et al., 2019) and to allow for heavy rainfall
analysis (Kreklow et al., 2019), the radar data are adjusted
by additional rainfall data from gauges (hourly and daily), a
homogeneous set of algorithms, and advanced climatologi-
cal corrections (Winterrath et al., 2018b). RADKLIM repre-
sents the Germany-wide hourly precipitation at a resolution
of 1 km× 1 km. Some parts of Germany (far north, south,
and east) have not been covered by radar since 2001, but
overall data coverage over Germany is good, with less than
10 % missing hours in most areas (Lengfeld et al., 2019). The
RADKLIM dataset is available on the DWD open-data server
(Winterrath et al., 2018a). We would like to emphasize the
importance of using radar-based precipitation products when
dealing with flash floods: compared to rain gauge interpola-
tion, the error in radar-based products has been shown to be
considerably smaller (Journée et al., 2023). Zoccatelli et al.
(2010) also showed that the errors in rain gauge interpola-
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Figure 1. Map of the study region (Germany): topography, major waterbodies (blue), federal states (black), selected cities (red), and subbasins
of the Ahr catchment upstream of Altenahr (white; case study region; see Sect. 4.2).

tions for flash-flood-triggering HPEs do not average out at
the spatial scales associated with flash floods.

2.2 Digital elevation model

The Digital Elevation Model over Europe (EU-DEM) was
used to delineate catchments in Germany and for further
analysis of runoff concentration (flow paths and travel time to
catchment outlets). For the EU-DEM, SRTM (Shuttle Radar
Topography Mission) and ASTER GDEM (Advanced Space-
borne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model) data are fused by a weighted-
averaging approach. The dataset has a spatial resolution of
25 m and can be downloaded from the Copernicus Land
Monitoring Service (European Commission, 2016).

2.3 Land cover

Information about land cover was derived from CORINE
(Coordination of Information on the Environment) CLC5-

2018 (BKG, 2018). The product is based on a classification
of high-resolution satellite data into 37 land cover classes (for
Germany), according to the nomenclature of the European
Environment Agency (EEA). Objects with a minimum size
of 5 ha are considered in the classification, and the product is
updated every 3 years.

2.4 Soil data

Soil information was derived from the BUEK 200 database
(Bodenübersichtskarte, national soil survey at a scale of 1 :
200000; BGR, 2018), which is compiled from the surveys
of each federal state at a scale of 1 : 200 000 by the Fed-
eral Institute for Geosciences and Natural Resources (Bun-
desanstalt für Geowissenschaften und Rohstoffe, BGR) in
cooperation with the State Geological Surveys (Staatliche
Geologische Dienste, SGD). For each mapping unit, the
BUEK 200 database provides areal fractions of dominant soil
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types and the corresponding profile information, including
texture, bulk density, and much more.

3 Methods

This section describes the methods used to create a catalogue
of HPEs, an outline of the hydrological model to model the
formation and concentration of quick runoff, and the design
of the counterfactual simulation experiment.

3.1 Catalogue of heavy rainfall events in Germany

While the DWD provides a catalogue of HPEs (CatRaRE,
Catalogue of Radar-based Heavy Rainfall Events; Lengfeld
et al., 2021), we still opted to develop our own catalogue.
This decision was motivated by the fact that HPEs which ex-
hibit extreme behaviour across various durations and spatial
scales can trigger different flood mechanisms that can inter-
sect and amplify each other. For instance, high-intensity rain-
fall on a small spatial scale may be embedded within larger
events and preceded by periods of low-intensity rainfall that
increase soil moisture. Antecedent soil moisture has a signif-
icant impact on event runoff coefficients and is essential for
flash flood modelling (Marchi et al., 2010). To that end, Voit
and Heistermann (2022) have recently proposed a new met-
ric, the cross-scale weather extremity index (xWEI), to de-
tect and assess HPEs that were extreme at various spatial and
temporal scales. Both the WEI (as used by CatRaRE) and the
xWEI metrics quantify a measure of extremeness along two
dimensions: rainfall duration and spatial extent. Hence the
variation in extremeness along these dimensions could be il-
lustrated as a surface. While the WEI metric corresponds to
the maximum value of that surface, the xWEI metric corre-
sponds to the volume under the surface, meaning that it is
high if the extremeness is high across spatial and temporal
scales.

The catalogue was created by applying a multi-step pro-
cedure. Considering the RADKLIM dataset as a 3-D array
(one temporal dimension, two spatial dimensions), we first
apply a moving 3-D window (72 h× 3 km× 3 km) to the
entire dataset. Within this moving window, the rainfall ex-
tremeness is computed for each voxel and for various dura-
tions. Afterwards, a clustering algorithm is applied to iden-
tify spatio-temporal clusters of extreme rainfall. The details
of this approach together with an illustration are provided
in Appendix A (Fig. A1). The resulting catalogue contains
17 302 events.

3.2 Modelling quick runoff

We used standard GIS (geographic information system) tech-
niques (sink filling, flow accumulation, flow direction, and
catchment delineation) implemented in the Python package
PCRaster (Karssenberg et al., 2010) to derive the sub-
basins. Since our model requires the areal-average precipi-

tation per subbasin as input, the subbasins need to be suffi-
ciently small to represent the effects of spatial rainfall vari-
ability on the formation and concentration of quick runoff.
For that purpose, we set outlet points for the subbasins at ev-
ery stream intersection with a Strahler order of 7 or larger.
This way we divided the study area into 22 384 subbasins.
For the analysis we restricted our modelling to a spatial scale
of up to 750 km2, which leads to 19 809 remaining basins.
The median basin size is 12 km2 (25th percentile: 6.9 km2,
75th percentile: 20.2 km2). Figure B1 (Appendix B) illus-
trates the distribution of subbasin sizes as a histogram.

In the case study (Sect. 4.2) we focused on the catch-
ment of Altenahr (Rhineland-Palatinate) as a study region
(see Fig. 1). The city of Altenahr was heavily affected by the
event named Bernd in July 2021 in western Germany and hit
by a flood on 15 July 2021 that caused massive destruction.
The catchment upstream of Altenahr, before the inflow of the
Vischelbach, has an approximate size of 728.6 km2 and is, in
our model, split into 37 subbasins. The smallest subbasin has
a size of 3 km2, the largest is 48 km2, and the median size
is 17.1 km2. The average curve number for the whole catch-
ment is 66 (see Sect. 3.2.1), varying between 61–72 for the
individual subbasins (all values for medium soil moisture,
soil moisture class 2).

Flash floods are characterized by quick (surface or near-
surface) runoff components (Georgakakos, 1986; Marchi
et al., 2010; Grimaldi et al., 2010; Borga et al., 2014). Thus,
the hydrological model setup can be simplified, as processes
like evaporation and groundwater dynamics have a minimal
impact on the peak formation. While the formation of quick
runoff is mostly controlled by soil conditions and land use,
the concentration of quick runoff is primarily driven by topo-
graphic relief (Ruiz-Villanueva et al., 2012). Based on these
considerations, we adopt the following hypotheses for our
model.

– Flash floods peaks are dominated by quick runoff
(Marchi et al., 2010; Borga et al., 2014).

– The morphology and topography of the catchment exert
the main control on the concentration of quick runoff.

– Flash floods occur predominantly in small to medium-
sized catchments with an area smaller than 750 km2.

– Evapotranspiration and baseflow dynamics are negligi-
ble.

– The objective of the model is not to accurately simulate
discharge dynamics. Instead, our focus is primarily on
the timing and magnitude of the quick runoff peak flow
(QR) and making relative comparisons between differ-
ent counterfactuals and original events.

– Due to the lack of accurate streamflow data (Gaume
et al., 2004; Borga et al., 2014) and the computational
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effort to model a large number of counterfactual sce-
narios, we cannot use a model that requires parameter
calibration.

To this end, our model consists of only two components
which are described in more detail in the following subsec-
tions below.

1. The curve number (CN) method (U.S. Department
of Agriculture-Soil Conservation Service, 1972; Natu-
ral Resources Conservation Service, 2004; Garen and
Moore, 2005) calculates the effective rainfall based on
land use, soil characteristics, and antecedent rainfall.

2. The geomorphological instantaneous unit hydrograph
(GIUH) method represents the concentration of quick
runoff for each subbasin. By superimposing these hy-
drographs, we can efficiently analyse a large number of
counterfactual precipitation scenarios.

With increasing catchment size, the influence of channel
mechanics and hydro-engineering on streamflow becomes
more important. Due to the limitations of our model, we are
unable to incorporate these factors. Consequently, we restrict
our QR modelling to subbasins with a spatial scale of up to
750 km2. The majority of the 19 809 remaining subbasins are
head catchments (13 741) and have an average size of 15 km2

and a median size of 11.2 km2.

3.2.1 SCS-CN method

We use the established SCS-CN (Soil Conservation Service
curve number) method (U.S. Department of Agriculture-
Soil Conservation Service, 1972; Ponce and Hawkins, 1996;
Natural Resources Conservation Service, 2004) to calcu-
late the effective precipitation depending on soil, land use,
and antecedent wetness. For each subbasin, we utilized
the BUEK 200 soil database (see Sect. 2.4) to obtain the
fractions of four different soil classes (from permeable
to non-permeable). This classification was combined with
the CORINE CLC5-2018 land use data (see Sect. 2.3).
Given that flash flood events primarily occur during summer
months (see Sect. 3.3), we made slight adjustments to the
CN values for agricultural areas to account for the influence
of summer crops (based on Seibert et al., 2020). Ultimately,
a single CN value was calculated for each subbasin using a
weighted areal average.

Rainfall series for each individual subbasin and event real-
ization were obtained using the zonal-statistics functionality
of the Python package wradlib (Heistermann et al., 2013),
which computes the weighted-average rainfall per subbasin
based on the intersection of each RADKLIM pixel with the
subbasin. These areal-average rainfall data were then used to
calculate the effective rainfall using the SCS-CN method.

3.2.2 GIUH

To route the effective rainfall derived from the SCS-CN
method to the subbasin outlet, we utilized the GIUH method.
Especially for ungauged basins, this method provides a sim-
ple and widely used tool for rainfall-runoff modelling by tak-
ing into account the geomorphological features of a basin
(Singh et al., 2014; Yi et al., 2022). The GIUH method
constructs a hydrograph by estimating the travel time of an
instantaneously applied unit of effective rainfall (typically
1 mm) from each grid cell in the catchment to the outlet.

The travel time is determined based on the length of sur-
face flow paths to the outlet and the corresponding flow ve-
locities. Various methods exist to calculate flow velocities.
We opted for the spatially distributed travel time model intro-
duced by Maidment et al. (1996) which allows for the use of
distributed terrain information in an efficient manner (Bun-
ster et al., 2019). This model demonstrated suitability in a
comparative study conducted by Grimaldi et al. (2010). In
this method, the flow velocity in a cell is defined as a func-
tion of the contributing upstream areaA and the local slope s:

v = vm
sbAc

[sbAc]m
, (1)

with v as the velocity assigned to a cell with the local slope s
and the upstream drainage area A. For b and c, 0.5 has
been proven to be a suitable value (Maidment et al., 1996;
Grimaldi et al., 2010). vm describes the average value of the
velocity in all cells in the watershed and is set to 0.1 ms−1

based on the study of Grimaldi et al. (2010). [sbAc]m is the
watershed average value of the slope-area term. By incor-
porating the drainage area A into the formula, this method
considers the increasing hydraulic radius (Manning’s equa-
tion) with higher flow volume, thereby capturing the down-
stream increase in flow velocity without the need to estimate
roughness coefficients for individual grid cells. Furthermore,
it eliminates the need to differentiate between hill slope and
channel grid cells within the catchment. Similarly to previous
studies (Sivapalan et al., 2002; Marchi et al., 2010; Creutin
et al., 2013), we constrained the resulting velocities within
the range of 0.06 to 3 ms−1. By summing the velocities of
each grid cell along a flow path, we estimated the travel time
for each cell to reach the outlet using the ldddist func-
tion of the Python package PCRaster (Karssenberg et al.,
2010). The hydrograph, representing the QR response of the
catchment, is then derived by the probability density func-
tion of travel times from all grid cells to the catchment outlet.
This method assumes a time- and discharge-invariant veloc-
ity field, allowing for a convolution of the GIUHs to model
the catchment response to the effective rainfall of an HPE.

In the case that two subcatchments flow together we add
the hydrograph (superposition) of the upstream basin to the
hydrograph of the downstream basin with a temporal delay.
The delay is determined by the travel time from the inlet of
the downstream basins to its outlet.
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3.3 Design of the downward-counterfactual simulation
experiment

For our counterfactual study, we selected the 10 highest-
ranking events from our catalogue (Table 1). We then re-
located each of these events to each subbasin in Germany.
Since the spatial extent of the events is much larger than
that of the subbasins, we aligned the pixel with the highest
hourly rainfall with the centroid of the corresponding sub-
basin. We then modelled the QR response for all subbasins
within the HPE’s bounding box (not just for the subbasin
to which we shifted the centroid of the HPE). That way the
overall results are not too sensitive to how we actually align
an HPE with an individual subbasin. By following this pro-
cedure, we generated approximately 230 000 counterfactual
QR scenarios across Germany (23 000 subbasins multiplied
by 10 HPEs with their centroids shifted across all subbasins).
These datasets contain a total of more than 829 million coun-
terfactual QR hydrographs for the individual subbasins, and
we refer to them as “cf_germany”. Additionally, we filtered
the complete cf_germany dataset by limiting the maximum
distances over which the HPEs were shifted to 10, 20, 50,
and 250 km. We refer to these filtered datasets as cf_10km,
cf_20km, cf_50km, and cf_250km.

3.4 Metrics for flash flood response

To compare flood peaks across different basin sizes, we uti-
lized the concept of the unit peak discharge (UPD) (refer
to Castellarin, 2007, for a summary of the concept). The
UPD (m3 s−1 km−1.2) is the ratio between the discharge
peak (m3 s−1) and the reduced upstream catchment area
((km2)0.6). To limit the influence of the upstream catch-
ment area, we use an exponent of 0.6 (similarly to Gaume
et al., 2008; Emmanuel et al., 2017). Amponsah et al.
(2018) used a UPD of 0.5 m3 s−1 km−2 (which corresponds
to 0.66 m3 s−1 km−1.2) as the lower threshold for the defi-
nition of flash floods across a variety of climates and stud-
ies in their flash flood catalogue. As an illustration of the
unit of the UPD, a UPD of 3 m3 s−1 km−1.2) could equal an
18 m3 s−1 flood peak in a basin of 20 km2 size or a peak flow
of 72 m3 s−1 in a 200 km2 basin.

4 Results and discussion

In this section, we present the results of our analysis. Sec-
tion 4.1 starts by introducing the 10 most severe precipita-
tion events which were identified based on the cross-scale
extremity index. By shifting them all over Germany, they
form the basis of our spatial counterfactual search experi-
ment. The hydrological simulation results of this experiment
are first explored in a case study for the Ahr catchment and
put into context of the devastating flood event in July 2021
(Sect. 4.2). Second, we summarize the results of our simula-
tion experiment for all of Germany.

4.1 Top 10 HPEs

In this section, we introduce the 10 most severe precipitation
events between 2001 and 2022, based on the DWD’s RAD-
KLIM dataset. These events are the basis of our counterfac-
tual simulation experiment.

The 10 most extreme events in our HPE catalogue all oc-
curred during the summer months and are displayed in Fig. 2
and Table 1.

It should be noted that the xWEI metric is sensitive to the
spatial extent of an event. Therefore, the top 10 events are
generally very large. The catalogue might contain events that
are more severe at small spatio-temporal scales, say at the
scale of small headwater catchments. The resulting limita-
tions for our analysis will be further discussed in Sect. 5.1.
However, events with a large spatial extent and a large xWEI
value are likely to include smaller event clusters that are ex-
treme at smaller spatio-temporal scales, which exactly moti-
vated the choice to rank events by the xWEI metric (see also
Sect. 3.1). Nonetheless, future applications might choose dif-
ferent catalogues or different metrics and ranking criteria to
select candidate events for a counterfactual search.

Very different levels of impacts were reported for these
events. In Appendix C, we put each event in the context
of other available references (scientific or media) and also
attempt to compile estimates of reported damage and loss
of life, if available. While all 10 events featured excep-
tional amounts of rainfall and a corresponding runoff re-
sponse, only 5 of them caused massive impacts (SN/Aug02;
SN/Jun13; BW/May16; BB/Jun17; and, with by far the
highest impact, NW/Jul21), while for the remaining events
(LS/Jul02, LS/Jul17, HS/May19, BB/Jun20, and BB/Jun21),
the impact was apparently not high enough to attract atten-
tion beyond the affected regions. The results of the coun-
terfactual scenario analysis, as presented in the following,
should help to explain whether the different levels of impacts
for these events were mainly caused by their specific geo-
graphic position.

4.2 Case study: Altenahr

Before exploring the results for all of Germany, we zoom
into the counterfactual scenarios obtained for the Ahr catch-
ment (Fig. 3a). The Ahr was the most severely affected river
during the July 2021 floods in western Germany (see Mohr
et al., 2023, for more background on the flood event and the
Ahr catchment). Typically, a flash flood is characterized by
a lag time of up to 6 h between the centroid of the effective
rainfall and the hydrograph peak (Borga et al., 2008; Marchi
et al., 2010; Morin et al., 2002). So, strictly speaking, the
flood event at Altenahr does not qualify as a flash flood: ac-
cording to our model, the lag time at Altenahr amounted to
approximately 8 h. Still, the event at Altenahr is a highly il-
lustrative example for a swift and massive runoff response at
the mesoscale which is the result of the temporal superposi-
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Table 1. The 10 most extreme HPEs from our catalogue. The ID was constructed from an acronym that specifies the federal state in which
the event mainly occurred, the month, and the year (starting from the year 2000). The precipitation (prec.) values in the table (mm) are based
on a 10 km× 10 km moving window average; the ranking is based on the xWEI metric.

Rank ID Date xWEI Max Max Max Location of max
1 h prec. 24 h prec. 72 h prec. 1 h prec.

1 LS/Jul02 15–20 Jul 2002 4148 41 138 154 Plön
2 BB/Jun17 26 Jun–2 Jul 2017 3901 44 149 157 Bautzen
3 SN/Aug02 10–15 Aug 2002 3741 23 224 255 Wittenberg
4 NW/Jul21 11–16 Jul 2021 3542 35 136 150 Dortmund
5 LS/Jul17 22–27 Jul 2017 3327 24 136 233 Göttingen
6 BW/May16 27 May–1 Jun 2016 3304 53 98 106 Erzgebirgskreis
7 BB/Jun21 28 Jun–3 Jul 2021 3235 38 217 219 Uckermark
8 BB/Jun20 11–16 Jun 2020 2964 53 93 104 Ostprignitz-Ruppin
9 HS/May19 18–23 May 2019 2718 26 106 114 Waldeck-Frankenberg
10 SN/Jun13 18–22 Jun 2013 2575 62 121 121 Bautzen

Figure 2. Original position and cumulated precipitation of the 10 most extreme HPEs from the event catalogue. The green cross indicates the
location of the highest hourly precipitation during the event which we chose as the centroid when shifting the events to create counterfactuals.

tion of various upstream flash floods. In fact, all 23 subbasins
upstream of Altenahr show a lag time of less than 6 h, with
22 of them showing a time lag of even less than 3 h.

By shifting around the top 10 HPEs (as listed in Table 1)
over Germany, we created a total of 38 871 counterfactual
rainfall scenarios over the Altenahr catchment, representing
a large variety of spatial rainfall patterns and average rainfall
totals, for all of which we simulated the QR peak flow. In
the following, we compare these counterfactual peak flows
to the peak simulated for the NW/Jul21 event in its origi-
nal position. The event label of NW/Jul21_x refers to a spa-
tial counterfactual of the NW/Jul21 event. The same naming
convention is adopted for the other events from Table 2.

Figure 4 illustrates the results from the counterfactual
study for the Altenahr catchment. The total rainfall for the

catchment for each counterfactual and the resulting high-
est QR peak is shown. Despite the positive correlation (r2

= 0.96, Fig. 4) between total rainfall and resulting flood
peaks, we notice that the same total rainfall amounts can
yield markedly different QR peaks.

During the original event (NW/Jul21), the Altenahr catch-
ment received an areal rainfall average of approximately
114 mm, of which 98 mm fell within 12 h on 14 July.
The maximum hourly areal average was 12 mm (Fig. 3b).
This amount of rainfall results in a modelled QR peak of
1004 m3 s−1. Our model experiment illustrates that, for this
specific amount of total areal rainfall (114± 1 mm), the
QR peaks span a range of 536 to 1090 m3 s−1 across all
NW/Jul21 counterfactuals (Fig. 4). This signifies that, with

https://doi.org/10.5194/nhess-24-2147-2024 Nat. Hazards Earth Syst. Sci., 24, 2147–2164, 2024



2154 P. Voit and M. Heistermann: A downward-counterfactual analysis of flash floods in Germany

Figure 3. Total rainfall estimates (RADKLIM) for the original NW/Jul21 event for the Altenahr catchment: (a) total rainfall (mm) in the
Altenahr subbasins and (b) areal average of precipitation (mm h−1) for the Altenahr catchment. The outlet of the catchment is shown in
black, subbasin borders are in black, and streams are in white. Please note that the date format in this and following figures is month/day.

Figure 4. Total rainfall amount and resulting QR peak for counter-
factuals of the NW/Jul21 (yellow to blue) and BB/Jun2021 (grey)
HPEs for the Altenahr catchment. The black cross represents the
areal mean of total rainfall the catchment received during the event,
and the resulting runoff for the event is in its original spatial po-
sition. The point colour of the NW/Jul21 counterfactuals indicates
the distance to the centroid of the original NW/Jul21 event.

an identical total rainfall volume, the QR peak can vary by a
factor of 2.

The original event’s QR peak is already substantial; how-
ever, 6 % of the NW/Jul21 counterfactuals would have
caused an even higher QR peak. All of these downward
counterfactuals were created by a spatial shift in the orig-
inal event by 45–97 km. The maximum modelled QR is
1311 m3 s−1 (NW/Jul21_a), which is considerably higher
than the 1004 m3 s−1 peak resulting from the original event.
This outcome would have been achieved if the centroid of
NW/Jul21 would have been shifted by only 75 km.

Figure 5a and b illustrate, for the original NW/Jul21 event,
the superposition of peaks at the Altenahr gauge from the

discharge of the individual subbasins. The maximum coun-
terfactual rainfall total (130.7 mm for NW/Jul21_a) results
in a modelled QR peak of 1311 m3 s−1 (Fig. 5c and d). Al-
together, these cases underpin the importance of the spatio-
temporal event structure for the peak discharge formation.
The mean total precipitation for the whole Altenahr catch-
ment conceals the spatio-temporal distribution of rainfall
among its subbasins. In our model, the catchment consists
of 37 subbasins (Fig. 3a).

By spatially shifting the other nine HPEs from Table 1
across Germany, we can get an idea of the kind of QR flood
peaks that these HPEs could have triggered at Altenahr –
had they happened in the region. The BB/Jun21 event is an
interesting case: this event happened just 1 month prior to
NW/Jul21 in the north-east of Germany (Uckermark). Al-
though rated almost as extreme as the NW/Jul21 event (Ta-
ble 1), it caused little damage in its original position. How-
ever, various spatial positions of this event would have ap-
parently caused even higher QR peaks in Altenahr, up to
1651 m3 s−1 (BB/Jun21_a, Fig. 5e and f). Table 2 displays
more information about the three cases shown in Fig. 5.
Among all 10 events, the BB/Jun21 counterfactuals lead to
the highest modelled QR peaks for the Altenahr gauge.

Out of all counterfactuals, 1 % resulted in QR peaks higher
than the one from the original event, NW/Jul21. This under-
lines the rarity of the event. Among these, there are no coun-
terfactuals of the events BW/May16, BB/Jun17, LS/Jul17,
HS/May19, and BB/Jun20. Further investigation is needed to
understand the differences in the spatio-temporal structure of
these events and how these HPEs were different to the other
top 10 events to understand why these HPEs did not have the
potential to create any maximum counterfactual peaks.

In summary, the analysis of 38 871 QR counterfactuals
for the Altenahr catchment has demonstrated that, while the
original NW/Jul21 event was exceptional, numerous spa-
tial constellations of the same event and especially of the
BB/Jun21 event could have led to higher flood peaks. While
the areal-average rainfall total is a key control on peak forma-
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Figure 5. Contributions of individual subbasins to the runoff peak at Altenahr for three scenarios. The left side shows the superposition
of runoff from the subbasins. The colour code describes the runoff contribution to the peak flow (white: low, red: high, dotted line: peak
position). On the right side, the same colour code is used to display the spatial distribution of the contributions of each subbasin. Streams are
shown in black, and the outlet at Altenahr is shown as a black dot. Each row of the plot shows a different precipitation scenario: (a, b) original
NW/Jul21 event, (c, d) NW/Jul21_a counterfactual, and (e, f) BB/Jun21_a counterfactual (see also Table 2).

Table 2. Selected counterfactuals for the Altenahr catchment.

ID QR peak Total prec. Latitude Longitude
(m3 s−1) (mm) centroid (° N) centroid (° E)

NW/Jul21 1004 114 50.740 6.965
NW/Jul21_a 1311 131 51.315 7.519
BB/Jun21_a 1651 159 50.437 6.792

tion, the spatio-temporal distribution of this total can moder-
ate flood peak formation substantially.

The discharge and timing of the modelled QR peak for the
NW/Jul21 event (1004 m3 s−1) fits well with recent recon-
structions that estimated a peak flow around 1000 m3 s−1 at
Altenahr (Mohr et al., 2023). This is surprising given that the
RADKLIM product might underestimate the event rainfall
(Saadi et al., 2023). In any case, our model confirms that the

NW/Jul21 event triggered a swiftly moving flood wave that
by far exceeded the HQ100 of 241 m3 s−1 for the Altenahr
gauge (Mohr et al., 2023).

4.3 Downward-counterfactual analysis for Germany

In this section we show the results of the downward-
counterfactual modelling for all subbasins in Germany. Be-
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Table 3. Display of how often events (and their respective down-
ward counterfactuals) caused the highest discharge in a subbasin
(column labelled “Count”). The row labelled “Other” describes
original events which do not belong to the top 10 events.

Event Count

SN/Jun13 16 248
BB/Jun21 3033
LS/Jul02 296
SN/Aug02 227
NW/Jul21 2
BB/Jun20 2
Other 1

cause of the large number of individual subbasins, spatial de-
tails cannot be shown. However, the results are also illus-
trated in a web application which allows for zooming into re-
gions of interest (Heistermann and Voit, 2023). Since larger
subbasins can generate more runoff than smaller basins, we
show the UPD (Sect. 3.4) instead of the absolute peak dis-
charge. On average, there are 41 873 counterfactuals for each
subbasin. Figure 6a shows, for each subbasin, the high-
est UPD derived from original events (2001–2022), while
Fig. 6b and c show the maximum UPD and the 99th per-
centile of all counterfactual scenarios per subbasin.

Looking at historical HPEs and consequent QR peaks that
these events triggered, the downward-counterfactual analysis
is able to remove the random element of where an HPE oc-
curred (Fig. 6b, c). All but one basin showed much higher QR
peaks in response to downward-counterfactual events than
compared to QR peaks caused by original events (Table 3).
Unsurprisingly, the distribution of the UPD in Germany
closely follows the topography (Fig. 6b, c, and d). Moun-
tain and low mountain ranges (compare to Fig. 1) display
high QR peaks and therefore high UPD in the downward-
counterfactual analysis.

For headwater basins, where the QR peak does not depend
on the inflow from any upstream basin, the GIUH can give
a first idea of a basin’s tendency for quick runoff concen-
tration (Fig. 6d). But contrary to the counterfactual simula-
tions (Fig. 6b and c), this does not give information about
potential QR peak flow rates, yet. While GIUHs allow for
very efficient hydrological modelling and therefore make a
downward-counterfactual analysis possible, they use a uni-
form precipitation input. As shown in Sect. 4.2 the spatial
distribution of rainfall is highly important for the consequent
QR peak. For this reason a detailed spatial resolution (a small
subbasin size) is desirable to utilize radar rainfall data to
its full extent. A small subbasin size consequently leads to
a higher number of non-headwater basins whose QR peak
characteristics can not be estimated with the GIUH.

Just for one single basin, the highest modelled peak was
caused by an original event (which triggered a severe flash
flood around Rudolstadt, Thuringia, on 31 May 2008), in

contrast to any counterfactual scenario. For 98 % of the
basins, the downward-counterfactual peak would be at least
2 times higher than the highest observed peak in the last
22 years (Fig. 7); for 47 % of the basins, it would be at least
5 times this amount. Figure 7 also shows the corresponding
ratios for more “conservative” counterfactual scenarios for
which the maximum shifting distance was limited to 10, 20,
50, or 250 km (see Sect. 3.3). For the cf_50km scenario, for
instance, 21 % of the discharge peaks from counterfactuals
are not higher than the peaks caused by original events. This
is due to the fact that a maximum shifting distance of 50 km
will leave quite a number of subbasins essentially unaffected
by the main footprint of the shifted HPE. Here we need to
keep in mind that we only selected 10 out of 17 302 HPEs
from the catalogue for the counterfactual search. A better
approach for designing such a conservative counterfactual
search might be to select, for each subbasin, the most ex-
treme HPE in a specific radius (say 50 km) and then shift this
HPE over the corresponding subbasin. But even within the
more conservative cf_50km dataset, 51 % of the basins ex-
hibit a ratio of more than 1.5 between the counterfactual and
the original peak; more than 30 % have a ratio of more than
twice as high as the original peak. Especially in basins which
have not yet been affected by severe flash floods in the recent
past, the results from the counterfactual analysis could sup-
port the preparedness for flood events that might have been
unexpected so far, based on observational records.

For the downward-counterfactual study we shifted 10 ex-
treme HPEs across Germany. Additionally, we modelled the
runoff that was generated by all the HPEs in our catalogue
in their original spatial position. Table 3 shows which events
caused the highest discharges for subbasins all across Ger-
many: the counterfactuals of the SN/Jun13 event caused the
highest QR peaks in 82 % of the subbasins. Out of the 10
HPEs, this is also the event with the highest hourly precipita-
tion rates (see Table 1). Then again, the BB/Jun21 event also
accounts for a substantial proportion of maximum counter-
factual peaks, while it only ranks sixth with regard to hourly
precipitation levels. Only in two subbasins, the highest QR
peaks were caused by NW/Jul21 counterfactuals. In only
one case, the worst-case scenario was caused by an original
event. While we expect the maximum counterfactual peaks
to be governed by the interaction of specific spatio-temporal
HPE features and basin properties, the nature of this interac-
tion remains yet to be explained. In other words, it should be
subject to future research to better understand which features
favour an exceptional runoff response at the flash flood scale.
Such research should not be limited to the top 10 events but
should aim for a more comprehensive counterfactual search
(see Sect. 4.2).

The counterfactual analysis results in a large dataset of po-
tential QR peaks in Germany. Even though these QR peaks
might not fully represent all processes involved in discharge
generation, they reflect the major runoff processes in small
basins and show a range of plausible discharge cases which
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Figure 6. (a) Maximum UPD from original events. (b) Maximum counterfactual UPD. (c) The 99th-percentile UPD derived from downward-
counterfactual simulations for Germany. (d) The unit peak discharge derived only from the respective GIUHs. Basins with an area> 750 km2

which were not considered in the analysis are shown in grey. Federal-state borders are in white.

can be useful for further analysis. Specifically, the results
could be used as a basis to further explore the geographic
variation in the flash flood hazard in more detail and to iden-
tify subbasins that appear particularly prone to flash floods,
mainly as a result of topographical controls.

5 Uncertainties and limitations

In this section, we highlight the uncertainties and limitations
that should be kept in mind when interpreting the above re-
sults.

5.1 Rainfall data and event catalogue

Journée et al. (2023) showed that errors made by radar-based
QPE are smaller than those obtained from rain gauge inter-
polation. Still, RADKLIM (Winterrath et al., 2018a) might
considerably underestimate extreme precipitation. Such un-
derestimation is typically caused by path-integrated attenua-
tion effects (Jacobi and Heistermann, 2016), and it is not too
uncommon that these effects are not sufficiently captured and
corrected for by the applied rain gauge adjustment methods
(see e.g. Saadi et al., 2023, for the NW/Jul21 event or Bron-
stert et al., 2018, for the BW/May2016 event). Consequently,
the resulting peak values of QR might be too low.
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Figure 7. Cumulative distribution of the ratio between the highest
counterfactual and the highest original peak for every subbasin is
shown in red (cf_germany). From yellow to orange we show the
same ratio but for counterfactuals with a limited shifting distance
(10, 20, 50, 250 km; see Sect. 3.3). QR peaks resulting from coun-
terfactual simulations are much higher than the QR peaks caused by
original events. As the shifting distance increases, more counterfac-
tuals are considered for each subbasin. As a result, it becomes more
likely that the counterfactual peaks are substantially higher than the
highest original peak.

The same follows from the fact that the rainfall dataset,
RADKLIM, is quite short from the perspective of extreme
value statistics. While we argue that shifting HPEs across
Germany might, to some extent, make up for this shortcom-
ing, we have to prepare for that fact that other events are yet
to be observed that might dwarf the top 10 events from our
catalogue.

And, finally, the top 10 events from our catalogue might
not yet represent the worst case in terms of the QR response
at the “flash flood scale”. Particularly for very small headwa-
ter catchments, other events from the catalogue could trigger
higher runoff peaks even if their xWEI values were smaller.
For prospective research, other severity indices, ranking cri-
teria, or catalogues might still be considered or developed
which could provide a more explicit focus on flash floods
and might hence serve to produce an even more exhaustive
counterfactual search.

Then again, the potential underestimation of rainfall also
applies to the historical (original) events to which we com-
pare the counterfactual events. Hence, the ratio between the
historical and the maximum counterfactual peak flows might
be more robust against any rainfall estimation bias – although
we need to keep in mind the non-linear transformation of
rainfall to runoff (see next section).

Some HPEs, e.g. the SN/Aug2002 or the NW/Jul21
events, are not completely captured by the DWD’s weather
radar network, as they extended across the borders of Ger-
many. For these events, the extremeness is necessarily under-
estimated. We still decided to use these HPEs in our counter-
factual simulation experiment because they are, even while
being incompletely captured, among the 10 most extreme
HPEs observed in Germany within the last 22 years.

For the DWD’s operational radar-based precipitation prod-
uct (RADOLAN), Saadi et al. (2023) reported an underesti-

mation of 18 % compared to rain gauges for the NW/Jul21
event; Bronstert et al. (2018) found an underestimation of
about 30 % for the BW/May2016 event. For the RADKLIM
product, the uncertainty is expected to be lower than for the
RADOLAN product, e.g. due to the usage of additional data
for the rain gauge adjustment. Yet, a systematic assessment
of biases in RADKLIM is not yet available. In any case,
the level of underestimation is expected to vary dramatically
from event to event, as different sources of error govern the
overall uncertainty in space and time (Heistermann et al.,
2015).

5.2 Hydrological model

The applied hydrological model has, as any model, a number
of limitations which we would like to discuss in more detail.

The unit hydrograph method assumes a linear and time-
invariant response of a watershed to a spatially homogeneous
pulse of effective rainfall (Yi et al., 2022). This assumption
is a simplification.

The SCS-CN method implements antecedent soil moisture
by considering the total rainfall amount within the last 5 d.
Although we added a temporal buffer around our events, we
always started the calculations assuming previously dry soils.
While the modelled soil moisture class will change as the
event unfolds, this assumption decreases runoff generation in
the beginning of the event. The worst-case scenario, in terms
of QR peaks, would be saturated soils at the beginning of an
event.

Since our model does not include baseflow, there is cer-
tainly a small fraction of the total runoff missing in the QR
peaks. Additionally, we know that the clogging of bridges
with uprooted trees and debris can play a major role in the
formation of flood peaks (Borga et al., 2014). Our model
does not account for such effects, nor does it include a hy-
drodynamic channel model. Together with the expected un-
derestimation of rainfall (see Sect. 5.1) our results are likely
to underestimate discharge peaks.

Utilizing a smaller subbasin size would be advantageous,
particularly in the context of investigating flash floods. For
example, within our chosen spatial discretization, we were
unable to reproduce the extraordinary discharge peak during
the Braunsbach flooding in May 2016 (Bronstert et al., 2018),
which was generated in a subbasin of 6 km2. However, com-
putational cost increases exponentially with spatial resolu-
tion, so we have not yet implemented smaller subbasins.

Furthermore, our study relies on an uncalibrated model.
The main reason for this is the lack of stream gauge records
for small catchments. In addition, stream gauges are of-
ten unable to effectively observe extreme flash floods due
to being damaged by the actual flood wave (Amponsah
et al., 2018). Marchi et al. (2010) showed that only 20 %
of flash flood events in small catchments were gauged by a
stream gauge section. For these reasons, flash flood events
are usually underrepresented in streamflow records (Borga
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et al., 2014). However, both model components, the SCS-CN
model for QR formation and the GIUH for QR concentra-
tion, are widely used, and their applicability was validated in
numerous contexts.

Taking all these aspects into account, we would like to em-
phasize once more that our model is not designed for precise
discharge predictions. Instead, it serves as a tool to consis-
tently representing the effects of rainfall, topography, soils,
and land use while enabling us to simulate a substantial num-
ber of counterfactual scenarios. This large number of simula-
tions is a key feature of this study as it allows for comprehen-
sively exploring possible realizations of counterfactual rain-
fall events and their effect on peak discharge.

5.3 Spatial shifting of events

In our counterfactual analysis, we assumed that any of the
analysed HPEs could have occurred anywhere in Germany.
This is a very strong assumption, and it should be empha-
sized that the validity of this assumption remains an open
question. Certainly, an HPE results from the interaction of
large- and regional-scale circulation patterns with regional
and local features of the earth’s surface. For example, oro-
graphic effects can augment precipitation and lead to anchor-
ing convection (Marchi et al., 2010; Tarolli et al., 2013). Our
study does not consider such effects, which could lead to un-
realistic counterfactuals. For this reason we also carried out
a more conservative analysis in which we restricted the spa-
tial shifting of HPEs to a radius of 10, 20, 50, and 250 km
around their original centroid. These results are displayed in
Fig. 7. It would also be very helpful for future research if the
atmospheric modelling community further explored how ex-
ceptional HPEs could have unfolded under disturbed initial
and boundary conditions or under a warmer climate (see e.g.
Ludwig et al., 2023, for a pseudo global warming analysis
of the July 2021 event) and thereby provide a better basis to
evaluate the assumptions behind our counterfactual search.

6 Conclusions

In this study, we presented a downward-counterfactual sce-
nario analysis to assess the flash flood hazard in small to
medium-sized basins in Germany. Instead of relying on lo-
cal observational records of limited length, we identified the
most severe heavy precipitation events from 2001 until 2022
and assumed that these events could have occurred anywhere
in Germany. The quick runoff response to the resulting coun-
terfactual rainfall scenarios was simulated using a parsimo-
nious and computationally efficient rainfall-runoff model and
compared to the quick runoff response of historical events
that actually took place in the corresponding subbasins.

Using a radar-based precipitation product, we were able to
account in detail for the effects of different spatio-temporal
event realizations on the quick runoff response. These effects

can substantially moderate the role of the total accumulation
of areal-mean rainfall. This was first demonstrated in a case
study of the July 2021 flood event (NW/Jul21) for the Ahr
River catchment, down to the Altenahr runoff gauge. Shift-
ing the NW/Jul21 rainfall event in space resulted in a wide
range of quick runoff peak values of which 6 % exceeded
the response to the original event. Furthermore, shifting an-
other event (BB/Jun21), which had occurred 1 month earlier
in eastern Germany, to the Ahr catchment effectuated a peak
that exceeded the worst-case downward-counterfactual peak
of the NW/Jul21 event by another 26 %.

We then expanded the analysis to all of Germany and
found that, on average, the worst-case downward counterfac-
tual exceeded the maximum original quick runoff peak by a
factor of 5.3. In general, the quick runoff response is dom-
inated by topography. It turned out that the SN/Jun13 event
(see Table 1) caused the maximum counterfactual peak in the
majority of basins. Still, readers should be aware of various
limitations of our approach, some of which might lead to a
considerable underestimation of counterfactual quick runoff
peaks.

To make our results easily accessible, we created a web
viewer where interested users can explore the results for each
subbasin in Germany (Heistermann and Voit, 2023). Still, our
results leave various open questions: the most obvious, of
course, is about the validity of shifting events all over Ger-
many. Furthermore, focusing on the top 10 events as ranked
by the xWEI metric might hide events that were more se-
vere at the flash flood scale. So we should further explore the
event catalogue to understand which spatio-temporal struc-
ture makes an event particularly hazardous. Besides, it would
be interesting to see how the counterfactual peaks compare
to the values which are currently used for risk management.
Furthermore, we just looked at the worst-case scenario for
individual basins. However, large precipitation events can
trigger flash floods in multiple basins simultaneously. The
identification of regional flash flood clusters caused by one
event is relevant in the context of disaster response. It should
be clear that our design of counterfactual scenarios only ad-
dresses one single aspect: the spatial position of the precipi-
tation field and its effect on the hydrological hazard intensity.
A more comprehensive counterfactual search would require
accounting for impact-related aspects and processes. Such
aspects could e.g. be the daytime or weekday at which an
event occurs, the effectiveness of an early warning chain, or
cascading effects of damage to infrastructure.

We would like to emphasize that the presented approach
should be considered a framework rather than a fixed method
with fixed results: users could employ different catalogues,
make different assumptions about spatial shifting of heavy
precipitation events, use a different hydrological model, and
define different metrics to assess the impact relevance of the
hydrological response. The key message here is that the pre-
sented framework for counterfactual scenario analysis pro-
vides a different view on flash flood hazards which should
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be helpful in reducing the element of surprise in disaster risk
management.

Appendix A: Creation of an HPE catalogue

The catalogue was created as follows (see also Fig. A1 for
illustration). For simplification we just used two durations in
Fig. A1 (1 and 72 h), while in our actual study we used eight
durations (1, 2, 4, 6, 12, 24, 48, 72 h).

1. We applied a 72 h× 3 km× 3 km moving window for
each pixel in the RADKLIM dataset. In Fig. A1a and
b the pixel is surrounded by a red box. In this moving
window we aggregate the rainfall to the durations of re-
spective durations (Fig. A1c and d). For each duration
we calculate the return periods for every pixel in the
moving window (Fig. A1e and f). Now we can compute
the xWEI metric. The return periods get sorted by de-
creasing order (Fig. A1g and h). We then compute the
extremeness EtA based on Müller and Kaspar (2014):

EtA =

n∑
i=1

ln(pt,i)

n
·

√
A
√
π
[ln(year)km]. (A1)

The process is explained in more detail in Voit and Heis-
termann (2022).

Following this procedure, we get an EtA curve for ev-
ery duration (Fig. A1i and j). The EtA curves are placed
on a grid (Fig. A1k). The EtA curves span a surface.
The volume underneath that surface is the xWEI value
for the pixel (Fig. A1l), which is high if the rainfall in
the 3 km× 3 km neighbourhood was extreme at multi-
ple durations (between 1 and 72 h).

2. This way the xWEI moving window works as a filter for
the rainfall data. The result is a dataset of xWEI values
with the same dimensions (x, y, time) as the RADKLIM
dataset. An xWEI value of 10 is approximately equal to
an event that had a return period of around 10 years for
one duration and at a spatial scale of 9 km2.

3. All cells with an xWEI< 10 were discarded (set to NaN,
not a number) to ensure that there are just cells remain-
ing which signify extreme rainfall. The remaining adja-
cent cells were clustered based on their neighbourhood
(pixels within 10 km). This way we obtained distinct
clusters where the rainfall must have been exceptionally
high.

4. Finally, we determined the bounding box and computed
the xWEI value for the entire bounding box, for each
identified cluster.

Figure A1. Pixel-wise computation of the xWEI metric. (a, b) The
rainfall data in a 3 km× 3 km neighbourhood for the respective du-
ration: (a) 1 h precipitation and (b) 72 h precipitation. (c, d) Precip-
itation sums for the respective durations. (e, f) Return periods of the
precipitation sums. (g, h) Ranked return periods. (i, j) EtA curves
computed from the ranked return periods. (k) EtA curves placed on
a grid. (l) A surface spanned across the curves. The volume under
this surface is the xWEI value of the pixel.
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Appendix B: Distribution of subbasin sizes

Figure B1 shows the distribution of subbasin sizes for the
study area comprising Germany.

Figure B1. Distribution of subbasin sizes in the study area. The
blue line indicates the median size; the red lines are the 25th and
75th percentiles.

Appendix C: Description of the top 10 events

We supply further detail about the top 10 events between
2001–2022 (Sect. 4.1) which were identified using the pro-
cedure described in Sect. 3.1 and Appendix A.

– LS/Jul02 hit the Harz Mountains in the centre of Ger-
many with high rainfall sums and led to the flooding of
some cities (e.g. Braunschweig). Apparently this HPE
did not cause extensive damage as there is not much
literature about this event, apart from local newspapers.
Furthermore, this event was overshadowed by one of the
largest flood catastrophes in Germany just 1 month later
(SN/Aug2002). We can just hypothesize that the event
would have caused more damage, had it not happened in
the Harz area, which is a watershed. Additionally, there
are large reservoirs in this area which regulate stream-
flow and might have prevented the formation of a larger
flood wave.

– BB/Jun17 caused massive urban flooding in Berlin. This
HPE caused the largest amount of insured losses in the
period 2002 to 2017 (EUR 60 million) in the greater
Berlin area (Caldas-Alvarez et al., 2022).

– The SN/Aug02 HPE caused extensive flooding in cen-
tral Europe (Germany, Austria, Czech Republic, and
Slovakia). The flooding occurred in the catchments of
the Danube and the Elbe. In Germany alone the flood
caused 21 casualties and record-breaking damages of
EUR 11.6 billion (Thieken et al., 2007; CRED/UCLou-
vain, 2023).

– Regarding damages, the NW/Jul21 HPE exceeded all
previously recorded events, even though the rainfall
sums were not the most extreme, compared to other his-
toric events (Ludwig et al., 2023). The HPE affected
mainly Belgium, the Netherlands, and western Ger-
many. Damages totalling EUR 40 billion and 191 casu-
alties (CRED/UCLouvain, 2023) are the consequences
of this HPE.

– The flood following LS/Jul17 caused damage in the
districts surrounding the Harz Mountains and the city
of Hildesheim (Niedersächsischer Landesbetrieb für
Wasserwirtschaft, Küsten- und Naturschutz , NLWKN).
According to the DWD the meteorological extremeness
of this HPE was similar to the infamous SN/Aug02
event, but due to the location the consequences were not
as serious (Becker et al., 2017).

– BW/May16 was a large HPE across central Europe
which affected southern Germany. The event included
episodes of intense small-scale precipitation which
caused e.g. the flash flood that partly destroyed the
city of Braunsbach (Bronstert et al., 2018). This caused
damages of EUR 2 billion and seven deaths (CRED/U-
CLouvain, 2023).

– Even though BB/Jun21 displayed the highest daily rain-
fall sum in Germany in 2021 (198.7 mm, Becker et al.,
2017), the event did not cause a lot of damage.

– The BB/Jun20 HPE showed heavy rainfall, especially in
shorter durations, in the Brandenburg area and caused
smaller floods but did not cause extensive damage.

– Even though the precipitation sums during HS/May19
exceeded a 100-year return period in many locations,
this HPEs did not cause large amounts of damage.

– The SN/Jun13 event occurred from 18 until
22 June 2013. Although it was rated as very ex-
treme with regard to the xWEI, it did not appear to
cause much damage, except for some more local flash
floods in Saxony. We would like to emphasize that
this event must not be confused with the event that hit
central Europe from 30 May to 4 June 2013 and caused
large-scale flooding of many rivers, specifically the
Danube and Elbe (Schröter et al., 2015). Despite its
large impact, the latter event does not appear among the
top 10 HPEs with regard to the xWEI (it is ranked 11th,
however, with regard to the WEI index). While it might
appear surprising that the event from 18 to 22 June 2013
did not cause more damage, it could also have received
less attention in the aftermath of the earlier flood
disaster in June 2013.

Code and data availability. We have published code and data to
exemplify the computation of both WEI and xWEI in the fol-
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lowing repository: https://doi.org/10.5281/zenodo.6556446 (Voit,
2022). We have published notebooks and code which demon-
strate our whole workflow for this study for a small, exemplary
region (Altenahr basin; see Sect. 4.2): the derivation of GIUHs
from a digital elevation model, the extraction of rainfall data
and effective rainfall for the subbasins from RADKLIM data,
and the modelling of quick runoff. The code is published at
https://doi.org/10.5281/zenodo.10473424 (Voit, 2024).

All data used in this study are accessible in the open-data repos-
itory of the DWD. The RADKLIM v2017.002 dataset is available
at https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002
(Winterrath et al., 2018a). The EU-DEM is available
at https://ec.europa.eu/eurostat/de/web/gisco/geodata/
digital-elevation-model/eu-dem#DD (European Commis-
sion, 2016). The CLC5-2018 land cover data are avail-
able at https://gdz.bkg.bund.de/index.php/default/open-data/
corine-land-cover-5-ha-stand-2018-clc5-2018.html (BKG, 2018).
The soil data are available at https://www.bgr.bund.de/DE/
Themen/Boden/Informationsgrundlagen/Bodenkundliche_Karten_
Datenbanken/BUEK200/buek200_node.html (BGR, 2018).
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