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Abstract. Rainfall time series with high temporal resolu-
tion play a crucial role in various hydrological fields, such
as urban hydrology, flood risk management and soil ero-
sion. Understanding the future changes in rainfall extreme
values is essential for these applications. Since climate mod-
els typically offer daily resolution only, statistical downscal-
ing in time seems a relevant and computationally effective
solution. The micro-canonical cascade model conserves the
daily rainfall amounts exactly, and having all model param-
eters expressed as physical interpretable probabilities avoids
assumptions about future rainfall changes. Taking into ac-
count that short-duration rainfall extreme values are linked
with high temperatures, the micro-canonical cascade model
is further developed in this study. As the introduction of
the temperature dependency increases the number of cas-
cade model parameters, several modifications for parameter
reduction are tested for 45 locations across Germany. To en-
sure spatial coherence with the climate model data, a com-
posite product of radar and rain gauges with the same reso-
lution was used for the estimation of the cascade model pa-
rameters. For the climate change analysis the core ensemble
of the German Weather Service, which comprises six com-
binations of global and regional climate models, is applied
for both RCP4.5 and RCP8.5 scenarios. For parameter re-
duction two approaches were analysed: (i) the reduction via
position-dependent probabilities and (ii) parameter reduction
via scale independency. A combination of both approaches
led to a reduction in the number of model parameters (48 pa-
rameters instead of 144 in the reference model) with only a
minor effect on the disaggregation results. The introduction

of the temperature dependency improves the disaggregation
results, particularly regarding rainfall extreme values and is
therefore important to consider for future studies. For the dis-
aggregated rainfall time series of climate scenarios, an inten-
sification of the rainfall extreme values is observed. Analy-
ses of rainfall extreme values for different return periods for a
rainfall duration of 5 min and 1 h indicate an increase of 5 %–
10 % in the near-term future (2021–2050) and 15 %–25 % in
the long-term future (2071–2100) compared to the control
period (1971–2000).

1 Introduction

Climate change is an existential threat for humankind. Ris-
ing temperatures and changes in rainfall characteristics are
globally projected, with severe regional impacts, resulting in
an increased occurrence of rainfall extreme events (Gründe-
mann et al., 2022). Rainfall extreme values are required in
many hydrological applications, e.g. for dimensioning pur-
poses in engineering hydrology, soil erosion estimation (Pi-
doto et al., 2022), flood risk management (Viglione et al.,
2010; Tarasova et al., 2019) and in urban hydrology (Ochoa-
Rodriguez et al., 2015). Knowledge about future changes in
temporal high-resolution rainfall extreme values directly re-
lates to one of the 23 unsolved problems in hydrology de-
scribed by Blöschl et al. (2019), i.e. question 9: “How do
flood-rich and drought-rich periods arise, are they changing,
and if so why?”. In particular, for sub-hourly rainfall extreme
events it is important to analyse the number of pluvial floods,
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which are relevant for the mesoscale and finer, rather than flu-
vial floods, which are relevant for the meso- and macroscale.
In this context we expect that the introduction of tempera-
ture dependency in rainfall disaggregation improves the rep-
resentations of sub-hourly rainfall extreme values in climate
change projections.

To prepare for future climate conditions the Intergov-
ernmental Panel on Climate Change (IPCC) introduced the
“Representative Concentration Pathway” (RCP) climate sce-
narios (IPCC, 2014). These scenarios are based on different
evolutions of the radiative forcing in the 21st century. In the
sixth assessment report the IPCC established the “Shared
Socioeconomic Pathways” (SSP) – scenarios representing
a range of socio-economic trajectories into the future. The
Coupled Model Intercomparison Project (CMIP) coordinates
the climate model simulations globally and is responsible
for the new climate model generation of the sixth phase
(CMIP6), in which the RCP and SSP scenarios are combined.
However, for CMIP6 there are no bias-adjusted and region-
alised climate model data available for Germany so far, but
for CMIP5 these climate model data exist. Therefore, CMIP5
is considered “state-of-technic” climate simulations for Ger-
many in this study. In CMIP5 the RCP scenarios are pro-
vided as part of the external forcing to the global climate
models (GCMs), which simulate climate projections on the
global scale. The spatial resolution of GCMs at ∼ 150 km
(Taylor et al., 2012) is limited by computational capabili-
ties and is too coarse for hydrological applications on the
micro- and mesoscale. To increase the spatial resolution, the
outputs of GCMs serve as input for regional climate mod-
els (RCMs), which simulate the atmospheric conditions on
a finer spatial resolution for a smaller extent. For Europe,
the EURO-CORDEX initiative (driven by CMIP5) provides
the results of several RCMs with a spatial resolution of ∼ 50
or ∼ 12.5 km and a temporal resolution from 1 h to seasonal
means.

The coarse temporal resolution of RCMs is a problem,
limiting the study of rainfall extreme values to a coarse spa-
tial scale. Many studies (e.g. Al-Ansari et al., 2014; DeGae-
tano and Castellano, 2017; Araújo et al., 2022) only consider
daily rainfall time series to evaluate changes in future rainfall
extreme values. However, daily time series are insufficient
for processing many hydrological applications. Berne et al.
(2004) identified for urban catchments (1–10 km2) a mini-
mum temporal resolution of about 3–5 min to model rainfall–
runoff dynamics adequately. Analysing various combina-
tions of temporal (1–10 min) and spatial (100–3000 m) res-
olutions for different urban catchments, Ochoa-Rodriguez et
al. (2015) identified for an urban drainage area > 100 ha a
spatial resolution of 1 km and a temporal resolution of at least
5 min as the minimum. Ficchi et al. (2016) investigated the
influence of temporal resolution on streamflow simulations
over a large and varied set of 240 mesoscale catchments (av-
erage catchment area 356 km2) and 2400 flood events. The
input rainfall time series had a temporal resolution of 6 min

to 1 d. They found that rainfall time series with a fine tempo-
ral resolution significantly improved the streamflow simula-
tions. On average, the best improvement across all 240 catch-
ments was obtained with a 6 h resolution. The simulation of
flood peaks and timing improved with increasing temporal
resolution, highlighting the need for high-resolution rainfall
time series and thus rainfall extreme values.

Hence, for many hydrological applications sub-hourly
rainfall extreme values are required, which is in contrast to
the available temporal resolution from the RCMs. To over-
come this issue, various methods exist to generate rainfall
time series with a finer temporal resolution from climate sce-
nario data.

Possible solutions are either the generation of rainfall time
series with statistical input from the climate model data, e.g.
delta change approach (Michel et al., 2021; Navarro-Racines
et al., 2020); physical-based statistical methods (Marra et al.,
2024); or the temporal disaggregation of future rainfall time
series. The advantage of rainfall disaggregation is that the
disaggregation model parameters can be estimated from the
observed high-resolution rainfall time series, which ensures
a correct representation of time series characteristics. Well-
known disaggregation methods are the method of fragments
(Westra et al., 2012), Bartlett–Lewis rectangular pulse model
(Koutsoyiannis and Onof, 2001; Onof and Wang, 2020) and
cascade models (Molnar and Burlando, 2005; Paschalis et al.,
2012; Müller and Haberlandt, 2015, 2018; Derx et al., 2023).
An overview of different rainfall disaggregation methods is
provided by Pui et al. (2012).

Cascade models distribute the total rainfall amount of a
coarse timescale (e.g. daily) on finer time steps (e.g. 5 min).
A strong advantage of the micro-canonical cascade model
(Olsson, 1998) is that the rainfall amount of the coarser time
step is conserved exactly at each disaggregation step, so ag-
gregating the disaggregated time series results in the initial
time series used for the disaggregation. The number of result-
ing finer wet time steps and their rainfall volumes depend on
the so-called cascade generator. The required cascade model
parameters are estimated from observed time series with the
desired temporal resolution. Since for the method of frag-
ments the number of fragments is limited by the observation
length (critical especially in combination with temperature
dependency), and for the Bartlett–Lewis rectangular pulse
model assumptions about distribution function of pulse char-
acteristics have to be made, the cascade model was chosen
for this study. The only assumption for the application of cas-
cade models for the disaggregation of future climate model
data is that the scaling behaviour of rainfall remains station-
ary, which is not questioned to the authors’ knowledge.

In this study, a micro-canonical, multiplicative cascade
model is used to achieve a final resolution of 5 min (Müller
and Haberlandt, 2018).

The Clausius–Clapeyron relationship describes the tem-
perature dependency of heavy rainfall events (e.g. Allen and
Ingram, 2002). An increase of 1 K in air temperature causes
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an increase in the maximum possible air moisture content
in the atmosphere and hence precipitable water amount of
about 7 %. However, the future increase in the occurrence of
rainfall extreme events is highly non-linear and likely to be
higher than 7 % per 1 K but will vary regionally as it depends
strongly on regional warming (Seneviratne et al., 2021).

Bürger et al. (2019) showed that the future change in sub-
hourly extreme rainfall events depends on local temperature.
Bürger et al. (2021) applied a temperature-dependent, simple
canonical multiplicative cascade model to analyse the future
change in rainfall extreme values with a temporal resolution
of 10 min for stations in Germany, Austria and Switzerland.
Bürger et al. (2021) were able to determine a positive trend in
the exceedance counts of rainfall events larger than 5 mm per
10 min and a return period of 3 years, which can be explained
well by the climate-change-related increase in temperature.

An introduction of temperature dependency will lead to an
increase in cascade model parameters. To keep the cascade
model as parameter parsimonious as possible, several ap-
proaches for parameter reduction are analysed in this study.
One possibility for parameter reduction is taking advantage
of the scale dependency of the cascade model parameters.
Assuming scale invariance, the same set of cascade model
parameters is used for several disaggregation steps. Olsson
(1998) tested before an averaged parameter set estimated
from coarser resolution (17 h aggregated up to 5.7 d) for the
disaggregation of time steps from ∼ 17 to ∼ 1 h and found
only a minor worsening of the disaggregation results. Olsson
(1998) also showed that parameters estimated from time se-
ries with a temporal resolution < 1 h differ from parameters
estimated from a time series with a coarser temporal resolu-
tion. This is confirmed by studies of Güntner et al. (2001)
and Rupp et al. (2009). Veneziano et al. (2006) analysed
the mono-fractal scaling behaviour and identified two scal-
ing ranges from daily to hourly resolution and from hourly to
5 min resolution. In addition, Pöschmann et al. (2021) anal-
ysed the temporal scaling behaviour of extreme rainfall in
Germany, identifying three scaling ranges with approx. 1 h
and 1 d as boundaries.

Another option for parameter reduction is so-called intra-
event similarities (e.g. Willems et al., 2012), which describe
parameter similarity of position classes applied for the cas-
cade model. A detailed description of the intra-event similar-
ities can be found in Sect. 3.2 to avoid technical details in
this section.

The impact of both the introduction of temperature depen-
dency and different approaches for parameter reduction on
the generation of sub-daily rainfall extreme values is anal-
ysed in this study. The following research questions are ex-
amined in detail:

i. How can a cascade model be modified to improve the
disaggregation results regarding rainfall extreme values
with a minimum increase in model parameters?

ii. How will rainfall extreme values with a temporal reso-
lution of 5 min change in the future across Germany?

The paper is organised as follows: in Sect. 2 the study
area, the rainfall data and the climate scenario data used
are described. The applied methods are explained in Sect. 3,
with the disaggregation model and its parameter reduction
in Sect. 3.1. In Sect. 3.2 the temperature dependency of the
rainfall extreme values and its implementation into the cas-
cade model are described. The daily minimum, average and
maximum temperature are examined as external predictors.
In Sect. 4 the disaggregation results and the derived change in
future rainfall extreme values from the RCP4.5 and RCP8.5
climate scenarios of the German Weather Service (DWD)
core ensemble are presented and discussed. A summary and
outlook of the study are provided in Sect. 5.

2 Data and study area

2.1 Observed data

In this study two types of observed data are used: (i) tem-
perature time series from recording stations and (ii) radar-
based rainfall data. The 45 analysed locations are located in
Germany, Central Europe (Fig. 1). They represent a range of
different climatic, meteorological and geographical environ-
ments.

The northern part of Germany is characterised by coastal
areas and glacial-shaped landscapes, resulting in low alti-
tudes. The southern part is dominated by the Alpine moun-
tains with altitudes up to 2900 m a.s.l. In between, there are
several mountainous regions with altitudes up to 1000 m. Ac-
cording to the Köppen–Geiger climate classification, there
are two main climate zones in Germany (Beck et al., 2018).
The eastern part of the country is dominated by a cold cli-
mate (Dfb). The western part has a temperate climate (Cfb).
Both climates are characterised by warm summers without a
dry season.

Most locations have a mean annual rainfall amount of up
to 750 mm, with larger rainfall amounts in summer (May–
October). In the mountainous regions of Germany, rain-
fall amounts > 1000 mmyr−1 are observed. The flatlands
in the northeast have the lowest annual rainfall amounts in
Germany. Locations in this area measured annual rainfall
amounts of up to 500 mm only. Besides the spatial cover-
age the availability of a temperature time series for the same
location was a second criterion. A subset of five represen-
tative locations (A–E) was selected to show some detailed
results. Stations A–E are distributed across Germany and the
locations differ in their annual rainfall amount and percent-
age split between summer and winter rainfall amount and
are therefore representative of different climate zones in Ger-
many.

For the temperature time series at each location, data
from recording stations are used. These recording stations
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Figure 1. Location of all recording stations (n= 45) across Ger-
many. Pie charts indicate the relative annual volume (radius) and
percentage split between summer (red) and winter (blue) rainfall.
Stations with letters represent the subset referred to in the Methods
and “Results and discussion” sections (Source DEM: BKG).

are operated by the DWD, and the observed time series are
available as open access (https://opendata.dwd.de/climate_
environment/CDC/, last access: 13 June 2024). The time se-
ries have a daily resolution. Measurements are operated fol-
lowing international standards 2 m above the terrain surface.
Available temperature data include daily mean temperature,
maximum temperature and minimum temperature. The tem-
perature distribution in Germany depends on the distance to
the ocean, elevation, latitude and season.

As rainfall data the YW-rainfall raster dataset (referred to
as YW data from here on) from the DWD with a tempo-
ral and spatial resolution of 5 min and ∼ 1 km raster width
is used. The YW data are based on a merged product of
radar and rain gauge data for the whole of Germany (called
RADOLAN) with hourly resolution, with subsequent disag-
gregation to 5 min time steps using the relative diurnal cy-
cles from the radar. The quasi-gauge-adjusted YW data are

available for the period 1 January 2001–31 December 2021
(Winterrath et al., 2018).

Table 1 provides an overview of station-based rainfall
characteristics. Following the event definition of Dunkerley
(2008) a rainfall event is defined as a rainfall period enclosed
by at least one dry time step. A dry time step refers to a rain-
fall intensity of 0 mm per 5 min. The wet spell duration rep-
resents the duration of a rainfall event enclosed by two dry
time steps. The wet spell amount is the sum of rainfall occur-
ring during the wet spell. Dry spell duration is the duration
of a dry period enclosed by wet time steps. During the pre-
processing comparisons between the rain gauge time series
and the YW data time series for the same location showed
only negligible differences for the 5 min level.

2.2 Climate scenario data

In this study the RCP4.5 and RCP8.5 scenarios were anal-
ysed. RCP4.5 is an intermediate climate scenario, where cli-
mate emission increase peaks in 2040 and declines afterward
(Thomson et al., 2011). In contrast, the emissions for RCP8.5
rise throughout the 21st century. Each emission scenario pro-
vides part of the external forcing to the GCMs in CMIP5,
which drives the RCMs of EURO-CORDEX. The combi-
nation of a GCM and RCM creates one ensemble member
of the RCP scenario. EURO-CORDEX provides a variety of
ensemble members with different combinations of GCM and
RCM with a spatial resolution of 0.11° and a minimal tem-
poral resolution of 3 h.

In order to ensure a consistent data base for a variety of
climate indicators and impact models, the DWD selected
six ensemble members for each RCP, referred to as DWD
core-ensemble (Dalelane, 2021). In addition, the DWD core-
ensemble is spatially downscaled from 0.11° to a ∼ 5 km
raster. The downscaling process was carried out by the Fed-
eral Ministry for Digital and Transport – Network of Ex-
perts Topic 1 (BMVI-Network of Experts Topic 1) using
multiple linear regression (typical distribution patterns of the
respective climate variables served as predictors) and sub-
sequent interpolation of the regression residuals. The as-
sumption was that a regional climate model correctly repro-
duces the coarse-scale patterns of the climate variables to
regionalise them. Fine-scale structures of the respective cli-
mate variables are embedded in the regionalisation process
by the typical patterns obtained from high-resolution refer-
ence data (Hänsel et al., 2020). The climate projections were
bias-adjusted before the spatial downscaling was carried out.
This step was also undertaken by BMVI-Network of Experts
Topic 1. For the bias-adjustment of the rainfall a univariate
approach using the quantile delta change mapping (QDCM)
method was chosen by Hänsel et al. (2020). The quantile
mapping methods adapt the error-prone frequency distribu-
tions of the projection data to those of real observations us-
ing an average mapping rule. However, the QDCM method
is only applied to rainfall values up to the 99.9th percentile,
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Table 1. Station-based rainfall characteristics for the observation period 2001–2021.

ID Name Altitude Mean annual Average wet spell Average wet spell Average dry spell
[m a.s.l.] precipitation [mm] duration [min] amount [mm] duration [min]

1 Angermünde 54 527 19.4 0.45 422.8
2 Artern 164 483 19.8 0.44 459.1
3 Bamberg 240 637 21.6 0.46 365.5
4 Berlin-Tempelhof 48 569 18.7 0.42 388.2
5 Boizenburg 45 642 19.6 0.43 326.8
6 Boltenhagen 15 597 19.9 0.44 374.2
7 Chemnitz 418 734 20.6 0.46 307.3
8 Cottbus 69 563 19.3 0.42 380.1
9 Diepholz 38 694 20.3 0.46 341.0
10 Düsseldorf 37 755 20.8 0.51 363.8
11 München-Flughafen 446 751 23.9 0.54 362.0
12 Erfurt-Weimar 316 534 20.3 0.47 463.4
13 Freudenstadt 797 1555 26.3 0.69 227.7
14 Gardelegen 47 535 20.0 0.42 381.4
15 Görlitz 238 645 20.8 0.47 356.3
16 Greifswald 2 601 20.7 0.46 370.4
17 Münster/Osnabrück 48 733 18.9 0.45 338.5
18 Hamburg-Fuhlsbüttel 11 773 21.1 0.49 329.1
19 Hannover 55 628 18.8 0.44 368.7
20 Hersfeld, Bad 272 657 19.0 0.42 327.7
21 Kempten 705 1233 26.4 0.63 251.3
22 Kissingen, Bad 282 669 19.8 0.43 338.0
23 Köln-Bonn 92 802 21.9 0.53 350.0
24 Konstanz 443 841 23.3 0.57 327.5
25 Lahr 155 712 22.1 0.56 367.2
26 Leinefelde 356 699 20.0 0.43 313.6
27 Leipzig/Halle 131 533 20.7 0.46 449.9
28 Lippspringe, Bad 157 900 21.4 0.49 280.4
29 Lüdenscheid 387 1093 21.1 0.48 216.5
30 Meiningen 450 647 20.1 0.41 320.7
31 Mühldorf 406 817 23.4 0.52 328.5
32 Neuruppin 38 513 19.1 0.41 353.2
33 Nürburg-Barweiler 485 658 18.3 0.39 292.6
34 Nürnberg 314 604 21.9 0.48 396.8
35 Oberstdorf 806 1688 29.6 0.75 213.6
36 Öhringen 276 781 22.7 0.51 327.7
37 Oschatz 150 578 19.3 0.43 362.2
38 Regensburg 365 656 21.9 0.46 344.7
39 Saarbrücken-Ensheim 320 867 23.3 0.53 302.6
40 Salzuflen, Bad 135 800 20.3 0.42 279.5
41 Schleswig 43 895 21.4 0.50 260.6
42 Weißenburg-Emetzheim 439 667 22.2 0.48 375.9
43 Würzburg 268 575 20.6 0.45 395.5
44 Zinnwald-Georgenfeld 877 1001 21.7 0.47 221.2
45 Mannheim 96 638 22.0 0.53 418.2

as rainfall amounts above the 99.9th percentile are not ade-
quately represented in the reference and projection data. For
rainfall values above the 99.9th percentile, the adjustment
value was extrapolated linearly. For temperature data, a mul-
tivariate quantile mapping method was used. This method is
an extension of quantile mapping, in which, in additional to
correcting the statistical moments, it is also ensured that the

consistency of the individual climatic variables is maintained
in relation to each other (e.g. relative humidity and air tem-
perature) (Hänsel et al., 2020).

The temporal resolution of the DWD core-ensemble is
daily. More information about the GCM–RCM combination
of the ensemble members is provided in Table 2. The cli-
mate scenario data are available on request from the DWD
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Table 2. Composition of GCM–RCM members of the DWD core ensemble for RCP4.5 and RCP8.5.

Ensemble member RCP4.5 RCP8.5

GCM RCM GCM RCM

1 ICHEC-EC-EARTH (r1) KNMI-RACMO22E ICHEC-EC-EARTH (r1) KNMI-RACMO22E
2 ICHEC-EC-EARTH (r12) KNMI-RACMO22E CCCma-CanESM2 (r1) CLMcom-CCLM4-8-17
3 ICHEC-EC-EARTH (r12) SMHI-RCA4 MOHC-HadGEM-ES (r1) CLMcom-CCLM4-8-17
4 MOHC-HadGEM-ES (r1) CLMcom-CCLM4-8-17 MIROC-MIROC5 (r1) GERICS-REMO2015
5 MPI-M-MPI-ESM-LR (r1) MPI-CSC-REMO2009 MPI-M-MPI-ESM-LR (r1) UHOH-WRF361H
6 MPI-M-MPI-ESM-LR (r2) MPI-CSC-REMO2009 MPI-M-MPI-ESM-LR (r2) MPI-CSC-REMO2009

as raster datasets with a spatial resolution of ∼ 5 km raster
width, available for the period 1 January 1970–31 December
2100. Climate variables of the RCMs used in this study are
daily rainfall amounts as well as minimum, maximum and
mean daily temperature. For the analysis of the future change
in rainfall extreme values, the C20 period (1971–2000) is
compared with the near-term future NTF (2021–2050) and
the long-term future LTF (2071–2100).

3 Methods

3.1 Cascade model

A cascade model is used to increase the temporal resolution
of a rainfall time series by distributing the rainfall amount of
a coarse rainfall time step on finer time steps. This process is
known as disaggregation. The number of resulting wet time
steps and their rainfall amount depend on the cascade gener-
ator. The cascade model parameters are estimated from ob-
served time series. The micro-canonical cascade model used
for the disaggregation of daily time steps into 5 min intervals
in this study was introduced by Müller and Haberlandt (2018,
variant B2).

The branching number b indicates the number of time
steps generated from the coarser time step and is therefore an
important structural element of the model. In the first disag-
gregation step b is set to be 3 to generate three branches (b =
3) of 8 h time steps (Fig. 2). For the following disaggregation
steps, b = 2 is applied to generate two finer time steps from
one coarser time step. In total, there are seven disaggregation
steps to get from a daily time step to 7.5 min time steps. To
generate 5 min time steps the rainfall amount of each 7.5 min
time step is uniformly split into three 2.5 min time steps, with
a subsequent aggregation of two non-overlapping time steps.

For the splitting with a branching number of b = 2, the
weights W1 and W2 are used to distribute the rainfall amount
from a coarser to two finer time steps. The sum of W1 and W2
is always 1 in each split, which conserves the rainfall volume
exactly. This results in the following probabilities for W1 and
W2 (Eq. 1).

W1,W2 =


0 and 1 with P(0/1)

1 and 0 with P(1/0)

x and 1− x with P(x/(1− x));0 < x < 1

(1)

Here P is the probability for of each combination of weights.
A 0/1 splitting means that the entire rainfall amount is as-
signed to the second time step (W2 = 1), with no volume as-
signed to the first (W1 = 0). Vice versa, for the 1/0 splitting
W1 = 1 and W2 = 0 are applied. A x/(1− x) splitting dis-
tributes the rainfall volume over both finer time steps. The
relative fraction x of the rainfall amount of the coarser time
step assigned to the first time step is defined as 0 < x < 1.
Considering x as a random variable for all disaggregation
steps, an empirical distribution function f (x) is estimated
from the observed time series (Müller and Haberlandt, 2018).

The parameters of the cascade model are position- and
volume-dependent. The position classes result from the wet-
ness state of the current time step and its previous and sub-
sequent time steps in the rainfall time series. The cascade
model applied in this study has four position classes: start-
ing, enclosed, ending and isolated. However, there are also
cascade models that use fewer or more position classes (e.g.
Rupp et al., 2009; Müller-Thomy, 2020) or different concepts
as asymmetry (Maloku et al., 2023). A starting position class
describes the first wet time step at the start of a rainfall event.
Therefore, it is a wet time step preceded by a dry time step
and followed by a wet time step. An enclosed position class
defines a wet time step surrounded by wet time steps. In con-
trast, an isolated position class is a wet time step between
two dry time steps. The ending positing class describes a wet
time step at the end of a rainfall event, which is preceded by
a wet time step and followed by a dry time step. The volume
dependency of the parameters is considered by two volume
classes with the mean rainfall intensity of a position class
being an appropriate volume class threshold (Güntner et al.,
2001). Each disaggregation step with a branching number of
b = 2 is represented by a parameter set consisting of three
parameters (P(0/1), P(1/0), P(x/1− x)) for four position
classes with two volume classes each. This results in a pa-
rameter set with 24 parameters.

Nat. Hazards Earth Syst. Sci., 24, 2025–2043, 2024 https://doi.org/10.5194/nhess-24-2025-2024



N. Ebers et al.: Estimation of future rainfall extreme values by temperature-dependent disaggregation 2031

Figure 2. Multiplicative cascade model scheme for the first five disaggregation steps with branching numbers b, starting with a daily rainfall
amount of 24 mm.

The cascade model parameters are scale-dependent. For
each disaggregation step the model uses an individual param-
eter set (bounded cascade model). In contrast, an unbounded
cascade model assumes scale independency of the model pa-
rameter, whereby the same parameter set is applied over all
disaggregation steps (Marshak et al., 1994).

The first disaggregation level with b = 3 requires more
parameters than disaggregation steps with b = 2. From one
coarse time step, one, two or three finer wet time steps can be
created. This results in a large number of parameters if posi-
tion dependency is taken into account (Müller-Thomy, 2020).
Hence, the disaggregation for b = 3 is carried out without po-
sition dependency; only volume dependency is considered.
The chosen threshold to distinguish lower and upper volume
classes is quantile q = 0.998 of all positive rainfall amounts.

The parameters of the cascade model and f (x) are esti-
mated for each location with 5 min time series for the period
1 January 2001–31 December 2021. The 5 min time series
are extracted from a 5 km rainfall raster aggregated from the
1 km YW data. The aggregation of the YW data to a 5 km
raster was used to ensure spatial consistency with the climate
model data. Since the disaggregation is a random process, re-
sults vary depending on the initialisation of the random num-
ber generator. Müller and Haberlandt (2018) found that after
30 disaggregation runs the mean value of the main rainfall
characteristics did not change significantly with an increas-
ing number of disaggregation runs; hence 30 realisations are
carried out for each analysis in this study.

3.2 Parameter reduction

Temperature dependency will lead to an increase in the total
number of cascade model parameters. To keep the cascade
model as parameter parsimonious as possible, a reduction in
the current number of cascade model parameters is studied.

Two approaches for parameter reduction are tested: based
on (i) scale invariance and (ii) intra-event similarities. The
reference model is a bounded cascade model with scale-
independent model parameters (referred to as S0). Assum-
ing scale invariance of the model parameters, two different
scaling ranges are analysed: 5 min to 1 h and 1 h to 24 h. For
the parameter reduction, the disaggregation steps with b = 2

are suitable, since only these are applied over several scales.
Based on the two scaling ranges, S1 represents an approach
where one parameter set is used for each of the disaggrega-
tion steps from 8 h to 1 h and a second parameter set from 1 h
to 7.5 min. In approach S2 one individual parameter set over
all disaggregation steps from 8 h to 7.5 min is applied, which
corresponds to an unbounded cascade model.

Intra-event similarities are the (ii) approach to reduce the
number of parameters based on the position classes. The pa-
rameter with a probability Pstarting(0/1) describes the same
cohesive-event system as Pending(1/0). The rainfall amount
of a coarser time step is distributed so that a wet time step
is not separated from a previous or subsequent wet time
step (Fig. 3a). A connected disaggregation event can only
occur if an enclosed time step (Z1,3) is disaggregated with
P(x/(1− x)) into two wet time steps. For an enclosed time
step the probability of P(x/(1− x)) is very high. If a time
step with a starting position (Z1,2) followed by an enclosed
position (Z1,3) is disaggregated, the probability for a 0/1
splitting is high, so the rainfall event remains connected. The
similarity of the probabilities Pstarting(0/1) and Pending(1/0)

is also shown by the parameter values of the reference model
(Table 3). A unification of the parameters in each volume
class is therefore reasonable. Vice versa, the parameters
Pstarting(1/0) and Pending(0/1) are also similar (Fig. 3b). In
Fig. 4, the probabilities resulting from the intra-event simi-
larity for all 45 locations show only minimal changes (0 %–
2 %) between the parameters for both similarities underly-
ing our assumption. For similarity 1 the differences between
Pstarting(0/1) and Pending(1/0) in V1 are slightly higher com-
pared to V2. In contrast, in similarity 2 changes between the
parameters are slightly higher in V2. However, the difference
is negligible. Model variants where intra-event similarities
are taken into account are referred to as P1 in Table 4. Model
variants that do not consider parameter reduction via intra-
event similarities are referred to as P0.
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Table 3. Comparison of the probability parameters [%] Pstarting(1/0) and Pending(0/1) for the two intra-event similarity approaches (Fig. 3a
and b) for both volume classes (V1, V2) at location A.

Disaggregation step [h–h] Similarity 1 Similarity 2

Pstarting(0/1) Pending(1/0) Pstarting(1/0) Pending(0/1)

V1 V2 V1 V2 V1 V2 V1 V2

8–4 34 62 31 61 2 13 3 13
4–2 32 62 34 60 5 12 2 14
2–1 30 60 27 60 5 18 6 15
1–0.5 30 60 30 60 1 9 2 10
0.5–0.25 28 60 25 61 2 11 1 12
0.25–0.125 25 58 25 58 2 9 2 10

Figure 3. Disaggregation of a wet time step (Z1,2 and Z1,4) to de-
scribe the similarities of probability parameters in the start and end
position class (for the same volume class) for continuous rainfall
events (a) and non-continuous rainfall events (b).

A total of five variants of parameter reduction are analysed
(Table 4):
S1-P0. Only the scale invariance of rainfall properties is con-
sidered. Therefore, unbounded parameter sets for the disag-
gregation 8 h to 1 h and for 1 h to 7.5 min are applied.
S0-P1. Only the intra-event similarities are considered.
S1-P1. This combines the scale invariance of rainfall proper-
ties (S1-P0) and the intra-event similarities (S0-P1) resulting
in two unbounded parameter sets.
S2-P0. One unbounded parameter set is applied for the dis-
aggregation 8 h to 7.5 min.

Table 4. Parameter composition for b = 2 splitting used in parame-
ter reduction analysis.

Method name Parameter Parameter Total
sets number in parameter

parameter set sum

S0-P0 (reference) 6 24 144
S1-P0 2 24 48
S0-P1 6 20 120
S1-P1 2 20 40
S2-P0 1 24 24
S2-P1 1 20 20

S2-P1. This combines one bounded parameter set over all
scales (S2-P0) and the intra-event similarities (S0-P1, lowest
number of parameters of all variants).

3.3 Temperature dependency

A temperature dependency of the cascade model parameters
is introduced to increase their physical background. First, the
theoretical relationship between the temperature and rainfall
extremes is reviewed for the station subset A–E. Since only
daily temperature values are available from the climate sce-
narios, the dependency of 5 min rainfall intensities is anal-
ysed for daily data only. As predictors daily mean temper-
ature, maximum temperature and minimum temperature are
tested. All temperature characteristics were classified to esti-
mate class-specific parameter sets. The class width was cho-
sen so that each class contains a minimum of 10 000 time
steps with rainfall intensities > 0 mm per 5 min, which leads
to equidistant class widths of 5 °C. For class widths of 1 and
2.5 °C the number of included time steps per class was too
small for some classes, precluding reliable statistical analy-
sis. For each temperature class, the cascade model parame-
ters are estimated separately.

Nat. Hazards Earth Syst. Sci., 24, 2025–2043, 2024 https://doi.org/10.5194/nhess-24-2025-2024



N. Ebers et al.: Estimation of future rainfall extreme values by temperature-dependent disaggregation 2033

Figure 4. Absolute change [%] of the cascade model parameters from Pstarting(0/1) to Pending(1/0) (similarity 1) and from Pstarting(1/0) to
Pending(0/1) (similarity 2) in both volume classes across all 45 stations and disaggregation steps.

3.4 Validation of the disaggregated time series

The disaggregated time series are validated regarding contin-
uous and event-based rainfall characteristics as well as rain-
fall extreme values. Therefore, the relative error (rE) is used,
which is calculated for all rainfall characteristics (RCs) at
each location i over all realisations n of the disaggregated
(Dis) and observed (Obs) time series and then averaged over
all stations (Eq. 2). In addition, the mean error (mE) is anal-
ysed, which is calculated from the difference between Dis
and Obs at each location i (Eq. 3):

rE=
1
n
·

n∑
i=1

(RCDis,i −RCObs,i)

RCObs,i
, (2)

mE=
1
n
·

n∑
i=1

(RCDis,i −RCObs,i). (3)

The rainfall extreme values are validated in two ways. First,
the return periods of rainfall extreme values of the disaggre-
gated time series are analysed. Therefore, empirical return
periods (T ) are estimated according to the German guideline
DWA-531 (Deutsche Vereinigung für Wasserwirtschaft, Ab-
wasser und Abfall, 2012):

T =
L+ 0.2
k− 0.4

·
M

L
, (4)

where L is the number of rainfall events that is considered to
be 2.4 times the length of the analysed time series number in
years (M) and k the running index of the sample sorted by
size. The rainfall intensities assigned to return periods dR(T )

were identified with the exponential distribution function:

dR(T )= u+w · ln(T ) , (5)

where u and w are parameters determined by linear regres-
sion plotting dR(T ) against ln(T ) using Eq. (4). The return
period allows a validation of the most extreme rainfall events.

For the second validation the 99.9 % quantile (q99.9) of the
disaggregated time series and the observed time series is ap-
plied. This criterion was used before by, for example, Bürger
et al. (2021), Fumière et al. (2020), and Myhre et al. (2019)
and provides insight into the behaviour of the very high but
less extreme rainfall intensities.

4 Results and discussion

4.1 Parameter reduction

The impact of parameter reduction on continuous rainfall
characteristics (rainfall intensity, dry spell duration, wet spell
duration and amount) was analysed for the reference model
S0-P0 and the five model variants listed in Table 4. The mean
wet spell duration is underestimated by all model variants
with an rE of about−23 % (Table 5). There is only a negligi-
ble difference (< 2 %) between the model variants, and there
is no impact of the parameter-reduction approaches (intra-
event similarities (P1) and scale invariance (S1, S2)) notice-
able for the wet spell duration.

The mean rainfall intensity is overestimated in S0-P0
(rE= 24 %). The smallest deviations (rE= 19 %) are iden-
tified in S2-P0 and S2-P1. The wet spell amount is slightly
underestimated by all model variants, with S0-P0, S1-P0 and
S0-P1 showing the smallest deviation (rE=−4 %), while the
largest deviation (rE=−9 %) is observed in S2-P0 and S2-
P1. A noteworthy aspect of the wet spell amount is the stan-
dard deviation of rE, which is at −11 % significantly larger
for the approaches S2-P0 and S2-P1 than for the other ap-
proaches, at only −1 %. The dry spell duration shows a sim-
ilar pattern compared to the wet spell duration with hardly
any difference between the model variants. The mean rE is
−13 %.
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Table 5. Relative error (rE) [%] of continuous rainfall characteristics between disaggregated and observed time series for rainfall time steps
> 0.1 mm (mean across 45 stations).

Rainfall characteristic rE [%]

S0-P0 S1-P0 S0-P1 S1-P1 S2-P0 S2-P1

Wet spell duration [min]

Mean −23 −22 −23 −22 −23 −25
Standard deviation −47 −44 −47 −44 −42 −42

Rainfall intensity [mm per 5 min]

Mean 24 23 24 23 19 19
Standard deviation 52 51 52 51 45 50

Wet spell amount [mm]

Mean −4 −4 −4 −5 −9 −9
Standard deviation −2 −1 −2 −1 −11 −12

Dry spell duration [min]

Mean −13 −13 −14 −13 −13 −13
Standard deviation −27 −26 −27 −26 −22 −22

Figure 5. Impact of temperature dependency and parameter reduction on the q99.9 rainfall intensity [mm per 5 min] for the disaggregated
and the observed (quasi-gauge-adjusted radar data) time series in the temperature classes for selected locations (a–e) and the daily mean
temperature.

The impacts of parameter-reduction approaches on rain-
fall extreme values were analysed using the q99.9 for each
temperature class (Fig. 5) and for the 2-year return period
(Fig. 6). The results show that all model variants tend to over-
estimate the q99.9 rainfall intensity in the lower-temperature
classes (< 8–13 °C) while underestimating it in the highest-
temperature class (> 18 °C). The relation between the q99.9
rainfall intensity and the temperature classes is moderate for
all model variants compared to the observed data. Interest-
ingly, station E shows no coherent relation between the q99.9
and the temperature characteristics.

The parameter reductions mainly led to a reduction in q99.9
(Fig. 5). The model variants considering the scale invariance
with two bounded parameter sets (S1-P0 and S1-P1) leads
to slightly smaller q99.9 than the reference model. However,

the application of one bounded parameter set (S2-P0 and S2-
P1) leads to higher deviations from the reference model. The
choice of using one (S2) or two (S1) unbounded parameter
sets has a higher impact on q99.9 than the intra-event similar-
ities.

For the 2-year return period all model variants lead to over-
estimations of the extreme value resulting from the observa-
tions, with the reference model (S0-P0) showing a median
rE of 40 % over all stations. There are only slight differences
among the analysed parameter-reduction approaches.

The parameter reduction based on the intra-event similar-
ity had minimal effects on the continuous rainfall characteris-
tics, q99.9 and the rainfall extreme values, indicating that the
underlying assumptions hold (Pstarting(0/1)≈Pending(1/0)

and Pstarting(1/0) ≈ and Pending(0/1)).
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Figure 6. Relative error in the rainfall intensity with a return pe-
riod of 2 years for all parameter reduction model variants over all
locations.

However, the impact of the parameter reduction based on
scale invariance was higher than on intra-event similarities.
While approaches with two unbounded parameter sets (S1)
showed almost no deviation from the reference model (S0),
S2 with a bounded parameter set for 8 h to 7.5 min led to
slightly different results for continuous rainfall characteris-
tics and q99.9. Differences include improvements (rainfall in-
tensity and q99.9 for lower-temperature classes) and declines
(wet spell amount and q99.9 for higher-temperature classes).

Since the overall aim of the first part of this study was
to identify a parameter reduction without affecting the disag-
gregation results, approach S1-P1 combining the scale invari-
ance of rainfall properties (S1-P0) and the intra-event simi-
larities (S0-P1) with 40 parameters instead of 144 parameters
is applied for the implementation of temperature dependency.

4.2 Temperature dependency

In Fig. 5 the positive dependency of q99.9 on the mean tem-
perature is clearly visible for the observed rainfall time se-
ries at locations A–E, indicating lower rainfall extreme val-
ues at low-temperature classes. In addition, the difference of
q99.9 between the lower-temperature classes was smaller, in-
dicating a smaller temperature dependency for temperature
classes < 8 °C. This applies for all temperature characteris-
tics. These findings are similar to Bürger et al. (2021) for
10 min rainfall data.

Although higher-temperature classes are associated with
higher q99.9 values, the highest proportion of the 20 most ex-
treme rainfall events is observed in the temperature class 13–
18 °C (Table 6). Therefore, the rarest rainfall extreme events
do not solely occur in the highest-temperature class. Across
all stations, a larger proportion (20 %) of the 20 most extreme
rainfall events falls within the temperature class 8 to 13 °C,
while only 15 % are in the highest class (> 18 °C). Although

Table 6. Distribution of the 20 most extreme rainfall events among
the temperature classes for locations A–E and mean across all 45
locations.

Temp. Proportion of rainfall extreme
class events [%]

A B C D E ∅ 45 loc.

< 3 °C 0 5 0 0 0 0
3–8 °C 5 0 5 10 0 5
8–13 °C 10 35 25 20 15 20
13–18 °C 55 60 60 70 60 60
> 18 °C 30 0 10 0 25 15

rainfall extreme events at low temperatures are observed at
some locations, e.g. location B, they remain exceptions.

The implementation of temperature-dependent parameters
P(0/1), P(1/0) and P(x/(1−x)) resulted in a slight change
in continuous rainfall characteristics for the daily mean, daily
max and daily min temperature (Table 7). The overestimation
of rainfall intensity was reduced from rE= 23 % (S1-P1) to
rE 18 %–20 % (all S1-P1 with temperature dependency). The
results for wet spell amount, wet spell duration and dry spell
duration worsened slightly at 1 %–4 % for all S1-P1 with
temperature dependency.

Overall, the impacts of temperature-dependent disaggre-
gation on the continuous rainfall characteristics are consid-
ered negligible, with almost no differences among the three
temperature characteristics.

To analyse the effects of the temperature-dependent disag-
gregation on the rainfall extreme values, the q99.9 for 5 min
rainfall intensities of each temperature class is evaluated over
all stations (Fig. 7).

Without temperature dependency (S0-P0 and S1-P1) the
mE of q99.9 exhibits a nonlinear pattern across the tem-
perature classes. The mE is roughly 1.5 mm per 5 min for
low-temperature classes and increases to 2.3 mm per 5 min
for medium-temperature classes. The mE then drops signifi-
cantly to −1 mm per 5 min in the highest-temperature class.
Thus, q99.9 is underestimated at high temperatures in the ab-
sence of temperature dependency.

If the temperature dependency is taken into account (S0-
P0-TD and S1-P1-TD), the pattern of the mE changes. In
general, a slight negative relation for mE is observed. These
changes are observed for all temperature characteristics (min,
mean and max), with minimal differences between them. For
the mean temperature (Fig. 7b), the mE decreases by approx-
imately 0.75 mm per 5 min compared to the model variants
without temperature dependency in the medium-temperature
classes (3–8 and 8–13 °C). The highest-temperature class
(> 18 °C) shows the greatest effect of temperature depen-
dency, with an mE increase of 1.5 mm per 5 min, leading to
a slight overestimation of q99.9. Furthermore, the tempera-
ture dependency results in a smaller inter-quartile range of
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Table 7. Relative error rE of continuous rainfall characteristics of temperature-dependent and temperature-independent disaggregated time
series (mean for 45 stations) for S1-P1 (TDmin is daily minimum temperature, TDmean is daily mean temperature, and TDmax is daily
maximum temperature).

Rainfall characteristic Relative error rE [%]

S1-P1 S1-P1-TDmin S1-P1-TDmean S1-P1-TDmax

Wet spell duration [min]

Average −22 −23 −23 −23
Standard deviation −44 −40 −39 −40

Rainfall intensity [mm per 5 min]

Average 23 19 20 18
Standard deviation 51 21 22 20

Wet spell amount [mm]

Average −5 −9 −8 −9
Standard deviation −1 −17 −16 −23

Dry spell duration [min]

Average −13 −15 −15 −15
Standard deviation −26 −24 −23 −22

Figure 7. Mean error in the temperature-dependent disaggregation on the observed q99.9 rainfall intensity [mm per 5 min] for TDmin (a),
TDmin (b) and TDmax (c) in the different temperature classes across all stations.

mE (quantified as the difference between q25 and q75; up-
per and lower box bound in Fig. 7) leading to more accu-
rate predictions of mE over all stations compared to the non-
temperature-dependent variants. This trend is evident for all
temperature classes, but its effect is most pronounced in the
medium-temperature classes. The distance between q25 and
q75 is around 0.7 mm per 5 min without temperature depen-
dency and decreases to 0.3 mm per 5 min with temperature
dependency.

In Fig. 5 the impact of temperature dependency on
the q99.9 is shown in detail for locations A–E. Notably,

the exponential behaviour over all temperature classes can
be represented with the temperature-dependent disaggrega-
tion, which was not possible before, while for the highest-
temperature class (> 18 °C), all model variants without tem-
perature dependency show a great underestimation of q99.9.
S1-P1-TD leads to a better representation. A slight overes-
timation of q99.9 for the highest-temperature class is iden-
tified in general, but strong overestimations are also possi-
ble (location C). In the lower-temperature classes (≤ 18 °C)
there are also overestimations of q99.9. Furthermore, in ad-
dition to the q99.9 rainfall intensity the impact of temper-

Nat. Hazards Earth Syst. Sci., 24, 2025–2043, 2024 https://doi.org/10.5194/nhess-24-2025-2024



N. Ebers et al.: Estimation of future rainfall extreme values by temperature-dependent disaggregation 2037

Figure 8. Relative error in rainfall extreme values with D = 5 min
and T = 2 years for the disaggregation without temperature (noTD)
and temperature dependency (TDmin, TDmean and TDmax) across
all stations.

ature dependency was analysed on the event-based rainfall
amount with T = 2 years (Fig. 8). Without temperature de-
pendency, the median of rE for T = 2 years was found to be
40 % for the model variants. However, with the implemen-
tation of temperature-dependent parameters, rE decreases to
approximately 15 %. This improvement was observed across
all temperature characteristics, and the differences among the
temperature characteristics were negligible.

The aim of the temperature-dependent modification of the
cascade model was to provide a physically inspired extension
to the model to increase its applicability for future conditions.
The temperature-dependent modification led to an improved
representation of the rainfall intensity (mean and standard de-
viation) and slightly reduced wet spell amount.

Regarding the rainfall extreme values, the temperature-
dependent modification had varied effects. Its introduction
led to a reduction in mE of the q99.9 rainfall intensity. The
previous under- and overestimations of different quantiles
were replaced by a smaller and invariable overestimation
over all temperature classes. The notable advantage of the
invariable deviation lies in its ease of interpretation, pre-
dictability and potential mitigation. These findings are par-
ticularly relevant for error analysis in model prediction. Also,
the rE of the 2-year return period was reduced for all stations,
resulting in a better prediction of rainfall extreme values.

The introduction of temperature dependency improves the
cascade model, particularly with regard to extreme values.
The minor difference in the results of the different tempera-
ture characteristics can be explained meteorologically. Simi-
lar rainfall events were observed in the temperature classes
of each temperature type. The majority (> 50 %) of days
with a maximum temperature of > 22 °C had a mean tem-
perature of > 18 °C and a minimum temperature of > 14 °C
(Table 8). Since similar rainfall time series in the tempera-

Table 8. Proportion of identical rainfall time steps [%] that can be
found in each temperature characteristic (Tmin, Tmean and Tmax) for
the highest-temperature class (Tmin: > 14 °C; Tmean: > 18 °C; and
Tmax: > 22 °C) for locations A–E and mean across all 45 locations.

Temp. Proportion of the same rainfall
char. time steps [%]

A B C D E ∅ 45 loc.

Tmin 83 79 65 85 81 75
Tmean 66 55 59 65 69 65
Tmax 50 34 41 43 56 52

Figure 9. Relative change [%] of rainfall amount (a) and absolute
change [°C] of daily mean temperature on wet days (b) in the sum-
mer (April–September) between C20 (1971–2000) and the NTF
(2021–2050) and the LTF (2071–2100), respectively, for RCP4.5
and RCP8.5 across all locations.

ture classes across the temperature characteristics led to com-
parable parameters of the temperature-dependent disaggre-
gation model, the results were also similar. To analyse the
difference between the temperature characteristics more pre-
cisely, smaller temperature class widths (e.g. 2 °C) could be
selected. However, this was not feasible due to the restricted
time series length, which would have led to a small number
of rainfall values in individual classes and larger uncertainty
in q99.9 estimates.

4.3 Climate scenario disaggregation

Extreme rainfall events are more likely to occur in the sum-
mer when temperatures are higher (see Table 6). The ex-
pected changes in rainfall amount and mean temperature on
wet days during the summer are shown in Fig. 9 for all lo-
cations. In general, the summer rainfall amount will change
only slightly in both climate scenarios compared to C20. For
the RCP4.5 scenario, the rainfall amount increases by ap-
proximately 2 % in most locations for the NTF and LTF. In
contrast, for the RCP8.5 scenario the rainfall amount will de-
crease by about 2 % in the LTF across the majority of loca-
tions.
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Figure 10. Relative change in the rainfall amount for a rainfall du-
ration (D) of 5 min and 1 h with a return period of 2 years (T =
2 years) and 10 years (T = 10 years) between the control period
C20 (1971–2000) and the near-term future NTF (2021–2050) and
the long-term future LTF (2071–2100), respectively, for RCP4.5
and RCP8.5 across all locations.

The future mean temperature on wet days will increase by
approximately 1.1–1.4 °C in the NTF under both the RCP4.5
and RCP8.5 scenarios. The differences between the two cli-
mate scenarios are small in the NTF. However, for the LTF
the mean temperature on wet days is expected to increase by
about 1.6 °C compared to the control period for the RCP4.5
scenario and by approximately 3.4 °C for the RCP8.5 sce-
nario. The difference between q25 and q75 of each boxplot
is small, indicating similar future changes at each location.
The increase in temperature underscores the importance of
considering temperature-dependent parameters in the disag-
gregation of rainfall time series with the aim of extreme value
analysis.

To analyse the future change in rainfall extreme values, the
daily rainfall time series from the climate scenarios were dis-
aggregated to 5 min rainfall time series at each location, tak-
ing into account temperature dependency (S1-P1-TD). Sub-
sequently, rainfall extreme values with return periods T = 2
and T = 10 years were calculated following Eq. (3) for the
rainfall durations of 5 min and 1 h. As shown in Fig. 10, in
the NTF the differences between the two climate scenarios
are small (deviations of the medians < 5 %) for both return
periods and rainfall durations. The rainfall amount will in-
crease by approx. 5 %–10 % in the NTF for both rainfall du-
rations. However, the changes for RCP8.5 are slightly higher
than those for RCP4.5.

The future changes in the LTF exhibit considerable dif-
ferences between both scenarios. For the RCP4.5 scenario,
the rainfall amount is expected to increase by approximately
10 % for both return periods and rainfall durations. The

Table 9. Comparison of the relative change in the rainfall amount
with the return period T = 2 and T = 10 years for a rainfall dura-
tion of D = 1 h between the control period C20 (1971–2000) and
the long-term future LTF (2071–2100) for RCP8.5 for the disag-
gregation without temperature (S1-P1) and temperature dependency
(S1-P1-TD) for locations A–E and across all locations.

Locations Relative change C20 – LTF [%]

T = 2 years T = 10 years

S1-P1 S1-P1-TD S1-P1 S1-P1-TD

A 14 23 15 24
B 14 24 12 26
C 12 28 12 34
D 9 13 8 13
E 15 26 16 26
∅ 45 loc. 12 21 13 22

changes compared to the NTF are relatively small for the
RCP4.5 scenario. However, for T = 10 years and D = 1 h
the q75 of the boxplot is about 17.5 %, indicating the highest
increase for some locations for RCP4.5. For a few locations
a negative change (−0.5 % to −2.5 %) can be identified.

For LTF for the RCP8.5 scenario an increase of about 20 %
compared to the C20 period is identified and for some loca-
tions an increase of up to 50 %. This applies to both return
periods and rainfall durations.

To underline the importance of temperature dependency,
in Table 9 the relative changes in the future rainfall amounts
for rainfall extremes with T = 2 and T = 10 years are shown
for the disaggregated rainfall time series with and without
temperature dependency. A clear impact of the temperature-
dependent disaggregation can be identified. Considering
temperature dependency the relative change is approximately
doubled. The highest impact can be identified for location C
for T = 10 years. Without temperature dependency, the rel-
ative change is 12 %, whereas with temperature dependency,
it increases to 34 %. Conversely, the smallest impact can be
identified for location D with a difference of 5 %.

The spatial distribution of the rainfall extreme event
changes is shown in Fig. 11 for D = 5 min and T = 10 years
(similar for T = 2 years and D = 1 h). In the northeast region
of Germany, there is only a slight increase in the rainfall vol-
ume, ranging from > 5 %–≤ 15 % for T = 10. Conversely,
the locations in the south exhibit the highest increase, ex-
ceeding > 30 %. In the northern part and central Germany,
the majority of locations experience an increase of 15 % to
25 %. However, the identified spatial pattern is not homoge-
nous, e.g. some locations show different changes in extreme
values. To analyse the spatial differences between the loca-
tions further studies are required. One possible factor that
can impact the relative change is the elevation of the loca-
tion, which influences temperature.
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Figure 11. Relative change in rainfall extreme events for D = 5 min
and T = 10 years between C20 (1971–2000) and the LTF (2071–
2100) for RCP8.5 at each location.

In summary, based on the climate scenario data, no sig-
nificant changes are expected in terms of seasonal rainfall
amount in the summer in the future. However, temperatures
are projected to increase, particularly for the RCP8.5 sce-
nario. Therefore, it is crucial to take temperature dependency
into consideration in the disaggregation of rainfall time series
for the analysis of rainfall extreme values.

In this study climate, scenario data were disaggregated
from daily to 5 min time series, and the extreme values of
the disaggregated time series were analysed. The results indi-
cate that in the future, the rainfall volume of extreme events,
based on a temporal resolution of 5 min, will increase by
approximately 5 %–10 % in the NTF and 15 %–25 % in the
LTF. Additionally, for certain locations, an increase of more
than 30 % is observed.

Daily rainfall extreme values will increase at a rate of
approx. 7 % K−1. This increase aligns with the available
water vapour, which increases with rising temperatures de-
pending on the Clausius–Clapeyron relation (Seneviratne et
al., 2021). For sub-daily rainfall extreme events a similar

rate prevails, albeit with regional variations. For Europe,
Lenderink and Meijgaard (2008) have identified an increase
at a rate of 14 % per K, based on a coarse-resolution RCM.
Conversely, Hodnebrog et al. (2019) found that sub-daily
rainfall extremes do not increase with a rate above 7 % per K,
caused by robust summer drying over large parts of Europe.
In the present study the sub-daily rainfall extreme events in-
crease by 15 %–25 % in the LTF in RCP8.5. This corresponds
to an increase of 5 %–7 % per K on average across all loca-
tions. Notably, this value aligns with the rate from the pre-
viously mentioned studies. However, it should be noted that
the increase is strongly dependent on the location, with loca-
tions showing an increase of 30 %–50 % (8 %–14 % per K)
but also stations with an increase of 10 % (∼ 3 % per K).

The difference between the RCP4.5 and RCP8.5 scenar-
ios in the LTF is also evident in various studies and results
mainly from the higher increase in temperature in the LTF in
RCP8.5 (∼ 3.0 °C) than in RCP4.5 (∼ 1.9 °C). In the NTF,
the approximate increase in rainfall extreme values is for
both scenarios 5 % to 10 %, with a temperature increase of
1.1 to 1.4 °C, resulting in an increase of 5 %–7 % per K.

Poschlod and Ludwig (2021) also analysed the future
change in the return period of sub-daily rainfall extreme
events, identifying a change of 20 %–25 % for T = 10 and
D = 1 h for the LTF in central Europe, which is compara-
ble with the results of this study. Furthermore, the results are
confirmed by a comparison with a convection-permitting cli-
mate model (see S2 in the Supplement for details).

The key assumptions for the application of cascade mod-
els for the disaggregation of future climate model data is the
stationary scaling behaviour of rainfall, which was empiri-
cally shown to be reasonable in the study area, with addi-
tional data in the Supplement. Therefore, the parameter esti-
mation is carried out in a data-driven way, and no calibration
on future climate conditions is required. For this reason, the
cascade model is the most promising method for statistical
downscaling of climate model data to generate future sub-
hourly rainfall time series.

A proof-of-concept of the temperature-dependent disag-
gregation model is provided in the Supplement with data not
used in this study itself. An additional 5 min rainfall time se-
ries covering a long observation period (45 years) is split in
two periods, the temperature difference between both periods
is derived, and the changes in the extreme values are analysed
for both periods for the observed and disaggregated time se-
ries. The results of this approach show that the temperature-
dependent disaggregation model can reproduce an increase
in rainfall extreme values induced by an increase in temper-
ature. An application for climate scenario data affected by
a temperature increase to analyse future changes in rainfall
extreme values is therefore permissible.
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5 Summary and conclusion

The aim of this study is to analyse future rainfall extreme
values in Germany on a sub-hourly timescale. For the disag-
gregation of daily rainfall time series of the climate scenarios
a micro-canonical cascade model (Müller and Haberlandt,
2018) was refined. Modifications include the introduction of
temperature dependency and possibilities for parameter re-
duction. For the parameter reduction intra-event similarities
and scale invariance were assessed with the following con-
clusions:

1. Parameter reduction based on intra-event similarities
(P1) had negligible effects on the rainfall statistics of
the disaggregated time series.

2. Parameter reduction based on scale invariance has a
stronger impact on rainfall statistics of the disaggre-
gated time series. While the usage of two unbounded
parameter sets (for the disaggregation levels S1, 1t =

8h→ 1 h and 1t = 1h→ 7.5 min) resulted in only
slight changes in the rainfall statistics, the usage of one
bounded parameter set (S2, 1t = 8h→ 7.5 min) has a
negative impact on the disaggregation performance (e.g.
wet spell amount and q99.9).

3. Overall, the best modification was the S1-P1 parameter
reduction approach combining the scale invariance of
rainfall properties (S1) and the intra-event similarities
(P1) with 40 parameters instead of 144 without affecting
the rainfall statistics of the disaggregated time series.

Temperature dependency was introduced to provide a
physically inspired extension to the model to enhance its
applicability for future conditions. Therefore, temperature
classes with a class width of 5 °C were introduced, and the
temperature dependency was analysed for the minimum tem-
perature, mean temperature and maximum temperature. The
findings are as follows:

4. Sub-daily extreme rainfall events are temperature-
dependent and predominantly occur at higher temper-
atures.

5. Introduction of temperature dependency improved the
q99.9 rainfall intensity and rainfall extreme values for
T = 2 years, while continuous and event-based rainfall
statistics showed only slight changes.

6. There were only slight differences between the min-
imum temperature, mean temperature and maximum
temperature.

The results of this study show that a temperature depen-
dency of the cascade model parameters is relevant especially
for the rainfall extreme events. Hence it is worth analysing
if the application of temperature-dependent cascade model

parameters can be reduced to time steps with high rainfall
intensities only.

Using the temperature-dependent disaggregation model,
the daily climate scenario rainfall time series were disag-
gregated to 5 min resolution. The rainfall extreme values
of the disaggregated time series were then analysed for the
near-term future NTF (2021–2050) and long-term future LTF
(2071–2100) and compared with the control period C20
(1971–2000), leading to the following conclusions:

7. The rainfall amount of extreme events is projected to
increase by 5 %–10 % for NTF and 15 %–25 % for LTF.
However, the increase for the RCP8.5 scenario will be
higher compared to RCP4.5, especially for LTF.

8. Taking temperature dependency into consideration in
the disaggregation of rainfall time series for the anal-
ysis of rainfall extreme values is crucial, as it leads to
increases of > 100 % of the changes in future rainfall
extreme events (compared to the disaggregation with-
out temperature dependency).

Rainfall disaggregation proves to be a valuable tool for
increasing the temporal resolution of climate scenario data.
This approach allows for an analysis of finer temporal rain-
fall patterns and their impacts. The methodology outlined in
this study, particularly the disaggregation process, is not lim-
ited to the specific climate model data used. It can be applied
to other climate scenario data (e.g. CMIP6) and other tempo-
ral resolutions (e.g. 3 h). This transferability has the potential
to enhance the accuracy of climate model impact studies.

In addition to the analysis of future projections of rainfall
extreme values, the generated continuous 5 min rainfall time
series offer significant potential for various applications, e.g.
erosion studies, rainfall–runoff modelling, urban hydrologi-
cal models and hydraulic models. The accuracy and effec-
tiveness of these applications depend on the temporal resolu-
tion of the input time series, especially at small spatial scales.
However, further studies are required to explore the relation-
ship between temperature and rainfall extreme values to take
into account, for example, urban heat island effects at a finer
spatial scale, which demands also disaggregation in space.

Code and data availability. The temperature data are accessi-
ble from the Climate Data Center web portal of the German
Weather Service (https://opendata.dwd.de/climate_environment/
CDC/observations_germany/climate/daily/kl/, DWD, 2024a).
The YW-rainfall raster dataset is also accessible from the
Climate Data Center web portal of the German Weather Ser-
vice (https://opendata.dwd.de/climate_environment/CDC/grids_
germany/5_minutes/radolan/, DWD, 2024b). The climate scenario
data are available on request from the German Weather Service.
The rainfall disaggregation program and the resampling program
are both written in Fortran and can be shared on request.
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