
Nat. Hazards Earth Syst. Sci., 24, 2003–2024, 2024
https://doi.org/10.5194/nhess-24-2003-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantitative study of storm surge risk assessment in
an undeveloped coastal area of China based on deep
learning and geographic information system
techniques: a case study of Double Moon Bay
Lichen Yu1,4, Hao Qin1,4, Shining Huang3, Wei Wei1,4, Haoyu Jiang1,4, and Lin Mu2

1Hubei Key Laboratory of Marine Geological Resources, College of Marine Science and Technology,
China University of Geosciences, Wuhan, 430074, China
2College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
3Marine Information Center, Department of Natural Resources of Huizhou Bureau, Huizhou, 516003, China
4Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518057, China

Correspondence: Hao Qin (qh1qh100@alumni.sjtu.edu.cn) and Lin Mu (moulin1977@hotmail.com)

Received: 20 November 2023 – Discussion started: 25 January 2024
Revised: 10 April 2024 – Accepted: 25 April 2024 – Published: 14 June 2024

Abstract. Storm surges are a common natural hazard in
China’s southern coastal area which usually cause a great
loss of human life and financial damages. With the economic
development and population concentration of coastal cities,
storm surges may result in more impacts and damage in the
future. Therefore, it is of vital importance to conduct risk as-
sessment to identify high-risk areas and evaluate economic
losses. However, quantitative study of storm surge risk as-
sessment in undeveloped areas of China is difficult, since
there is a lack of building character and damage assessment
data. Aiming at the problem of data missing in undeveloped
areas of China, this paper proposes a methodology for con-
ducting storm surge risk assessment quantitatively based on
deep learning and geographic information system (GIS) tech-
niques. Five defined storm surge inundation scenarios with
different typhoon return periods are simulated by the cou-
pled FVCOM–SWAN (Finite Volume Coastal Ocean Model–
Simulating WAves Nearshore) model, the reliability of which
is validated using official measurements. Building footprints
of the study area are extracted through the TransUNet deep
learning model and remote sensing images, while build-
ing heights are obtained through unoccupied aerial vehi-
cle (UAV) measurements. Subsequently, economic losses are
quantitatively calculated by combining the adjusted depth–
damage functions and overlaying an analysis of the buildings
exposed to storm surge inundation. Zoning maps of the study

area are provided to illustrate the risk levels according to eco-
nomic losses. The quantitative risk assessment and zoning
maps can help the government to provide storm surge dis-
aster prevention measures and to optimize land use planning
and thus to reduce potential economic losses in the coastal
area.

1 Introduction

Storm surge is defined as the abnormal rise in water over
and above the normal astronomical tide and is expressed in
terms of height above predicted or expected tide levels. Usu-
ally, the surge is generated by a strong atmospheric distur-
bance, and it becomes particularly catastrophic when it hap-
pens to coincide with an astronomical high tide. In that case,
the surge-driven coastal flooding may inundate buildings
and cropland and cause a significant number of casualties
and economic losses. Storm surges have caused widespread
damage worldwide. In 2013, Super Typhoon Yolanda be-
came the worst typhoon in the last 30 years, pounding the
Philippines. It resulted in the reported deaths of 6293 indi-
viduals, 28 689 injuries, and 1061 missing individuals, with
estimated damages totaling USD 864 million (McPherson,
2015). Hurricane Harvey struck Texas in August 2017, re-
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sulting in approximately 100 deaths and economic losses
exceeding USD 125 billion (Lee, 2021). In China, storm
surges also pose a frequent threat in coastal cities. In the
last decade, China has experienced an average of 8.5 storm
surge disasters annually, with an average damage amount of
CNY 6815.8 million per year, with the provinces of Guang-
dong and Zhejiang being the most affected coastal areas
(China Marine Disaster Bulletin, 2023). For example, Ty-
phoon Hato in 2017, Typhoon Mangkhut in 2018, and Ty-
phoon Lekima in 2019 caused significant damage to coastal
cities in China and resulted great losses of life and prop-
erty (Zhou et al., 2021; Yang et al., 2019). Over the past
few years, potential monetary loss has grown in accordance
with rapid population and economic development in China’s
coastal area (Fang et al., 2021; Ji et al., 2020; McGranahan et
al., 2007; Seto et al., 2011). Therefore, it is crucial to imple-
ment risk assessment and mapping strategies to effectively
reduce these risks and mitigate the impact of storm surges.

Storm surge hazard assessment is an essential component
of storm surge risk assessment and zoning, aiming to evaluate
the hazard intensity of disasters through the numerical sim-
ulation of storm surge processes, estimation of storm surge
for selected return periods, and computation of the proba-
ble maximum storm surge (Shi et al., 2013). Therefore, the
numerical simulation of storm surge is a key step for storm
surge risk assessment. Because of the limitation of historical
storms and the nondeterminacy of future storms, the numer-
ical simulation of storm surges is usually used to determine
storm levels. Hydrodynamic models such as Advanced CIR-
Culation (ADCIRC), Delft3D, and the Finite Volume Coastal
Ocean Model (FVCOM) have been widely used (Vijayan et
al., 2021; N. Wang et al., 2021; Liu and Huang, 2020; Hu et
al., 2022; Lyddon et al., 2019; Zhang et al., 2020; Zhu et al.,
2022). It has been demonstrated that it is critical to include
tide and seawater level variations in shelf and nearshore wave
simulations (Masson, 1996). Furthermore, the seawater level
could be significantly affected by strong tides and typhoon-
induced wind in complex coastal seas and then modulate the
wave properties (Yang et al., 2020). The coupled FVCOM–
SWAN (Simulating WAves Nearshore) model, with the foun-
dation of FVCOM’s finite-volume method, unstructured grid,
and adaptable boundary condition handling capability, in-
tegrating the hydrodynamic and wave processes of SWAN,
possesses the ability to provide a simulation result more
quickly and accurately. In this circumstance, the coupled
FVCOM–SWAN model is used in this research for simulat-
ing the inundation of storm surge.

Coastal risk assessment can be categorized into two pri-
mary classifications: qualitative and quantitative. In the realm
of qualitative assessment, the entropy weight method, ana-
lytic hierarchy process (AHP), and other methods are widely
used. Ramkar and Yadav (2021) used AHP in combination
with geographic information system (GIS) techniques for
proposing a flood risk map, which can identify high-risk ar-
eas efficiently. Malekinezhad et al. (2021) combined the en-

tropy weight method and GIS and conducted a flood vulner-
ability analysis for the city of Hamadan. The results high-
lighted the advantages of the entropy weight method com-
pared to the normal spatial overlay method. Furthermore,
Pathan et al. (2022) and Rafiei-Sardooi et al. (2021) made
use of the Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS). The former pointed out the ad-
vancement of TOPSIS by comparing it with AHP, and the lat-
ter combined machine learning and TOPSIS to analyze urban
flood vulnerability. Unlike qualitative risk assessment, quan-
titative risk assessment enables the quantification of damages
and risks in monetary terms. The most commonly used ap-
proach to assess direct damage is based on depth–damage
curves (De Moel and Aerts, 2011; Merz et al., 2007; Smith,
1994). Thieken et al. (2008) presented the Flood Loss Esti-
mation Model for the private sector (FLEMOps) using Ger-
man flood loss data from August 2002, and the group fur-
ther established the model for the commercial sector in 2010
(Kreibich et al., 2010). Zhai et al. (2005) derived multi-factor
loss functions for buildings in Nagoya, Japan, using empiri-
cal data from the Tokai flood in 2000, and Grahn and Nyberg
(2014) established functional relationships utilizing house
insurance claim data in connection with lake flooding. Ex-
cluding buildings, Yazdi and Salehi Neyshabouri (2012) and
Hess and Morris (1988), respectively, built several univari-
ate functions and multi-factor functions for different kinds of
crops and grassland. In recent years, machine learning has
also been introduced in quantitative loss assessment; for ex-
ample, Merz et al. (2013) developed a tree-based approach
using regression trees and bagging regression trees as ma-
chine learning methods to analyze direct building damage to
private homes. Paprotny et al. (2020) proposed a Bayesian
network damage model (a method of supervised machine
learning) and reached a good accuracy regarding predictions
of building losses.

The essence of quantitative risk assessment lies in an-
alyzing the interaction between exposure factors and haz-
ards (Adnan et al., 2020; Armenakis and Nirupama, 2013;
Granger, 2003; Kron, 2005). Therefore, it is crucial to quan-
tify the direct tangible damage of elements at risk. Buildings
are important exposure elements, as they are the gathering
place of people and property. Building footprint data are nec-
essary for evaluating the vulnerabilities of a building, as it
provides essential information about the buildings, including
spatial location, distribution, and boundaries (Mharzi Alaoui
et al., 2022). They are also of great significance in risk assess-
ment, primarily due to their ability to identify high-risk areas,
assess building vulnerability, and estimate potential damage
(Gacu et al., 2023; Wu et al., 2019). Extracting building foot-
prints from remote sensing images has been widely used in
many fields, such as urban management, disaster manage-
ment, and navigation (Zhou et al., 2004; Tang et al., 2006;
Liu et al., 2019, 2020; Rousell and Zipf, 2017; Chen and
Gao, 2019). However, there is a lack of building footprint
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extraction and application in the realm of storm surge assess-
ment.

When a building is inundated, there are a variety of fac-
tors that may influence the amount of monetary loss, for
example, building type, building structure, private precau-
tion, and maintenance status (Marvi, 2020; Thieken et al.,
2008). Taramelli et al. (2022) pointed out that building height
is one of the factors for determining the susceptibility due
to flooding and evaluate the buildings’ potential damage by
flood hazards. Hasanzadeh Nafari et al. (2016) developed a
new loss model in which buildings with a different num-
ber of stories were divided into different categories in the
modeling process. To conclude, height is an important fac-
tor that affects the vulnerability of buildings when they serve
as inundation-exposed elements. Therefore, in the process of
quantitative storm surge risk assessment, it is necessary to
adjust the depth–damage functions to make buildings of dif-
ferent heights correspond to different functions.

Moreover, different than the field research and statistics
required for the acquisition of other data, the data of build-
ing height are more accessible from multiple sources. For
example, public DSM (digital surface model) data have been
utilized for building height estimation (Huang et al., 2022);
some satellite companies also offer services to customize
DSM data for selected regions. Nonetheless, they, respec-
tively, suffer from a lack of precision and high costs. Build-
ing height can also be obtained via remote sensing tech-
niques, such as synthetic-aperture radar (SAR) (Li et al.,
2020; Frantz et al., 2021), or be determined by taking ad-
vantage of shadows in remote sensing images (Comber et
al., 2011; Shao et al., 2011). However, in addition to the lack
of precision, the absence of data necessary for modeling and
the crowded character of rural buildings in China make the
above methods difficult to be implemented. Compared to the
methods above, acquiring building height through UAV mea-
surements ensures high accuracy while being relatively effi-
cient, and the method is quite simple, which also reduces the
required costs.

In view of the aforementioned information, regarding
storm surge qualitative risk assessment, there is a stringent
requirement for both the quality and timeliness of land use
data, which means that the risk assessment cannot be gen-
erated in real time and the qualitative risk assessment also
cannot evaluate the risk level through the intuitive value of
economic loss. In the realm of quantitative risk assessment,
building a univariate or multi-factor empirical model requires
complete and substantial data, and the published models gen-
erally only provide univariate functions ignoring the building
height as a factor or have regional limitations. Additionally,
for the coastal regions of China, which are often affected by
storm surge disasters, they tend to have relatively low levels
of economic development. Under these circumstances, the
data needed to conduct flood risk assessment are generally
lacking.

In response to the challenges mentioned above, the scien-
tific goal of this paper is to propose a quantitative storm surge
risk assessment method for underdeveloped areas based on
deep learning and GIS techniques. First, on the basis of high-
resolution DEM data and seawall data measurements, five
defined storm surge inundation scenarios with different ty-
phoon return periods are simulated by employing the cou-
pled FVCOM–SWAN model. Subsequently, TransUNet is
introduced as a deep learning method to extract the build-
ing footprint, and building height data are acquired through
UAV measurement. Since data on relevant disaster losses in
underdeveloped regions are lacking, empirical modeling was
deemed impractical. Therefore, the adjustment of the Joint
Research Centre’s (JRC) depth–damage curves by Hazus is
chosen to take the impact building height into consideration,
thus to conduct a quantitative assessment with more accu-
racy. Finally, combining hazard maps, exposure elements,
and adjusted depth–damage curves, quantitative risk zoning
maps are created. The risk zoning maps can assist decision-
makers in identifying high-risk sub-zones and planning dis-
aster prevention measures. Accordingly, this approach is
novel in obtaining refined exposure elements data through
deep learning and UAV, addressing the lack of historical
storm surge economic loss data, and considering the effect
of building height on economic loss through the adjustment
of existing depth–damage curves.

2 Study area and datasets

2.1 Study area

As a shipping hub in the South China Sea, since 1989,
the province of Guangdong, located in southern China, has
grown to become the Chinese province with the largest
economic output, with a gross domestic product (GDP)
of CNY 129 118.6 billion in 2022. However, as mentioned
above, Guangdong is relatively vulnerable to storm surges,
such as Typhoon Hato and Typhoon Mangkhut, due to its ge-
ographical characteristics.

Huizhou is a city in the province of Guangdong and
also one of the central cities of Pearl River Delta re-
gion. It is located on the eastern coast of the Guangdong–
Hong Kong–Macao Greater Bay Area, and the GDP reached
CNY 540.1 billion in 2022, with the highest growth rate in
Guangdong. The town of Pinghai is located at the south-
ernmost edge of Huizhou and has a registered population of
about 40 000. Its economy mainly depends on various crops
and seafood products. Due to its coastal geographical char-
acteristics and the presence of the Pinghai Ancient City, the
town has become a cultural-tourist destination and can there-
fore be defined as a cultural-tourist town.

In this paper, the chosen study region is the coastal area
of the town of Pinghai, named Double Moon Bay. It cov-
ers 10 villages in total, including Foyuan, Dayuan, Yuye,
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Figure 1. Maps of locations in the study. (a) Map of Huizhou. (b) Map of the study area in Huidong; the base map was obtained from Esri.
(c) Village map of the study area; the base map was obtained from © Google Maps (map data © 2023 Google).

Xinliao, Xin, Shazuiwei, Caijia, Nanshe, Daao, and Harbor
Community. In recent years, the region has been developed
for tourism and real estate, including through the construc-
tion of hotels, resorts, and high-end business districts, which
has spurred its financial development. It is foreseeable that
the population and economy of the region will grow rapidly.
However, the economic status of the region remains rela-
tively low, which presents a challenge due to data scarcity
and limited accessibility. In addition, the region is suscep-
tibly affected by tropical cyclones during the season run-
ning from April to November (S. Wang et al., 2021). In re-
cent years, more than 10 typhoons have affected the study
area, including Typhoon Lekima, Typhoon Haishen, and Ty-
phoon Khanun. The general location and information about
the study area are shown in Fig. 1.

2.2 Data sources

In order to accomplish the research, the data used are ob-
tained from various sources. Below the different data types
are described.

1. Land cover type data. These data were obtained from
the Department of Natural Resources of Huizhou Bu-
reau. They contain multiple land cover types including
forest, cropland, and residential land. They are used to
calculate the vulnerability level.

2. Remote sensing image data. Remote sensing images
were obtained from the Chang Guang Jilin-1 satel-
lite. Chang Guang Satellite technology Co., Ltd., was
founded on 1 December 2014 and is the first and the
largest commercial satellite corporation in China. Jilin-
1 is the first independently developed commercial high-
resolution satellite. The images from Jilin-1 satellite
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have a resolution of 50 cm and have five spectral chan-
nels: the panchromatic band, blue band, red band, green
band, and near-infrared band. The images, consisting of
data from the blue band, red band, and green band, are
utilized in a combined deep learning method to extract
buildings.

3. Unoccupied aerial vehicle (UAV) data. UAV data are
generated by oblique photography and are organized
in the OpenSceneGraph binary format. The UAV data
were obtained from the Department of Natural Re-
sources of Huizhou Bureau, and the data are utilized for
building height calculation.

4. Digital elevation model (DEM) data. DEM data were
captured by manual observation in 2018, with a reso-
lution of 0.3 m. The coordinate system and file organi-
zation originally followed CGCS2000 (China Geodetic
Coordinate System 2000) as text files, and they were
further transformed to WGS84 (World Geodetic System
1984) in a raster format to make use of these data in
the research. The data contain the elevation information
for the study region. Moreover, the seawall data were
also obtained manually. Both types of data are used in
the modeling of storm surges for simulating the hazard
maps.

5. Hybrid wind field data. ERA5 is the fifth generation of
the European Reanalysis dataset produced by the Eu-
ropean Centre for Medium-Range Weather Forecasts
(ECMWF), and it provides comprehensive and high-
resolution atmospheric and climate data. The Holland
(1980) typhoon wind field model was proposed in 1980
and introduced the Holland B parameter on the basis of
the Schloemer exponential pressure distribution model.
In this study, these two data types are fused to generate
hybrid wind field data, which are subsequently utilized
for storm surge simulations.

6. Historical typhoon data. Historical typhoon data includ-
ing typhoon track, typhoon pressure, and velocity were
obtained through the China Meteorological Administra-
tion typhoon network website. The historical data are
employed to assess the reliability and validity of the
model.

7. Administrative-boundary data. These data were ob-
tained from the National Platform for Common Geospa-
tial Information Services and contain administrative
boundaries at the village level. There are 10 villages in
the study area.

3 Method

The methods in this study aim to assess quantitative, directly
tangible damage over the study area and consist of the fol-

lowing steps: hazard assessment, exposure assessment, vul-
nerability assessment, and risk assessment. A flowchart of
the procedure is illustrated in Fig. 2.

First, with respect to hazard assessment, five storm surge
scenarios are defined. After constructing a wind field through
the Holland (1980) model, the inundation area and depth
of different typhoon return periods are simulated by utiliz-
ing the coupled FVCOM–SWAN model. In exposure assess-
ment, building footprints and heights are extracted by in-
troducing the TransUNet deep learning method and shadow
calculation. Then the hazard maps are overlaid to identify
the elements at risk. Considering the effect of building floors
on flood monetary loss estimation, the JRC’s depth–damage
functions are adapted, representing the vulnerability of dif-
ferent exposed elements. Finally, the economic loss of dif-
ferent typhoon scenarios can be summarized, and the risk
assessment is conducted by multiplying the temporal prob-
ability. Moreover, the quantitative zoning maps of four risk
levels are generated through a zonal statistic.

3.1 Strom surge inundation simulation

The Finite Volume Coastal Ocean Model (FVCOM) is a
coastal ocean circulation model which was originally de-
veloped by Chen et al. (2003) and further improved by the
University of Massachusetts and the Woods Hole Oceano-
graphic Institution. The following are the governing equa-
tions of FVCOM, comprising momentum, continuity, tem-
perature, salinity, and density equations:
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where x, y, and z, respectively, represent the eastern, north-
ern, and vertical coordinate axes in the Cartesian coordinate
system; u, v and w are the velocity components in the x, y,
and z directions; T , S, and ρ are the temperature, salinity,
and density; P is the pressure and f stands for the Coriolis
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Figure 2. Flowchart of the presented storm surge quantitative risk assessment method. The base map was obtained from © Google Maps
(map data © 2023 Google).

parameter; Km is the vertical eddy viscosity coefficient and
Kh is the vertical eddy diffusivity coefficient for heat; g is
gravitational acceleration; and Fu, Fv , FT , and FS are the
horizontal diffusion terms.

Simulating WAves Nearshore (SWAN) is the third-
generation offshore wave model developed by Delft Univer-
sity of Technology, and it was originally proposed by Booij
et al. (1996). The governing equation of the model is shown
as

∂

∂t
N +

∂

∂x
CxN +

∂

∂y
CyN +

∂

∂γ
CγN +

∂

∂θ
CθN =

S
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where N is the wave action density; θ is the propagation di-
rection; Cx and Cy are, respectively, the x and y components
of propagation speed; Cy and Cθ are the γ and θ components
of propagation speed; and γ and S, respectively, represent the
frequency and the source term for the wave energy.

The potential storm surge inundation maps in different ty-
phoon scenarios have been updated by institutions such as the
National Oceanic and Atmospheric Administration (NOAA),
the National Hurricane Center, and other departments since
the 1990s (Glahn et al., 2009). In the field of risk assessment
research, it is common to set up different typhoon scenarios

using storm surge simulation models to obtain various sce-
narios of typhoon-induced inundation (Zhang et al., 2023;
Rizzi et al., 2017). The hazard maps of under various typhoon
intensity scenarios are helpful for decision-makers and re-
searchers in analyzing multiple aspects of potential hazards
in the study area.

Typhoon Mangkhut, as one of the largest typhoons to af-
fect South China Sea region in recent years, is a strong repre-
sentative. It is characterized by high intensity, a wide area of
influence, high wind speed, etc. In this study, the path of Ty-
phoon Mangkhut is shifted to pass through the Huizhou tidal
station as the input typhoon path of the coupled model to
maximize the impact area of the simulation result. In terms
of the center pressure, S. Wang et al. (2021) presented sta-
tistical analyses of historical typhoon data in Huizhou and
designed five typhoon scenarios, which are, respectively, the
typhoon minimum central pressures of 880, 910, 920, 930,
and 940 hPa. Therefore, these five parameters are introduced
as the setup for five typhoon scenarios.

FVCOM and SWAN both use the unstructured triangu-
lar grid to subdivide the South China Sea, and the latitude
and longitude range of the region is 13–29° N, 109–122° E.
The SWAN parameters are set as follows. The wind input
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growth term and whitecap dissipation term follow the Komen
scheme. The bottom friction dissipation is parameterized us-
ing the Madsen vortex viscosity model. The nonlinear in-
teractions are implemented using three-wave and four-wave
nonlinear interaction schemes. The input wind field is the
fusing wind field derived from ERA5 and the Holland (1980)
method. The open-boundary-forced tidal elevation of FV-
COM is conducted by calculating the harmonic constants for
the 11 major astronomical tidal constituents, namely M2, N2,
S2, K2, K1, O1, P1, Q1, MS4, M4, and M6. The forcing
field is the fusing wind field and the wave data generated by
SWAN. The external model time step for the model is set to
0.75 s, while the internal model time step is set to 7 s.

In summary, the FVCOM–SWAN coupling method is
utilized for simulating the inundation caused by storm
surge. Specifically, following the modification of Typhoon
Mangkhut’s central pressure, velocity, and track data, the
data are utilized as input for the Holland (1980) typhoon
wind field model, subsequently yielding the wind field out-
come. The hybrid wind field data generated are fed into the
SWAN model to generate wave data. Then, both the wind
data and wave data are input into the FVCOM model to cal-
culate the extent of inundation.

3.2 Building extraction

The deep learning model used in the research is Tran-
sUNet (Chen et al., 2021), which was originally proposed
for segmentation of medical images. TransUNet incorporates
a transformer in the encoder within the architecture of the U-
shaped network, consequently making use of the advantage
of global information extraction while fusing the superficial
and deep features. With the goal of building extraction, the
target is to segment the building’s area precisely. The Tran-
sUNet model can effectively identify the boundary between
buildings and a background, which enables the model to be
a competent for extracting the buildings with a different size
and shape.

The following is a relevant introduction of the structure of
the model.

3.2.1 Transformer in TransUNet

The transformer was first proposed by Sutskever et al.
(2014), which was originally utilized for machine transla-
tion. However, as more variants of the transformer were
developed, people found that transforming also performed
well in multiple tasks, such as natural language processing
(NLP), computer vision (CV), and automatic speech recog-
nition (ASR).

The transformer encoder is composed of L layers of multi-
head self-attention (MSA), layer normalization (LN), and
multi-layer perceptron (MLP). The structure is shown in the
Fig. 3a, and the equations of query–key–value (QKV) self-
attention and MSA are shown below:

Attention(Q,K,V)= softmax
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QKT
√
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)
V, (9)
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where Q, K, and V are, respectively, the query, key, and value
matrix;

√
Dk is the scaled dot-product attention; and WO ,

WQ
i , WK

i , and WV
i are, respectively, the corresponding lin-

ear mapping, which convert to Q, K, V, and the output to the
specified dimension.

MSA has a positive effect on helping the model to identify
the target objects and background; thus the neutral network
can learn more information from the target. LN is deemed to
stabilize the deep network training, which can prevent an un-
stable gradient, model degradation, etc. The module receives
the 2D flatted patches from the image’s patches. Due to it
being different from a CNN (convolutional neural network)
or RNN (recurrent neural network), apart from mapping the
vectorized patches to D-dimensional embedding space, the
transformer needs to apply additional position encoding to
retain the patch’s positional information.

3.2.2 Structure of TransUNet

The overall structure of TransUNet is a reference to U-Net,
which has a U-shaped encoder–decoder structure, and the
structure diagram is shown in the Fig. 3b.

In the encoder, the origin image is put into the CNN part
for feature extraction. After the processing of the position
encoding and flattening, the patches are further put into the
transformer module. The transformer module consists of 12
transformer layers. The CNN part is implemented through
using ResNet50, which includes three blocks in total, with
each block outputting the hidden feature for a skip connec-
tion.

The decoder reshapes the output sequence from the en-
coder and then performs cascade upsampling after transform-
ing the number of channels. During the process, the skip con-
nection is introduced using the feature map hereinbefore. In
the end, the segmentation result is generated.

In conclusion, TransUNet is the combination of U-Net and
the transformer, which is designed to make use of advan-
tages from both structures. The global attention from the
transformer can contribute to learning global information,
while the skip connection from the U-shaped network can
contribute to getting more information from shallow feature
map output from the CNN, and also the CNN performs better
in extracting the local information. In this research, building
images are similar to medical images, with features like a
high complexity level and large range of gray values. The
skip connection structure can perform simultaneously acqui-
sition of low-level semantic features and high-level semantic
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Figure 3. Overview of the TransUNet framework (adapted from Chen et al., 2021). (a) Schematic diagram of the transformer layer. (b) Struc-
ture diagram of TransUNet. ReLu: rectified linear unit.

features, and the transformer can conduce identification of
the buildings from the background; thus TransUNet achieves
high accuracy in building segmentation.

3.3 Building height acquisition

UAV tilt photography modeling technology can combine
control point encryption from a massive amount of image
data with a small number of ground control points to obtain
accurate external orientation elements (Kang et al., 2020).
The 3D model reflects the true condition of the ground, and
the data are selected to be in the WGS84 coordinate system.
The ground resolution is one of the most intuitive and impor-
tant parameters in tilt photography, and it is also a key factor
in determining the quality of the 3D modeling. In the pro-
cess of performing aerial triangulation for tilted-image au-
tomation, it is necessary to ensure that the resolution of the
different images is as consistent as possible while taking into
account the resolution of the side-view image, thus ensuring
accuracy and image overlap. Hence, the combinatory analy-
sis of image resolution at a tilted viewing angle is required.
The resolutions of the tilted-image center point, near point,
and far point are expressed as follows:

GSDtop =
δhcosβy

f cos(αy −βy)
, (12)

GSDmid =
δh

f cosαy
, (13)

GSDbottom =
δhcosβy

f cos(αy +βy)
, (14)

where GSD is the ground sampling distance; δ is the sen-
sor cell size; h is flight height; f refers to the camera focal
length; and αy and βy are, respectively, the dip angle and half
of the angle of view. Normally, the ground resolution at the
center of the tilted and vertical images should be comparable,
and the minimum resolution of tilted images should less than
3 times the resolution of a vertical image.

There are multiple formats available for storing 3D mod-
els, including OBJ, STL, FBX, and OSGB. In this study,
the generated 3D model is saved in the OSGB format. The
OSGB format was originally proposed by the Ordnance Sur-
vey for storing British geographic spatial data. It combines
binary encoding and compression algorithms to improve
the data storage and transmission efficiency. Normally, the
OSGB data contain information of geographic coordinates,
elevations, texture mapping, and geometric shapes, which
can be used in GIS, virtual reality (VR), and other applica-
tions.

A digital surface model (DSM) is a digital terrain model
that contains elevation information about trees, buildings,
and bridges. Compared to a DEM, a DSM can reflect the
true surface condition of the earth; thus a DSM has a wide
range of applications in city management or forest steward-
ship. In this research, the UAV data can be transformed to
DSM data using SuperMap software, and the DSM result is
shown in Fig. 4b. After generating the DSM, the elevations
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of the roof of buildings and corresponding elevations of the
ground around the buildings are extracted by manual selec-
tion, and then the height of buildings can be calculated using
Eq. (15).

DSMRoof−DSMGround =H, (15)

where DSMRoof is the DSM value of the building’s roof,
DSMGround represents the corresponding DSM value of the
ground, and H is the result of building height.

3.4 Exposure and vulnerability assessment

The process of storm surge risk assessment involves two
key components: exposure and vulnerability. Exposure rep-
resents the elements exposed to hazardous spaces, while vul-
nerability refers to the level of the exposure elements’ sus-
ceptibility to damage. When doing an exposure assessment,
the disaster-affected elements can be analyzed by overlay-
ing the building footprint data and land cover data with the
hazard layer, which is the inundation data in this research.
The process can be accomplished using overlay analysis in
ArcGIS software.

3.4.1 Adaptation of flood vulnerability functions

Constructing an empirical stage–damage curve is a com-
monly used method for conducting vulnerability assess-
ments. However, as is mentioned above, China lacks data
about flood loss or insurance compensation in flood disasters;
as a result, it is not practicable to develop exclusive functions
for the study region, so the depth–damage functions devel-
oped by Huizinga et al. (2017) of the Joint Research Centre
(JRC) are introduced. The depth–damage functions manifest
the loss ratio of the exposure elements at different inunda-
tion depths from 0 to 6 m, and the ratio ranges from 0 to 1,
which represents no damage to fully damaged. Moreover, the
JRC also provides the maximum economic losses per square
meter for six different exposure element types including resi-
dential, industrial, infrastructure, road, agricultural land, and
transport. In this study, the original functions and maximum
loss data for China region are used, and the economic loss
can be calculated by multiplying the loss ratio, the maximum
loss, and the disaster-affected area.

However, the JRC’s vulnerability functions do not provide
the specific function of each height category. In this case,
the depth–damage functions in Hazus are introduced. Hazus
was first released for earthquakes in 1997 by the Federal
Emergency Management Agency (FEMA), when the Hazus
flood model first started to be developed (Scawthorn et al.,
2006). In 2004, a multi-hazard version called Hazus-MH was
created that was a standardized GIS-based model that in-
cluded the earthquake, flood, and hurricane models (Nastev
and Todorov, 2013). The Hazus-MH flood model is designed
primarily for local and regional hazard planners and emer-
gency managers developing emergency management plans

and mitigation strategies (Tate et al., 2015). However, the
depth–damage functions in Hazus-MH are restricted to re-
gions within the United States; hence the Hazus’s functions
are introduced to adapt the JRC’s functions.

The approach to modifying functions refers to the method
proposed by Dabbeek et al. (2020). In the process, the Hazus
loss ratios of each height category (buildings with one, two,
and three or more stories) are averaged, which is shown in
Eq. (16). Then the contribution of each height category rela-
tive to the average loss is calculated as shown in Eq. (17). In
the end, multiplying the value obtained in the previous step
by the JRC’s vulnerability functions yields the adapted func-
tions for each height category.

Di(hazus) =
di,1+ di,2+ di,3+

n

i(depth)= {(0,6)} ,
(16)

ci,h =
di,h

Di(hazus)
, (17)

di,h(adapted) = ci,h×Di(jrc), (18)

where di,h represents the loss ratio at inundation depth i for
each height category h. Di is the average loss ratio of all
heights.

3.4.2 Quantitative risk assessment

A quantitative financial loss estimation is calculated by over-
laying the following data: the inundation simulation result
generated by FVCOM and SWAN modeling, the spatial dis-
tribution of three types of exposure elements, the depth–
damage functions of industrial and commercial elements,
and the adapted depth–damage functions for residential el-
ements in three height categories. The process of loss esti-
mation can be shown in the following equation:

C =

i=n∑
i=1

Dx(i)f (di)Ai, (19)

where C stands for the economic loss estimation result, n
represents the total number of exposure elements, x(i) is the
type of the ith element and Dx(i) is the maximum loss of the
ith element, di is the depth of submergence of the ith element
and f (di) is the loss ratio of the ith element, and Ai refers to
the area of the ith element.

The monetary loss of residential buildings in 2010
of EUR 984 per square meter, whereas the monetary
loss of infrastructure and agriculture are, respectively,
EUR 12 per square meter and EUR 0.02 per square meter ac-
cording to the JRC, only accounting for 1 % or less. There-
fore, the monetary loss estimate of infrastructure and agricul-
ture is excluded in the study.

In this research, five storm surge scenarios are settled and
10 administrative sub-zones are given four different risk lev-
els for each defined typhoon scenario.
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Figure 4. Building height acquisition. (a) Schematic diagram of UAV tilt photography data. (b) Generated DSM results for building height
data extraction.

Table 1. The relative error and absolute error between the maximum
predicted water levels and highest measured water levels from the
Huizhou tidal station during different typhoon events.

Typhoon name Measured Relative Absolute
data (cm) error (%) error (cm)

Vicente (1208) 189 10.3 19
Hato (1713) 274 19.8 54
Mangkhut (1822) 329 6.5 22
Khanun (1720) 201 2.1 4

4 Results and discussions

4.1 Validation

The performance of the coupled FVCOM–SWAN model is
evaluated. Four typical typhoons (Vicente, Hato, Mangkhut,
Khanun) are selected to validate the coupled model for the
study region. The measured data of each typhoon are cap-
tured by the Department of Natural Resources of Huizhou
Bureau. Figure 5 shows the maximum predicted water level
and highest measured water level of the chosen typhoons.
Relative error and absolute error are introduced to evaluate
the model, and Table 1 displays the statistical results from
the Huizhou tidal station. It is seen that the predicted results
are in good agreement with the measurements. The statisti-
cal result shows that the relative errors of the four typhoons
range from 2.1 % to 19.8 % and the absolute error varies
from 4 to 54 cm. Therefore, the coupled FVCOM–SWAN
model demonstrates reliable competence in accomplishing
the storm surge simulation task.

4.2 Hazard assessment

In the present research, five storm surge inundation scenar-
ios are defined that represent five different typhoon return

periods: 10, 20, 50, 100, and 1000 years, respectively, cor-
responding to minimum central pressures of 940, 930, 920,
910, and 880 hPa and probabilities of occurrence of 10 %,
5 %, 2 %, 1 %, and 0.1 %. The simulation result is displayed
through ArcGIS 10.8 software, and the inundation area and
depth simulation results for each scenario are shown in
Fig. 6. It is seen that the inundation area is spread over the
coastal area in the southwest of the study area. In particular,
for the 1000-year return period scenario, the inundation area
exceeds 13 km2 in the study area. Moreover, the presence of
Double Moon Bay leads to the extension of the inundation
along the bay, contributing to severe disasters inland.

From the point of view of different scenarios, the area of
inundation in direct proportion to the typhoon’s return pe-
riod and in proportion to the inundation area increases from
14 % to 31 % of the study area. When the return period is
less than 50 years, most of the flooded area is considered
to be in a high-level hazard zone, accounting for 75 % for a
10-year return period and 67 % for a 20-year return period,
with no zone in a very high-level hazard. Basically, the in-
undation area covers land such as grassland, saline land, and
some buildings near the estuary as the area is more suscep-
tible to flooding because of the lower elevation and drainage
from the estuary. As the return period goes up to 100 years,
34 % and 36 % of the flooded area are defined as a high-level
hazard and very high-level hazard. When it is 1000 years, the
situation worsens, with approximately half of the inundation
area being considered a very high-level hazard. Typically,
the flood extends from the margin of the terrene; however,
the southernmost region of the investigated area is charac-
terized by a knoll covered by forest vegetation, which serves
the dual purpose of water absorption and flood mitigation.
In addition, the construction of embankments on both sides
of Double Moon Bay effectively withstands flooding. Never-
theless, because of the presence of the estuary, the inadequate
water absorption ability of coastal saline soil, and the hydro-
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Figure 5. The predicted water level and highest measured water level recorded by the Huizhou tidal station during different typhoon events.

logical system, the inundation flows in through the estuary
and spreads inland.

4.3 Building character extraction

4.3.1 TransUNet model training

The dataset construction area is chosen to be the southwest-
ern waterfront region of the town of Renshan. The specific lo-
cation is shown in Fig. 7. The chosen area is an area typical of
the Huizhou coastal area. Apart from the seaside bungalows,
the area contains some high-rise buildings that are identified
as commercial hotels or resorts, while a dense residential area
is also widely distributed throughout the inland region. In
conclusion, the chosen area contains different kinds of build-
ings with strong representativeness. Since most of the build-
ings in Chinese coastal towns have similar characteristics, the
model trained on the representative region has the ability to
identify buildings in other regions rapidly.

The labels of the buildings in the area are generated by
manual annotation, and the image is cropped into small
patches with a size of 256 pixels× 256 pixels. Moreover,
some of the images without buildings are filtered to pre-
vent the effect of imbalance between the building samples
and background samples. In the end, a dataset with a total of
1200 labeled buildings is constructed, and the dataset size is
deemed sufficient when compared to previous studies (Dixit
et al., 2021; Ji et al., 2018). The dataset is then divided into
a training set and a test set, with the ratio of 8 : 2. Data en-

hancement techniques, such as using a random hue saturation
value, random shift scale rotation, flip, and rotation, are im-
plemented during model training to improve the deep learn-
ing model’s generalization performance and prevent overfit-
ting.

The initial training learning rate is set to 1× 10−5, and
the learning rate adjustment strategy is used for improved
training. The batch size is specified as 4, and the number
of training epochs is 100. The model is trained on NVIDIA
RTX 3060 GPUs.

4.3.2 Extraction result

Several effective indicators are introduced, including recall,
precision, F1 score, and the mean intersection over union
(mIoU), to evaluate the performance of the deep learning
model. Recall is the probability of being predicted as positive
among actual positive samples. Precision, on the other hand,
is the probability of being actually positive among samples
predicted as positive. The F1 score serves as an indicator that
achieves a balance point between precision and recall, es-
sentially being the harmonic average of precision and recall.
mIoU is the mean ratio of the intersection to the union be-
tween predicted and true values for each category. True pos-
itive (TP) indicates the true samples that are predicted cor-
rectly by the model. False positive (FP) indicates the positive
samples that the model incorrectly predicted. True negative
(TN) and false negative (FN) refer to the number of sam-
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Figure 6. Storm surge inundation simulation results of five different typhoon scenarios with return periods of (a) 1000, (b) 100, (c) 50,
(d) 20, and (e) 10 years. The base map was obtained from © Google Maps (map data © 2023 Google).

ples that are correctly and incorrectly predicted as negative
by the model. The equations of recall, precision, F1 score,
and mIoU are as follows:

recall=
TP

TP+FN
, (20)

precision=
TP

TP+FP
, (21)

F1= 2×
precision× recall
precision+ recall

, (22)

mIoU=
1

k+ 1

k∑
i=0

TP
TP+FP+FN

. (23)

The quantitative evaluation result is shown in Table 2, and
the visualization results are illustrated in Fig. 8. As Table 2
shows, the recall score reaches 87 %, indicating that most
of the true building pixels are predicted correctly, and pre-
cision indicates that 82 % of all building pixels are correctly
detected. Moreover, both the mIoU score and F1 score ex-
ceed 80 %, demonstrating that the model can balance well

Table 2. Statistical accuracy assessment of building footprint ex-
traction.

Evaluation metric

Recall (%) 87.03
Precision (%) 82.04
F1 score (%) 84.46
mIoU (%) 83.38

between precision and recall. These results reflect the strong
performance of TransUNet in the building extraction task.
After post-processing the result, such as through boundary
simplification, the building vectorization results can be used
for further research in risk assessment. The overall result is
shown in Fig. 9b and c.
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Figure 7. The area chosen to make the training samples. The base map was obtained from © Google Maps (map data © 2023 Google).

Table 3. Statistical results of building height in the study area.

Building floors Area (m2) Proportion (%)

1–5 17 537 238.61 76.5
6–10 4 996 897.08 21.8
11–20 342 207.82 1.5
20+ 54 083.93 0.2

4.3.3 Building height calculation

Through combining two methods mentioned above, the
height information is acquired in meters. The number of
floors is derived by dividing the acquired height information
by the specified standard height of 3 m, according to Chi-
nese residential design standards. The general condition of
building floors is shown in Table 3. As mentioned above,
the buildings in the study area are mainly for residential and
commercial use. Since the study area is undeveloped, high
buildings and large mansions are relatively less common, and
most of them are built for seaside resorts. Instead, buildings
with five floors or fewer are mainstream in the study area,
with the proportion reaching 76.5 %. The building footprint
extraction result and building height information extraction
result can be found in Fig. 9d and e.

4.4 Qualitative risk assessment

A risk matrix is a risk assessment approach firstly developed
by the Electronic System Center, which was originally de-

signed to assess the risk in the life cycle of a purchase project
(Garvey and Lansdowne, 1998). Additional qualitative risk
assessment is conducted using the risk matrix method, incor-
porating improved land use data to highlight the superiority
of building extraction in flood risk assessment. The concrete
representation of the risk matrix is shown in Table 4.

As is shown in Fig. 10a, the concentration of organics in
the village of Dayuan and Shazuiwei places it at a very high
vulnerability level. Within a defined 880 hPa storm surge sce-
nario, the inundation area spreads inland, defining the major-
ity of Dayuan as a moderate-risk area and a only fraction
of Shazuiwei and north of the village of Dayuan as a very
high-risk area. In the village of Yuye, part of the southern
coastal area is considered to be at a moderate- or high-risk
level. That is mainly because the majority of Yuye is defined
as resort district except for a few areas of tidal flats, which
have high vulnerability. However, after referring to the result
of hazard assessment, buildings in the area are not actually
inundated, meaning the area should not be at risk.

Comparing Fig. 10a and b, the enhanced land use data in
the present research demonstrate a higher ability to recognize
vulnerability elements, which is the type of buildings in the
present research. The two red boxes in the figure highlight the
noticeable disparity between the original and current results.
The present risk assessment provides a more refined risk as-
sessment result compared to the original result, as the previ-
ously identified large hazardous areas are replaced with more
detailed and smaller zones. This refinement is conducive for
government or decision-makers to conduct disaster preven-
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Figure 8. Building footprint extraction results in the study area. (a) Remote sensing images obtained from the Jilin-1 satellite (© Chang
Guang Satellite Technology Co., Ltd.). (b) Extraction result. (c) Ground truth. The building is marked in white, and the background is
marked in black.

Table 4. Concrete representation of the risk matrix.

Vulnerability

Low Moderate High Very high

Hazard Low Low Low Moderate Moderate
Moderate Low Moderate High High
High Moderate High High Very high
Very high Moderate High Very high Very high

tion measures, propose quick guidance for personnel evacua-
tion, and organize rescue operations in the event of a disaster.

4.5 JRC’s depth–damage function adaption

Figure 11 illustrates the damage ratio given the flood depth
after adjustment for residential buildings with one, two, and
three or more stories. After adjustment, the functional dam-
age of a one-story residential building is significantly en-

hanced, and the loss ratio reaches 1 early, which is under-
standable as 2 m flood depth almost submerges the entire
building, resulting in a potential loss of the maximum prop-
erty value. On the contrary, the loss ratio for a multi-story
residential building is decreased relative to the original func-
tion, and it reaches the same level as in the original function
when the water depth reaches 5 m. Furthermore, the function
of a two-story residential building is quite similar to that of a
building with three or more stories. This can be attributed to
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Figure 9. Building character extraction results. (a) Schematic of the display area. (b, c) Building footprint result in areas 1 and 2. (d, e) Build-
ing height result in areas 1 and 2. The base map was obtained from © Google Maps (map data © 2023 Google).

the flood’s effect on buildings with 6 m or less of flood depth
being nearly the same, on account of the flood being unable
to overwhelm entire buildings.

The Joint Research Centre provides information on the
maximum damage per square meter for each type of building.
This refers to the maximum monetary damage incurred when
buildings are inundated, which is the monetary damage value
when the damage ratio in the depth–damage curve reaches
100 %. Although the maximum monetary damages are pro-
vided, they are computed for Beijing in 2010. However, there
is a substantial difference in the level of development be-
tween Beijing and the study area. To better match the finan-
cial level in study area, adjustment can be achieved based on
a scaling of the maximum monetary damage value with the
GDP ratio according to Huizinga (2007). Based on Beijing’s
2010 GDP of CNY 14 113 558 million and Huizhou’s GDP
of CNY 172 995 million, the maximum monetary damage is
adjusted by equal proportions. Moreover, the price level also
needs to be adjusted to the 2022 price level. According to

the World Bank, the Chinese consumer price index (CPI) has
changed from 100 in 2010 to 131.9 in 2022; the tendency of
variation and the adjusted maximum monetary damages are
shown in Fig. 12.

4.6 Quantitative risk assessment

Loss assessments of five storm surge scenarios are computed
for return periods of 10, 20, 50, 100, and 1000 years by em-
ploying the method in Sect. 3. The estimate monetary dam-
age is summarized in Table 5.

The statistical data in Table 5 demonstrate an increase
in the affected area and total economic loss with an in-
creasing return period. Compared to the total affected
area of 131 533.12 m2 and the total economic losses of
EUR 9 330 517.49 with the 10-year return period, the cor-
responding estimate result with a 1000-year return period
is 917 437.99 m2 and EUR 68 364 923.25, which is both ap-
proximately 7 times higher. This indicates a proportional re-
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Figure 10. Risk assessment maps (a) before and (b) after improvement of storm surge scenarios with a 1000-year return period. The base
map was obtained from © Google Maps (map data © 2023 Google).

Figure 11. (a) Depth–damage functions proposed by the JRC. (b) Adapted depth–damage functions for residential buildings in different
floors.
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Figure 12. (a) Variation trend of the consumer price index released by the World Bank. (b) Maximum monetary damage per square meter
for each type of exposed element in China (in 2010 and in 2022).

Table 5. Statistical result of the quantitative risk assessment for five defined typhoon scenarios.

Scenario Elements Area (m2) Economic losses (EUR) Total losses (EUR) Probability Risk (EUR)

10 years (940 hPa) Residential 94 847.11 4 910 882.27 9 330 517.49 0.1 933 051.75
Commercial 36 163.62 4 281 840.09
Industrial 522.39 137 795.12

20 years (930 hPa) Residential 216 010.31 7 872 861.19 13 665 211.91 0.05 683 260.60
Commercial 55 423.59 5 602 828.01
Industrial 522.39 189 522.71

50 years (920 hPa) Residential 237 572.35 16 509 796.15 24 607 011.73 0.02 492 140.23
Commercial 57 979.81 7 775 321.70
Industrial 522.39 321 893.88

100 years (910 hPa) Residential 291 759.48 19 857 901.69 28 446 797.47 0.01 284 467.97
Commercial 75 123.51 8 194 736.70
Industrial 833.39 394 159.08

1000 years (880 hPa) Residential 762 570.09 49 295 364.67 68 364 923.25 0.001 68 364.92
Commercial 149 457.01 17 907 591.59
Industrial 5410.89 1 161 967.00

lationship between the extent of regional impairment and the
return period of a typhoon. Although the impacted area for
the 20- and 50-year return periods exhibits a relative proxim-
ity with a difference of 24 118.26 m2, there is still a signifi-
cant disparity in economic losses. According to the inunda-
tion result above, that is because the inundation area of the
two return periods is nearly the same except for the slight
difference in the northeast of the study region, but the 50-
year flood depth intensified, causing more monetary dam-
age. In terms of inundated building types, in the case that
study area is characterized as a tourism and fish-breeding
area, the proportion of economic losses in industrial areas
is relatively low. The loss of residential buildings and com-

mercial buildings is comparatively close, up until storm surge
reaches the severity of a 50-year return period. At this point,
the losses experienced by residential buildings exceed those
incurred by commercial buildings by more than double. This
fact can be explained by commercial buildings being mainly
constructed by the seaside for better turnover; therefore both
types of waterfront buildings are impacted. However, as the
severity of the typhoon worsens, more residential settlements
inland are flooded, resulting in a swift increase in economic
losses for residential buildings.

Based on the economic loss estimation result for five storm
surge scenarios, using the method of zonal statistics on the
data of administrative sub-zones in the study area, quantita-
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tive risk assessment is conducted. The economic losses and
spatial distribution of storm surge risk for 10 sub-zones in
five different scenarios are shown in Fig. 13. The zonal statis-
tics result map of each sub-zone is defined at four different
risk levels (very high, high, moderate, low). The classifica-
tion of risk levels is obtained by categorizing all results of
zonal statistics based on quantiles.

As is shown in Fig. 13, the village of Dayuan is consid-
ered to be at very high risk for every defined typhoon sce-
nario. Through analyzing the geographical characteristics of
the study area, it can be found that although Dayuan is a rel-
atively inland village, it is surrounded by the watercourse
of the estuary of Double Moon Bay. Due to the existence
of a flood control dam, both sides of the bay offer a mea-
sure of protective effectiveness, which results in water level
rises in the inland watercourse and further causes flooding
of residential buildings in the village of Dayuan, leading to
massive financial losses. In contrast, the village of Foyuan
is also a village with a relatively large area. The risk is at a
moderate level for 10- and 20-year return periods, and the
level increases to high risk for 50- and 100-year return pe-
riods, reaching very high risk for 1000-year return periods.
Considering the presence of the knoll, the spread of inun-
dation is hindered. However, as typhoons become more se-
vere, the inundation hits the western buildings in the region,
leading to the phenomenon of a progressively escalating risk
level. In terms of those villages with relatively smaller sizes,
due to the protection of a dam, the villages of Xinliao, Xin,
and Caijia all are defined as being at a relatively low-risk
level, although the region has a high density of buildings.
Shazuiwei and the village of Yuye are considered to have
different risk levels at different return periods; the cause of
this phenomenon might be that apart from the higher den-
sity of buildings, the buildings in Shazuiwei are distributed in
the coastal area, combining the impact of inundation of both
sides as it is located at the outermost part of the gulf. Con-
sequently, the risk level in Shazuiwei remains consistently
high as opposed to gradually increasing like in the village of
Yuye. Although they are located at the outermost part of the
study area, the quantitative risk level of the village of Daao
and Harbor Community gradually increases for different re-
turn periods, but it is not as serious as in the other village,
which can be explained by the fact that these locations ex-
hibit elevated topography.

Comparing the qualitative risk assessment result and the
quantitative risk assessment result, the first difference to be
noticed is that the two results focus on different scales. For
the qualitative result, the emphasis is on delineating the re-
gions at different risk levels, which leads to the prevention
and control of priority areas, whereas for the quantitative
result, the scale of the result is limited to the village level
zoning, as the estimated monetary loss amounts are summa-
rized at the village level. Furthermore, while the qualitative
results suggest that certain regions may not be at a moderate-
or high-risk level, the quantitative result reveals that the esti-

mated monetary loss for those villages is not insignificant. In
conclusion, the qualitative risk assessment provides new re-
sults from a completely different perspective than the quali-
tative risk assessment. The results can provide intuitive infor-
mation about the potential monetary loss to secondary gov-
ernment departments, thus helping to provide constructive
suggestions in terms of risk prevention and control.

The quantitative risk assessment and zonal risk maps can
assist the government or decision-makers in recognizing the
specific economic losses of each sub-zone, so it is helpful
to identify the areas that are more susceptible to experienc-
ing significant losses, which allows them to develop disas-
ter prevention measures, for example, constructing disaster
prevention facilities, allocating a budget for disaster preven-
tion, and planning evacuation strategies. Moreover, establish-
ing the quantitative risk for different typhoon periods can en-
hance decision-makers’ understanding of the potential vul-
nerability in each sub-zone and facilitates the implementa-
tion of appropriate preventive and disaster relief measures at
different typhoon intensities.

5 Conclusions

In recent years, academic research on storm surge risk as-
sessment has greatly increased due to climate change and fi-
nancial growth in coastal areas. However, quantitative risk
assessment is unable to be performed in undeveloped ar-
eas on account of the lack of building character and dam-
age assessment data. Targeting the question above, the pur-
pose of this paper is to propose a method for conducting
refined storm surge risk assessment quantitatively based on
deep learning and GIS techniques. Firstly, the reliable cou-
pled FVCOM–SWAN model is utilized to simulate five de-
fined storm surge scenarios. Facing the challenge of a lack
of data, the TransUNet deep learning method is applied to
extract the building footprint data for refined extraction of
exposed elements; building height data are acquired through
UAV measurements. To compensate for that the available
depth–damage functions not taking building height into ac-
count, the functions are adjusted for buildings with different
numbers of floors and consequently to perform more refined
monetary loss calculations in five defined scenarios. Eventu-
ally, the quantitative risk assessment and zoning maps of the
study area are generated based on GIS techniques.

The quantitative risk assessment result of the study region
shows that on account of the existence of the estuary and the
gathering of buildings, the village of Dayuan is at a high-risk
level in all defined typhoon scenarios, and the economic loss
risk is large. The flood control dam provides protection to the
villages of Xinliao, Xin, and Caijia, which prevents the re-
gion suffering large economic loss as the typhoon return pe-
riod is 10 and 20 years. However, storm surges in the typhoon
scenarios which have a return period of greater than 50 years
can overwhelm the existing dikes, and both the commercial
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Figure 13. Zoning maps of the quantitative risk assessment for five defined typhoon scenarios with return periods of (a) 1000, (b) 100, (c) 50,
(d) 20, and (e) 10 years. The base map was obtained from © Google Maps (map data © 2023 Google).

buildings and residential buildings would suffer heavy eco-
nomic losses. Therefore, it is necessary to perform land use
planning and adjustment especially in Dayuan and Shazui-
wei as they are at a very high-risk level to prevent the impact
and losses caused by storm surges. Moreover, regions being
nearest to the sea does not mean they suffer greater potential
economic loss, as the risk level of the village of Daao and
Harbor Community are considered to be relatively low level
because of the topographical characteristics and the distribu-
tion of buildings.

In the context of global warming and increased climate ex-
tremes, the occurrence of large-scale typhoons has become
more frequent, such as Typhoon Rammasun and Typhoon
Meranti (corresponding to a 100-year return period). There-
fore, the modified typhoon parameters are utilized for the
simulation of five typhoon scenarios in order to demonstrate
different storm surge disaster situations in the future. On the
basis of the above, the study provides a framework for re-
fined quantitative storm surge risk assessment targeting the
problem of acquiring exposure elements and the establish-

ing of multi-variable empirical depth–damage functions as a
consequence of missing data in underdeveloped regions. The
generated results can help decision-makers to identify the ar-
eas that are susceptible to experiencing significant losses ef-
ficiently and help the respective authorities with disaster pre-
vention, future land use planning, and material deployment.
Furthermore, it is important to remark that the methodology
of this paper has general applicability, since the applied mod-
els are publicly available. Thus, there is also potential for fur-
ther application. For example, the framework can be applied
in other coastal areas in China, as they have similar charac-
teristics, which also means there is a possibility for utiliza-
tion in larger scales. Furthermore, the framework can also
be utilized for other types of disasters, such as floods, earth-
quakes, and mudslides. Consequently, the proposed method-
ology demonstrates an extensive relevance to the scientific
community.

There is still room for improvement in this study. The cur-
rent study relied on manual labeling in terms of distinguish-
ing between functional areas to conduct risk assessment. In
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future studies, efforts will be made to distinguish the types of
exposure elements in a more objective way, based on diverse
data sources such as social media points of interest (POIs).
Additionally, exploring the activity patterns of the popula-
tion through multiple sources of data including taxi trajec-
tories and smart cards can contribute to the consideration of
population risks in different storm surge scenarios, thereby
prompting more comprehensive risk assessments.
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