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Abstract. Every year Africa is hit by extreme floods which,
combined with high levels of vulnerability and increasing
population exposure, often result in humanitarian crises and
population displacement. Impact-based forecasting and early
warning for natural hazards is recognized as a step forward in
disaster risk reduction, thanks to its focus on people, liveli-
hoods, and assets at risk. Yet, the majority of the African
population is not covered by any sort of early warning sys-
tem. This article describes the setup and the methodolog-
ical approach of Flood-PROOFS East Africa, an impact-
based riverine flood forecasting and early warning system
for the Greater Horn of Africa (GHA), with a forecast range
of 5 d. The system is based on a modeling cascade rely-
ing on distributed hydrological simulations forced by ensem-
ble weather forecasts, link to inundation maps for specific
return period, and application of a risk assessment frame-
work to estimate population and assets exposed to upcoming
floods. The system is operational and supports the African
Union Commission and the Disaster Operation Center of
the Intergovernmental Authority on Development (IGAD)
in the daily monitoring and early warning from hydro-
meteorological disasters in eastern Africa. Results show a
first evaluation of the hydrological reanalysis at 78 river
gauging stations and a semi-quantitative assessment of the
impact forecasts for the catastrophic floods in Sudan and in

the Nile River basin in summer 2020. More extensive quan-
titative evaluation of the system performance is envisaged to
provide its users with information on the model reliability in
forecasting extreme events and their impacts.

1 Introduction

Globally, between 2000 and 2019 disasters caused approx-
imately USD 2.97 trillion in economic losses, claimed 1.23
million lives, and affected a total of over 4 billion people
(UNDRR and CRED, 2020). Out of those, floods hold the
largest share, with 1.65 billion people affected, on average
over 82 million per year. While the economic impacts are
higher in absolute terms in high-income countries, their toll
in terms of casualties and human displacement is usually
larger in poorer countries, due to higher vulnerability and
limited capacity to cope with the disasters (Christian Aid,
2022). In the Greater Horn of Africa (GHA), the indirect
impacts of disasters such as floods and droughts often re-
sult in greater devastation than their direct impacts, yet this
association is frequently overlooked. These include water-
borne disease spreading, failure of the crop season, malnutri-
tion, livelihood impoverishment, increase of infant mortality
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rates, severe food insecurity, large-scale migration flows, ul-
timately increasing social inequality, political instability, and
civil conflicts (Maystadt et al., 2015; FAO and WFP, 2022).
Targeted flood risk profiling efforts confirm that over 2 mil-
lion people are affected on average every year in the GHA
region, possibly becoming 2.7 million under high-end future
climate scenarios in combination with socio-economic pro-
jections for 2050 (UNDRR, 2021). Furthermore, an average
of 1.3 million people are estimated to be forcibly displaced
each year (ICPAC, 2023).

Climate change is likely to increase the impacts of
weather-related disasters in the GHA, by altering the regimes
of seasonal rainfalls, which are key sources of water for the
agricultural lands. Climate projections predict large uncer-
tainty in precipitation patterns across most of eastern Africa
by 2050. Yet, there is high confidence of an increase in sea-
sonal rainfall over the Ethiopian highlands (Richardson et
al., 2022). The variability in the seasonal rainfalls is pro-
jected to increase, resulting in more frequent wetter and drier
years and a higher risk of flood and drought events (Haile
et al., 2020; Finney et al., 2020). Advances in weather pre-
diction models have enabled skillful early warning systems
for floods and other weather-related hazards, also covering
areas with very limited in situ measurements such as Africa
(e.g., Lienert et al., 2022; Sheffield et al., 2014; Arsenault
et al., 2020; Alfieri et al., 2013; Wu et al., 2019; Hales et al.,
2022). The most common approach used in flood early warn-
ing systems is to force a hydrological model with numeri-
cal weather prediction (NWP) and detect upcoming floods
when predicted flow peaks exceed warning thresholds de-
rived from long-term statistics. Although such a method has
demonstrated its robustness in predicting potential flood oc-
currences, it has limitations in accurately identifying the full
extent of their impacts and the efforts required for emergency
support and recovery in the aftermath of disasters. The esti-
mation of flood impacts requires the spatial characterization
of the inundation extent, rather than mono-dimensional in-
formation on discharge threshold exceedance. In addition,
adding the information on the exposed assets, vulnerabil-
ity, and coping capacity is crucial to shift the system from
a purely hazard-based to impact-based forecasting. This is
particularly important for developing countries as in Africa,
which has high flood exposure due to unplanned human set-
tlements in flood-prone areas (Di Baldassarre et al., 2010;
Douglas, 2017). In addition, actual vulnerability to disas-
ters has remarkably dynamic components, not only in space
but also in time. For instance, Matanó et al. (2022) found
higher than expected drought and flood impacts in Kenya and
Ethiopia in 2017–2018, when government elections, crop
pest outbreaks, and ethnic conflicts increased the countries’
vulnerability. Similarly, exposure to floods may experience
rapid increase in the next few decades in Africa if the planned
population growth does not come with adequate land use
planning (Alfieri et al., 2017; Winsemius et al., 2016; Tabari
et al., 2021).

This work describes the design, setup, operational imple-
mentation, and first evaluation of an impact-based flood fore-
casting system for the GHA region named Flood-PROOFS
eastern Africa. Flood-PROOFS (Flood PRObabilistic Op-
erational Forecasting System) is designed to support deci-
sion makers during the operational phases of flood fore-
casting, flood monitoring, and water resource management
(Laiolo et al., 2013). Its main goal is to protect the pop-
ulation and infrastructures from damage caused by intense
hydro-meteorological events. The system is operational for
the Italian National Civil Protection Department and other
hydro-meteorological offices in various regions (e.g., Bo-
livia, Caribbean, Mozambique). In the eastern African con-
figuration, Flood-PROOFS is for the first time based on
a hydro-meteorological modeling chain including ensemble
discharge forecasting forced by NWP, link to inundation sce-
narios, and application of a risk assessment framework to
include all the relevant components to forecast disaster im-
pacts. The activity is part of the development of an African
Multi Hazard Early Warning System (AMHEWAS), a multi-
year project funded by the Italian Government and imple-
mented by CIMA Research Foundation through the United
Nations Office for Disaster Risk Reduction (UNDRR), in
collaboration with national hydro-meteorological services,
climate centers from different Regional Economic Commu-
nities (RECs), and the African Union Commission (AUC).

2 Material and methods

2.1 The study region

The Greater Horn of Africa (GHA) region is composed of
11 countries (Fig. 1), including Ethiopia, Eritrea, Djibouti,
Sudan, South Sudan, Somalia, Uganda, Burundi, Rwanda,
Kenya, and Tanzania, with a total population of 375 million
in 2020, projected to exceed 700 million by 2050 (United
Nations, 2022). The region experiences a highly variable cli-
mate, influenced by both oceanic and atmospheric processes.
Precipitation patterns are particularly complex, with some ar-
eas receiving high amounts of rainfall and others experienc-
ing prolonged dry spells (Nicholson, 2017). The climate in
the GHA ranges from dry to tropical, with temperatures that
vary depending on elevation and proximity to water bodies.

The seasonal cycle of precipitation in the GHA is charac-
terized by a bimodal pattern for the equatorial and southern
parts and unimodal for the northern part. In the equatorial
and southern part of the GHA region, the long rains occur
from March to May, while the short rains fall between Octo-
ber and December. Differently, the northern part of the region
receives rainfall in the period June–September. The dry sea-
sons, which are characterized by low rainfall and high tem-
peratures, occur from June to September and from January to
February in the equatorial and southern parts of the region.
The climate of the GHA is characterized by large spatial het-
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Figure 1. GHA region with dams, lakes, and calibration stations included in the model (left). The 17 simulation domains implemented
(right). © OpenStreetMap contributors 2023. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

erogeneity, which can be largely attributed to the topographic
differences that can be found throughout the region as well as
the oscillation of the intertropical convergence zone (ITCZ)
(Lyon, 2014). Despite the variability in precipitation patterns,
the region has significant water resources, including lakes,
rivers, and underground aquifers. However, the variability of
the climate, together with other factors such as population
growth and land use changes, poses significant challenges to
the sustainable management of these resources.

The economy of GHA countries is highly dependent on
rain-fed agriculture; thus it is extremely sensitive to weather
and climate variability. The GHA region is already expe-
riencing changes in temperature and precipitation patterns
due to climate change, which exacerbates the region’s vul-
nerability to extreme weather events. Climate projections
point towards more severe river flooding in the White Nile,
Kenya, and southern Somalia by the end of the century
(Hirpa et al., 2019). On the other hand, the northern part
of the GHA is likely to experience in the coming decades
further drying and reduction of low flows, partly linked to
a higher warming rate than the global average (Osima et
al., 2018). In November 2021, CIMA Foundation and IC-
PAC organized a technical training and consultation with
representatives of national hydro-meteorological services of
the GHA region, focusing on, among the various objectives,
gathering details on the current flood risk management ap-
proaches. It emerged that there is a substantial lack of flood
forecasting systems in operation at the country level, with
the only hydrological forecast information available coming
from global systems such as GloFAS (Alfieri et al., 2013;

https://www.globalfloods.eu/, last access: 16 January 2024),
reinforcing the need for a tailored system for the region.

2.2 Static data

2.2.1 Hydrological modeling

The setup of Flood-PROOFS East Africa required the col-
lection of several static and dynamic data, which are de-
scribed in the following. The digital elevation model (DEM)
is taken from the Hydrologic Derivatives for Modeling and
Applications (HDMA) database (Verdin, 2017), with a spa-
tial resolution of 3 arcsec (∼ 90 m at the Equator). HDMA
comes with a pre-computed and corrected set of hydrological
derivatives, including channel network and basin partition-
ing. Ancillary data including flow accumulation and drainage
direction were extracted from the DEM with GRASS GIS
(https://grass.osgeo.org/, last access: 16 January 2024). The
DEM was upscaled at the chosen domain resolution and
carved using the 90 m stream network.

Land use and land cover information at 300 m resolution
are taken from the ESA-CCI Land Cover map v2 (ESA,
2017), which was used to estimate the soil characteristics and
the vegetation cover. Further, we applied the USDA method
for soil texture identification and hydrologic soil type clas-
sification (Shirazi and Boersma, 1984) by combining the IS-
RIC SoilGrids (Hengl et al., 2017) maps of soil fraction in
sand and clay at 250 m spatial resolution.
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2.2.2 Impact modeling

Inundation maps are taken from the set of global flood hazard
maps produced by the European Commission, Joint Research
Centre (JRC; Dottori et al., 2016), and distributed through its
Data Catalog service. Maps are provided at 30 arcsec resolu-
tion (∼ 1000 m) for rivers with drainage area above 5000 km2

and for six return periods, i.e., the 1 in 10, 20, 50, 100, 200,
and 500 years. These represent the maximum flood extent
and depth assuming an unprotected scenario, i.e., assum-
ing the failure of flood defenses. Maps are produced with
a bi-dimensional hydrodynamic model forced by flood hy-
drographs taken from the GloFAS reanalysis (Alfieri et al.,
2020) and come with a set of areas-of-influence maps, which
define the links between portions of inundated areas and the
corresponding pixel of the GloFAS river network at 0.1◦ res-
olution (Alfieri et al., 2017).

Exposure maps were collected for the following classes:
population, crop land, grazing land, gross domestic product
(GDP), livestock units, and road network. Maps cover the
entire GHA region and were chosen as the best tradeoffs be-
tween data quality, year of release, and homogeneous cover-
age in the region. Additional details on exposure layers are
reported in Appendix C.

Country-based lack of coping capacity (Lcc) values were
taken from the latest version of the INFORM Risk Index (De
Groeve et al., 2015) available at the time of development (i.e.,
year 2022). Lcc ranges between 0 and 10, with largest val-
ues for countries with lowest coping capacity, hence needing
more support in case of disasters. East African countries rank
the highest in the global ranking of INFORM, with South
Sudan having the largest value (Lcc= 9.5) among all world
countries, Somalia ranking third (Lcc= 8.8), Eritrea eighth
(Lcc= 7.8), and Uganda and Ethiopia in the top 25 countries.

Vulnerability is defined as the conditions determined by
physical, social, economic, and environmental factors or pro-
cesses which increase the susceptibility of an individual, a
community, assets, or systems to the impacts of hazards. In
particular, vulnerability to riverine flooding is linked to the
probability of being affected by the inundation in the flood-
prone areas; hence it depends on the flood protection level,
probability of a levee failure, early warning systems in place,
and other impact-reduction measures. In this work we use
vulnerability information from Alfieri et al. (2022b), where
values range between 0 and 1 depending on the hazard mag-
nitude, to model the effect of defenses and other flood miti-
gation measures. Values were tuned on the basis of reported
affected impacts in past disasters in Africa.

2.3 Dynamic data

Variables needed by Continuum, the hydrologic model un-
derpinning the Flood-PROOFS flood forecasting system, are
10 m wind speed, relative humidity, 2 m temperature, down-
ward short-wave radiation, and precipitation. Hydrological

model runs for historical simulations over 2001–2022 are
forced by the gauge-adjusted GSMaP precipitation (Kubota
et al., 2020) and by surface air temperature, relative humid-
ity, wind speed, and incoming solar radiation taken from the
ERA5 atmospheric reanalysis (Hersbach et al., 2020) from
the European Centre for Medium-Range Weather Forecasts
(ECMWF). Those datasets were chosen following a set of
criteria driven by the operational nature of the system to build
the following: (1) real-time production and release with min-
imal latency (a few hours at most); (2) availability of a his-
torical dataset to maximize the coherence between the op-
erational runs and the past data and related warning thresh-
olds; (3) use of free products, to enable system continuity
after the project completion; (4) data availability over the en-
tire focus region with spatial and temporal resolution rele-
vant for the desired application; and (5) skillful performance
in the simulation region (e.g., see Wang and Yong, 2020).
GSMaP has a resolution of 0.1◦ and 1 h. It relies on the Dual-
frequency Precipitation Radar (DPR) on board Global Pre-
cipitation Measurement (GPM) core satellites, other GPM
constellation satellites, geostationary satellites, and a bias
correction based on Climate Prediction Center (CPC) uni-
fied gauge-based analysis of global daily precipitation. The
near-real-time version of the product, with a nominal latency
of 4 h, has been selected to feed the operational runs of the
flood forecasting chain.

ERA5 is produced on regular latitude–longitude grids at
0.25◦× 0.25◦ hourly resolution, with daily updates being
available 5 d behind real time. Data from both GSMaP and
ERA5 were downscaled from the original to the respective
domain resolutions (250 m to 3.3 km, see Sect. 2.4.1) through
a natural neighbor interpolation method.

Weather forecasts are taken from the Global Forecast Sys-
tem (GFS) of the United States National Centers for Envi-
ronmental Prediction (NCEP), together with the correspond-
ing 30-member ensemble product Global Ensemble Fore-
cast System (GEFS). Those products were chosen as they
are freely available at the original resolution and with short
latency for operational implementation, as well as the his-
torical archive of past forecasts from 2015 onwards. Both
products have 0.25◦ resolution and are acquired up to 120 h
forecast range at hourly resolution for GFS and 3-hourly for
GEFS.

Daily discharge data were collected at ∼ 200 gauging sta-
tions in the GHA region. Data sources are the Global Runoff
Data Centre (GRDC), the African Database of Hydrometric
Indices (ADHI; Tramblay et al., 2020), and the national hy-
drometeorological services of Burundi, Sudan, South Sudan,
Tanzania, and Uganda. After a screening for data quality, pe-
riod of record, and minimum record length of 3 years, we
selected 56 stations to use for calibration and 78 for model
validation.
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2.4 Methods

2.4.1 Modeling setup

Hydrological processes in the study region are simulated at
hourly resolution with the Continuum model (Silvestro et al.,
2013). Continuum is a semi-physically based rainfall–runoff-
routing-distributed hydrological model, developed at CIMA
Foundation over the past 20 years and already implemented
in several research applications and in operational forecast-
ing chains. Continuum completely solves the mass and en-
ergy balance at the land surface. It relies on a morpholog-
ical approach placing the DEM as the key element, from
which the drainage network and other hydrological deriva-
tives are computed (Giannoni et al., 2000). Continuum re-
produces the spatiotemporal evolution of runoff, soil mois-
ture, energy fluxes, surface soil temperature, snow accumu-
lation, and melting, by reproducing all main processes of the
hydrological cycle. For the implementation in the GHA re-
gion, Continuum was set up over 17 independent and hy-
drologically coherent domains (Fig. 1), to cover 11 coun-
tries and additional land portions located upstream, for a total
simulated area of 6.8× 106 km2. The model setup has vari-
able grid resolution which depends on the domain size so
that the run time and the computing resources needed by
the hydrological simulations are comparable across the do-
mains. D01 and D02 (including the Nile River basin) are
set up at 0.03◦ (∼ 3.3 km); D15 (including the Juba–Shabelle
river basin) at 0.02◦ (∼ 2.2 km); D13a, D13b, and D13c (the
three main Tanzanian islands) at 250 m; and all the other do-
mains at 0.01◦ (∼ 1.1 km) resolution. Point features imple-
mented include the largest 19 reservoirs and 20 lakes, ex-
tracted from the Global Dam Watch (Mulligan et al., 2021),
the FAO-AQUASTAT-Dams (https://www.fao.org/aquastat/
en/databases/dams, last access: 16 January 2024), and the
HydroLAKES (Messager et al., 2016) datasets. Both lakes
and reservoirs were selected among those having total stor-
age larger than 300 Mm3, hence having the largest influence
on downstream flow patterns. An additional lake was inserted
to model the Sudd swamps in South Sudan. To estimate its
two model parameters (emptying constant and volume with
zero outflow discharge), we took the maps of minimum and
maximum flood extent in 2001–2018 from Di Vittorio and
Georgakakos (2021) and estimated the corresponding water
storage using the procedure by Peter et al. (2022) and the
Shuttle Radar Topography Mission (SRTM) DEM at 30 m
resolution.

2.4.2 Parameter calibration

We performed a multi-site calibration of the model parame-
ters over 7 domains using 56 daily discharge time series re-
sulting after the data screening. The calibration strategy fol-
lows the procedure described by Alfieri et al. (2022a), yet
using the normalized root mean square error (nRMSE) in

place of the Kling–Gupta efficiency (KGE), which is then
weighted by the logarithm of their upstream area, to give
a comparable but higher weight to stations located down-
stream. In the nRMSE, the RMSE of each calibration station
is normalized by its average flow obtained from long-term
records, to enable skill comparison at stations with differ-
ent flow regimes. The nRMSE preserves a linear scaling of
performance and enables a good trade-off in achieving low
bias and good correlation. For each domain we calibrated
four parameters, chosen through a global sensitivity analy-
sis (GSA) on eight Continuum parameters to investigate their
sensitivity and the most influential ones for each output vari-
able. GSA was based on the SAFE Toolbox (Pianosi et al.,
2015), using the elementary effects test (EET) (or method of
Morris) and one-at-a-time (OAT) sampling using Latin hy-
percubes. Additional details on the GSA, the perturbation
method, and the choice of the objective function are reported
in Appendix A.

Multi-site calibrations are known to give on average lower
performance than cascading calibrations in the calibration
period, though they improve and stabilize basin-wide per-
formance, with noticeable skill gain in uncalibrated rivers
and overall in validation (Wi et al., 2015). By considering
more than one station, especially along the same river, they
enable better and more physical exploration of the model pa-
rameters. Accounting for the upstream–downstream relations
generates benefits to the parameters related to the travel time
of the flows and to the mass balance, ultimately requiring
shorter calibration runs. The calibration period was chosen
to include 3 years of observed discharge data in the most re-
cent period of availability, considering the quality of the data
and possibly including both periods of high and low flows.
Each calibration run has a 4-year duration, to include a 1-
year warmup period at the start of each run.

In most of the calibrated domains the entire calibration
process was repeated more than once to fine-tune the choice
of the parameter set, the calibration stations, and the cali-
bration period. Overall, the entire calibration procedure re-
quired over 2000 model runs. Parameter regionalization was
performed on those domains with no calibration stations, ac-
cording to criteria of proximity and climatic conditions, i.e.,
where parameter sets are taken from the closest calibrated
donor domains with the same dominant Köppen–Geiger cli-
mate class taken from Beck et al. (2018). Calibrated param-
eters were then used in a set of long-term hydrological simu-
lations over 2001–2022, which have three key functions.

– The first function is to estimate suitable initial condi-
tions to initialize the operational forecasts. This is par-
ticularly useful for large river basins (e.g., Nile, Juba–
Shabelle) with long memory (i.e., more than 1 year),
thus requiring long initialization periods to adequately
characterize their water balance conditions.

– The second function is to serve as an evaluation dataset
to be compared with observed discharges.
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– Third, long-term simulations are analyzed statistically
to extract discharge annual maxima and estimate ex-
treme value distributions at each pixel of the river net-
work. Analytical functions were estimated with the
three-parameter generalized extreme value (GEV) dis-
tribution based on L-moments (e.g., Hosking, 1990).

Maps of discharge peaks corresponding to the 1 in 2-, 5-,
and 20-year return periods were chosen as medium-, high-
and severe-warning thresholds for the operational forecast-
ing chain, thus identifying three hazard classes (Hc). Per-
formance of the hydrological model was assessed over the
maximum extent of discharge data availability at the valida-
tion stations over the period 2002–2022, using the long-term
simulations described above. Validation was performed over
78 river gauges, hence including 22 stations in addition to
the 56 used in the calibration phase. Validation skills are key
predictors of the model skills of the operational model runs
and are thus more representative than the skills obtained in
the calibration phase.

2.5 The impact-based forecasting chain

The operational forecasting chain is composed of three main
components: hydrological runs and threshold exceedance de-
tection, composite of the corresponding inundation depth and
extent, and impact forecast. These are activated every day as
soon as new weather forecasts are available.

2.5.1 Hydrological runs and event detection

GFS deterministic forecasts with a 5 d horizon are down-
loaded and pre-processed to be taken as input by Continuum.
Hydrological states are updated to the 00:00 UTC of the cur-
rent day through a 1 d run starting from the previous day con-
ditions and taking as input the GSMaP 24 h precipitation and
the other atmospheric variables of the last 24 h from the GFS
forecast run of the day before. Such filling with 1 d forecast
data is performed on average over the last 5 d, due to the la-
tency of ERA5 data. Continuum is run in forecast mode at
hourly resolution for the subsequent 5 d, and the maximum
discharge at each pixel of the river network is compared with
the three warning thresholds extracted from the long-term
runs, to detect high-flow events.

A similar exceedance analysis is performed versus a
threshold corresponding to the 20th percentile of the ana-
lytical cumulative distribution function of the GEV distri-
bution at each pixel (i.e., the 1 in 1.25-year return period).
When such exceedance is detected at any point, the ensem-
ble forecast is triggered for the same domain, which consists
of 5 d hydrological forecasts based on the 30-member GEFS
as forcing input. The 30 output discharge scenarios at each
reporting point are then shown in the visualization platform,
enabling the forecaster on duty to evaluate the range of vari-
ability of predicted flows (see example in Appendix D). Po-
tential differences in the statistics of extreme precipitation

inducing high-flow events may arise by the use of different
datasets for the forecast and the historical runs (hence the
warning thresholds). However, recent research showed that
constant thresholds can be safely used for a 5 d forecast range
as in the system shown here (Zsoter et al., 2020; Alfieri et al.,
2019).

2.5.2 Impact forecasts

Impact forecasts are triggered when the forecast determin-
istic discharge exceeds the 1 in 2-year warning threshold at
any section of the river network. First, an unprotected inun-
dation scenario (i.e., assuming that all flood defenses fail)
is produced by linking the grid points where the highest dis-
charge threshold is exceeded to the JRC inundation map with
the closest return period. To this aim, each pixel of the Glo-
FAS river network was mapped to one or more pixels of the
Continuum network, using an automated approach starting
from the same location and progressively moving to the sur-
rounding square of grid points until the differences in the
drainage areas are below 10 %. In the subsequent step, the
GloFAS river network is linked to the inundation extent on
the basis of the corresponding areas-of-influence maps. The
automated procedure to match the river networks of the two
hydrological models is followed by a manual fitness check,
particularly useful at the confluences. In addition to the three
threshold maps of peak discharges used for hazard classifica-
tion (i.e., with annual frequencies of 1 in 2, 5, and 20 years),
we extracted four additional threshold maps with the same
annual frequencies as those of the JRC inundation maps (i.e.,
1 in 50, 100, 200, and 500 years), to enable flood delineation
and impact assessments for a wider spectrum of event mag-
nitudes. In other words, extreme events in the order of, for
example, 1 in 100 years will be assigned to the highest haz-
ard level (i.e., the 1 in 20-year flood magnitude), while its
inundation and resulting impacts will be assessed on the ba-
sis of the closest flood magnitude (i.e., the 1 in 100 years
in this case). Finally, the inundation scenario of each fore-
cast is produced by mosaicking together all the portions of
flooded area (with variable return period along the river net-
work). In this step there is no spatial interpolation of the six
maps, mainly because of the small sensitivity of the inunda-
tion extent maps versus their return period (see Trigg et al.,
2016).

Absolute (I ) and relative (RI) impacts are calculated as ag-
gregate values for each administrative region (GADM level
1; see https://gadm.org, last access: 16 January 2024) accord-
ing to the following formulas:
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IAR =

AR∑ 3∑
Hc=1

(H ·E ·V )Lcc (1)

RIAR =
IAR

EAR
, (2)

where H is the hazard [−], i.e., the mask of maximum in-
undated area in the forecast range; E is the exposure of the
considered class (population, crop land, grazing, gross do-
mestic product (GDP), livestock units, and road network).
Units are shown in Table S2; V is the vulnerability [−];
Lcc is the lack of coping capacity [−]. IAR is the potential
impact for any considered administrative region (AR) and
has the same units of the considered exposure category. It
is obtained as a double summation over all pixels within AR
and over each of the three considered hazard classes (Hc),
where Lcc is a constant value for each country and the prod-
uct (HEV ) is computed at the pixel level for each Hc and
then added to the sum. RIAR is calculated as the ratio be-
tween IAR and the total amount of each exposure class in
each administrative region. Hence it is a dimensionless num-
ber ranging between 0 and 1. For each forecast run, Eqs. (1)
and (2) are evaluated for all 227 administrative regions in
the GHA and for the 7 exposure categories. Results of flood
impacts are displayed in the myDEWETRA geospatial visu-
alization web platform (https://www.mydewetra.world/, last
access: 16 January 2024), developed by CIMA Foundation to
support forecasters and decision makers in hazard monitor-
ing, early warning, and during emergencies. Results are vis-
ible on average at 06:30 UTC, typically within 1 h from the
availability of the weather forecast data. Ensemble simula-
tions, if triggered, are produced afterwards and progressively
displayed on the interface when available.

3 Results and discussions

3.1 Hydrological model evaluation

Long-term runs of the calibrated model domains over 2002–
2022 are evaluated at 78 quality-controlled river gauges for
the available period of record of each station. Four summary
performance scores are reported in Fig. 2: the Kling–Gupta
efficiency (KGE) and its three decomposition terms, i.e., cor-
relation (r), bias rate, and variability rate. Note that all four
scores have their optimum at 1. Figure 3 shows a compar-
ison of observed versus simulated discharges at 10 sample
validation stations chosen among those with the longest pe-
riod of record, while a table with the scores of all valida-
tion stations is reported in the Supplement. Median scores
taken from the validation sample include KGEVAL =−0.76,
correlationVAL = 0.35, bias rateVAL = 0.33, and variability
rateVAL = 2.33. For comparison, the same scores in the cali-
bration period are KGECAL =−0.37, correlationCAL = 0.47,
bias rateCAL = 0.51, and variability rateCAL = 2.03. Best

KGEs are generally found along the main rivers: Blue Nile,
White Nile, Juba, Shabelle, and Awash, while poorest perfor-
mances are seen particularly in Tanzania and regions south
of the Equator, in river sections with smaller basin area and
faster runoff dynamics. The reduction in performance in this
area is largely attributed to a significant negative bias and
large variability rates. Those results are supported by the
work of Awange et al. (2016), who found that GSMaP pre-
cipitation severely underestimates rainfall in Tanzania and
to a lesser extent also in the equatorial part of the GHA.
This results in model parameters tuned to minimize infiltra-
tion and favor a quick runoff, which increase the variabil-
ity rate of the output discharges. The issue of bias in hy-
drological simulations in Africa was already pointed out in
various previous works, yet with a trend of overestimating
discharges when atmospheric reanalyses are used as input.
Hirpa et al. (2019) found an average bias rate of 3.50 while
comparing the output of a global hydrological model with 29
observed river gauges in the GHA. Similarly, the GloFAS Re-
analysis v3 (Alfieri et al., 2020) produces average bias rates
of 4.12 (1.97) in an evaluation exercise versus 7 (89) dis-
charge stations in the GHA (entire African continent). How-
ever, other variables are known to influence patterns of bias
in hydrological modeling, including the precipitation dataset,
the hydrological model, as well as specific basin characteris-
tics including its climate, vegetation, and soil (see, e.g., Can-
toni et al., 2022; Wanzala et al., 2022). It is known that bias
does not significantly deteriorate the performance of systems
based on threshold exceedance detection, if warning thresh-
olds are consistent with the discharge time series (Alfieri et
al., 2013).

Correlations generally denote larger skills, with 75 % of
stations having values larger than 0.25. Stations best cor-
related with observations are in line with those having the
best KGE. The worst correlations are mostly located in sta-
tions immediately downstream large reservoirs (i.e., Victo-
ria Nile downstream Lake Victoria and Lake Kyoga; White
Nile downstream Lake Albert and Jebel Aulia dam; Awash
River at Tendaho dam; see also Fig. 1 for reservoir locations),
for which the release rules are not easily predictable, as well
as in small headwater catchments, related to data quality is-
sues, the smaller weights received in the calibration, and the
simplifications introduced by relatively coarse gridded in-
put data. Correlation is better linked to the performance in
detecting rise or decrease in discharge levels without being
penalized by multiplicative or additive errors. Hence it is a
suitable indicator to measure the capability in event detec-
tion and in turn of flood early warning based on threshold
exceedance (see Alfieri et al., 2013). Furthermore, it is sensi-
tive to even a few outlying data pairs, thus highlighting sig-
nificant shifts between the timing of simulated and observed
flow peaks (Wilks, 2006). Additional scores more specific to
threshold exceedance analysis could not be implemented to
support the evaluation work, due to the short duration of most
observed discharge time series, which did not allow a robust
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Figure 2. Validation skills at 78 river gauges: KGE and its decomposition term correlation (r), bias rate, and variability rate. Numeric values
are reported in the Supplement. Map data: © Google 2019.

assessment of the extreme events. Such an effect is further
amplified by the marked seasonality of the rainfall regime,
which especially in large rivers produces only one peak flow
per year.

3.2 Case study – the Nile floods in summer 2020

Here we illustrate an example of the system output for the
floods in the Nile River basin in summer 2020, based on the
analysis of hazard and impact forecasts, screenshots from the
myDEWETRA visualization platform, and qualitative and
quantitative comparison with reported data.
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Figure 3. Comparison of simulated versus available observed discharges at 10 stations sampled from all 8 validation domains for the period
2002–2021.
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Between July and September 2020, continuous rainfall in
Sudan and upstream countries in the Nile Basin caused dev-
astating floods across 17 out of the 18 Sudanese states, with
the Blue Nile exceeding water level records set in 1946 and
19881. The flood event killed over 100 people in Sudan and
affected nearly one-third of cultivated land and about 3 mil-
lion people from agricultural households, worsening already
acute levels of food insecurity (FAO, 2020). The dynam-
ics of the event and of the resulting flood impacts are par-
ticularly challenging to simulate through a modeling chain,
due to the superposition of different drivers. The first one is
the exceptional seasonal rainfalls recorded in the Ethiopian
Highlands, contributing to extreme levels in the Blue Nile
and its tributaries. Second are the slow yet persistent rise
of the flows in the White Nile, resulting from exceptionally
high-water levels in upstream lakes, including Lake Victoria,
Lake Albert, and Lake Kyoga. This dynamic triggered the
well-known floods in South Sudan, causing the expansion of
the Sudd Swamps, which affected over a million people and
lasted over 2 years before starting to recede in 2022 (FAO and
WFP, 2022). The third driver is the series of short-lived and
intense rainfall events causing flash floods and pluvial flood-
ing in various areas of Sudan during summer 2020. Those
events usually affect relatively small areas, yet their poor pre-
dictability coupled with their rapid evolution and destructive
power causes on average the largest death toll by catching
people unprepared.

In Flood-PROOFS East Africa (FPEA), the Nile Basin was
calibrated using observed discharges at 22 gauging stations.
The 20-year hydrological reanalysis forced by GSMaP satel-
lite precipitation correctly identifies the flow peak of Septem-
ber 2020 in the lower Blue Nile as the largest in the avail-
able simulation record (see Appendix E). Direct comparison
of observed with simulated peak discharges was not possi-
ble, as observations at these stations are available only un-
til 2016. The hydrological and impact forecasts were sim-
ulated using initial conditions and input weather forecasts
available at the time of the event. We ran one 5 d forecast
every 4 d for the three months July–September 2020 and vi-
sualized the output in myDEWETRA as in operational mode.
According to the Sudanese Ministry of Irrigation and Water
Resources, on 7 September 2020 the Blue Nile River at Khar-
toum reached 17.67 m2, the highest level on record, before
starting to decrease on the following day. FPEA forecast run
of 2 September 2020 predicted a flow peak well above the 1
in 20-year return period in the Blue Nile at the same loca-
tion in the evening of 5 September, less than 2 d difference
with the observed peak (see Appendix E). The same fore-
cast shows return periods in the Blue Nile generally above

1https://floodlist.com/africa/sudan-floods-update-september-2020
(last access: 16 January 2024)

2https://www.reuters.com/article/
sudan-floods-int-idUSKBN26L308 (last access: 16 January
2024)

the 1 in 5-year return period, then exceeding the 1 in 20
years after the confluence with the Dinder River, all the way
downstream beyond Khartoum till the Merowe Reservoir in
the Nile River. Flooding is worsened also by high discharges
from the Atbara River joining the Nile River in Atbara and
forecast to exceed the 1 in 5-year return period of peak flows.
At the same time, flows in the White Nile are forecast to
exceed the 1 in 2-year return period in the entire Sudanese
portion down to Khartoum. The persistent increasing trend
results from high flows upstream, which are laminated by
the Sudd Swamps in South Sudan and slowly released down-
stream to Sudan (Fig. 4a). Each river reach exceeding the 1
in 2-year flood threshold in the 5 d forecast is then assigned
with the corresponding inundation scenario taken from the
JRC flood hazard maps (Fig. 4b). The figure shows the large
potential extent of the flooding along the White Nile, Blue
Nile, and Atbara River. Differently, the extensive threshold
exceedance visible in the western part of the country occurs
in an ephemeral river in a desert area, where the 1 in 20-year
peak flow corresponds to moderate discharges and limited or
no flooding outside the river bed. The forecast map of in-
undation extent is then used as the hazard component in the
subsequent estimation of flood impacts.

The 5 d impact forecasts for the seven exposure categories
listed in Sect. 2.2.2 are produced at each model run (see,
e.g., Fig. 5). In the FPEA forecasts of 2 September 2020,
most regions of Sudan and South Sudan have considerable
impacts in all considered categories, together with parts of
Uganda, Ethiopia, and Eritrea. The 5 d forecasts of popu-
lation affected are also displayed as time series in Fig. 6,
to show the evolution of impact forecasts by country and
by Sudanese state in the period July–September 2020. The
same figures for the six other exposure categories are pro-
vided in Appendix E. These figures show that most of the
impacts were forecast in Sudan, starting towards the end of
July 2020 and then sharply increasing towards the end of Au-
gust. The peak of total population affected was predicted in
the run of 2 September 2020, when the most severe flood
wave in the Blue Nile was about to transit by Khartoum, the
largest city in the affected region. Maximum forecast popu-
lation affected was 3.9 million in Sudan (Table 1), of which
1.9 million were in the country’s capital. The peak of impacts
of the floods in South Sudan was forecast on 10 September
2020, with 0.9 million people affected. Forecasts compare
well in magnitude with recorded impacts in Sudan, South
Sudan, and Uganda, from the EM-DAT database (EM-DAT,
2023). For comparison, estimates by GloFAS are 1 order of
magnitude lower, with about 224 000 people affected in the
three countries and only 40 000 in Sudan. In FPEA, people
affected in Khartoum and in the states along the Nile and
Blue Nile River are generally above the figures reported by
UN-OCHA (https://www.unocha.org/sudan; see comparison
in Fig. 7). This is partly attributed to a considerable overes-
timation of the inundated area for all flood scenarios in the
JRC flood hazard maps (Dottori et al., 2016). For instance,
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Figure 4. FPEA forecast on 2 September 2020 from the myDEWETRA web platform. (a) Reporting points and 5 d discharge forecast at four
sample points and (b) 5 d forecast of flood hazard levels and maximum inundation extent. Map data: © Google 2019.

Figure 5. FPEA forecast on 2 September 2020 from the myDEWETRA web platform. Absolute (left) and relative (right) 5 d forecasts of
population affected aggregated at first-level sub-national administrative regions in the Nile Basin. Map data: © Google 2019.

in those maps, most of the city of Khartoum is inundated
even with a flood return period as low as 1 in 10 years, due
to the coarse map resolution and the simplified representa-
tion of flood defenses and river channels in the modeling
framework. In addition, the definition of affected popula-
tion by floods is non-univocal and may lead to very differ-
ent estimates depending on the approach used, such as the
one by UN-FAO reporting up to 3 million people affected

in Sudan in the 2020 event3. In FPEA we count population
as affected for any flood depth, while estimates by govern-
ments are likely to consider higher levels of impact. On the
other hand, impact estimates are generally underestimated in
smaller flash-flood-prone catchments (e.g., in Darfur), due to
the poor predictability of those events by global atmospheric
models and to the lower limit of 5000 km2, below which the
JRC flood hazard maps are not defined.

3https://www.theguardian.com/world/2020/sep/05/
sudan-declares-state-of-emergency-record-flooding (last access:
16 January 2024)
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Figure 6. The 5 d forecast of population affected in the Nile Basin for the period July–September 2020 from FPEA. Country totals (a) and
aggregations for the Sudanese states (b).

Table 1. Impacts recorded by EM-DAT for the floods in 2020 and comparison with FPEA and GloFAS forecasts. NA indicates data not
available in the database of observed impacts.

Population affected [1000] Damage [million USD]

EM-DAT FPEA GloFAS EM-DAT FPEA

Sudan 875 3920 39.7 250 243
South Sudan 1042 891 184 NA 69
Uganda 8.7 49 0 NA 6.7
Total 1925.7 4860 223.7 318.7

4 Conclusions

This work describes the status of implementation of Flood-
PROOFS East Africa, a novel medium-range impact-based
system for ensemble flood forecasting and early warning in
the Greater Horn of Africa. The system is based on a hydro-
meteorological modeling chain coupled with impact predic-
tions at sub-national administrative level, taking into account
all elements of the risk assessment formula: hazard, expo-
sure, vulnerability, and coping capacity. Being an operational
system, it runs within an automated daily scheduling includ-
ing data acquisition, model runs, archiving of the model out-
put, creation of visualization products, display in the web
interface myDEWETRA, process monitoring, service sta-
tus notification, and backup operations. Flood-PROOFS East
Africa is one of the key activities of the UNDRR “Pro-
gramme for a continental coordination, early warning and
action system in Africa” currently being performed in col-
laboration with the African Union Commission (AUC) and
relevant African partners working in the field of climate
prediction and disaster management. The system operations
started in December 2022 and foresee to provide continu-
ous support ahead of major floods during the rainy seasons
in the GHA. To maximize the system’s value, impact fore-
casts must be translated into clear and concise warning mes-
sages and reach emergency operators, including national civil
defense forces and humanitarian organizations. Achieving

such a full operating status involves identifying some addi-
tional steps: (i) setting up a team of duty officers composed
by hydro-meteorological experts and disaster risk managers,
working in shifts to monitor daily forecasts; (ii) establishing
a network of national and regional focal points in the GHA
region, to contact ahead of major events; (iii) ensuring that
warning messages are correctly interpreted, together with
their key strengths and limitations, and propose a set of advi-
sories and suggested actions; and (iv) collecting feedback on
predicted impacts to improve the future system performance.
Currently, model results are available through the password-
protected web interface myDEWETRA, and dedicated ac-
counts have already been shared with the Disaster Operation
Centers of the AUC, in Addis Ababa – Ethiopia, the Climate
Center of the Intergovernmental Authority on Development
(IGAD) region (ICPAC), based in Nairobi – Kenya, and at
national level with the Sudanese National Council of Civil
Defence NCCD and its members, including early warning
units from different institutions: Ministry of Irrigation and
Water Resources, Sudan Meteorological Authority, and Min-
istry of Agriculture and Forests.

Future activities include a more extensive evaluation of
the model output in flood prediction, particularly important
not only to improve the trust of the users, but especially to
identify areas of improvement. Specific work will be tar-
geted to achieve robust quantification of expected flood im-
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Figure 7. Maximum forecast population affected for the 2020 floods by FPEA and comparison with figures by UN-OCHA. Aggregations by
Sudanese states.

pacts, given the multiple advantages it entails. First, it fo-
cuses on relevant metrics for disaster mitigation and pre-
paredness, which can be directly linked to the amount of
resources needed for emergency support and recovery. Sec-
ond, validation data are independent of in situ hydrological
measurements, which are particularly difficult to obtain in
near-real time in this region. Model evaluation is instead per-
formed on data which are of higher interest for emergency
operations and thus are collected promptly, including people
affected and damage to infrastructures. Similarly, forecasts
of inundation extent can be benchmarked to satellite acqui-
sitions, whose current latency and availability enable almost
daily coverage of flood disasters globally, even in cloud con-
ditions (Salamon et al., 2021). Another foreseen area of re-
search is the improvement of water levels simulated in large
lakes and reservoirs through the assimilation of satellite al-
timetry. Knowing precisely those variables is of crucial im-
portance to correctly simulate the chances of flooding down-
stream due to a combination of high lake levels and severe
precipitation in the upstream portion of the river basin. In ad-
dition, being based on a full hydrological modeling system,
the model output will be evaluated both in wet and dry con-
ditions, to understand if it generates skillful results that can
be of use also for drought and water resources monitoring.

Appendix A: Model calibration

A1 Sensitivity of calibration parameters

We performed a global sensitivity analysis (GSA) on eight
Continuum parameters to investigate their sensitivity and the
most influential parameters for each output variable. GSA
was based on the SAFE Toolbox (Pianosi et al., 2015), using
the elementary effects test (EET) (or method of Morris) and

one-at-a-time (OAT) sampling using Latin hypercube. Con-
tinuum’s parameters of perturbation are summarized in Ta-
ble A1.

Table A1. Sampled parameters of the Continuum model.

Name Description

uc Friction coefficient in the channels
uh Flow motion coefficient in the hillslopes
cf Infiltration capacity at saturation
ct Field capacity
CN Curve number
ws Water sources
WTableHbr Maximum water capacity of the aquifer
Fr Fracturing

We run 900 model simulations, corresponding to 100 runs
for each parameter, plus 100 needed to enable bootstrap anal-
ysis (based on 1000 samplings with 5 % significance level).
Sensitivity was assessed towards soil moisture, evaporation,
and discharge (the latter both considering sensitivity to the
model output and to the model performance). Results were
diagnosed by assessing (1) the sensitivity index of the per-
turbed parameters, (2) mean versus standard deviation of
each parameter, (3) scatterplot of the sampled parameters, (4)
convergence, and (5) behavioral runs. A sample of diagnostic
plots is shown in Fig. A1.

Results of the GSA on the Continuum model can be sum-
marized in the following key messages:

– Soil moisture is mainly influenced by the field capacity
parameter (ct).

– Evaporation is mainly influenced by the curve number
(CN) and by strong cross-parameter interactions with ct.
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Figure A1. Diagnostic plots of the GSA: (1) sensitivity index of the perturbed parameters, (2) mean versus standard deviation of each
parameter, (3) scatterplot of the sampled parameters, (4) convergence, and (5) behavioral runs (here based on the threshold KGE > 0.5).

– The simulated flow metrics (with respect to observed
values) show maximum sensitivity to the parameters ws
and WtableHbr, followed by Fr and CN.

– CN has (usually) the greatest sensitivity in acting on ad-
vances or delays in the hydrograph, with influence also
of other parameters.

– The analyses show a minimum sensitivity of the param-
eters uc and uh, followed by cf.

Based on the analyses carried out, it is recommended to cal-
ibrate the parameters ct, CN, WtableHbr, and Fr. This strat-
egy was applied in the calibration of the hydrological do-
mains in the GHA region, additionally by constraining such
parameters within a physically meaningful range. Some mi-
nor modifications were then included in the choice of cali-
bration parameters for selected cases following results of ini-
tial tests. For instance, in the Nile River basin we included
the friction coefficient in channels as calibration parameter,
given the larger extent of the river network and the increasing
weight of river routing as compared to the case used for the
sensitivity analysis. In Fig. A2, key graphs on the sensitivity
index of the perturbed parameters versus the three variables
are shown.

A2 Perturbation method

We have worked to improve the perturbation method for
those parameters which are not kept constant across the se-
lected domain but are defined as the product of a default map
times a scaling factor. Such an approach has the advantage
of preserving the spatial distribution of selected parameters,
linking it to a physically based quantity, and defining the

relation and ranking among such quantities across the do-
main. However, such an approach is complicated by the need
for constraining the calibrated parameter map to physically
based constraints derived from the literature, which forces
the procedure to a non-linear scaling between the calibration
factor and the final (i.e., calibrated) parameter map. Among
the chosen calibration parameters of Continuum, such con-
siderations apply to two parameters: the curve number (CN)
and the field capacity (Ct).
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Figure A2. Boxplots indicate the most sensitive parameters for different output variables: soil moisture, evaporation, and river discharge.

Figure A3. (1) Default map of the curve number for a subbasin of the White Nile River, whose probability density function is shown in red in
panels (2) to (4). (2) Unbalanced sampling leading to extreme values (in blue). (3) Improved balanced sampling around the initial distribution
(iteration 1). (4) Narrower sampling towards the best parameter distribution (iteration 5).

The trigonometric arc-tangent function is suitable for ap-
plying a scaling of the values in a map within a predefined
range. However, an analysis of past applications showed that
such a function tends to select perturbed parameter maps at
the edges of the range (hence with little physical meaning),
leaving wide ranges of realistic values undersampled. Our
work was focused on addressing such limitations and pro-
ducing perturbed parameter maps following a more uniform
distribution, hence enabling more efficient search of the best
values. Results obtained were successful, and the current al-
gorithm produces quasi-uniform sampling which narrows the
sampling range at each iteration and speeds up the conver-
gence to optimal values. Sample results are shown in Fig. A3.
In addition, we have adapted the sampling method so that
the number of perturbations is set higher in the first iteration
(default n= 50 samples), which is then reduced by 20 % at
each subsequent iteration (i.e., 50, 40, 32, 26, 21). Such addi-
tion enables a thorough sampling at the initial iterations yet
an efficient use of the computing resources by reducing the

number of runs in subsequent iterations. The calibration al-
gorithm now performs a minimum of two iterations (50+ 40,
i.e., a minimum of 90 model runs), where at the end of each
iteration, the first evaluates the improvement in the objec-
tive function. The calibration stops when the improvement in
the objective function is smaller than a predefined threshold,
whose default value is set to 1 %. In addition, a maximum
of five iterations was imposed, leading to a maximum of 169
model runs for each calibrated domain.

A3 Objective function

We have tested different objective functions (KGE, nRMSE,
correlation, Nash–Sutcliffe efficiency (NSE)) to evaluate the
optimal choice for the model parameterization, keeping in
mind the priority of this implementation, which is opera-
tional flood forecasting and early warning. Ideally, such a
system must be capable not only of capturing periods of high
and low flows adequately well, keeping a moderate bias, but
also of preserving a skillful ranking between flow peaks and
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Figure A4. The non-linear relation between KGE and NSE and their influence versus the hydrological regime (from Knoben et al., 2019).

Figure A5. Comparison of observed vs. simulated discharges at a station in Burundi, using model parameters obtained with different objective
functions (correlation, KGE, nRMSE).

the warning thresholds derived statistically from historical
long-term simulations.

The Kling–Gupta efficiency (KGE) used in previous ap-
plications was dismissed from the calibration procedure as
it often gave unsatisfactory results. In addition, it has a num-
ber of limitations, including its subjective attribution of equal
weights to the error components, the non-linear behavior
with the NSE, and its varying performance which heavily
depends on the hydrological regimes and on the coefficient
of variation (CV) of simulated flows, as reported by Knoben
et al. (2019).

The KGE implicitly favors underestimations and smaller
variability rates, while overestimations of these variables are
much more penalized. Correlation is comparatively less pe-
nalized, given that the term (r − 1)2 cannot be larger than
4 (while the other two terms representing bias and variabil-
ity are not bounded). The non-linear penalization of KGE is
also seen by the small differences between a simulation cor-
responding to a constant zero line, leading to KGE=−0.44
and a simulation with two components that are perfect (e.g.,
bias= 0, correlation= 1) and simulated variability which is
twice the observed one, leading to KGE= 0. For these rea-
sons the KGE can discern differences among very good
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datasets but is of limited use for sub-optimal data. This ef-
fect is even stronger in multi-site calibrations, where trade-
offs must be accepted to find best configurations at the basin
scale yet not favoring specific locations as in cascading cali-
brations.

After comparing results of calibrations with different ob-
jective functions, we opted for the use of the normalized root
mean square error (nRMSE), where the RMSE of each cal-
ibration station is normalized by its average flow obtained
from long-term records. nRMSE preserves a linear scaling
of performance and enables a good trade-off in achieving low
bias and good correlation. The optimization of the objective
function is performed on the entire time series.

We performed a multi-site calibration where all stations
within a model domain contribute at the same time to the
evaluation of the objective function, where the nRMSE at
each calibration station is weighted by the logarithm of their
upstream area, to give a comparable but higher weight to sta-
tions located downstream. Multi-site calibrations are known
to give on average lower performance than cascading cali-
brations in the calibration period, but they give higher per-
formance in validation, especially in river sections where no
calibration station is available. Therefore, such an approach
proves particularly useful in river basins with a limited num-
ber of stations.

Appendix B: Simulation of reservoirs and lakes

Reservoirs and lakes are simulated as points in the channel
network. The inflow into each reservoir equals the channel
flow upstream the selected point.

B1 Dams and reservoirs

The hydrological behavior of dams is represented by consid-
ering their main structural characteristics and those of their
outlets. Different setups are possible, according to the level
of knowledge of the dam system.

The main structural information needed for the modeling
of dams is reported in Table B1.

The dam surface spillway is modeled with the broad-
crested weir equation:

Q(t)spill = 0.385 ·Lspill ·
√

2 · g · (H(t)− (Hmax

−1Hspill))
1.5 , (B1)

where g is the gravitational constant. Other symbols are de-
clared in Table B1. For each time step if Q(t)spill > 0, water
is released in the network cell immediately downstream the
dam, as identified by the hydrological pointers.

In addition to the surface spillway, any number of outlets
can be added to the reservoir. Each outlet needs to be identi-
fied by a set of characteristics, reported in Table B2.

The discharge through the outlets can be thus directly pro-
vided as a time series for regulated outlets (e.g., turbines for

hydroelectric production, agricultural withdrawals) or esti-
mated as a function of the filling level of the dam. In detail,
discharge through the outlet is estimated according to the fol-
lowing equation:

Q(t)out = Qmax · (V (t)/Vmax)
K , (B2)

with V (t) volume in the dam at the considered time step.
Other symbols are declared in Tables B1 and B2.

Independently of the approach chosen for the evaluation
of the discharge, it is then returned in the cell declared in the
configuration file. The cell can be located anywhere inside
the domain (e.g., for hydroelectric infrastructures) or outside
of it (e.g., in case of agricultural withdrawals).

B2 Lakes

Lakes are modeled as linear reservoirs. Some characteristics
of the lakes, reported in Table B3, must be provided for the
model implementation.

For each time step, if V (t) > Vmin, the discharge from the
lake is estimated as follows:

Q(t)out = (V (t) − Vmin)/C, (B3)

where the meaning of the symbols can be found in Table B3.
The discharge released from the lake, if larger than 0, is re-
turned in the downstream cell. The lake volume at the time
step t + 1 is updated accordingly.

https://doi.org/10.5194/nhess-24-199-2024 Nat. Hazards Earth Syst. Sci., 24, 199–224, 2024



216 L. Alfieri et al.: Impact-based flood forecasting

Table B1. Dam features used for modeling.

Information Symbol Mandatory (Y/N) Note

Dam name Y
Dam coordinates Y Gridded coordinates (row–column)
Maximum storage (m3) Vmax Y
Initial storage (m3) Y
Length of surface spillway (m) Lspill Y
Height of surface spillway (m) 1Hspill Y
Maximum reservoir depth (m) Hmax Y
Depth–volume curve N If not provided linear relation between 0− 0 and Hmax−Vmax is used

Table B2. Outlets features used for modeling.

Information Symbol Mandatory
(Y/N)

Note

Outlet coordinates Y Gridded coordinates (row–column) – represent the
coordinates where the discharge is returned.

Discharge time series N A txt file including for each time step of the model
the discharge value.

Maximum discharge at
the outlet (m3 s−1)

Qmax N The maximum discharge that can pass through the
outlet

Plant concentration
time (min)

N The time delay in the release of the discharge

Outlet coefficient K N The coefficient that regulates the discharge as a function
of the filling level of the dam, according to Eq. (S2). If
not provided, it is set to 6.

Table B3. Lake features used for modeling.

Information Symbol Mandatory
(Y/N)

Note

Coordinates of the lake Y Gridded coordinates (row–column)

Minimum lake volume
for non-null
discharge (m3)

Vmin Y

Initial lake volume
(m3)

Vinit Y

Lake constant
(1 h−1)

C Y In general estimated as the inverse of
the residence time
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Appendix C: Exposure layers

Table C1. Exposure data used for the operational impact-based forecasts.

Data Description

Population (2020) Population distribution at 90 m resolution (2020). This layer contains the number of people
per pixel, and it is based on the population distribution data from WorldPop top-down mod-
eling methods (https://www.worldpop.org/methods/populations, last access: 16 January 2024)
adjusted to match United Nations national population estimates (UN, 2020). The layer has been
corrected with reference to the official Census data, when available.

Crop land (2019) Crop land map at 90 m resolution (reference year: 2019). Each pixel represents the crop land
area in hectares. These data derive from the ASAP crop mask (Version 03, Anomaly Hotspots
of Agricultural Production, JRC)

Grazing (2019) Grazing land map at 90 m resolution (reference year: 2019). Each pixel represents the grazing
land area in hectares. These data derive from ASAP rangeland mask (Version 03, Anomaly
Hotspots of Agricultural Production, JRC)

GDP (2019) Gross domestic product (GDP) map at 90 m resolution (reference year: 2019). Each pixel con-
tains the amount of GDP in USD produced in that pixel. These data are derived from the ex-
posure data developed for the GAR 2015 risk atlas (de Bono and Chatenoux, 2015) adjusted to
match 2019 GDP estimates from the World Bank.

Livestock units (2010) Cattle population in the GHA Region at 90 m resolution (reference year: 2010). This layer con-
tains the number of cattle per pixel, and it is based on data derived from the Harvard Dataverse,
provided by the ICPAC Geoportal (https://geoportal.icpac.net/layers/geonode%3Acattle_gha,
last access: 16 January 2024).

Road network (2021) Road network based on OpenStreetMap shapefile of roads (© OpenStreetMap contributors,
March 2021). The length of each road branch in kilometer per pixel, calculated in a GIS envi-
ronment. Two types of roads are classified (primary and secondary) based on the original class
of OpenStreetMap.

Appendix D: Ensemble forecasts

Figure D1. Example of 5 d ensemble discharge forecast visualized in the myDEWETRA platform for a reporting point in Flood-PROOFS
East Africa.
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Appendix E: Case study – the Nile floods in summer
2020

Figure E1. Comparison of simulated versus available observed discharges in the Blue Nile at Khartoum Manshia Bridge. The Septem-
ber 2020 flow peak is the largest in the long-term simulation.

Figure E2. Flood-PROOFS East Africa forecast run of 2 September 2020, 00:00 UTC. Reporting point in the Blue Nile at Khartoum Manshia
Bridge. Peak flow is forecast in the evening of 5 September. Maximum water level was observed on 7 September 2020.
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Figure E3. FPEA 5 d impact forecasts for six exposure categories for the period July–September 2020 in the Nile Basin. Aggregations by
country.
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Figure E4. FPEA 5 d impact forecasts for six exposure categories for the period July–September 2020 in Sudan. Aggregations by state (i.e.,
first level sub-national administrative regions). Only the top 8 states for each category are shown. Others are grouped and drawn in light gray.
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Code availability. Continuum is an open-source
hydrological model. Its code is available at
https://doi.org/10.5281/zenodo.5032399 (Delogu, 2021), to-
gether with a number of tools for pre- and post-processing of the
model data.

Data availability. GSMaP precipitation data are available from
https://sharaku.eorc.jaxa.jp/GSMaP/ (JAXA, 2024). Operational
GFS forecasts are downloaded through the NOAA Nomads grib
filter (https://nomads.ncep.noaa.gov/gribfilter.php?ds=gdas_0p25,
NCEP, 2024), while historical GFS data were downloaded from the
NCAR Data Archive (https://rda.ucar.edu/, last access: 16 January
2024). ERA5 atmospheric reanalyses were downloaded from the
Copernicus Climate Data Store (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview,
Hersbach et al., 2020) through the dedicated Python
API. ESA-CCI land cover can be downloaded from
https://maps.elie.ucl.ac.be/CCI/viewer/download.php (ESA,
2017). The SoilGrids map is available from the ISRIC data
hub at https://data.isric.org/geonetwork/srv/ita/catalog.search#
/metadata/e33e75c0-d9ab-46b5-a915-cb344345099c (Hengl et al.,
2017). Lake and dam data were downloaded respectively from
https://www.hydrosheds.org/products/hydrolakes (Messager et al.,
2016) and https://www.globaldamwatch.org/directory (Mulligan
et al., 2021). Observed discharges from the GRDC database are
freely available for download at https://www.bafg.de/GRDC
(last access: 17 January 2024). Global flood hazard
maps from Dottori et al. (2016) can be downloaded from
https://data.jrc.ec.europa.eu/collection/id-0054 (European Com-
mission, 2023), while the corresponding areas-of-influence maps
were provided by the DRM Unit of the European Commission,
Joint Research Centre. Exposure data and relative sources are
listed in Appendix C. Lack of coping capacity values were taken
from the INFORM Risk Index at https://drmkc.jrc.ec.europa.eu/
inform-index/INFORM-Risk/Results-and-data/moduleId/1782/id/
469/controller/Admin/action/Results (INFORM, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-24-199-2024-supplement.
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