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Abstract. Droughts often lead to cross-sectoral and intercon-
nected socio-economic impacts, affecting human well-being,
ecosystems, and economic development. Extended drought
periods, such as the 2018–2022 event in Germany, amplify
these impacts due to temporal carry-over effects. Yet, our
understanding of drought impact dynamics during increas-
ingly frequent multi-year drought periods is still in its in-
fancy. In this study, we analyse the socio-economic impacts
of the 2018–2022 multi-year drought in Germany and com-
pare them to previous single-year events. Leveraging text-
mining tools, we derive a dataset covering impacts reported
by 260 news outlets on agriculture, forestry, livestock, wa-
terways, aquaculture, fire, and social impacts spanning 2000
to 2022. We introduce the concept of drought impact pro-
files (DIPs) to describe spatio-temporal patterns of the re-
ported co-occurrences of impacts. We employ a clustering
algorithm to detect these DIPs and then use sequence min-
ing and statistical tests to analyse spatio-temporal trends. Our
results reveal that the 2018–2022 multi-year drought event
had distinct impact patterns compared to prior single-year
droughts regarding their spatial extent, impact diversity, and
prevalent impact types. For the multi-year drought period, we
identify shifts in how impacts have been perceived region-
ally, especially focusing on legacy and cascading effects on
forestry and social activities. Also, we show how regional
differences in relevant impacts are controlled by different
land-cover types. Our findings enhance the understanding of
the dynamic nature of drought impacts, highlighting the po-

tential of text-mining techniques to study drought impact dy-
namics. The insights gained underscore the need for differ-
ent strategies in managing multi-year droughts compared to
single-year events.

1 Introduction

Droughts challenge human well-being, ecosystems, and eco-
nomic development worldwide. Their impacts spread across
multiple socio-economic sectors such as agriculture, live-
stock, and waterway navigation (Stahl et al., 2016). They
can occur concomitantly (i.e. compounding) or spread from
one economic sector to another (i.e. cascading) (Erian et al.,
2021; de Brito, 2021; Lawrence et al., 2020; Garrick et al.,
2018). For instance, drought-related harvest failures in Rus-
sia in 2010, combined with an export ban, led to a global
spike in cereal prices. This shortage is assumed to have am-
plified the food security risk in other countries (Challinor et
al., 2018, 2017). Another example is the 2018 summer in
Germany, where low soil moisture values caused crop fail-
ures, leading to feeding shortages and consequent livestock
reductions (de Brito, 2021).

The socio-economic impacts of droughts are not only
driven by the biophysical severity of the drought itself but
also shaped by factors such as societal exposure, vulnerabil-
ity, and adaptation responses (Damian et al., 2023; Blauhut
et al., 2015; Lindner et al., 2010; Simpson et al., 2021).
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Also, impacts influence each other, forming a complex net-
work of cascading and compounding patterns (Chen et al.,
2022; de Brito, 2021; Erian et al., 2021). As a result, the
socio-economic impacts of droughts are spatio-temporally
dynamic and not directly proportional to the biophysical oc-
currence of drought hazards. This complexity becomes es-
pecially salient during multi-year droughts, which are char-
acterised by prolonged periods of low precipitation and wa-
ter scarcity, typically leading to regional biophysical feed-
backs that exacerbate the hazardous conditions (Miralles et
al., 2019). During such events, the effects of vulnerability
and exposure tend to build up over time (Kim et al., 2021;
De Silva and Kawasaki, 2018). Consequently, the impacts of
multi-year droughts are not static; instead, they continuously
evolve and change.

The increasing incidence of multi-year drought periods in
several regions worldwide (Rakovec et al., 2022; Moravec
et al., 2021; Fischer et al., 2021) underscores the need to
comprehend how these events impact society. Previous stud-
ies have shown that the duration of drought is linked to
the emergence of new socio-economic impact types (Yu et
al., 2018; Tijdeman et al., 2022; Chen et al., 2022). An
intuitive example of the effect of drought duration is the
dieback of trees in Australian and Californian forests due to
the extended and intense droughts (Stephenson et al., 2018;
Matusick et al., 2018). Therefore, research on the distinct
spatio-temporal impact patterns during multi-year droughts
is needed for designing and implementing robust adaptation
measures (Liguori et al., 2021; Rakovec et al., 2022).

Over the past years, substantial progress has been made in
studying patterns of socio-economic drought impacts (Nig-
gli et al., 2022; Erfurt et al., 2020; Dahlmann et al., 2022;
Liguori et al., 2021; de Brito, 2021). However, most of these
studies exhibit a limited scope, both spatially and temporally.
Their focus on isolated incidents undermines the potential for
broader generalisation, leaving uncertainties about the repre-
sentativeness of the observed patterns across periods not cov-
ered by the study. Also, very few studies consider multiple
sectors impacted by droughts, and a focus on singular sec-
tors such as agriculture or forestry prevails (for examples of
multi-sector assessments, see e.g. Stahl et al., 2016; de Brito
et al., 2020; Sodoge et al., 2023). Overall, there is a clear
need for a systematic approach that incorporates the multi-
sectoral effects of drought during extended periods and geo-
graphic regions.

In this paper, we study the spatio-temporal patterns of re-
ported socio-economic drought impacts of both multi-year
and single-year drought periods in Germany between 2000
and 2022. Germany is selected as a case study because of
its recent history of significant droughts (2003, 2015, 2018–
2022; see Fig. A6 for annual soil moisture observations)
with widespread impacts on agriculture, forestry, livestock,
and waterway navigation, among others (Peña-Angulo et al.,
2022; Rakovec et al., 2022; Tijdeman et al., 2022; de Brito
et al., 2020). The assessment of reported impacts supports a

focal point on their human perception. Specifically, we fo-
cus on the multi-year drought period between 2018–2022,
which is considered a new benchmark in terms of duration
and intensity (Rakovec et al., 2022). With this, we aim to un-
derstand (a) how single-year and multi-year drought events
differ, (b) how drought impact patterns change or persist over
the years, and (c) how land cover is related to these impact
patterns. While a multitude of factors influence the exposure
and vulnerability to drought hazards (Meza et al., 2019; De
Stefano et al., 2015; Hedayat and Kaboli, 2024), we focus
on land cover due to its widespread usage, allowing us to
demonstrate the analytical capabilities of our approach.

2 Methods

In this study, we used newspaper texts to create a drought
impact dataset covering multiple sectors in Germany. We in-
troduced the concept of a drought impact profile (DIP) to
construct a typology summarising co-occurring drought im-
pact types at a certain time and region. Based on the devel-
oped DIPs, we investigated patterns of drought impact occur-
rence throughout three levels of analysis, which provide in-
creasing depth to understanding the characteristics of multi-
year droughts (see Fig. 1). First, we compared the DIPs of
multiple drought events to understand how single-year and
multi-year drought events differ. Second, we examined how
the DIPs change or persist within each district using graphi-
cal and sequence mining methods. Third, we used land-cover
data to demonstrate how external data on exposure and vul-
nerability can be linked to the DIPs to understand what con-
trols their occurrences.

2.1 Data

We developed a dataset covering seven commonly observed
drought impact types in Germany between 2000 and 2022.
These include impacts on agriculture (including crop yield
losses), livestock (i.e. impacts on livestock farming and an-
imal populations), waterways (i.e. impacts on shipping and
navigation), forestry (i.e. impacts on trees and forest ecosys-
tems), aquaculture (i.e. impacts on fishing-related activities),
social (i.e. impacts on places and activities used for recre-
ation, tourism, leisure), and fire (i.e. fire in forests or other
areas due to drought conditions); for a detailed description
of each impact class, see Table A1.

To create this dataset, we leveraged the text-mining ap-
proach proposed by Sodoge et al. (2023) for detecting and
classifying the drought impacts and their geographic lo-
cation from newspaper articles. We considered ∼ 50 000
German newspaper articles mentioning drought-related key-
words published between 2000 and 2022. From this sample
of newspaper articles, we first removed duplicate and non-
relevant articles. Then, we classified whether each article re-
ports on an impact type using lasso logistic regression mod-
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Figure 1. Overview of the methods used to compute drought impact profiles and analyse their patterns.

els that were trained and evaluated on a sample of 1800 man-
ually annotated newspaper articles (de Brito et al., 2020). The
models achieved an 89 % median accuracy when compared
to the manually annotated data (see Table A2). In a final step,
we estimated the impact location on the district level follow-
ing the nomenclature of territorial units for statistics (NUTS-
3 units). To this end, we considered the locations mentioned
within each text and determined the impacted area based on
regions where multiple detected locations cluster.

The resulting dataset contains observations describing the
frequency of drought impact statements (DISs) by year and
district. A DIS documents a specific type of reported im-
pact, its estimated date of occurrence, and its location. For
example, a DIS could describe the reported impact on agri-
culture in Leipzig on 16 August 2022. We aggregated the
DIS per year and district. The aggregation by year fol-
lowed natural breakpoints, as shown in Fig. A2. Most im-
pacts were reported in summer and continuously decreased
towards winter. To assess how well our DIS dataset cor-
responds to external data, Sodoge et al. (2023) correlated
it against multiple empirical indicators: precipitation deficit
(DWD, 2023), Google trends data reflecting public aware-
ness (Google, 2023), forest fire statistics (BZL, 2020), and
agricultural yield losses (The Regional Database Germany,
2023). The validation results showed that the DIS and these
empirical indicators were correlated, suggesting that our es-
timates are accurate (see Fig. A1). Detailed descriptions of

the proposed method, validation procedure, and results can
be found in Sodoge et al. (2023).

2.2 Computing and analysing drought impact profiles
(DIPs)

Droughts and their impacts are known to be power-law dis-
tributed (Zscheischler et al., 2014; Mahecha et al., 2017). Ac-
cordingly, we find that most observations in our DIS database
have few or no impacts reported, while a few observations
contained the majority of reported impacts. This intrinsic im-
balance hinders the construction of DIPs because they dis-
rupt clustering by co-occurrence patterns. Hence, we used
the following transformations to the DIS data to ensure that
the resulting DIPs primarily reflect co-occurrence patterns
rather than the severity of droughts. To this end, we only con-
sider observations from years with observed drought condi-
tions and socio-economic impacts. We selected these based
on three criteria: (i) the number of DISs reported per year,
(ii) previous research that studied drought events in Germany
(Peña-Angulo et al., 2022; Tijdeman et al., 2022; Rakovec
et al., 2022; Boeing et al., 2022; Erfurt et al., 2020), and
(iii) expert knowledge of hydrologists studying droughts in
Germany. Consequently, we selected the droughts of 2003,
2015, and the 2018–2022 multi-year drought period. Along
the three criteria, we found an overlap for all selected years.
Previous research has focused on these periods, showing rel-
evant observations concerning soil moisture and precipitation
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deficits. We excluded 2021 from the analysis because few
impacts were reported, which could skew the computation of
DIPs. Still, we did not treat 2022 as a single-year drought
but instead termed 2018–2022 a multi-year drought. We de-
cided to group these years because impacts observed in sec-
tors such as forestry, agriculture, or social in 2022 were still
connected to the bio-physical impacts of prior years, which
makes separation and independent treatment of 2018–2020
and 2022 difficult. We then grouped the DIS data by year and
district and re-scaled from 0 to 1, where 0 means the mini-
mum DIS value within the grouping, and 1 is the maximum
(see Fig. A3). This rescaling allowed us to assess variations
in the relative significance of impacts across different regions
(e.g. north vs. south) and years.

After transforming the data, we created the DIPs by clus-
tering similar observations. To this end, we computed the
Euclidean distances (Eq. 1) between each pair of observa-
tions (x and y) based on all seven impact types (imp1−7).
A small distance reflects similar impacts, whereas a larger
distance indicates distinct ones. Based on these distances,
we clustered the observations using an agglomerative hier-
archical clustering algorithm called Ward’s linkage (Sharma
et al., 2019). We selected this algorithm because it is known
to provide robust results when dealing with continuous data
by minimising the variance between clusters. The disadvan-
tages of the specific clustering algorithm are its sensitiv-
ity to outliers and its tendency to form equal-sized clusters
(Sharma et al., 2019). This method initially labels each ob-
servation as an individual cluster and iteratively merges them
into larger clusters based on the identified distances (Husson
et al., 2010). The ideal number of clusters (k) was determined
using both quantitative measures (e.g. elbow method, silhou-
ette coefficient) (see Ketchen and Shook, 1996; Thorndike,
1953; Zambelli, 2016) and domain knowledge. For the lat-
ter, we considered existing information about compounding
and cascading impacts in Germany (de Brito, 2021) as well
as co-occurrence patterns within our DIS dataset (Fig. A4).

d (x,y)= (ximp1− yimp1)
2
+ . . .+ (ximp7− yimp7)

2 (1)

2.2.1 Differences in impact patterns between
single-year and multi-year drought events

To compare the impact patterns of single-year and multi-year
drought events (analysis level 1 in Fig. 1), we used a simi-
larity measure and hierarchical clustering. We computed the
similarity between the 2 years by counting the number of dis-
tricts with an identical DIP in both years. For instance, if 140
districts exhibited the same DIP in 2003 and 2015, the simi-
larity measure would also be 140. Subsequently, we applied
hierarchical clustering with Ward’s linkage to visualise these
pairwise similarities in a dendrogram.

To further explore the differences between single-year and
multi-year droughts, we also considered the diversity of oc-
curring DIPs. To this end, we calculated the Shannon index
(H ) (Spellerberg and Fedor, 2003) for each year by summing

the products of the relative abundance (p) of each category
(i) and the natural logarithm of that category’s relative abun-
dance (ln(pi)) (see Eq. 2). A higher H value suggests that
there are many different types of DIPs across the analysed
districts, and these are evenly distributed. In contrast, a lower
H value indicates fewer distinct types of DIPs, and some may
dominate.

H = −
∑

i
pi · ln(pi) (2)

2.2.2 Dynamic patterns of impacts during multi-year
drought periods

To investigate how the DIP patterns evolved during the 2018–
2022 multi-year drought period (analysis level 2 in Fig. 1),
we employed two distinct yet complementary approaches: a
graphical analysis using alluvial diagrams and statistical se-
quence mining. Both approaches aimed at identifying tem-
poral sequences that describe DIP’s characteristic shifts (or
persistence). Alluvial charts served to effectively visualise
sequences, presenting them in proportion to the number of af-
fected districts. Sequence mining assisted as a quantitatively
complementary approach to identify statistically significant
sequences of DIPs in consecutive years. We employed the
CSPADE (Sequential Pattern Discovery using Equivalence
Classes) algorithm, a widely used sequence mining imple-
mentation (Zaki, 2001; Wright et al., 2015) (see Fig. 2).
To apply the CSPADE algorithm, we created a transactional
database with the antecedent and consequent DIPs in each
district during the 2018–2022 drought period. The extracted
sequences defined by two connected elements (a and b) were
evaluated on 3 measures: support, confidence, and lift. Sup-
port corresponds to how often the particular sequence ap-
peared within the data (see Eq. 3). Confidence measures how
often the DIP occurred together relative to all observations
with the antecedent (see Eq. 4). Lift measures how often an-
tecedent and consequent DIPs were observed together rel-
ative to how often they were expected to be observed (see
Eq. 5). The obtained sequences with high lift can be inter-
preted as the most prevalent ones.

support(a)=
number of sequences containing pattern a

total number of sequences
(3)

confidence (a→ b)=
support (a+ b)

support (a)
(4)

lift (a→ b)=
support (a+ b)

support (a) ·Support (b)
(5)

2.2.3 Linking land cover to multi-year drought impact
profiles (DIPs)

To demonstrate the analytical capabilities of the DIPs typol-
ogy, we leveraged non-parametric statistical tests to search
for significant associations between the DIPs and land-cover
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Figure 2. Process of extracting DIP sequences with CSPADE algorithm. For each district, a timeline was created representing the DIP
observed during the multi-year drought period. These were split into a transactional database representing the transitions between the DIPs
of 2 consecutive years. By using the CSPADE algorithm, we extracted the most frequent sequences and quantified them based on lift, support,
and confidence metrics.

data (analysis level 3 in Fig. 1). For this analysis, we focused
on the observations during the multi-year drought period as
we aim to disentangle the patterns within this special period.
Land cover has been found to control the effect of drought
on ecology (Flach et al., 2021) and the socio-economic im-
pacts of drought (Sutanto et al., 2019; Blauhut et al., 2016).
We considered the 10 most prevalent types of land cover
in Germany using the CORINE (Coordination of Informa-
tion on the Environment, Land Cover) dataset (Büttner et al.,
2004). For each district, we calculated the relative share of
each land-cover type. To detect statistically significant asso-
ciations between the DIPs and the share of each land-cover
type, we applied one-sided Mann–Whitney U hypothesis
tests. This test was chosen because of its suitability in detect-
ing significant differences between two data samples without
requiring specific data distributions by using rank transfor-
mation and comparison (details can be found in McKnight
and Najab, 2010). For this study, we performed two types
of hypothesis testing. First, we tested whether the relative
share of a specific land-cover type was higher in districts af-
fected than those unaffected by a particular DIP, which would
be indicated by a significant p value. Second, we compared
the land covers of districts experiencing a particular DIP se-
quence to those without that sequence. Here, we select the
most prevalent sequences from the sequence mining applica-
tion (see Sect. 2.2.2). Using sequences can provide insights
into what factors drive regions to switch from one DIP to
another.

3 Results

3.1 Socio-economic drought impact dataset

The text-mining-based drought impact dataset for Germany
comprises 31 370 DISs along seven impact types reported by
newspapers between 2000 and 2022 (see Fig. 3). Notably,
the period from 2018–2022 (excluding 2021) accounts for
42 % of all DISs. Throughout this period, we observe a var-

ied and diverse distribution of the DIS across time and space.
For example, northeastern Germany’s agriculture and live-
stock sectors were particularly affected. Conversely, impact
types such as “social”, “forestry”, or “fire” exhibit a more
widespread occurrence. The selected drought events of 2003
and 2018 have caused the highest number of impacts across
all the impact types we analysed. However, there are vari-
ations in their temporal trends. For instance, “agriculture”
impacts peaked during the 2018 drought. Instead, “forestry”
impacts were less pronounced in 2018 but peaked in 2019
and 2020. Despite the widespread distribution of the impacts,
we consistently found dominant drought impacts in north-
eastern Germany. For instance, the federal states of Branden-
burg, Saxony, and Mecklenburg-Vorpommern all located in
the east contained the districts with the most impacts reported
in agriculture, livestock, and aquaculture.

3.2 Drought impact profiles

As a result of the hierarchical clustering, we identified four
clusters of observations with similar co-occurring impact
types, referred to here as drought impact profiles (DIPs) (Ta-
ble 1, ID 4). Overall, both quantitative evaluation metrics
(i.e. silhouette coefficient and dendrogram inspection) and
qualitative inspection of the DIPs confirm the distinctiveness
of these four clusters (see Fig. A5). With an emphasis on
interpretability, the derived DIPs showcase unique character-
istics which closely mirror co-occurrence patterns from cor-
relation analysis results (see Fig. A4). The silhouette coeffi-
cient, measuring 0.22, suggests a moderate degree of separa-
tion and discernible structure within the data. In light of the
exploratory nature of this study, the moderate clustering re-
sults can be considered suitable as they uphold interpretabil-
ity and align with domain knowledge.

Each DIP is enriched by characteristic impact types and
has a varying spatial and temporal distribution. These are
used here as a reference point for subsequent analysis. For
example, DIP 1 predominantly features “agriculture” and
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Figure 3. Spatial and temporal distribution of drought impact statements (DISs) between 2000–2022. Each map displays the relative dis-
tribution for a particular impact type, where 1 corresponds to the DIS type’s national maximum and 0 to the minimum. Each time series
displays the magnitude of DIS, where 1 corresponds to the maximum DIS among all impact types and 0 is the minimum.

“livestock” impacts and is particularly prevalent in eastern
Germany. The prevalence of DIP 1 declined during the multi-
year drought period. Meanwhile, it was dominant during
2003 and 2018. The second DIP is enriched by water ecosys-
tem consequences, including “waterways” and “aquaculture”
impacts. In 2018 and 2022, DIP 2 reached its peak when
compound heat and drought events affected aquaculture and
led to low flows, limiting waterway transportation on ma-
jor water courses (Conradt et al., 2023; Free et al., 2023).
As such, DIP 2 is prevalent in districts with major water
courses, such as the Rhine River in western Germany and the
Oder River on the Polish border. DIP 3, on the other hand, is
composed mainly of “forestry” impacts and is spread across
Germany, especially in forestry ecosystems that experienced
notable drought effects: the Harz region, Saxon Switzerland
mountains, and Alsace (Holzwarth et al., 2020; Erfurt et al.,
2020). While DIP 3 hardly occurred during the single-year
drought events, we observed an increase in 2019. Lastly, DIP
4 is characterised by the interplay between “fire” and “social”
impacts. The occurrence of forest fires, or a high likelihood
of them, limits the functioning of recreational zones, such as

parks and forests. Notably, we observe an increasing occur-
rence of this DIP over the last 20 years.

3.3 Comparison of the DIPs between single-year and
multi-year drought events

The comparison of the DIPs across the drought events shows
the distinctiveness of the multi-year drought period com-
pared to prior single-year events (Fig. 4). The droughts of
2003 and 2015 display the highest similarities despite being
more than a decade apart. Both share a high prevalence of
DIP 1 (enriched in agriculture and livestock impacts), par-
ticularly in eastern Germany and many districts without any
impact. Both years exhibit the lowest DIP diversity scores,
corroborating the hypothesis that single-year droughts tend
to have more homogeneous impacts.

The number of districts being affected (thus having a DIP)
sets the single-year from the multi-year drought events apart.
In single-year droughts, an average of 60 % of all districts
in Germany were affected, whereas, during the 2018–2022
drought, 92 % of the districts had at least one reported im-
pact each year. For instance, while 2018 is similar to 2003
and 2015 concerning the domination of DIP 1, the spatial
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extent of the impacts in 2018 is strongly different. Only in
2020, when 21 % of the districts did not report any DIS, did
the scores display higher similarity to the single-year events.
During the multi-year drought period, the varying similari-
ties between each year indicate some evolving differences. A
striking finding is the low similarity between 2018 and 2019.

3.4 Dynamic patterns of impacts during multi-year
drought periods

Throughout the multi-year drought period, we observe dis-
tinct patterns of how the DIPs change over time. The proba-
bility that a district remains with the identical DIP for 2 years
is only 26 %. Yet, the DIPs do not change in random order
and instead follow identifiable patterns that cause shifts in
the dominating DIP. By examining the results from both the
alluvial chart analysis and sequence mining, we identify four
major trends (Figs. 5 and 6).

First, we recognise a legacy effect driving a delayed emer-
gence of the “forestry” DIP from 2019 onwards. From 2018
to 2019, 53 (13 %) districts shifted from the “aquaculture/wa-
terways” and “livestock/agriculture” DIPs to the “forestry”
DIP. Sequence mining also revealed similar sequences (DIP
1 to 3, support equals 0.20 in Fig. 5). This underlines the
escalating significance of the forestry sector in 2019. After
2019, the prevalence of the “forestry” DIP slowly declined,
yet it remained at higher levels than in 2018.

Second, we identify an increasing prevalence of the “so-
cial/fire” DIP, which was present in 13 % of the districts in
2018 and increased to 26 % in 2022. Within this context, 65
districts affected by “agriculture/livestock” DIPs in 2018 and
2019 shifted to “social/fire” DIPs. Additionally, 44 districts
associated with the “forestry” DIP in 2019 and 2020 shifted
to the “social/fire” DIP in 2022. Here, we hypothesise that
severe and long-lasting forest damage reported in the prior
2 years had resulted in a loss of forest function for recre-
ation or made forests more vulnerable to fire. Then, the shift
towards “social/fire” DIP would directly result from the mul-
tiple years of drought that have damaged forest ecosystems.

Third, the prior two trends are underpinned by a steadily
decreasing relevance of the “agriculture/livestock” DIP and a
more even distribution of the DIPs in the consecutive years.
In 2018, 142 districts were linked to the “agriculture/live-
stock” DIP, while in 2022 only 58 were affected. This de-
creasing relevance results in a more even representation of
the DIPs in the following years, which is visible in the mea-
sured DIP diversity (see Fig. 4). Concurrently, a more frag-
mented geographic distribution of the DIPs emerges. For in-
stance, northeastern Germany is less dominated by the “agri-
culture/livestock” DIP.

Fourth, we found that districts affected by the “water-
ways/aquaculture” DIP exhibit a higher degree of persis-
tence, meaning that they are less likely to transition to other
DIPs. The sequence mining highlights a sequence where dis-
tricts remain with the “waterways/aquaculture” DIP for 2

years (DIP 2→DIP2, support equals 0.246 in Fig. 5). This
persistence can be attributed to the importance of waterbod-
ies for specific regions, exemplified by the vital role of wa-
terbodies like the Rhine River. Meanwhile, a less frequent
sequence was identified where districts shift from the “wa-
terways/aquaculture” to the “social/fire” DIP.

3.5 Linking land cover and multi-year drought impact
patterns

To investigate the exposure factors contributing to drought
impacts, we linked the DIPs with distinct land-cover types
(Fig. 7). Our analysis revealed key associations between DIP
categories and land-cover types. DIP 1, representing “agri-
culture” and “livestock” impacts, is more prevalent in dis-
tricts with non-irrigated, arable land than those without this
DIP (p value 0.00). At the same time, districts with agri-
cultural land cover are more likely to experience “agricul-
ture” and “livestock” impacts. DIP 2 (“aquaculture/water-
ways”) is significantly linked to a higher presence of wa-
tercourses and waterbodies (p value= 0.001, 0.003, respec-
tively). Districts impacted by the “forestry” DIP exhibit el-
evated levels of broad-leaved and mixed-forest land cover
(p value= 0, 0.04), while those influenced by the “social/-
fire” DIP show greater proportions of mixed and coniferous
forests (p value= 0, 0.02). Here, we note a particular dif-
ferentiation: coniferous forests are significantly linked to the
“fire/social” DIP, whereas broad-leaved forests are with the
“forestry” DIP. This distinction points to a higher suscepti-
bility of coniferous forests to “fire” impacts, while broad-
leaved forests appear to be more affected by factors such as
tree mortality. Other significant associations were also found.
For example, the “forestry” DIP is linked to the commercial
units’ land cover. While an intuitive linkage cannot explain
these findings, these might stem from (i) multi-collinearity
among the land-cover types, (ii) unknown characteristics of
affected districts or impacts, or (iii) having been driven by
special events. For the outlined example, commercial unit
land cover is highly correlated with urban land cover, which
is more affected by forestry DIP as reports cover tree vitality
in an urban context.

To further understand what land-cover types drive districts
to shift DIPs from one to another, we identify land-cover
types that match the sectors affected by the temporal se-
quences. For example, districts sticking to the “forestry” DIP
within 2 consecutive years show significantly higher broad-
leaved forest land cover. This additional analysis adds ad-
ditional depth to the characteristics of the districts. For in-
stance, districts affected by the “agriculture/livestock” DIP
within 2 consecutive years display higher shares of agri-
cultural land cover. Instead, districts that shift from the
“agriculture/livestock” DIP to the “social/fire” DIP have
no significantly higher agricultural land cover and instead
higher coniferous forest land cover. These differences indi-
cate that districts remaining impacted by dominating “agri-
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Table 1. Overview of drought impact profiles (DIPs) derived from hierarchical clustering (Fig. A5). Each DIP describes a characteristic
combination of co-occurrences among the seven DIS categories. For each impact type in the radar chart, the maximum and minimum
correspond to the maximum and minimum of the particular impact type in the DIS dataset. For the spatial patterns, DIPs are aggregated for
the analysed years.

Figure 4. Comparison of annual events based on DIPs within each district. (a) Dendrogram of hierarchical clustering where a structure of
similar years emerges. The height dimension within the dendrogram refers to the dissimilarity between the years. H indicates the calculated
diversity index. (b) Similarity matrix with the number of identical DIPs between individual years which is used to perform the hierarchical
clustering in panel (a).
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Figure 5. Transitions among DIPs present in each district during the multi-year drought period. Flows of at least 20 districts between two
DIPs are highlighted.

Figure 6. Sequences of DIPs during the multi-year drought period
discovered with the CSPADE sequence mining algorithm. All se-
quences with a minimum support measure of 0.2 are displayed and
labelled accordingly. Full evaluation metrics are provided in Ta-
ble A3.

culture/livestock” impacts possess different land-cover char-
acteristics to those shifting towards other DIPs.

4 Discussion

Multi-year drought periods are becoming increasingly likely
and thus require special attention to develop effective adap-
tation measures (Rakovec et al., 2022; van der Wiel et al.,
2023). Against this background, we investigated the im-
pact patterns during the recent multi-year drought period
from 2018–2022 in Germany and compared those with pat-
terns observed in single-year droughts. Using a text-mining-
based socio-economic impact dataset, our study provides in-
sights into (1) differences between the multi-year drought
and single-year drought events, (2) dynamic patterns during
the multi-year drought period, and (3) linkages between land

cover and impact patterns during the multi-year drought pe-
riod.

Using text mining to obtain socio-economic drought im-
pact data, we demonstrated how comprehensive drought im-
pact data generated from natural language processing can
support the assessment of drought impact patterns. Prior
research on drought impact patterns has often been chal-
lenged by the lack of multi-sectoral and large-scale im-
pact datasets, which have thus used smaller spatio-temporal
scopes. With the increasing availability of impact data gen-
erated from newspaper articles and other text data (Noone
et al., 2017; Llasat et al., 2009; de Brito et al., 2020; Stahl
et al., 2016), scientists can now study drought patterns over
long timescales and with broad geographical coverage. The
credibility of the derived impact data is highlighted by empir-
ical validations, which demonstrate that the impact’s spatial
and temporal distribution correlated with external indicators
(Sodoge et al., 2023). Nevertheless, uncertainties need to be
acknowledged when using this data type to derive patterns of
drought impact occurrence, as described in Sect. 3.1.

Our results illustrate the effectiveness of combining multi-
ple pattern-mining methods for examining multi-sectoral and
spatio-temporal drought impact patterns, offering both vi-
sual and statistical insights. Prior work has used dyadic con-
ceptualisation of impact interactions (i.e. the relationships
between two linked impacts) through network analysis for
studying multi-sectoral patterns (de Brito, 2021; Chen et al.,
2022). While clustering approaches have already been used
to analyse hydrological characteristics of droughts (Kim et
al., 2021; Arabzadeh et al., 2016; Hao and Singh, 2015),
their use for capturing drought socio-economic impacts re-
mains underexplored. By using unsupervised clustering algo-
rithms, we created a typology of co-occurring impact types
(i.e. DIPs) that reflect patterns of cascading and compound-
ing impacts in Germany. Notably, the DIPs display region-
specific patterns. For example, the forestry DIP matches rel-
evant forestry ecosystems (Holzwarth et al., 2020), the fire
DIP correlates with fire hotspots (Thonfeld et al., 2022), and
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Figure 7. Testing associations between land-cover types and (a) DIP occurrences and (b) DIP sequences according to the one-sided Mann–
Whitney U test. A significant p value indicates that districts have a particular DIP (sequence) which indicates a higher share of respective
land-cover types.

the waterways DIP aligns with relevant waterways in Ger-
many affected by droughts (Conradt et al., 2023; Free et al.,
2023). Thereby, we advanced the representation of multi-
sectoral impact patterns. Our approach has the potential to
facilitate a multi-sectoral perspective on drought impact pat-
terns as it can incorporate patterns of cascading and com-
pounding impacts. Approaches such as the one applied here
have been recently highlighted as valuable tools for investi-
gating the complex patterns of drought impacts (de Brito et
al., 2024).

In addition to these methodological contributions, our
work also adds to empirical knowledge on droughts in Ger-
many. Concerning the differences between single-year and
multi-year drought events, we showed distinct patterns in
the multi-year drought event compared to single-year events.
The lower spatial extent and diversity of impacts separated
the single-year drought events from the multi-year drought
period. The widespread impacts of the 2018–2022 drought
can be linked to the severe biophysical drought conditions
and their extensive reach, which positioned the multi-year
drought as an unprecedented event (Rakovec et al., 2022).
Agriculture and livestock impacts dominated during the
single-year events, while the multi-year drought period dis-
played a more diverse distribution of impacts. The domi-
nance of “agriculture” and “livestock” impacts can be at-
tributed to the importance and vulnerability of the agricul-
tural sector in (northeastern) Germany, as well as the soci-
etal significance of the resulting crop yield losses (Zink et

al., 2016; Schmitt et al., 2022; Reyer et al., 2012). The high
similarity between 2003 and 2015 aligns with soil moisture
geographic distributions (Boeing et al., 2022). Specifically
for southwestern Germany, Tijdeman et al. (2022) confirmed
similar findings for 2003, 2015, 2018, and 2019, which they
linked to changing biophysical conditions and the severity of
the droughts. For 2003 and 2015, the authors classified both
events with the same category titled “intense multi-seasonal
drought episodes peaking in summer”. Yet, next to the pre-
viously identified biophysical differences, our study makes
a significant contribution by pointing out the differentiating
factors concerning socio-economic impacts.

During the multi-year drought period, we discovered dy-
namically changing DIPs that led to an increasingly diverse
landscape of impacts. In particular, we found that an initial
dominance of agriculture/livestock impacts was increasingly
replaced by forestry impacts and, subsequently social/fire
impacts. The emergence of impacts that increasingly gained
relevance during multi-year drought periods reflects evidence
from several studies (Tijdeman et al., 2022; Chen et al., 2022;
Al-Faraj and Tigkas, 2016). For example, Chen et al. (2022)
showed that during a multi-year drought in 1920s China, cas-
cading effects led to unprecedented effects such as grow-
ing food prices, dietary changes, and declining health con-
ditions following agricultural losses. Concerning the multi-
year drought period under investigation here, particularly the
delayed effects on the forestry ecosystem from 2019 onwards
were pointed out by other studies. Repeated stress exposure
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caused tree damage that became evident throughout Central
Europe (Schuldt et al., 2020; Buras et al., 2020; Kannen-
berg et al., 2020). Here, we advanced existing knowledge
by showing the consequent effects on districts affected in
the forestry sector, which later shifted to social impacts as
visible in the Harz region (Hahne et al., 2009; Schütte and
Plothe, 2022). Next to such sequential patterns, our longitu-
dinal coverage of the multi-year drought period also revealed
the sudden effects of extreme events. For instance, the high
shares of water-related impacts in 2018 and 2022 were fos-
tered by compounding drought and heat waves (Zscheischler
and Fischer, 2020; Wieland and Martinis, 2020). By using a
multi-sectoral perspective, we were able to detect such over-
arching trends that shaped the impact patterns across Ger-
many and connected various sectors.

Our results also demonstrated that distinct land-cover
types, such as forest or agricultural land, control the oc-
currence of impact patterns. We found intuitive connections
between land-cover types and the DIPs. For instance, re-
gions with high shares of agricultural land cover were more
likely to experience impacts on agriculture and livestock.
We also unveiled subtler effects, demonstrating that conifer-
ous forest land cover heightened fire-related impacts, which
aligns with research findings on German forests (Gnilke and
Sanders, 2021). Instead, broad-leaved forests did not exhibit
such an association. Identifying factors controlling impact
patterns (such as exposure and vulnerability) is necessary
to effectively design adaptation measures (Tijdeman et al.,
2022; Bachmair et al., 2017; Rannow et al., 2010). Various
case studies have demonstrated significant effects of land
cover (and land use) when assessing drought risk and pre-
dicting impacts (Blauhut et al., 2016; Ihinegbu and Ogun-
wumi, 2022). For instance, Blauhut et al. (2016) found di-
verse land-cover types relevant for predicting drought risk
across Europe. Consequently, the findings on the effect of
different land-cover types on impact patterns align with pre-
vious research and provide the first insights into underlying
mechanisms.

4.1 Limitations and future research priorities

Despite the advances presented, it is crucial to acknowledge
some limitations in both the data and methods used. Uncer-
tainties exist within the drought impact statement (DIS) data,
which can spill over into the clustering of the drought im-
pact profiles (DIPs). The accuracy of the DIS classification
(i.e. the impact type and its location) stems from models with
varying uncertainty levels (see Table A2). While the classifi-
cation of drought impact types showed high accuracy, recall,
and precision levels, fuzzy impact categories such as “social”
proved challenging to classify. While validations of the DIS
dataset in Sodoge et al. (2023) showed patterns consistent
with external indicators, biases inherent in newspaper cover-
age, such as missed or overemphasised impacts (Engelmann,
2010), can potentially influence the DIS dataset. Here, we

attempted to minimise this by considering a wide range of
newspaper outlets (n= 260), removing duplicate DISs that
report on the same impact and location on the same day,
and normalising the results according to the total volume of
newspaper articles per year.

Concerning the methods used, the unsupervised cluster-
ing approach employed in our study introduces uncertain-
ties, particularly for districts experiencing impacts that are
positioned between two distinct DIPs. In such cases, a slight
variation in observed impacts could result in the assignment
of a different DIP. Yet, this is a common limitation of all
clustering algorithms that seek to identify unique cluster as-
sociations as the boundaries are not well-defined (Murtagh
and Contreras, 2012). To measure these uncertainties here,
we considered quantitative evaluation metrics (i.e. silhou-
ette coefficient and dendrogram inspection) and qualitative
inspection of the DIPs. Although we did not conduct sensi-
tivity analysis tests to quantify these uncertainties (e.g. using
soft clustering; see Ferraro and Giordani, 2020) and their po-
tential impact on the results, it is important to address these
uncertainties.

Concerning the analysis of the effects of land-cover types
on drought impact patterns, it is important to acknowledge
that the land cover is only one of many variables relevant to
representing exposure and vulnerability. Consequently, inter-
preting these effects of land cover needs to consider potential
interactions with other factors shown to be relevant in previ-
ous research (Meza et al., 2019; De Stefano et al., 2015). For
example, irrigation and available adaptation options in agri-
culture have been shown to decrease vulnerability (Stephan
et al., 2023). Hence, agricultural land cover alone is not suf-
ficient for explaining mechanisms that drive agricultural im-
pacts. For future research, we suggest investigating more in-
depth the mechanisms of how vulnerability factors shape the
dynamics of drought impact patterns.

The findings of this study on the dynamic impact patterns
during the multi-year drought in Germany provide multiple
impulses for future research. First, our findings on the multi-
year drought in Germany between 2018 and 2022 require
evaluation against other similar events in this geographic
context. Thereby, future research could assess whether our
findings are generalisable or constrained to this particular
multi-year drought. Second, future research can leverage the
identified trends from this research to conduct more in-depth
investigations into the mechanisms that underpin these. Such
an in-depth, qualitative investigation would act as a com-
plementing counterpart to the macro-level findings discussed
here. Third, the links between the identified impact dynam-
ics and meteorological/biophysical processes are a priority
for future research. Since the linkage between meteorologi-
cal processes and drought impacts is highly non-linear and
complex (Sutanto et al., 2019; Shyrokaya et al., 2023), this
perspective was not considered within this study, yet it is cru-
cial for better understanding adaptation measure design and
impacts under changing climatic conditions.
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5 Conclusions

In this study, we analysed the patterns of socio-economic
drought impacts during both single-year and multi-year
drought events in Germany. We found that during the multi-
year drought period in 2018–2022 in Germany, an increas-
ingly diverse landscape of drought impacts emerged that
replaced dominating agriculture and livestock impacts. We
noted distinct regional variances in impact patterns, charac-
terised by shifts towards social and forestry-related conse-
quences in some areas and relatively stable agriculture and
livestock impacts in others. These findings underscore the
need for localised and context-specific approaches to drought
management that consider droughts’ duration and cumulative
effects. Finally, we demonstrated that these impact patterns
are controlled by land-cover types, providing insights into
the underlying exposure factors that drive them. Expanding
on attributing the impact patterns in future research, we could
design more targeted and effective drought adaptation strate-
gies. Overall, our research provides an improved understand-
ing of the unique shifts in socio-economic impacts during the
recent multi-year drought period in Germany and highlights
the potential of text- and pattern-mining methods to analyse
complex drought impact patterns.
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Appendix A

Figure A1. Correlation of DIS with external validation indicators from Sodoge et al. (2023). For spatial correlations, each dot represents a
year. For temporal correlations, each triangle represents a NUTS-1 unit. Panel (a) describes correlation analysis in which an ideal explanation
corresponds to Spearman’s ρ= 1. Panel (b) describes correlation analysis in which an ideal explanation corresponds to Spearman’s ρ=−1.

Figure A2. Temporal distribution of DIS. (a) Temporal distribution for the entire period studied. Clear peaks exist for studied drought events.
(b) Total number of DISs per month. A normal distribution with peaks in July and August and only a few impacts reported during winter
months.
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Figure A3. Distribution of impacts before and after transformation, re-scaled to [0− 1] interval for each grouping.
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Figure A4. Correlations between the occurrences of different impact types. Correlation analysis was performed on the obtained drought
impact dataset with annual aggregation before transformation for hierarchical clustering. Correlations are calculated using Spearman’s ρ.

Figure A5. Dendrogram of hierarchical clustering of DIS with the four clusters coloured.
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Figure A6. Soil moisture (0–2 m depth) in Germany. Figure from Boeing et al. (2022) and Zink et al. (2016).
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Table A1. Definition of impact classes following de Brito et al. (2020).

Impact class Definition

Agriculture Impacts within the agricultural sector including the following sub-categories: reduced productivity of crops,
early harvesting, increased need for irrigation, economic losses

Livestock Impacts within the livestock sector including the following sub-categories: reduced productivity of livestock
farming, forced reduction of stock, shortage of feed for livestock, general impacts to animals (including e.g. in-
sect mortality), economic losses for livestock farming

Social Impacts within the social sector including the following sub-categories: parks, tourism, recreation areas, and
activities affected

Forestry Reduces tree growth or vitality, water stress on trees, decrease in forestry products, increase in pest and disease
attacks on trees, increased dieback of trees, economic losses for forestry

Aquaculture Commercial and non-commercial fishing and aquaculture activities

Waterways Impaired navigability of streams (reduction of load, increased need for interim storage transportation of goods
at ports)

Fire Occurrence of forest fires and wildfires

Table A2. Performance of classification models to detect reported drought impacts in newspaper articles.

Impact class Recall Precision F score Accuracy Sensitivity

Livestock 0.92 0.93 0.93 0.88 0.92
Fires 0.97 0.95 0.96 9.93 0.97
Forestry 0.94 0.90 0.92 0.89 0.94
Waterways 0.99 0.96 0.98 0.96 0.99
Aquaculture 0.85 0.93 0.83 0.74 0.74
Social 0.74 0.93 0.83 0.74 0.74
Agriculture 0.92 0.94 0.93 0.89 0.92

Table A3. Overview of evaluation metrics for obtained sequences.

Item A Item B Support Confidence Lift

1 4 0.308 0.504 0.765
1 1 0.268 0.438 0.717
2 2 0.246 0.419 0.715
1 2 0.219 0.358 0.611
2 4 0.214 0.364 0.552
4 4 0.208 0.316 0.479

https://doi.org/10.5194/nhess-24-1757-2024 Nat. Hazards Earth Syst. Sci., 24, 1757–1777, 2024



1774 J. Sodoge et al.: Text mining uncovers unique dynamics
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