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Abstract. In the context of natural hazard risk quantification
and modeling of hazard interactions, some literature sepa-
rates “Level I” (or occurrence) interactions from “Level II”
(or consequence) interactions. The Level I interactions occur
inherently due to the nature of the hazards, independently
of the presence of physical assets. In such cases, one haz-
ard event triggers or modifies the occurrence of another (e.g.,
flooding due to heavy rain, liquefaction and landslides trig-
gered by an earthquake), thus creating a dependency between
the features characterizing such hazard events. They differ
from Level II interactions, which instead occur through im-
pacts/consequences on physical assets/components and sys-
tems (e.g., accumulation of physical damage or social im-
pacts due to earthquake sequences, landslides due to the
earthquake-induced collapse of a retaining structure). Multi-
hazard life cycle consequence (LCCon) analysis aims to
quantify the consequences (e.g., repair costs, downtime, ca-
sualty rates) throughout a system’s service life and should
account for both Level I and II interactions. The available lit-
erature generally considers Level I interactions – the focus
of this study – mainly defining relevant taxonomies, often
qualitatively, without providing a computational framework
to simulate a sequence of hazard events incorporating the
identified interrelations among them. This paper addresses
this gap, proposing modeling approaches associated with dif-
ferent types of Level I interactions. It describes a simulation-
based method for generating multi-hazard event sets (i.e., a
sequence of hazard events and associated features through-
out the system’s life cycle) based on the theory of competing
Poisson processes. The proposed approach incorporates the

different types of interactions in a sequential Monte Carlo
sampling method. The method outputs multi-hazard event
sets that can be integrated into LCCon frameworks to quan-
tify interacting hazard consequences. An application incor-
porating several hazard interactions is presented to illustrate
the potential of the proposed method.

1 Introduction

The modeling and quantification of catastrophe risk through-
out a system’s service life must encompass the occurrence of
multiple natural and anthropogenic hazards. In fact, the oc-
currence of multiple events within a short time span (whether
dictated by a causality between events or by sheer coinci-
dence) may subject the system to exacerbated economic and
societal consequences (e.g., de Ruiter et al., 2020). Such
consequences have been increasing over the past decades
(e.g., Di Baldassarre et al., 2018) due to several factors
such as climate change, urbanization, and globalization (e.g.,
Cutter et al., 2008; Cutter, 2018). The assessment of such
consequences cannot be approached by merely overlaying
methodologies for individual hazard types. In the context of
this paper, a (natural) hazard type refers to a specific cate-
gory of natural events or conditions that have the potential
to cause harm or damage. Indeed, multi-hazard risk analy-
sis must account for the interactions among various hazard
types/events and their corresponding impacts/consequences.
Efforts have been devoted to standardizing the nomencla-
ture for multi-hazard risk analysis (e.g., Kappes et al., 2012;
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Gardoni and LaFave, 2016) to enhance effective communi-
cation among end users and various stakeholders. In gen-
eral, the literature refers to compound hazards (and risks)
whenever there is an interaction of physical phenomena/pro-
cesses (i.e., natural hazard events and their consequences)
across multiple spatial and temporal scales (e.g., Pescaroli
and Alexander, 2018; Sadegh et al., 2018; Zscheischler et al.,
2018). However, existing research also acknowledges the
importance of separating the interactions among compound
hazards into occurrence interactions, which do not depend
on assets/components and systems (including social ones)
affected by hazard events, and impact/consequence interac-
tions that can only occur through these exposed elements.
Zaghi et al. (2016) classified the former as Level I interac-
tions and the latter as Level II interactions. Level I interac-
tions are due to dependencies in hazard frequencies/charac-
teristics or the triggering or intensifying effect of one hazard
type upon another. Gill and Malamud (2014) extensively re-
viewed Level I interactions, categorizing them based on the
physical correlations between their occurrences and exam-
ining several hazard types to identify those capable of trig-
gering or amplifying others. Nevertheless, the works men-
tioned above primarily categorize interactions qualitatively;
they lack a discussion on the computational tools required
to integrate these interactions into simulation-based frame-
works for risk modeling and quantification. Consequently,
the challenge of simulating sequences of events that incor-
porate the identified interactions largely remains unexplored.
Some studies have tried to address this task. Still, they ei-
ther have limited scope (e.g., site-specific and scenario-based
studies like Adachi and Ellingwood, 2008, and Marzocchi
et al., 2012) or treat all interaction types uniformly, irrespec-
tive of their distinct characteristics (e.g., Mignan et al., 2014).
The challenges associated with obtaining realistic sequences
of events have led multiple authors to select specific, repre-
sentative scenarios in their multi-hazard assessments, disre-
garding the Level I interactions in favor of a detailed study
of Level II interactions (e.g., Nofal et al., 2023).

In this paper, we present a simulation-based methodology
to generate sequences of hazard events (in terms of their time
of occurrence and features), denoted as event sets, throughout
the lifespan of a system (typically spanning 50 to 100 years,
depending on the system’s socioeconomic significance). Our
approach incorporates the various types of Level I interac-
tions found in the literature, each specified by appropriate
modeling techniques. We distinguish between concurrent in-
teractions (i.e., when hazards coincide in time and space)
and successive interactions (i.e., when a primary hazard pre-
cedes a secondary one). Moreover, within successive inter-
actions, we distinguish between those where a primary haz-
ard immediately triggers secondary events (i.e., triggering
interactions) and those where a primary hazard alters the
occurrence rate of secondary hazard types (i.e., altering in-
teractions). The proposed simulation-based method assumes
hazard events can be modeled as competing Poisson point

processes. Non-homogeneous Poisson processes can be in-
corporated by transforming them into equivalent homoge-
neous processes (e.g., Westcott, 1977) or leveraging thin-
ning methods for interarrival time simulation (e.g., Lewis and
Shedler, 1979), as demonstrated in this paper. The outcome
is a sequential Monte Carlo (MC) approach enabling effi-
cient simulation of multi-hazard event sets. These event sets
can then be integrated into frameworks for Level II interac-
tions (e.g., Selva, 2013; Dehghani et al., 2021; Otárola et al.,
2024, 2023), facilitating the quantification of consequences
for the purposes of life cycle consequence (LCCon) analysis.

The rest of the paper is organized as follows: Sect. 2 lists
the types of hazard classifications and which dimension/in-
formation should be considered when generating multi-
hazard event sets. Section 3 presents the proposed method-
ology. Section 4 shows how the procedure can be applied
in practice with realistic data for an idealized case-study lo-
cation. Finally, Sect. 5 summarizes the paper’s content and
proposes ideas for future work on the topic.

2 Hazard classifications

Hazard types can be classified based on various dimensions,
influencing how they are modeled in a multi-hazard context.
This paper specifically focuses on classifications directly in-
fluencing the simulation of multi-hazard event sets (i.e., a se-
quence of hazard events and associated features throughout
the system’s life cycle) at a given target location, i.e., where
there is exposure in the form of “people, infrastructure, hous-
ing, production capacities, and other tangible human assets”
(UNISDR, 2005). Additional classifications could be identi-
fied based on the spatial extent, spatial variability, and spatial
dependence of hazard types (e.g., Gill and Malamud, 2017).
However, such classifications are outside the scope of this
paper. We note that spatial considerations can be integrated
into the models applied within the proposed framework (e.g.,
when establishing the distance between the location of inter-
est and the location of the simulated hazard occurrence). Yet,
for a more comprehensive approach to multi-hazard event set
simulations at a larger scale (e.g., at a regional scale), one
could explicitly account for various types of spatial correla-
tions (e.g., in terms of hazard characteristics or local intensi-
ties, as defined below).

The proposed methodology employs the exceedance rates
associated with different severity measures of the hazard
events (see Sect. 3 for a detailed definition of a severity mea-
sure) to simulate the interarrival times between events. The
proposed algorithm is agnostic toward the specific physical
factors that govern the numerical values of such rates (which
can be obtained from physics-based or empirical models).
Thus, we do not consider classifications like those presented
in Shaluf (2007), which separate natural from humanmade
hazard types. We also exclude the hazard type classifica-
tions outlined in the literature review by Gill and Malamud
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(2014, 2017) that refer to the specific causes of the hazard
events, such as hydrological, atmospheric, or geophysical
factors.

As a result, the developed algorithm incorporates the fol-
lowing three dimensions in the simulation of a multi-hazard
event set (Fig. 1).

– Dependency. Hazard types could be classified as inde-
pendent if their occurrence and severity are not affected
by the concurrent or preceding occurrence and sever-
ity of other hazard events or dependent if their occur-
rence and severity can be attributed to the occurrence
and severity of other hazard events. In the case of de-
pendent hazard types/events, the proposed methodology
accounts for the types of interactions identified in the lit-
erature, namely concurrent and successive interactions
(e.g., Zaghi et al., 2016). Concurrent interactions be-
tween two or more hazard types can be identified when-
ever the hazard types/events tend to occur simultane-
ously and/or to overlap for a period of time (e.g., storm
surge, waves, and strong wind that co-occur during a
hurricane). In the case of successive interactions, in-
stead, a causal relationship exists between a primary
hazard type/event and one or more secondary hazard
types/events. According to these causal relationships,
two broad categories can be identified within succes-
sive interactions. We denote triggering the interactions
where the secondary hazard type/event (or multiple sec-
ondary hazard types/events) is triggered immediately
after the occurrence of the primary hazard type (e.g.,
liquefaction immediately following an earthquake). In
contrast, altering interactions are those where the rate
of occurrence of the secondary hazard type (or multiple
secondary hazard types) increases (or, more generally,
changes) following the occurrence of the primary haz-
ard type (e.g., aftershocks following a mainshock). The
resulting classification of interactions is a combination
of the qualitative classifications proposed by Zaghi et al.
(2016) (concurrent vs. successive) and Gill and Mala-
mud (2014) (interactions where a hazard event is trig-
gered vs. interactions where the probability of a hazard
event is increased). Section 3 describes how such classi-
fications affect the numerical modeling of multi-hazard
event sets.

– Duration. Hazard types can be grouped into two cate-
gories based on their duration. Specifically, following
the classification of disasters proposed by the Sendai
Framework for Disaster Risk Reduction 2015–2030
(UNISDR, 2005), we separate sudden-onset hazard
types from slow-onset hazard types. Sudden-onset haz-
ard types are characterized by a sudden and brief oc-
currence that can be modeled as a single point in time
(e.g., earthquakes). Slow-onset hazard types, instead,
have a detectable start and end point (e.g., pandemics,
droughts) and occur over an extended period.

– Temporal variability. Hazard types can be classified as
time-independent or time-dependent based on their rate
of occurrence over time. The rate of time-independent
hazard types is constant over time (as such, the occur-
rence of these types of hazards is typically modeled
with homogeneous processes), while the rate of time-
dependent hazard types varies due to physical factors
that affect their probability of occurrence within a given
time window (as such, the occurrence of these types
of hazards is typically modeled with non-homogeneous
processes). For example, it is reasonable to assume
time independence for mainshocks generating from
large seismogenic zones incorporating multiple faults
with similar rupture rates/characteristics (e.g., Der Ki-
ureghian and Ang, 1977). In these cases, the occurrence
of mainshocks is modeled with homogeneous Pois-
son processes (e.g., Abrahamson and Bommer, 2005).
On the other hand, aftershocks are typically modeled
with non-homogeneous processes as their rate of oc-
currence typically decreases as a function of the time
elapsed from the occurrence of the mainshock (e.g.,
Utsu, 1970). Hazard types could fall into different cat-
egories based on the complexity of the considered oc-
currence models. Advanced seismic hazard modeling
approaches, for instance, may also consider the time-
varying modeling of mainshock rates (e.g., Anagnos
and Kiremidjian, 1988; Iacoletti et al., 2022), while sim-
plified models for aftershocks may use a constant rate of
occurrence that produces on average the same number
of events as the non-homogeneous process in a given
time window (e.g., Iervolino et al., 2014; Iervolino and
Giorgio, 2022). Time-dependent hazard types can be
further separated into seasonal if their rate of occur-
rence periodically changes over time (e.g., the occur-
rence of heavy rains modeled as a function of the sea-
son), increasing if their rate of occurrence increases
over time (e.g., heavy rains under climate change ef-
fects), and decaying if their rate of occurrence decreases
over time (e.g., aftershocks).

Figure 1 summarizes the classifications relevant to the al-
gorithm proposed in Sect. 3. These classifications are orthog-
onal; i.e., they categorize hazard types based on independent
criteria that do not overlap with each other. Each hazard type
can be assigned to three categories based on its dependency,
duration, and temporal variability.

As the primary goal of the proposed methodology is to
seamlessly incorporate the available classifications for haz-
ard interactions within a mathematical framework for hazard
event simulation, the next section provides the modeling im-
plications of the highlighted classifications.
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Figure 1. Summary of hazard classifications considered in this paper.

3 Methodology

Each hazard type is associated with certain event character-
istics (e.g., rupture characteristics and magnitude in the case
of earthquakes, rainfall characteristics – intensity and dura-
tion – in the case of extreme rainfall events). These quanti-
ties only characterize an event and do not account for local
effects at a system’s or site’s location (e.g., local soil prop-
erties of a specific site, distance from the earthquake source,
topography of the area). We denote the curves relating the
event characteristics to their corresponding exceedance rates
as event curves (e.g., magnitude–frequency distributions in
seismic hazard analysis or intensity–duration–frequency in
extreme rainfall event analysis). Through appropriate mod-
eling, the event characteristics are typically translated into
site- and/or system-specific intensity measures (e.g., ground
shaking for structures with selected vibration periods, flood
depths), which are typically used as an input to obtain the
corresponding physical impacts caused by the event at a
given location (e.g., through fragility/vulnerability models;
e.g., Gentile et al., 2022). Appropriate methods for the local
intensity calculation can be found in the literature and depend
on the hazard type considered. For example, ground motion
models (GMMs) (e.g., Douglas and Edwards, 2016) can be
used to translate earthquake characteristics into earthquake-
induced ground motion intensity measures such as peak
ground parameters (i.e., peak ground acceleration, velocity,
and displacement) and pseudo-spectral accelerations, among

others. Such models could also account for the spatial and
cross-intensity correlation of the intensity measure (e.g., Ja-
yaram and Baker, 2010a, b). For floods, accurate flow-based
hydraulic models can be used to translate the rainfall charac-
teristics into flood depths at different locations (e.g., Mignot
and Dewals, 2022). In general, analyses at the regional scale
call for maps displaying the spatial variability in the inten-
sity measure across different locations. Finally, the methods
to generate intensity measures can be integrated within end-
to-end probabilistic frameworks to obtain curves linking each
intensity measure value to its associated exceedance rate in
a given time window (i.e., 1 year in the case of annual ex-
ceedance rates). Such curves are denoted as hazard curves
(e.g., the curves for the exceedance of a given wind speed
and surge depth in Apivatanagul et al., 2011, or the hazard
curves from the Global Earthquake Model Seismic Hazard
Map; Pagani et al., 2020). Because both event and hazard
curves are used interchangeably in the proposed formulation
for the same purpose on a case-by-case basis, we arbitrarily
introduce the term rate curves to refer collectively to both
cases and the term severity measure to refer to both event
characteristics and intensity measures. In fact, some aspects
of multi-hazard event sets may be governed by the event
characteristics (i.e., the rate of aftershocks is governed by
the magnitude of the mainshock). In contrast, others may be
governed by the intensity measures (i.e., the triggering of a
landslide following the occurrence of an earthquake is gov-
erned by the ground motion at the slope location).
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3.1 Mathematical modeling of event sets

Let us focus first on independent, sudden-onset, time-
independent hazards. The discussion will then be extended
to incorporate the dependencies across events and to ac-
count for slow-onset and time-dependent hazards. The sever-
ity measure associated with the occurrence of the ith hazard
type hi is denoted as mi , and the corresponding mean ex-
ceedance rate (exceedance rate for brevity hereinafter) is de-
noted as λ(mi). It must be stressed that, as the hazard types
are time-independent, such rates do not change as a func-
tion of time. The mean occurrence rate (occurrence rate for
brevity hereinafter) of hazard type hi can be obtained from
the rate curve as

λi = λ(mi,min), (1)

where mi,min is the minimum value of interest of the sever-
ity measure (e.g., for earthquakes, it could be the minimum
magnitude of engineering interest). In other words, the occur-
rence rate of hi is the exceedance rate of its minimum sever-
ity measure. A schematic representation of a rate curve can
be seen in Fig. 2b. If a hazard type is associated with multiple
severity measures, rate surfaces define their joint exceedance
rate. For example, intensity–duration–frequency surfaces are
a standard tool to quantify the mean return period of given
rainfall heights and durations (e.g., Fadhel et al., 2017). They
define the mean return period (reciprocal to the rate in the
case of time-independent hazard types) as a function of both
severity measures.

Slow-onset events are defined by the rate curve associ-
ated with the start of the event, λs

i(mi), and the rate asso-
ciated with the end of the event, λe

i . The rate curves for time-
dependent hazard types are instead described as a function of
time.

The rates obtained from these curves/surfaces are used in
event simulation, assuming that the event occurrences follow
a Poisson process, either homogeneous or non-homogeneous
for time-independent and time-dependent hazard types, re-
spectively (for example, the Bartlett–Lewis and the Neyman–
Scott models for storm generation in Ritschel et al., 2017).
For homogeneous Poisson processes, the interarrival times
th between event occurrences of hazard type hi follow an ex-
ponential distribution with parameter λi . In this case, simu-
lating a multi-hazard event set consists of randomly sampling
numbers from an exponential distribution. A critical assump-
tion of homogeneous processes is that events occur indepen-
dently of each other, a somewhat restrictive assumption for
specific hazard types affected by seasonality and/or previous
hazard occurrences (the hazard types classified as dependent
and time-dependent in Sect. 2). To account for such hazard
types, we simulate events from non-homogeneous Poisson
processes using a procedure known in the literature as thin-
ning (Lewis and Shedler, 1979). This procedure (described
in detail in Sect. 3.3.2) also relies on the random sampling

of exponentially distributed numbers and can be efficiently
implemented in practice.

3.2 Required input

Figure 2a shows a portion of the interaction matrix from Za-
ghi et al. (2016), which includes flood (F), heavy rain (HR),
earthquake (E), and landslide (L). The classification between
concurrent and successive interactions is kept unaltered from
the original reference. However, the successive interactions
have been further separated as triggering (L→F, F→L,
HR→L, E→L) and altering (E→E, L→L). The distinc-
tion between triggering and altering is needed to capture the
different implications of these interactions in the modeling
framework.

Each type of interaction requires different information to
be modeled, provided in the list below and shown in Fig. 2.
For successive interactions, we provide descriptions for the
case when h2 is a secondary hazard type following the oc-
currence of a primary hazard type h1. Depending on the con-
sidered interaction, the same hazard type could be classified
as primary or secondary (for example, for the set of hazard
types in Fig, 2, an earthquake could be a mainshock – pri-
mary – or an aftershock – secondary). Also, the discussion
can be extended to the case with multiple secondary hazard
types.

– Concurrent interactions (Fig. 2d) are defined by the
joint rate of exceedance of the severity measures of all
hazard types involved (e.g., the joint exceedance of a
given snow depth and a given wind speed, as in Wang
and Rosowsky, 2013). This results in rate surfaces that
can be interpreted analogously to the ones for single
hazard types described by multiple severity measures.

– Successive triggering (Fig. 2c) interactions are defined
by the probability of occurrence of h2 conditioned on
the severity of h1, i.e., P(h2|m1). In cases where the
severity measure of h2(m2) is of interest, a conditional
probability distribution of such quantity (f (m2|m1)) is
also provided (conditioned on the severity measure of
h1). As the secondary hazard event(s) is assumed to oc-
cur immediately or shortly after the occurrence of the
primary hazard event, there is no time component in-
corporated into the modeling of triggering interactions.
An example of conditional probabilities and conditional
distributions used to model triggering interactions can
be found in Neri et al. (2008), where the probability
of several secondary hazard events, such as floods and
landslides, is conditioned on the occurrence of the vol-
canic eruption of Mount Vesuvius. Neri et al. (2008)
also provide the variability in the severity measures as-
sociated with secondary hazard events. Another exam-
ple can be found in Parker et al. (2015), where the au-
thors quantify the probability of a landslide on a slope
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Figure 2. Different types of interactions and associated input for the proposed simulation method: (a) hazard classification from Zaghi et al.
(2016), (b) rate curve for independent hazard types, (c) conditional probabilities and distributions for successive triggering interactions,
(d) rate surfaces for concurrent hazard types, and (e) conditional rate curves for successive altering interactions.

conditioned on the occurrence of an earthquake and its
severity.

– Successive altering (Fig. 2e) interactions are defined by
the change in the rate curves of h2 following the oc-
currence of h1. Mainshocks and aftershocks are an ex-
ample of successive altering interactions. Following a
mainshock, the rate of aftershocks is typically modified
in terms of the characteristics of the mainshock using
the modified Omori law (Utsu, 1970) or more advanced
models (e.g., Iacoletti et al., 2022). Rates for this type
of interaction typically decay with time as the mem-
ory of the primary hazard subsides, resulting in non-
homogenous Poisson processes. This paper proposes a
thinning methodology to incorporate non-homogeneous
processes into the formulation (Sect. 3.3.2). Alterna-

tively, the non-homogeneous processes can be trans-
lated into an equivalent homogeneous process with a
given memory memi . By taking the inverse of such
memory, we can also define a “memory loss rate”,
ζi = 1/memi . This rate determines how often the sys-
tem loses its memory of h1 and the occurrence rates of
h2 return to the original level (e.g., zero for aftershock
occurrences). We call rate curves unaffected by altering
interactions original rate curves and rate curves affected
by altering interactions conditional rate curves.

3.3 Life cycle hazard event set simulation

We incorporate the above information into a sequential MC
simulation approach. The procedure outputs life cycle hazard
event sets, i.e., multi-hazard event sets (times of occurrence,
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hazard types, and associated severity measures), throughout
the life cycle of the system of interest. Because of the sim-
plifying assumptions, the simulation of such event sets is
computationally efficient while retaining the relevant impli-
cations of the hazard interactions. It can be repeated multiple
times to obtain relevant statistical quantities such as (i) the
probability of having a given number of occurrences of a
specific hazard type in a given time span; (ii) the probabil-
ity of occurrence of a specific combination of hazard events
within the life cycle; and (iii) the probability distribution of
the severity measures of the hazard events and joint proba-
bility distributions of the severity measures of multiple haz-
ard events occurring within a short time frame. These quan-
tities, as well as the simulated event sets, can be incorpo-
rated into formulations for Level II interactions (e.g., Selva,
2013; Dehghani et al., 2021; Otárola et al., 2024, 2023) to ob-
tain the expected consequences of the hazard events through-
out the life cycle of a system. To the best of the authors’
knowledge, no algorithm is currently available in the liter-
ature that accounts for the types of interactions and addi-
tional aspects (i.e., event duration and temporal variability)
highlighted in this paper. An alternative sequential MC ap-
proach has been proposed by Mignan et al. (2014), which
separates the simulation of primary events from the simula-
tion of secondary events (all primary events are simulated,
and then all secondary events are simulated). However, such
an algorithm only considers sudden-onset, time-independent
hazard events and models all interactions as successive trig-
gering. Similarly, Selva (2013) used simplified, closed-form
solutions to translate rate curves into probabilities of occur-
rence of the hazards within a given time period. While the
interactions between hazards can be included by modifying
the probability of occurrence of the secondary hazard (Selva,
2013, introduces “co-active risk factors” for this purpose and
provides an example with volcanic eruptions and ash fall-
out), such an approach is also limited to sudden-onset, time-
independent events and does not capture the intricacies of
hazard sequences that may include multiple successive inter-
actions.

The following subsections describe the proposed algo-
rithm to generate the event sets, starting with the case with
time-independent, sudden-onset hazard types and then ex-
tending the discussion to time-dependent and slow-onset
hazard types. It is worth noting that, in the presence of a sin-
gle hazard (e.g., earthquakes) from different sources, the oc-
currence of the event from each source can be modeled as its
own hazard type (e.g., h1 is earthquake from source 1, h2 is
earthquake from source 2) each characterized by a given rate
of occurrence (and characteristics).

3.3.1 Proposed algorithm

Figure 3 shows a visual representation of the proposed
algorithm to simulate event sets for the case with time-
independent, sudden-onset hazard types. The flowchart in

Fig. 4 details the described sequential MC approach, with
reference to each step shown in Fig. 3. Every type of interac-
tion is included in the proposed procedure and incorporated
based on its specific characteristics.

The simulation of the event set starts in a neutral state
where the rates for each hazard type hi(i = 1, . . .,N) are de-
fined based on the corresponding original rate curves (Step
1 in Fig. 3). We define I as the set of indices of the haz-
ard types that, at any given time, have affected the rate of
any secondary hazard type (e.g., if the system retains mem-
ory of hazards h1 and h3, we will have I≡{1,3}). Because
the system has no memory of any previous hazard events at
this point, we set I =∅. The theory of competing Poisson
processes determines that the rate of occurrence of the first
hazard event is equal to the sum of the rates of the individual
hazard types. Consequently, the time of occurrence t of the
first hazard event is sampled from an exponential distribution
(fT (t)= λe−λt , t > 0) with parameter λ=

∑N
n=1λn (Step 2

in Fig. 3). Once the event has been simulated, it is assigned
to one of the ith hazard types hi (Step 3 in Fig. 3). The prob-
ability that the hazard event belongs to the ith hazard type hi
is

P(H = hi)=
λi∑N
n=1λn

. (2)

Three phases follow the simulation of a hazard event:
Phase 1 is the assessment of the hazard severity (i.e., mi),
Phase 2 is the simulation of hazard events caused by trigger-
ing interactions, and Phase 3 is the reassessment of the rates
based on altering interactions.

In Phase 1, the severity measure of the simulated hazard
eventmi is obtained from the rate curve of the ith hazard type
λi(mi) using the one-to-one relationship between the cumu-
lative distribution function (CDF) of the random variable Mi

and its rate of exceedance, as

FMi
(mi)= 1−

λi(mi)

λi(mmin)
. (3)

In the case of hazard types associated with multiple sever-
ity measures and/or concurrent hazards, all severity measures
are obtained from rate surfaces rather than rate curves. A
similar relationship to Eq. (3) can be obtained for the multi-
dimensional case. Phase 1 is not shown in Fig. 3 for visual
clarity.

In Phase 2, the triggering interactions are simulated (Step 4
in Fig. 3). The occurrence of each secondary hazard event
is simulated by considering the conditional probability es-
tablished within the triggering interaction’s definition. Sub-
sequently, the severity measure of the secondary event(s) is
sampled from the corresponding conditional probability dis-
tribution.

In Phase 3, the rates of each hazard type are reassessed to
account for the altering interactions. In particular, for each
altering interaction (Step 5 in Fig. 3) (i) we substitute the
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Figure 3. Visual representation of a simulated life cycle hazard event set. Step 1: the rates of all hazard types are established (the original
rate of hazard type 3 is equal to 0 in this figure); Step 2: an event is simulated; Step 3: hazard type 1 is assigned to the event; Step 4: hazards
due to successive triggering interactions are simulated; Step 5: based on the identified successive altering interactions, the rate of hazard type
3 is modified and the memory loss event for hazard type 1 is introduced; Step 6: a new event is simulated; Step 7: hazard type 2 is assigned
to the event; Step 8: after a memory loss event is simulated, the rate of hazard type 3 is set to the original value (= 0) and the memory loss
of hazard type 1 is removed from the pool of possible events.

original rate curves for each secondary hazard type with the
corresponding conditional rate curve; (ii) we introduce an ad-
ditional “memory loss” Poisson event with rate ζi = 1/memi

(associated with the primary hazard event) to the pool of pos-
sible events; and (iii) if i 6∈ I , we add i to the set of indices
I .

We can then simulate the following event, which can be
the occurrence of either a new hazard event (with rate λi)
or a memory loss event (with rate ζi). The theory of com-
peting Poisson processes determines that the rate of the next
event occurrence is equal to the sum of the rates of the in-
dividual events (which now include both hazard events and
memory loss events). Consequently, the time of occurrence
of the next event is sampled from an exponential distribution
with parameter λ=

∑N
n=1[λn+ ζn1{n∈I }] (Step 6 in Fig. 3),

where 1{·} is the indicator function (i.e., 1{nεI } = 1 if n∈I and
1{nεI } = 0 if n 6∈ I ). The simulated event is then assigned ei-
ther to one of the hazard types ({H = hi}) or to the loss of
memory of one of the hazard types ({H = h∗i }, iεI ) (Step 7
in Fig. 3). The probability that the next event is the occur-
rence of the ith hazard type ({H = hi}) is

P(H = hi)=
λi

N∑
n=1
[λn+ ζn1{n∈I }]

, (4)

and the probability that the next event to occur is a loss of
memory of the ith hazard type ({H = h∗i }, i∈I ) is

P(H = h∗i )=
ζi

N∑
n=1
[λn+ ζn1{n∈I }]

. (5)

If the simulated event is a hazard event, Phases 1–3 are
repeated. If the simulated event is the memory loss of the ith
hazard type, we remove i from the set of indices I , replace
the corresponding conditional rate curves with the original
rate curves, and remove the Poisson event with rate ζi from
the pool of possible events (Step 8 in Fig. 3).

3.3.2 Incorporating time-dependent events

This section details how to modify the procedure in
Sect. 3.3.1 to incorporate non-homogeneous Poisson events
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Figure 4. Flowchart of the proposed simulation method.

used to capture the temporal variability in the hazard (time-
dependent events in Sect. 2). We focus on the case with mul-
tiple decaying processes associated with altering interactions
(e.g., aftershocks after the occurrence of mainshocks). The
procedure can be adapted to the case of seasonal processes
with slight modifications. Figure 5 visualizes the described
procedure. To aid in the interpretation of Fig. 5, the reader
may think of hazard type 1 as mainshocks and hazard type 3
as aftershocks.

In this case, we define J as the set of indices of the (sec-
ondary) hazard types that have been affected by altering in-
teractions. No memory loss events need to be considered
in this case. Because all the considered non-homogeneous
processes follow from altering interactions and the origi-
nal rate curves are associated with homogeneous processes,
Steps 1–4 described in Sect. 3.3.1 are unchanged. After the
occurrence of a primary hazard event associated with at least
one altering interaction, we define the time-varying rate of
the non-homogeneous process associated with the ith (sec-
ondary) hazard type as λi(t − t0) (for each of the secondary

hazards of the altering interactions), where t0 is the time of
occurrence of the primary hazard event that caused the al-
tering interaction (Step 5 in Fig. 5). We also add the indices
associated with the secondary hazard types to J , if they were
not already included in the set (i.e., i 6∈ J ). To simulate the
occurrence of the next hazard event, which results from mul-
tiple competing homogeneous and non-homogeneous pro-
cesses, we use a modified, sequential version of a procedure
known in the literature as thinning, which involves using a
higher, homogeneous rate for event simulation and then dis-
carding a selection of the simulated events, i.e., classifying
them as null events (Lewis and Shedler, 1979). In the pro-
posed sequential approach, for each i in J , we fix the rate
of the associated non-homogeneous process at its maximum
value, i.e., λ̂i = λi(0). We then generate the interarrival time
to the next event th (th = t∗− t0, where t∗ is the time of oc-
currence of the event) from an exponential distribution with
parameter λ=

∑N
n=1[λn1{n6∈J }+λ̂n1{n∈J }] (Step 6 in Fig. 5).

The simulated event is then assigned either to one of the N
hazard types ({H = hi}) or to a null event from the non-
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Figure 5. Visual representation of the proposed simulation method in the presence of time-dependent (non-homogeneous) processes. Step 1:
the rates of all hazard types are established (the original rate of hazard type 3 is equal to 0 in this figure); Step 2: an event is simulated; Step
3: hazard type 1 is assigned to the event; Step 4: hazard events due to successive triggering interactions are simulated; Step 5: based on the
identified successive altering interactions, the rate of hazard type 3 is modified (for the purpose of event simulation, the rate of hazard type 3
is fixed to its maximum value); Step 6: a new event is simulated; Step 7: the simulated event is discarded (i.e., it is classified as a null event).

homogeneous Poisson process associated with the ith haz-
ard type ({H = ni}, i∈J ) (Step 7 in Fig. 5). The probability
that the next event is the occurrence of the ith hazard type
({H = hi}) is

P(H = hi)=


λi∑N

n=1[λn1{n 6∈J }+λ̂n1{nεJ }]
if i 6∈ J ,

λi (t
∗
−t0)∑N

n=1[λn1{n 6∈J }+λ̂n1{nεJ }]
if i∈J ,

(6)

and the probability that the next event to occur is a null event
from the non-homogeneous Poisson process associated with
the ith hazard type ({H = ni}, i∈J ) is

P(H = hi)=
λ̂− λi(t

∗
− t0)

N∑
n=1
[λn1{n 6∈J }+ λ̂n1{n∈J }]

. (7)

If the simulated event is a hazard event, Phases 1–3 de-
scribed in Sect. 3.3.1 are performed (with the possible intro-
duction of additional, non-homogeneous Poisson processes).
If the simulated event is a null event, it is discarded from the
hazard event set. In both cases, we set t0 = t∗, and we up-
date the rate of the non-homogeneous Poisson process(es)
to λ̂i = λi(t0− t̂0), where t̂0 is the time of occurrence of

the event that started the non-homogeneous Poisson pro-
cess. Given the decaying nature of the rates of the non-
homogeneous processes considered herein, we assume that
the effects of the altering interactions are forgotten whenever
the difference between the updated rate of the process λ̂i and
the rate of the process λi from the original rate curve falls be-
low a pre-specified threshold ε (i.e., if λ̂i−λi < ε). The value
of ε depends on the specific hazard, and it is subjective. Gen-
erally, ε can be selected based on experience or engineering
judgment. Whenever λ̂i−λi < ε in the sequential MC proce-
dure, we remove i from J , and we revert to using the original
rate curve. A flowchart in Appendix A details the described
sequential MC approach, with reference to each step shown
in Fig. 5.

3.3.3 Incorporating slow-onset events

This section details how to modify the procedure in
Sect. 3.3.1 to incorporate possible slow-onset events. Fig-
ure 6 visualizes the described procedure. The simulation of
the ith slow-onset event is herein modeled with a two-step
approach. First, the event’s start is simulated using a homo-
geneous Poisson process with a distinct start rate λs

i . Then,
the start rate is replaced by an end rate λe

i , which is used to
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model the conclusion of the event (with a corresponding ho-
mogeneous Poisson process). The rate change could be inter-
preted as an altering interaction of the hazard with itself. This
method facilitates a realistic representation of events charac-
terized by varying duration. The severity of such events is
assumed to be non-varying throughout the event. However,
the procedure could be modified to include events with time-
varying severity. Slow-onset events whose presence could
also affect the rate of additional processes (e.g., a drought
affecting the rates of wildfires and floods) can be modeled by
assigning a successive altering interactions to the start of the
event (e.g., the start of the slow-onset event causes a change
in the rates associated with the secondary hazard types) and
by associating the end of the event with the loss of memory
of the interactions (i.e., the end of the slow-onset event ef-
fectively acts as a memory loss event; see Sect. 3.3.1). As the
memory loss is marked by the end of the slow-onset event,
no additional memory-loss event needs to be added in this
case. To aid in the interpretation of Fig. 6, the reader may
interpret hazard type 1 as droughts (slow-onset), hazard type
2 as floods (rate decreases during droughts), and hazard type
3 as wildfires (rate increases during droughts).

A flowchart in Appendix A details the described sequential
MC approach, with reference to each step shown in Fig. 6.

4 Numerical example

We now showcase the life cycle hazard event set simula-
tions using the sequential MC method detailed in the pre-
vious sections. Figure 7 shows the hazard types considered
in the example and their interaction. Figure 7 also reports the
severity measure(s) adopted for the considered hazard types.
There are no concurrent interactions considered in this ex-
ample. However, the hazard type “heavy rain” is associated
with multiple severity measures (i.e., intensity and duration),
and the modeling of single hazards with multiple associated
severity measures is equivalent to the modeling of concurrent
hazards (see Sect. 3).

Earthquakes have been separated into mainshocks and af-
tershocks for modeling purposes. This distinction allows us
to separate the rate curves for the two hazard types, with af-
tershocks having a rate equal to 0 before the occurrence of a
mainshock and a conditional rate curve after the occurrence
of a mainshock. The distinction also allows the system to
retain a memory of the mainshock after the occurrence of
the aftershocks. Without this distinction, the simulated occur-
rence of the first aftershock would redefine the rates of subse-
quent aftershocks, and the effects of the mainshock would be
forgotten. More sophisticated models where the occurrence
of early aftershocks in the sequence affects the rate of subse-
quent aftershocks can also be found in the literature (Ogata,
1998) but are not selected here for illustrative purposes. In
the following, we report the reference for each of the adopted
rate curves and surfaces for single hazards and each of the

interaction models (in this order). Such references are also
summarized in Table 1.

We note that the curves, surfaces, and/or models used in
this numerical example have been developed for different lo-
cations worldwide. As such, the event sets obtained in this
example shall not be associated with any specific location.
The example showcases the potential of the proposed sim-
ulation method and shows that the required information can
be retrieved from the literature. The collection of information
for a specific location (which would require a tailored inves-
tigation and/or literature review) is outside the scope of the
paper.

Mainshocks/aftershocks. The rate curve for the occurrence
of the mainshock events, λm(mm), is obtained from Iervolino
et al. (2018). Namely, we use the exceedance curves for
Zone 923 of the Italian earthquake hazard model, which
corresponds to the L’Aquila region. The severity measure
of earthquakes is expressed in terms of moment magnitude
Mw (Mm for the mainshocks and Ma for the aftershocks).
The minimum severity measure for both mainshocks and af-
tershocks is assumed as mm,min =ma,min = 4.45, which is
slightly higher than the one in the original reference (4.15).
This is to reduce the number of small earthquakes in the sim-
ulated life cycle hazard event set to improve the clarity of this
illustrative application. Aftershocks cannot occur indepen-
dently from a mainshock. Therefore, their original rate curve
is set to λa(ma)= 0∀ma. All earthquakes are assumed to oc-
cur at the same location (or very close in space), such that the
shortest Joyner–Boore distance (Joyner and Boore, 1981) of
each earthquake from the location of interest is Rjb = 20 km.

Heavy rain. The rate surface for the occurrence of heavy
rain events, λr(mr,1,mr,2), is obtained from the intensity–
duration–frequency curves reported by Tang and Cheung
(2011) for the Hong Kong region in the GEO Report No.
261 (2011). The severity measures associated with the heavy
rain events are the duration (Mr,1) expressed in hours (h)
and the intensity (Mr,2) expressed in millimeters per hour
(mm h−1). The minimum considered severity measures are
mr,1,min = 0.083 h (5 min) and mr,2,min = 0.893 mm h−1 for
the duration and the intensity, respectively.

Landslide. We assume that landslide events cannot occur
independently for this case study. They can only occur as sec-
ondary events of a successive interaction with earthquakes,
heavy rain, and/or previous landslides. We also assume for
simplicity that landslide events are not associated with any
severity measure. The details of the above-mentioned inter-
actions are detailed below.

Mainshock–aftershock interactions. The interaction be-
tween mainshocks and aftershocks is modeled as a succes-
sive altering interaction following the modified Omori law
(Yeo and Cornell, 2009). According to the Omori law, af-
ter the occurrence of a mainshock of magnitude mm at time
tm, aftershocks occur following a non-homogeneous Poisson
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Figure 6. Visual representation of the proposed simulation method in the presence of slow-onset events. Step 1: the rates of all hazard types
are established (or slow-onset events (hazard type 1), the start rate is selected); Step 2: an event is simulated; Step 3: the event is assigned
to the start of hazard type 1; Step 4: rates are modified based on successive altering interactions; Step 5: a new event is simulated; Step 6:
hazard type 2 is assigned to the event; Step 7: after simulating the end of a slow-onset event, the rates of the secondary hazard types are set
to the original values.

Figure 7. Taxonomy of interactions for the case study and associated input parameters.

process with a time-varying rate:

λa(t)=
10a+b(mm−mm,min)− 10a

[(t − tm)+ c]p
, (8)

where t and tm quantities are expressed in days, and a, b, c,
and p are the parameters of the model. For this example, we

assume (from Iervolino et al. (2018)) a =−1.66, b = 0.96,
c = 0.03, and p = 0.93. The severity of the aftershocks is
simulated from the rate curve used for the mainshock (using
Eq. 3).

Earthquake (mainshock/aftershock) and landslide interac-
tions. The interaction among earthquakes and landslides is
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Table 1. Hazard curves/surfaces and interaction models for the numerical example.

Input Reference Additional details

Rate curves for earthquakes Iervolino et al. (2018) Zone 923
Rate surfaces for heavy rain Tang and Cheung (2011) Rain gauge N05
Mainshock–aftershock Yeo and Cornell (2009) Parameters from Iervolino et al. (2018)
Earthquake–landslide Parker et al. (2015) Model for the 1968 earthquake
Heavy-rain–landslide Liu and Wang (2022) Non-stabilized slope model
Landslide–landslide Samia et al. (2017) –

modeled as a successive triggering interaction following the
model in Parker et al. (2015), calibrated based on data from
the South Island region in New Zealand. The probability of a
landslide given the occurrence of an earthquake with severity
measure mw, P0(L|mw), is

P0(L|mw)=
1

1− e−(c0+cSLSL+cNDSNDS+cPGAPGA(mw,Rjb))
, (9)

where SL is the local hillslope gradient (we assume SL=
35° for the slope of this case study); NDS is the normal-
ized distance from stream to ridge crest (we assume NDS=
0.5 for this case study); c0, cPGA, cSL, and cNDS are pa-
rameters of the logistic regression used to fit Eq. (9) to
the data; and PGA(mw,Rjb) is the peak ground accelera-
tion caused by the earthquake at the location of interest.
We obtain PGA(mw,Rjb) using the ground motion model
in Huang and Galasso (2019), assuming that the soil type is
rock and that the style of faulting of the earthquake is strike-
slip fault:

PGA(mw,Rjb)= b1+ b2mw+ b3m
2
w

+ (b4+ b5mw)log10

(√
R2

jb+ b
2
6

)
, (10)

where b= [b1,b2,b3,b4,b5,b6] is a vector of unknown pa-
rameters. From the PGA model with spatial correlation
in Huang and Galasso (2019), we select b1 = 3.524, b2 =

0.247, b3 =−0.020, b4 =−3.936, b5 = 0.351, and b6 =

12.417.
We note that the PGA(mw,Rjb) obtained from Eq. (10)

is the median value at the location of interest, and a more
refined analysis should consider the uncertainties associated
with this value. However, a full probabilistic analysis of the
ground motion is outside the scope of this example.

Heavy-rain–landslide interactions. The interaction among
heavy rain events and landslides is modeled as a successive
triggering interaction following the model in Liu and Wang
(2022). Namely, the probability of a landslide after a rainfall
of intensity mr,2 is given by

P0(L|mr,2)=

{
1 if mr,1 >Dc(mr,2),

0 if mr,1 <Dc(mr,2),
(11)

whereDc(mr,2) is the critical rainfall duration for slope insta-
bility associated with the intensity mr,2. We use the critical

rainfall duration for the slope after stabilization in Liu and
Wang (2022), i.e.,

Dc(mr,2)= 2.61× 104m−2.030
r,2 + 27.04. (12)

Landslide–landslide interactions. The interactions among
subsequent landslides are modeled as a successive altering
interaction following the model in Samia et al. (2017). The
paper reports that the susceptibility of a slope to a landslide
(sl) increases by 15-fold immediately after the occurrence of
a previous landslide, and then it decreases exponentially over
time with an exponential coefficient value of cl =−0.12.
Hence, we define the time-varying susceptibility of the slope
as

sl(t)=

{
1 if t < tl1,

15e−0.12(t−tl∗ ) if t > tl1,
(13)

where tl1 is the time of occurrence of the first landslide event
and tl∗ is the time of occurrence of the latest landslide event.
Consequently, in the aftermath of a landslide event, we mod-
ify the probability of occurrence of landslides due to earth-
quakes and heavy rain events as P(L|mw)= sl(t)P0(L|mw)

and P(L|mr,1,mr,2)= sl(t)P0(L|mr,1,mr,2), respectively.
Figure 8 shows an example event set generated using the

proposed method. The severity measure of the events is pro-
portional to the diameter of the circles used to represent their
occurrence. As expected, more severe mainshocks produce
more severe aftershock sequences. The rate and severity mea-
sures (intensity and duration) of heavy rain events are gen-
erated based on their joint rate surface. Sequences of land-
slide events can also be found around years 17–25 in the sys-
tem’s life cycle, triggered mostly by mainshock–aftershock
sequences, and at year 40, triggered by heavy rain events.

Simulating a multi-hazard event set such as the one shown
in Fig. 8 is computationally efficient since it amounts to sam-
pling numbers from exponential distributions. Consequently,
multiple realizations can be used to obtain relevant statistics
for the system’s life cycle. For example, Table 2 reports the
mean and median number of events, categorized by hazard
type, during the system’s life cycle, obtained from 25 000
simulations. The difference between the mean and median
value can serve as an effective indicator of the skewness of
the associated distribution of events. When the mean and me-
dian are close, the distribution exhibits a scarcity of outliers,
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Figure 8. Example simulated life cycle hazard event set. Note that the radius of the circles is indicative of the event’s severity.

Table 2. Hazard curves/surfaces and interaction models for the nu-
merical example.

Hazard type Mean number Median number
of events of events

Heavy rain 25.86 26
Mainshock 12.02 12
Aftershock 36.02 17.5
Landslide 17.36 8

with realizations evenly distributed around the mean. Con-
versely, a notable difference between the mean and median
signals heightened variability among realizations, suggesting
the presence of multiple event sets with either a scarcity (e.g.,
zero) or a high number of events.

The simulated event sets may be used to identify the possi-
ble occurrence of independent hazard in close temporal prox-
imity. To that purpose, Fig. 9 shows the mean (Fig. 9a) and
median (Fig. 9b) number of pairwise hazard combinations
throughout the life cycle of the system. A hazard combi-
nation is identified whenever two hazards occur with an in-
terarrival time < 200 d (d signifies days), and no other haz-
ard event occurs between them. The threshold of 200 d is
arbitrary, and it has been selected solely for demonstration
purposes. Nevertheless, it effectively represents a reasonable
temporal interval that would pose challenges to the recov-
ery from the initial hazard event before the occurrence of the
subsequent hazard event (e.g., Opabola and Galasso, 2024).
Heat maps such as the one in Fig. 9 can help identify hazard
combinations that may pose significant challenges in terms
of possible consequences on the physical assets of interest
(which would require the modeling of Level II interactions).
It can be observed that even hazard types that are not related

by Level I interactions may occur close (in time) to each
other. For example, there are, on average, 2.62 main shock
events following the occurrence of a heavy rain event and
1.47 heavy rain events following a mainshock event, which
might suggest that the interactions between such (indepen-
dent) hazards might be of interest in a possible life cycle
analysis of a structure placed in the investigated location.
This sort of “coincidental” hazard combinations should not
surprise the end users of the algorithm. In fact, such combi-
nations have been observed on multiple occasions over the
past century and are expected to increase due to climate
change (e.g., Cutter et al., 2008). For example, typhoons
were recorded in close temporal proximity to the great Kanto
earthquake (Japan) of 1923 (e.g., Sasaki and Yamakawa,
2007) and the Hokkaido earthquake (Japan) of 2018 (e.g.,
Heidarzadeh et al., 2023). Although less frequent, these com-
binations are just as crucial as those influenced by causality
(de Ruiter et al., 2020). An additional advantage of the pro-
posed method is that it seamlessly integrates causal and co-
incidental event combinations within the same formulation.

Finally, joint distributions for the severity measures of
multiple hazards can be obtained for each hazard combi-
nation of interest. For example, Fig. 10 shows the joint
probability density function (obtained using the kernel den-
sity method) of the severity measures for the hazard com-
binations mainshock–mainshock (Fig. 10a), mainshock–
aftershock (Fig. 10b), and mainshock–heavy-rain (Fig. 10c).
As expected, hazard combinations that are linked by Level
I interactions show clear signs of correlation (mainshock–
aftershock). In contrast, the joint probability density func-
tion (PDF) of the severity measures for independent hazards
shows no apparent signs of correlation and can be approxi-
mated by the product of the marginal PDFs of the severity
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Figure 9. Mean (a) and median (b) number of hazard combinations throughout the life cycle hazard event set.

Figure 10. Joint probability density function of the severity measures for the hazard combinations mainshock–mainshock (a), mainshock–
aftershock (b), and mainshock–heavy-rain (c).

measures for the individual hazards (which can be obtained
from Eq. 3).

5 Conclusions

The paper proposes a simple simulation-based approach to
account for different types of hazard interactions in gener-
ating a life cycle multi-hazard event set, i.e., a sequence of
events throughout a system’s life cycle and their associated
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characteristics and severities. We account for concurrent in-
teractions, successive interactions where the secondary haz-
ard event is immediately triggered by the primary one, and
successive interactions where the primary hazard event af-
fects the occurrence rate of the secondary one. Each interac-
tion is incorporated into the simulation differently. Concur-
rent hazards are modeled based on the rate surface that de-
fines the joint rate of the associated severity measures. Suc-
cessive triggering interactions are incorporated through the
conditional probability of occurrence of the secondary haz-
ard type(s) and the conditional distribution of the associated
severity measure. Successive altering interactions are mod-
eled by modifying the secondary hazard type’s rate curve.
The different hazard events are modeled as a set of com-
peting Poisson processes, which may be homogeneous or
non-homogeneous. The paper fills a gap in the literature
for a quantitative interpretation of multi-hazard occurrences,
translating the available, qualitative definitions and classifi-
cations into a systematic method to simulate event occur-
rences. The resulting simulation of one life cycle hazard
event set is computationally efficient and can be repeated
to obtain relevant statistics of hazard occurrences. By using
competing Poisson processes and integrating within the same
methodology both dependent and independent hazards, the
proposed simulation method offers insights into not only the
combination of hazards arising from causality (i.e., hazard
interactions), but also those emerging from sheer temporal
coincidence. The significance of these hazard combinations,
especially in the context of their anticipated growth due to
climate change effects in the coming years, should not be
underestimated. By allowing the rate curves used as input to
the model to be modified, the proposed algorithm allows us
to incorporate such climate change aspects. The statistics of
hazard occurrences can be used in analytical methods for life
cycle analysis to obtain the associated statistics of impact/-
consequence metrics of interest for end users throughout the
service life of a considered system. The simulated event sets
can also be integrated into simulation-based frameworks for
Level II interactions, i.e., impact/consequence interactions
that can only occur through the exposed elements. This study
specifically delves into the temporal dependence across haz-
ards and does not explicitly discuss any spatial aspects/de-
pendencies. The simulation of the hazard events in the ex-
ample is based on the rate curves associated with their event
characteristics (i.e., location and magnitude for earthquakes
or rainfall intensity and duration for heavy rain events). A
corresponding local intensity measure for earthquakes (i.e.,
the peak ground acceleration needed for landslide simula-
tion) is obtained at a single location rather than across a re-
gion, although such an extension would be straightforward.
In fact, local intensities (for each hazard event) are in gen-
eral needed for a comprehensive analysis of Level II interac-
tions. For analyses at the regional scale, in particular, the in-
tensity measures are in the form of maps (hazard footprints)
illustrating the hazard intensity measure’s spatial variability

across different locations, explicitly accounting for any spa-
tial and cross-intensity correlation (e.g., Jayaram and Baker,
2010a, b).

Appendix A

Below are the flowcharts detailing the sequential Monte
Carlo simulation procedure for the cases described in
Sect. 3.3.2 (incorporating time-dependent processes) and
Sect. 3.3.3 (incorporating slow-onset events).
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Figure A1. Flowchart of the simulation method incorporating time-dependent (non-homogeneous) processes (refer to Sect. 3.3.2 and Fig. 5).
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Figure A2. Flowchart of the simulation method incorporating slow-onset events (refer to Sect. 3.3.3 and Fig. 6).

Code availability. The code used to produce the results in this pa-
per can be found in the following GitHub repository: https://github.
com/LeandroIannacone/MultiHazardEventSetSimulation (last ac-
cess: 2 May 2024) (https://doi.org/10.5281/zenodo.11061164, Ian-
nacone, 2024).
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