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Abstract. Downbursts winds, characterized by strong, lo-
calized downdrafts and subsequent horizontal straight-line
winds, present a significant risk to civil structures. The tran-
sient nature and limited spatial extent present measurement
challenges, necessitating analytical models for an accurate
understanding and predicting their action on structures. This
study analyzes the Sânnicolau Mare downburst event in Ro-
mania, on 25 June 2021, using a bi-dimensional analytical
model coupled with the teaching–learning-based optimiza-
tion (TLBO) algorithm. The intent is to understand the dis-
tinct solutions generated by the optimization algorithm and
assess their physical validity. Supporting this examination
are a damage survey and wind speed data recorded during the
downburst event. Employed techniques include agglomera-
tive hierarchical K-means clustering (AHK-MC) and princi-
pal component analysis (PCA) to categorize and interpret the
solutions. Three main clusters emerge, each displaying dif-
ferent storm characteristics. Comparing the simulated max-
imum velocity with hail damage trajectories indicates that
the optimal solution offers the best overlap, affirming its ef-
fectiveness in reconstructing downburst wind fields. How-
ever, these findings are specific to the Sânnicolau Mare event,
underlining the need for a similar examination of multiple
downburst events for broader validity.

1 Introduction

The wind climatology of Europe and several mid-latitude
countries is primarily dominated by the presence of extra-
tropical cyclones and thunderstorms. The understanding of
the formation and evolution of extra-tropical cyclones dates
back to the 1920s (Bjerknes and Solberg, 1922). The atmo-
spheric boundary layer (ABL) winds generated during such
systems are well recognized, and their influence on structures
has been extensively studied and coded since the 1960s (Dav-
enport, 1961). These established models continue to be em-
ployed in contemporary engineering practice (Solari, 2019).

Thunderstorm winds known as a “downburst” consist of
a strong and localized downdraft of air generated within a
convective cell. These downdrafts after reaching the ground
begin to spread horizontally, resulting in the formation of the
downburst gust front, also known as the downburst outflow.
The presence of strong turbulent wind within the downburst
outflow poses a significant risk to civil structures. Given their
high frequency of occurrence, downburst events are among
the most severe meteorological phenomena in mid-latitudes.
Downbursts, often generated by isolated thunderstorms, typ-
ically exhibit scales of less than a few kilometers in extent,
distinguishing them from the larger scale of thunderstorms
themselves. Additionally, they can originate from more com-
plex convective systems such as squall lines and bow echoes;
in this case the spatial length scale which can potentially be
affected by downbursts or downburst clusters is on the order
of hundreds of kilometers (Fujita, 1978; Hjelmfelt, 2007).
The size of the downburst outflow area of strong winds ex-
hibits variability, leading to the classification of this phe-
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nomenon as either a microburst or macroburst. A microburst
is characterized by a strong outflow size that is less than
4 km, whereas a macroburst corresponds to an outflow size
of intense wind greater than 4 km (Fujita, 1985).

For over 4 decades, intense downburst winds and their
impact on the built environment have been key research
topics in the field of wind engineering (Letchford et al.,
2002). These winds, resulting from nonstationary behaviors
in mesoscale thunderstorms, create a distinct horizontal wind
profile. This profile, marked by a nose shape with the peak
wind speed near the ground level, sharply contrasts with the
typical wind profiles in the ABL and significantly endangers
structures, particularly those of low and medium height.

From a statistical point of view, wind velocities, charac-
terized by a mean return period greater than 10 or 20 years,
are often due to these phenomena (Solari, 2014). The lack
of a unified model for downburst outflows and their actions
on structures, similar to Davenport’s (1961) model for extra-
tropical cyclones, is primarily due to significant uncertainties
arising from the inherent complexity of downburst winds. In-
deed, the transient nature and limited spatial extent of down-
bursts present challenges in their measurements and restrict
the availability of an adequate number of test cases.

The early analytical models for downburst wind veloci-
ties stemmed from Glauert’s (1956) impinging wall jet model
and Ivan’s (1986) ring vortex model. Glauert focused on
radial jets, while Ivan developed an axisymmetric down-
burst model validated by the Joint Airport Weather Studies
project (Fujita, 1985; McCarthy et al., 1982), incorporating
a primary and mirror vortex above the ground. Oseguera
and Bowles (1988) developed the first three-dimensional
downburst model, later refined by Vicroy (1991, 1992). This
model, simpler yet comparable in effectiveness to Ivan’s
(1986) ring vortex model, was based on axisymmetric flow
equations and empirical data from the TASS model (Proc-
tor, 1987a, b) and Project NIMROD (Fujita, 1978, 1985).
Holmes and Oliver (2000) revised the impinging jet model,
simplifying the expression for radial mean wind velocity and
integrating it with the downburst’s translational speed. How-
ever, their model did not clearly distinguish between the low-
level environmental flow in the ABL and the thunderstorm
cell’s motion. Abd-Elaal et al. (2013) used a parametric-
CFD (computational fluid dynamics) model coupled with an
optimization algorithm to determine that downburst charac-
teristics are significantly influenced by factors such as the
touchdown location and the downdraft’s speed and direc-
tion. An essential aspect already highlighted with regard to
the Holmes and Oliver model (2000) and then repeated in
other subsequent papers (Chay et al., 2006; Abd-Elaal et al.,
2013; Le and Caracoglia, 2017) is the lack of a clear distinc-
tion between the translational movement of the thunderstorm
cell and the boundary layer wind in which the thunderstorm
outflow is immersed at the ground. Hjelmfelt’s (1988) study
through radar measurements highlighted this problem’s im-
portance by examining two downbursts. The first case de-

picted a nearly stationary downburst in strong low-level en-
vironmental winds, while the second described a fast-moving
downburst in a setting with little or no ABL flow. This lack
of distinction in models hinders their ability to accurately de-
scribe such diverse real-world cases.

Based on these foundational insights provided by Hjelm-
felt (1988), the authors of this paper introduced in 2020 a
novel bi-dimensional analytical model to simulate the hori-
zontal mean wind velocity at a specific height from a mov-
ing downburst (Xhelaj et al., 2020). This model conceptual-
izes the combined wind velocity at any given point during
a downburst as the vector sum of three distinct components:
the radial impinging jet velocity characteristic of a station-
ary downburst; the translational velocity of the storm cell;
and the ambient low-level ABL wind velocity, which encom-
passes the downburst winds near the surface. The model re-
lies on 11 parameters, which are determined using a global
metaheuristic optimization algorithm outlined in Xhelaj and
Burlando (2022). This optimization process combines the an-
alytical model with the teaching–learning-based optimiza-
tion (TLBO) algorithm. TLBO operates with a population of
solutions and employs iterative teaching and learning to find
the best solution within the population (Rao et al., 2011). Due
to the stochastic nature of TLBO, when integrated with the
analytical model, the procedure can yield different optimal
solutions each time it is executed. This variability arises from
the initial random population of solutions and the intermedi-
ate transformations carried out by the algorithm to converge
towards the best solution.

This study aims to examine the characteristics of the op-
timal solutions obtained through multiple runs of the opti-
mization procedure, which integrates the Xhelaj et al. (2020)
model with the TLBO algorithm. It seeks to investigate the
variability of the best solutions when applying the optimiza-
tion algorithm to reconstruct the wind field during an intense
downburst event. The main objective is to assess the extent
to which the solutions differ from each other and from the
solution with the lowest objective-function value. Addition-
ally, the study explores whether these alternative solutions
can be considered physically valid, particularly when addi-
tional data describing the downburst event are incorporated.

The selected downburst event occurred in the western
Timis, region of Romania on 25 June 2021 and was produced
during the passage of an intense mesoscale convective sys-
tem in the form of a bow echo over the town of Sânnico-
lau Mare. This event was recorded by a bi-axial anemome-
ter and temperature sensor, both placed on a telecommunica-
tion tower 50 m a.g.l. (above ground level). The telecommu-
nication tower lies approximately 1 km south of Sânnicolau
Mare. The downburst that occurred in Sânnicolau Mare was
of a significant magnitude, resulting in extensive hail dam-
age of the facades of numerous buildings within the city.
In response to this event, a comprehensive damage survey
was conducted through a collaborative partnership between
the University of Genoa (Italy) and the Technical Univer-
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sity of Civil Engineering of Bucharest (UTCB). The survey
(Calotescu et al., 2022; Calotescu et al., 2024) pinpoints the
GPS position of the buildings within the city that were pre-
dominantly impacted by the downburst. Moreover, a com-
prehensive map illustrating the hail damage of the building
facades was generated. The map provides important infor-
mation regarding the wind velocity experienced at an urban
scale, which has been used to validate the reconstruction/sim-
ulation of the downburst by the optimization procedure.

The analysis of the different optimal solutions (i.e., the
dataset) generated by the optimization algorithm was con-
ducted through multivariate data analysis (MDA). This in-
volved the joint application of cluster analysis and principal
component analysis to effectively examine and interpret the
dataset. Cluster analysis (CA) is a data-mining technique that
groups similar solutions together, aiming to identify patterns
in the data. It is commonly used in fields like meteorology
and climatology to identify clusters of weather phenomena or
geographical regions with similar weather patterns (Burlando
et al., 2008; Burlando, 2009). Principal component analysis
(PCA) is a mathematical technique used to decrease the di-
mensionality of a dataset, while minimizing the loss of in-
formation within the data. This analysis is commonly used in
meteorology and climatology to decrease the number of vari-
ables required for representing weather patterns or climate
trends and to identify regions with similar weather patterns
(Amato et al., 2020; Jiang et al., 2020). Principal component
analysis is utilized in this context to enhance the interpreta-
tion of the different optimal solutions.

The present work is structured into six sections. Follow-
ing the Introduction, Sect. 2 provides a description of the
monitoring system that acquired the full-scale measurement
employed in this research. Section 3 provides a brief mete-
orological description of the downburst event in Sânnico-
lau Mare (Romania). Section 4 describes the dataset em-
ployed for performing cluster analysis and principal compo-
nent analysis as well as the implementation of these analyses.
Section 5 presents an in-depth account of the main results
derived from CA and PCA. Concluding the paper, Section 6
offers a summary of the principal findings derived from this
research.

2 Monitoring system and data acquisition

The complete set of measurements employed in this research
was obtained through a monitoring system installed in Ro-
mania. Relevant information about this monitoring network
can be accessed in the publications by Calotescu et al. (2021)
and Calotescu and Repetto (2022). The monitoring network
received funding from the THUNDERR project (Solari et al.,
2020), which was conducted by the Giovanni Solari – Wind
Engineering and Structural Dynamics Research Group (GS-
Windyn) at the Department of Civil, Chemical and Environ-
mental Engineering (DICCA) of the University of Genoa.

GS-Windyn, with a keen interest in monitoring poles and
towers exposed to thunderstorm actions worldwide, secured
funding for the acquisition of a full-scale structural monitor-
ing network. This monitoring system was deployed on top
of a 50 m lattice tower. The primary focus of this project
revolves around three key objectives: first, the detection of
thunderstorms; second, the analysis of wind parameters as-
sociated with these phenomena; and, third, the experimen-
tal assessment of the structural response of telecommunica-
tion lattice towers to the forces generated by both synoptic
and thunderstorm winds. The monitoring tower, designated
TM_424, is property of SC Telekom Romania SRL and is
located in Timis, County, western Romania, approximately
1 km south of Sânnicolau Mare (Fig. 1). The site is an open
field; the terrain is flat, and there is low grass vegetation.

Figure 2 shows the dimension of the tower. Among the
various networks for the monitoring systems, the tower is
equipped with a Gill WindObserver 70 ultrasonic anemome-
ter at the top (Fig. 2). The anemometer has a data acquisition
rate of 4 Hz and can measure the wind speed up to 70 m s−1.
In addition to the anemometer sensor, the tower is equipped
with a temperature sensor installed near the location of the
anemometer. The working temperature range for this sensor
is between −55 and 70 °C.

3 The Sânnicolau Mare (Romania) downburst event of
25 June 2021

In this section, a brief overview of the meteorological aspects
pertaining to the downburst event in Sânnicolau Mare on 25
June 2021 is provided. In the late afternoon of 25 June 2021,
a severe downburst event affected the far-western region of
Romania. The downburst event took place in Timis, County
(Fig. 1a) between 18:00 and 19:00 UTC and struck the little
town of Sânnicolau Mare (Fig. 1b). At 17:30 UTC, a strong
mesoscale convective system moving toward the east was ap-
proaching the town of Sânnicolau Mare. Figure 3a, acquired
from EUMETSAT, captures an image of a deep convective
cell at 18:30 UTC. This weather phenomenon exhibits cloud
tops ascending over 12 km above mean sea level, signify-
ing the mature stage of the convection cycle. This mature
storm cell was observed to have directly impacted the town
under study. Figure 3b presents composite radar reflectivity
data, indicating that this meteorological phenomenon can be
classified as a mesoscale convective system known as a bow
echo. Radar reflectivity values at or above 60 dBZ, as seen in
this event, are typically indicative of severe weather condi-
tions. Such conditions are often associated with the produc-
tion of hailstones, with an average diameter of approximately
2.5 cm.

The existence of a robust convective motion, indicative of
the typical kinematic structure of a bow echo, is distinctly
portrayed through the distribution of intensive lightning ac-
tivity, as displayed in Fig. 4a. As the figure illustrates, an
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Figure 1. (a) Location of telecommunication tower TM_424, situated 1 km south of Sânnicolau Mare in Timis, County, Romania. (b) Ex-
panded view of the town of Sânnicolau Mare with telecommunication tower TM_424 represented by the red dot on the map. Maps generated
using Mathematica (Wolfram Research, Inc., version 13.3, 2023, https://www.wolfram.com/mathematica (last access: 27 November 2023).

Figure 2. Telecommunication tower TM_424 and sensor position at
the top of the tower. On the horizon, approximately 1 km from the
tower, lies the small city of Sânnicolau Mare.

approximate total of 10 455 lightning strikes were recorded
by the Blitzortung.org network across eastern Europe be-
tween 16:30 and 18:30 UTC. A significant concentration of
these strikes correlates with the bow echo structure near the
western edge of Timis, County, Romania. The color gradient
in Fig. 4a, ranging between red, orange, yellow, and white,
serves as a temporal marker, with white indicating the most
recent strikes and red denoting older ones. This color cod-
ing effectively illustrates the temporal and spatial evolution
of the lightning activity during the severe weather event,
providing insight into the progression of the storm system.
Bow echoes are a prevalent form of severe convective or-
ganization. These mesoscale convective systems can gener-
ate straight-line surface winds that lead to extensive dam-
age associated with downbursts. On occasion, they may also
give rise to tornadoes. Interestingly, the observed bow echo
seems to display a stratiform parallel structure, a rarer va-
riety of squall lines (Parker and Johnson, 2004; Markowski
and Richardson, 2010).

Figure 4b illustrates the characteristic kinematic structure
of a bow echo as outlined by Fujita (1978). Typically, the
system originates as a singular, prominent convective cell,
either isolated or embedded within a broader squall line sys-
tem (Phase A). As the surface winds strengthen, the par-
ent cell undergoes transformation, evolving into a line seg-
ment of cells with a bow-shaped configuration (Phase B).
At maximum intensity, the bow’s center might develop a
spearhead echo (Phase C), characterized by the occurrence
of the most severe downburst winds at the apex of the spear-
head. During the decay phase, the wind system frequently
evolves into a comma-shaped echo (Phase E) (Weisman,
2001). Comparing Figs. 3b, 4a, and 4b shows that the bow

Nat. Hazards Earth Syst. Sci., 24, 1657–1679, 2024 https://doi.org/10.5194/nhess-24-1657-2024

https://www.wolfram.com/mathematica


A. Xhelaj and M. Burlando: Application of the teaching–learning-based optimization algorithm 1661

Figure 3. (a) Distribution of cloud top heights derived from Meteosat Second Generation (MSG) valid for 25 June 2021 at 18:30 UTC. Data
and map obtained from © EUMETSAT 2022 (https://view.eumetsat.int, last access: 27 November 2023). (b) Composite radar reflectivity
(dBZ) for 25 June 2021 at 18:30 UTC. The geographical locations of Sânnicolau Mare and the apex of the bow echo are indicated by the
black circle. Data and map obtained from © 2018 Administraţia Naţională de Meteorologie (https://www.meteoromania.ro, last access: 27
November 2023).

echo positioned above Sânnicolau Mare at 18:30 UTC is in
its most intense stage (Phase C), as evidenced by the for-
mation of the characteristic spearhead echo shape. The in-
tense downburst event generated at the apex of the bow echo
was recorded by the anemometer and temperature sensor sit-
uated 50 m above the ground on TM_424. The time histo-
ries of the moving-average wind speed and direction (aver-
aged over 30 s) (Solari et al., 2015; Burlando et al., 2017) for
the recorded 1 h duration of the downburst event are given
in Fig. 5a and b, respectively. At approximately 18:30 UTC
the anemometer recorded an instantaneous maximum veloc-
ity (sampled at 4 Hz) of V̂ = 40.8 m s−1, while the maximum
moving-average wind velocity was Vmax = 35.8 m s−1. This
notable high velocity clearly shows evidence of the occur-
rence of an intense downburst. The time interval spanning
from 18:20 to 18:45 UTC represents the primary indicator
of the downburst’s occurrence in proximity to the telecom-
munication tower. This period is characterized by a sudden
surge in wind speed, commonly referred to as the intensifi-
cation stage, followed by a subsequent decrease in velocity
after 18:30 UTC. Throughout the initial phase of intensifica-
tion, the wind direction exhibited a clockwise rotation, rang-

ing from 235° and extending to approximately 360°. Addi-
tionally, Fig. 5a also includes 1 h time series of the recorded
temperature data. The temperature sensor is positioned at
the same location of the anemometer. Before the passage of
the downburst, the environmental temperature was on aver-
age 27 °C, while at approximately 18:20 UTC the tempera-
ture dropped very sharply, reaching the minimum value of
14.5 °C at approximately 18:30 UTC. After the sharp drop
the temperature started to rise and eventually returned to its
pre-storm level (not shown).

The downburst in Sânnicolau Mare was also marked by
a substantial hail occurrence. The interaction between the
high-velocity winds and hail, potentially influencing the tra-
jectory and impact of the hailstones, contributed to exten-
sive damage, especially to the facades of numerous build-
ings. To comprehensively assess this damage, a collaborative
survey was conducted by the University of Genoa (Italy) and
the Technical University of Civil Engineering of Bucharest
(UTCB) (Calotescu et al., 2022, 2024). The survey identi-
fied the affected buildings and produced a comprehensive
map illustrating the hail damage. Figure 6 shows a schematic
representation of the distribution of hail damage per area
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(600× 600 m2) and the location of the buildings that suf-
fer hail damage in the town of Sânnicolau Mare. Correlating
specific damage like hail impacts with near-surface wind ve-
locities involves inherent uncertainties, which are extensively
explored in the study by Calotescu et al. (2024).

4 Downburst reconstruction

This section focuses on the modeling, optimization, and re-
construction of the Sânnicolau Mare downburst event. Sec-
tion 4.1 delves into the modeling and optimization approach
used for downburst reconstruction. Section 4.2 introduces
metaheuristic optimization and its application in the recon-
struction of the specific downburst event under study. Finally,
Sect. 4.3 outlines the multivariate data analysis employed to
examine the solutions generated by the optimization algo-
rithm.

4.1 Modeling and optimization approach for
downburst reconstruction

In this study, the authors utilize the computational model de-
veloped in a previous work by Xhelaj et al. (2020) for the
reconstruction and simulation of the Sânnicolau Mare down-
burst event discussed in Sect. 3. The Xhelaj et al. (2020)
model can simulate the spatiotemporal evolution of the bi-
dimensional moving-average (30 s window) wind speed and
direction experienced during a typical downburst event at a
specified height z above ground level. In general, the wind
system simulated by the analytical model represents the out-
flow structure of a translating downburst, typically occurring
in diverse meteorological conditions such as single-cell thun-
derstorms, multicell thunderstorms, squall lines, and bow
echoes. For the specific case of the Sânnicolau Mare down-
burst, the analytical model operates under the hypothesis that
the downburst occurs near the tip of the bow echo during its
mature stage (Phase C, Fig. 4b), in line with the studies of
Fujita (1978) and Weisman (2001). It is worth noting that the
model does not encompass the broader, complex mesoscale
circulations, commonly associated with high winds in bow
echoes. This represents a focused approach, considering the
downburst evolution within a specific context, rather than at-
tempting to model the entire spectrum of atmospheric phe-
nomena related to bow echoes.

The analytical model comprises 11 variables that describe
the kinematic structure of the downburst wind. Table 1
presents a short description of the 11 variables upon which
the model relies. As a result, the model allows for the recon-
struction of the time-evolving moving-average wind speed
and direction generated by the simulated downburst at ev-
ery point within the simulation domain. The model simulates
the downburst wind velocity field by combining three com-
ponents, the stationary radial velocity from a jet impacting a
flat surface, the downdraft’s translation velocity (i.e., storm

motion), and the low-level ABL wind velocity. The virtual
anemometer, situated at the center of the simulation domain,
measures the simulated wind speed and direction generated
by the model. By employing anemometric wind speed and di-
rection data collected during the Sânnicolau Mare downburst
event, an optimization procedure can be formulated to mini-
mize the relative error (objective function F ), which quan-
tifies the discrepancy between the observed time series of
the moving-average wind speed and direction and the corre-
sponding simulations generated by the model. Since the Sân-
nicolau Mare downburst event was recorded by an anemome-
ter positioned at a height of 50 m a.g.l., the analytical model
will reconstruct the wind speed and direction at the corre-
sponding height.

The reconstruction procedure gives rise to a mathemat-
ical optimization problem characterized by being single-
objective, nonlinear, and bound-constrained, as discussed
in Xhelaj and Burlando (2022). To tackle this optimiza-
tion problem, the analytical model is integrated with a
global metaheuristic optimization algorithm. Specifically,
the teaching–learning-based optimization (TLBO) algorithm
proposed by Rao et al. (2011) is employed. The details per-
taining to the integration of the analytical model with the op-
timization algorithm, as well as the estimation of the kine-
matic and geometric variables associated with the downburst
event, are explained in detail in Xhelaj and Burlando (2022).
The MATLAB code for performing this procedure is avail-
able in the repository by Xhelaj (2024). The TLBO algo-
rithm is an iterative, stochastic, and population-based algo-
rithm comprising two distinct phases: the teacher phase and
the learner phase. In the teacher phase, the best solution in
the population (the teacher) shares its knowledge (objective
function) with the other solutions (the students) to enhance
their performance. In the learner phase, the students interact
with each other to further improve their performance. TLBO
requires only two user-specified parameters: the maximum
number of iterations T and the population size Np. When
incorporating the objective function into a stochastic meta-
heuristic optimization algorithm, running the algorithm inde-
pendently multiple times is crucial to reach the optimal solu-
tion. This iterative approach allows for a deeper exploration
of the variable space, reducing the risk of getting trapped in
local optima. However, it is important to note that in the con-
text of metaheuristic optimization, there is no guarantee of
attaining a globally optimal solution. As a result, the proce-
dure can yield a range of solutions ordered based on the val-
ues assumed by the objective function, with some being bet-
ter than others. In this study, the TLBO algorithm is executed
1024 times independently, with each run producing an opti-
mal solution. Consequently, 1024 solutions are obtained. The
reconstruction of the downburst event can be accomplished
by selecting the solution with the lowest objective-function
value, as it is considered the best representation of the event
based on the optimization process. This study aims to ana-
lyze and clarify the nature of all the solutions generated by
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Figure 4. (a) Lightning strikes recorded between 16:30 and 18:30 UTC on 25 June 2021, sourced from the Blitzortung.org network archive
for lightning and thunderstorms (https://www.blitzortung.org, last access: 6 October 2023). The black circle marks the geographic location of
Sânnicolau Mare, situated near the apex of the observed bow echo. (b) Typical radar echo morphology commonly observed in bow echoes,
characterized by the generation of strong downbursts at the bow apex, denoted as DB. Adapted from Fujita (1978).

Table 1. Variables of the Xhelaj et al. (2020) analytical model.

1 x-component touchdown location (at t = 0) (m) XC0

2 y-component touchdown location (at t = 0) (m) YC0
3 Downdraft radius (m) R

4 Normalized radial distance from the center of the downburst, where Vr,max occurs (−) ρ =
Rmax
R

5 Maximum radial velocity (m s−1) Vr,max
6 Duration of the intensification period (min) Tmax
7 Total duration of the downburst event (min) Tend
8 Storm translational velocity (m s−1) Vt
9 Storm translational direction (°) αt
10 ABL wind speed below the cloud base (m s−1) Vb
11 ABL wind direction below the cloud base (°) αb
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Figure 5. Telecommunication tower monitoring network measurements from 18:00 to 19:00 UTC on 25 June 2021: (a) time history of the
instantaneous wind speed (green), moving-average mean wind speed (black), and temperature record (magenta) and (b) instantaneous (green)
and moving-average mean wind direction (black).

Figure 6. Spatial distribution of damaged buildings and locations of hail-damaged structures within the 600× 600 m2 area in the town of
Sânnicolau Mare during the downburst event on 25 June 2021. The city boundaries of Sânnicolau Mare are delimited by the black line.
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means of the TLBO algorithm for the downburst outflow re-
construction. This choice was made for two reasons.

– The first reason is to determine the best possible solu-
tion among the 1024 runs, where the best solution is
the one that minimizes the objective function F and al-
lows for reconstructing the Sânnicolau Mare downburst
event.

– The second reason, which is the primary objective of
this study, is to analyze these 1024 solutions using
multivariate data analysis (MDA). The method used in
MDA is the agglomerative hierarchical K-means clus-
tering (AHK-MC) and principal component analysis
(PCA).

The objective is to investigate the distinct characteristics of
the different solutions provided by the TLBO algorithm, en-
abling an understanding of their divergence from the optimal
solution. If alternative solutions do exist, it signifies that the
algorithm’s solution is not unique. This highlights the chal-
lenge in accurately reconstructing the downburst wind field
form just one anemometric time series, underlining the prob-
lem’s inherent complexity and underdetermined nature. As
such, a more comprehensive definition of the objective func-
tion is necessary to accurately discern between the optimal
solution and its alternatives.

4.2 Metaheuristic optimization and reconstruction of
the Sânnicolau Mare downburst

In metaheuristic optimization, a commonly used guideline
suggests setting the population size Np as 10 times the num-
ber of variables to estimate D (Storn, 1996). In this study,
where D corresponds to 11 variables, a population size of
Np = 110 has been chosen. Additionally, considering the re-
ported fast convergence rate of the TLBO algorithm (as men-
tioned in Xhelaj and Burlando, 2022), the maximum number
of iterations T for this study has been set to T = 100. Ta-
ble 2 displays the lower and upper bounds of the optimization
problem pertaining to the reconstruction of the Sânnicolau
Mare downburst. These parameter values have been deter-
mined based on a comprehensive literature review, available
in Xhelaj and Burlando (2022).

The spatial domain of the downburst simulation covers an
area of 20× 20 km2, while the grid resolution in both the
X and Y directions is set at 50 m. This approach employs a
comprehensive simulation approach, primarily using anemo-
metric data, due to its common availability. The methodol-
ogy entails numerous simulations to extract a downburst’s
kinematic and geometric parameters. However, when addi-
tional data like radar or lidar are available, this informa-
tion can be used to bound some variables and restrict the
model variables domain (Table 2) to enhance model accu-
racy. Figure 7 illustrates the “performance chart” depicting
the convergence pattern of the objective functions during

Table 2. Lower and upper bound of the decision variable parame-
ters for the reconstruction of the Sânnicolau Mare downburst. Table
form Xhelaj and Burlando (2022).

Parameters/variables Lower bound Upper bound

1 XC0 (m) −10 000 −10 000
2 YC0 (m) −10 000 −10 000
3 R (m) 200 2000
4 ρ =

Rmax
R

(−) 1.6 2.6
5 Vr,max (m s−1) 0 40
6 Tmax (min) 2 15
7 Tend (min) 15 60
8 Vt (m s−1) 0 40
9 αt (°) 0 359.9
10 Vb (m s−1) 0 40
11 αb (°) 0 359.9

the reconstruction of the Sânnicolau Mare downburst using
the TLBO algorithm. The performance chart in Fig. 7 il-
lustrates the convergence pattern of the objective functions
as an iterative progress. It shows the upper and lower en-
velopes that encapsulate all 1024 independent runs. The re-
gion within the envelopes represents the objective-function
values’ trend for all runs. At the end of the 100 iterations,
the lower envelope represents to the best objective-function
value obtained, while the upper envelope corresponds to the
worst objective-function value obtained by the TLBO algo-
rithm. The performance chart in Fig. 7 includes additional
visual representations: a dashed line representing the mean
convergence curve and dotted lines representing curves of
the mean plus/minus 1 standard deviation. These curves pro-
vide insights into the average behavior and deviation of the
objective-function values across the 1024 runs. The perfor-
mance chart demonstrates that after approximately 70 itera-
tions, the TLBO algorithm ceases to find significantly bet-
ter or worse solutions. This is evidenced by the convergence
of both the upper and lower envelope curves. Concurrently,
the mean curve appears to plateau, although it exhibits a
slight yet continuous improvement beyond the 70th itera-
tion. This suggests that the algorithm is still optimizing, al-
beit at a reduced rate. The increasing spread between curves
of the mean plus/minus 1 standard deviation as the iterative
progress indicates a complex solution landscape. This com-
plexity is manifested in the algorithm’s convergence to var-
ious local minima, maintaining steady average performance
while increasing the variability of solutions. In this study’s
context, such an expanding spread represents a deeper and
more intricate exploration of the solution space, a desirable
characteristic to ensure a comprehensive search across the
objective-function domain. At the conclusion of 100 iter-
ations, the best and worst objective-function values corre-
spond to Fmin = 0.730 and Fmax= 1.062, respectively. The
mean and standard deviation of the objective-function values
are determined as mF = 0.893 and sF = 0.080, respectively.
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Figure 7. Performance chart for the reconstruction/simulation of the Sânnicolau Mare downburst using the TLBO algorithm.

4.3 Multivariate data analysis of solutions for the
Sânnicolau Mare downburst reconstruction

The optimization algorithm provides output as a data table,
where each row of the table is a solution of the optimization
problem. Therefore, the data table is composed of 1024 rows
(solutions). The table has 12 columns, where 11 columns rep-
resent the 11 variables/parameters of the analytical model,
while the last column contains the values assumed by the ob-
jective function F of each solution (i.e., each row). Although
the objective function F is not a variable of the analytical
model, it is treated in Sect. 5 as a variable from the point
of view of the multivariate data analysis. The solutions are
sorted in descending order based on their objective function
F . This means that the best overall solution among the 1024
lies in the last row of the data table. The analysis of the data
table indicates that most variables exhibit multimodal his-
tograms, with two or more peaks. However, only the vari-
ables Vb and αb are characterized by a unimodal histogram.
Since the aim of this document is to conduct a multivariate
data analysis (MDA), the variables of the data table are split
into primary and secondary variables. Primary variables par-
ticipate in the analysis of multivariate data (i.e., AHK-MC
and PCA), as opposed to secondary variables, which have
no role in the calculation. However, secondary variables can
indeed assist in the interpretation of the data table. In the
present study, Vb, αb, and αt are considered secondary vari-
ables. This choice is primarily driven by the observation that
Vb and αb exhibit unimodal histograms, suggesting that they
may not significantly contribute to distinguishing different
cluster solutions. However, the choice of αt as a secondary
variable is purely practical, since it makes it possible to carry
out a multivariate statistical analysis, avoiding the problem

of circular statistics and, hence, simplifying the calculation
and the interpretations of the results.

Let us define the data table that contains only pri-
mary variables by a matrix X. Each row i of the
matrix represents a solution vector Xi , encompass-
ing the values associated with the nine primary vari-
ables. Therefore the solution vector can be expressed as
Xi =

(
XC0i ,YC0i ,Ri,ρi,Vr,maxi ,Tmaxi , Tfi , Vti ,Fi

)T with
i ranging from 1 to I , where I represents the total number
of solutions, in this case I = 1024. Since the solution vector
Xi contains K = 9 primary variables, the resulting data ma-
trix X is an I ×K matrix with 1024 rows and 9 columns. For
the sake of simplicity, in order to shorten the notation, letXik
be the value of the kth primary variable in the ith solution.
Henceforth, the term “variable” will refer to primary vari-
ables, unless explicitly specified. Consequently, the dataset
within the matrix X can be regarded either as a collection of
rows representing solutions to the optimization problem or as
a collection of columns representing variables of the analyti-
cal model. The focus of MDA is to apply statistical clustering
to identify similar analytical solutions. Since a generic solu-
tion X is a set of K = 9 numerical values, X evolves within
a space RK (a space with nine dimensions), called “the so-
lution space”. By defining the usual Euclidean metric in the
solution space (i.e., the l2 norm ‖·‖2), the squared distance
between two solutions Xi and Xl can be expressed by the
Euclidean distance dil .

d2
il = d

2 (Xi,Xl)= ‖Xi −Xl‖
2
2 =

K∑
k=1

(Xik −Xlk)
2. (1)

The distance d possesses the following metric properties:
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 d(X̂i ,X̂l) = 0⇔ i = l,

d(X̂i ,X̂l) = d(X̂l,X̂i) (symmetry),
d(X̂i ,X̂l) ≤ d(X̂i ,X̂j )+ d(X̂j ,X̂l) (tirangle inequlity).

(2)

Variables in the data matrix X are standardized to account for
different units and scales. This common practice in statisti-
cal modeling neutralizes scale effects, allowing for meaning-
ful comparisons across variables. Therefore, the variables are
standardized according to the following equation:

X̂ik =
Xik −Xk

Sk
, ∀ i = 1, . . ., I = 1024

and ∀k = 1, . . .K = 9, (3)

where Xk denotes the sample mean of the kth variable
calculated over all I solutions, Xk = 1

I

∑I
I=1Xik , and Sk

is the sample standard deviation of kth variable, Sk =√
1

(I−1)
∑I
i=1
(
Xik −Xk

)2
.

Finally, the normalized data matrix X̂ containing the set of
vectors X̂i , i = 1, . . ., I has been used in the MDA for the
identification of different typologies of solutions provided by
the TLBO algorithm for the simulation/reconstruction of the
Sânnicolau Mare downburst. Figure 8 showcases a summary
statistic in the form of a box plot, illustrating the distribu-
tion of the standardized variables. Variables such R̂max and
T̂ max have a large number of outliers, indicating extreme
values within the dataset. Therefore, even in the context of
standardized data, outliers can still be informative and may
hold important information for distinguishing distinct solu-
tion clusters. All the multivariate statistical analyses in this
work were performed using the online version of the soft-
ware FactoMineR (Lê et al., 2008).

5 Results

In the following section the results of multivariate data anal-
ysis (MDA) including cluster analysis and principal compo-
nent analysis applied to the data matrix X̂ are presented. Af-
ter the clusters have been established a comprehensive de-
scription of each of them is provided. This involves exam-
ining the variables that contribute to each cluster’s compo-
sition as well as identifying specific representative solutions
within each cluster. Such an analysis allows for a deeper un-
derstanding of the cluster characteristics and facilitates the
interpretation of meaningful patterns and insights within the
data. The text in Sect. 5.1 to 5.3 provides an in-depth analy-
sis of the data matrix X̂ from the variable’s perspective, em-
ploying agglomerative hierarchical K-means clustering and
principal component analysis. In Sect. 5.4 the clusters are an-
alyzed from the point of view of the specific solutions which
are the most representative of the clusters. Finally, these rep-
resentative solutions are compared with the best overall solu-
tion found by the TLBO algorithm. The comparisons of the

Figure 8. Box plot of the distributions of the standardized variables.
Outliers in the data are plotted individually using the red marker
symbol +.

representative solution for each cluster and the best overall
solution with the full-scale data are therefore enriched con-
sidering the data from the damage survey that was carried out
after the Sânnicolau Mare downburst event.

5.1 Identification of the most meaningful clusters

In order to identify the appropriate number of clusters for
grouping the solutions, agglomerative hierarchical clustering
(AHC) is firstly employed (Hartigan, 1975; Kaufman and
Rousseuw, 1990). In AHC, each individual solution is ini-
tially treated as an independent cluster (leaf). Through a se-
ries of iterative steps, the most similar clusters are progres-
sively merged, forming a hierarchical tree structure known as
a dendrogram. This merging process continues until all the
individual clusters are combined into a single cluster (root).

Subsequently, the hierarchical tree is analyzed, and a suit-
able level is chosen to cut the tree, leading to distinct and
meaningful clusters. The number of clusters obtained from
AHC forms a partition of the dataset. To refine and opti-
mize this partition, a partitioning clustering algorithm called
K-means clustering (MacQueen, 1967; Hartigan and Wong,
1979) is subsequently applied. Partitioning algorithms, like
K-means clustering, subdivides the datasets into distinct
clusters, ensuring that solutions within each cluster are sim-
ilar to one another, while exhibiting noticeable differences
between clusters. Hence the two steps clustering proce-
dure is called agglomerative hierarchicalK-means clustering
(AHK-MC) and is employed to analyze the standardized data
matrix X̂. By combining the strengths of both AHC and K-
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Figure 9. Hierarchical tree (dendrogram) created with Ward’s
method, categorizing the optimization problem solutions for the
Sânnicolau Mare downburst into three clusters, each marked by a
distinct color: red for cluster 1, green for cluster 2, and blue for
cluster 3.

means clustering, AHK-MC aims to provide a comprehen-
sive and improved clustering algorithm of the data, enabling
a more accurate identification of distinct solution groups.

The hierarchical tree in Fig. 9 (i.e., dendrogram) is con-
structed following Ward’s method (Ward, 1963). Since the
total solutions of the optimization problem are I = 1024, the
dendrogram is very dense at the bottom level (i.e., at the leaf
level, where each solution is considered a cluster by itself).
The hierarchical tree is composed therefore by I −1= 1023
nodes, with the points being where two clusters (solutions or
set of solutions) are merged. The level (height) of each node
in the tree is described by the within-cluster variance. The
level of a node in the agglomeration process, when examined
from top to bottom, indicates the reduction in within-cluster
variance achieved by merging two connected clusters. This
reduction in variance can be visualized using a bar graph, as
depicted in Fig. 10.

From Fig. 10 it is possible to establish the level where
to cut the dendrogram and consequently to establish the
number of clusters for partitioning the dataset. The choice of
the number of clusters is important because partitioning with
too few clusters risks leaving groups which are not at all
homogeneous. On the other hand, partitioning with too many
clusters risks creating classes that are not very different
from each other. Being

∑I−1
s=11s =K = 9 (the total variance

contained in the standardized data), the separation into two
groups is able to describe 1(1,2)/K = 4.314/9= 0.4793
(47.93 %) of the total variance. Considering the par-
titioning into three groups, the explained variance by
the three clusters is equal to [1(1,2)+1(2,3)]/K =
[4.314+ 1.044]/9= 0.5954 (59.54 %) of the total
variance, while for four clusters the “explained vari-
ance” is equal to [1(1,2)+1(2,3)+1(3,4)]/K =
[4.314+ 1.044+ 0.406]/9= 0.6404 (64.05 %) of the total
variance.

Therefore, considering more than three clusters (refer to
Fig. 10) is going to have a very little impact on the ex-
plained variance since very little information is gained and
is no longer useful to group together any more classes. For
this reason, the dendrogram in this work is partitioned into
three clusters (refer to Fig. 9), and therefore they can explain
approximately 60 % of the total variance present in the data.

The three-cluster solution’s ability to explain about 60 %
of the total variance is significant, especially considering
the single-point (anemometric) measurement nature of the
downburst data. This inherent limitation often leads to high
variability, making the extraction of consistent patterns chal-
lenging. As noted in related studies, such as those by Bo-
gensperger and Fabel (2021), benchmarks for acceptable lev-
els of explained variance in clustering are not universally ap-
plicable but rather depend on the specific context and data
characteristics. The present study’s level of variance expla-
nation, given the complexity and variability of the downburst
captured from one location, is therefore robust. This is fur-
ther supported by the observation in Fig. 10 that additional
clusters contribute minimally to the total variance explained,
suggesting that the primary structural patterns in the data are
adequately captured with three clusters.

5.2 Cluster interpretation via PCA and optimization
with K-means clustering

The three clusters of solutions are analyzed using principal
component analysis (PCA) to identify the key variables that
drive the system’s behavior. By extracting the principal com-
ponents, which captures the most significant variation in the
data, the complexity of the system can be reduced. In partic-
ular, the eigenvalues of the correlation matrix S= 1

(I−1) X̂
T X̂

quantify the amount of variance accounted by each princi-
pal component (Kassambara, 2017). The eigenvalues show
that the first components have larger values, indicating that
they capture the most significant variation in the dataset. In
contrast, the subsequent components have lower eigenvalues,
representing a diminishing level of variation. Table 3 presents
the eigenvalues, the percentage of variance explained by each
component, and the cumulative percentage of variance.

The first two principal components capture 74.85 % of the
total variance in the dataset. These components define a plane
that provides significant insights into the underlying patterns
and structure of the data. Eigenvalues greater than 1 (Ta-
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Figure 10. Bar graph of the relation between the number of merged clusters and the within-cluster variance.

Table 3. PCA results in terms of the eigenvalues, percentage of variance, and cumulative percentage of variance.

Dim-1 Dim-2 Dim-3 Dim-4 Dim-5 Dim-6 Dim-7 Dim-8 Dim-9

Eigenvalues (λs) or variance 5.278 1.458 0.884 0.499 0.378 0.195 0.167 0.093 0.048
Percentage of variance 58.645 16.204 9.825 5.542 4.204 2.170 1.852 1.028 0.530
Cumulative percentage of variance 58.645 74.849 84.674 90.216 94.420 96.589 98.441 99.470 100.000

ble 3) signify that the respective principal components ex-
plain more variance in the data compared to any single stan-
dardized variable. In contrast, eigenvalues less than 1, start-
ing from the third principal component (Table 3), indicate
that the associated principal components explain less vari-
ance than individual standardized variables, suggesting they
have relatively less influence on the overall variability in the
data. Therefore, it is probably not useful to interpret the next
dimensions and better to focus on the first two principal di-
mensions for a more meaningful analysis. It is worth men-
tioning that the percentage of variance explained by the first
principal component (58.65 %) is very close to the variance
explained by the hierarchical tree when is partitioned into
three clusters (59.54 %).

The three clusters, found using Ward’s method only, are
represented in terms of solutions in the principal compo-
nent map (Fig. 11a). This figure shows how solutions are
grouped together into three clusters when the overall cloud
of solutions is projected into the first two principal compo-
nents. Here, cluster 1 is not very well separated from cluster
3, which means that both clusters share similar solutions.

To enhance the distinctiveness of the cluster partitioning,
the K-means algorithm is subsequently applied. This refine-
ment step adjusts the initial partitioning obtained through
Ward’s method. The K-means algorithm optimizes cluster
separation by iteratively recalculating the centroids for each
cluster and reassigning solutions according to their proximity
in Euclidean space. This procedure incrementally increases
the ratio of between-cluster variance to the total variance,
which results in the reduction in overlap and a clearer delin-
eation of clusters. The process continues until the improve-

ment in this variance ratio does not exceed a certain thresh-
old, thus solidifying the partitioning. The iterative optimiza-
tion by theK-means algorithm is what transforms the initial,
less distinct cluster arrangement (Fig. 11a) into a final parti-
tioning where clusters are well separated and more compact
(Fig. 11b). This refined partitioning is not only more visually
apparent but also statistically significant, and it is this final
configuration that is retained for further analysis within the
paper.

5.3 Further considerations on the model’s parameters

In Table 4, each standardized variable V̂ k is presented as a
vector, summarizing observations from the 1024 solutions.
This forms the basis for the analysis focusing on the first
two principal components, denoted as p1 and p2. The table
displays the correlations rs = r(V̂ k,ps) (where s = 1, 2) be-
tween the variables and these components (columns 1 and 4).
Additionally, the table includes the quality of the representa-
tion qlts of each variable (columns 2 and 5) and the weight
of each variable qtrs in the construction of these components
(columns 3 and 6). The quality of representation (qlts = r

2
s )

measures the extent to which a variable is accurately pro-
jected onto a principal component. The weight of a variable

(qtrs =
r2
s
λs
· 100 %) quantifies the variable’s relative contribu-

tion to the variance explained by the principal component,
with λs being the eigenvalue corresponding to that compo-
nent (Husson et al., 2017).

Table 4 also presents the secondary variable V̂ b. The other
two variables, α̂t and α̂b, are not considered in the PCA
due to their circular nature, which does not align well with
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Figure 11. (a) Solution cluster partitioning on the principal component map using Ward’s method only. (b) Solution cluster partitioning
using the hierarchical K-means method.

Table 4. Principal component analysis results for variables in terms of correlations (r), the quality of representation (qlt), and the contribution
to the construction (qtr) relative to the first two principal components. V̂ k represents the kth standardized variable; p1 and p1 denote the first
and the second principal components, respectively.

Variables V̂ k Dim-1 Dim-1 Dim-1 Dim-2 Dim-2 Dim-2

r(V̂ k,p1) qlt1
(
V̂ k

)
qtr1

(
V̂ k

)
r(V̂ k,p2) qlt2

(
V̂ k

)
qtr2

(
V̂ k

)
X̂C0 −0.831 0.691 13.094 −0.443 0.196 13.441
ŶC0 0.723 0.523 9.912 −0.489 0.239 16.377
R̂ 0.578 0.334 6.326 −0.256 0.066 4.504
ρ̂ 0.715 0.512 9.699 −0.216 0.047 3.200
V̂ r,max −0.909 0.827 15.664 0.079 0.006 0.424
T̂max 0.182 0.033 0.628 0.916 0.839 57.502
T̂ end −0.823 0.678 12.847 0.117 0.014 0.942
V̂ t 0.969 0.939 17.789 0.132 0.017 1.189
F̂ 0.861 0.741 14.042 0.188 0.035 2.421

Secondary variable

V̂ b 0.299 0.089 – −0.073 0.005 –

the linear interpretation framework of principal component
analysis. Despite V̂ b not being involved in the construc-
tion of the principal components, it is still possible to eval-
uate the correlation and the quality of the representation of
this variable using the two principal components. To facil-
itate the interpretation of Table 4, a correlation circle plot
(Abdi and Williams, 2010) can be used to visually repre-
sent the variables. This plot represents each variable as a
point in a two-dimensional space, where the coordinates
of each point correspond to the correlation coefficients be-
tween the variable and the two principal components (i.e.,
r
(
V̂ k,p1

)
, r
(
V̂ k,p2

)
). Figure 12a illustrates the correla-

tion circle plot.
The plot geometrically represents variable correlations:

the angles between the variables indicate the level of corre-
lations between variables, with acute angles suggesting pos-

itive correlation and obtuse angles indicating negative cor-
relation. Each variable’s total contribution across all princi-
pal components equals 1. Variables fully explained by the
first two components will be located on the circle’s circum-
ference (radius of 1) in the correlation circle. Variables not
well represented by these components will be near the cen-
ter, indicating that only those near the circumference are sig-
nificantly represented. Except for the variables V̂ b and R̂,
which are not very well represented by the first two princi-
pal components, the remaining variables are very well rep-
resented since their tip is close to the circle with a radius
of 1. The variables of {V̂ tF̂ , ŶC0, ρ̂} are positively corre-
lated, increasing together, similarly to {V̂ r,max, X̂C0, T̂ end}.
The variable V̂ t is highly correlated with the first component
(correlation of 0.97). Essentially V̂ t can be viewed as a rep-
resentative summary of the first principal component axis.
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Figure 12. (a) Correlation circle plot. The variables in black are considered primary variables, whereas the variable in magenta is a secondary
variable. (b) Correlation matrix plot.

Figure 12a indicates that the variable V̂ t has a strong neg-
ative correlation with the variables of {V̂ r,max, X̂C0, T̂ end}.
This suggests that high storm motion values V t correspond
with lower maximum radial velocities V r,max, with XC0 be-
ing positive for a position closer to the station and negative
for one farther away and a shorted downburst duration being
represented as T end.

Since V̂ t is positively correlated with the variables of
{F̂ , ŶC0, ρ̂}, what is true for V̂ t with respect to the group of
variables of {V̂ r,max, X̂C0, T̂ end}, will also remain true for
the variables of {F̂ , ŶC0, ρ̂}. Finally, from the correlation
circle plot, it seems that the variable T̂ max is not very well
“linearly” correlated with the variables of {V̂ r,max, T̂ end, ρ̂}
since it is nearly orthogonal with these variables. From a
quantitative point of view the values of the correlation co-
efficients between all the pairs of variables are plotted in
Fig. 12b. Table 4 lists each variable’s contributions to the first
and second principal components (columns 3 and 6, respec-
tively). Figure 13a and b graph these contributions in per-
centages, showing which variables have the most impact on
these two components.

The graph shows a dashed red line indicating the av-
erage expected variable contribution at 11.11 %, based on
nine variables. Variables with contributions over 11.11 %
significantly construct a principal component. For the first
component, the variables of {V̂ t, V̂ r,max, F̂ ,X̂C0, T̂ end}
are key contributors. For the second, the variables of
{T̂ max, ŶC0,X̂C0} are most influential. The leading con-

tributors for both components combined, ranked by im-
portance in building the first two principal components,
are {V̂ t,X̂C0, T̂ max, V̂ r,max, F̂ , ŶC0} The remaining vari-
ables of {T̂ end, ρ̂,R̂} fell below the average contribution of
11.11 %. It is worth mentioning that the categorization of
variables from stronger to weaker is not universal since the
partitioning might depend on the downburst case under in-
vestigation.

5.4 Physical description of the solutions corresponding
to clusters 1–3

Once the partitioning of the solutions of the optimization
problems into three clusters is completed, it is important to
have a closer look at them and describe common features of
solutions which associated with the same cluster. From the
partition analysis, it is found that cluster 1 is made up of 481
solutions, cluster 2 is made up of 85 solutions, and cluster 3
is made up of 458 solutions. Table 5 summarizes a few key
statistics related to the three clusters. This table includes pri-
mary and secondary (i.e., not used for clustering) variables,
which are no longer standardized to investigate their physical
meaning.

In columns 2–3, the overall mean and the overall stan-
dard deviation (SD) are calculated with respect to each vari-
able (primary and secondary). In the other columns, the same
calculation was repeated taking into consideration the three
clusters. The mean and the SD of the secondary variables αt
and αb have been calculated using circular statistics (Rao and

https://doi.org/10.5194/nhess-24-1657-2024 Nat. Hazards Earth Syst. Sci., 24, 1657–1679, 2024



1672 A. Xhelaj and M. Burlando: Application of the teaching–learning-based optimization algorithm

Figure 13. (a) Contribution of the variables in the reconstruction of the first principal component (Dim-1). (b) Contribution of the variables
in the reconstruction of the second principal component (Dim-2). Variables are sorted from the strongest to the weakest. The dashed red line
indicates the expected average contribution.

Table 5. Description of the partition by the mean and standard deviation of all the variables.

Variables V k Overall Overall Cluster 1 Cluster 1 Cluster 2 Cluster 2 Cluster 3 Cluster 3
mean SD mean SD mean SD mean SD

V t (m s−1) 6.025 3.371 2.811 1.042 6.527 1.407 9.307 1.492
XC0 (m) −4386.350 1613.337 −3034.079 789.682 −5410.461 629.282 −5616.465 1209.346
Tmax (min) 6.954 2.517 5.860 1.172 13.336 1.910 6.919 1.797
V r,max (m s−1) 24.293 5.356 28.639 1.465 28.182 1.793 19.006 3.266
F (−) 0.893 0.080 0.823 0.058 0.919 0.043 0.961 0.021
YC0 (m) 3363.669 1809.316 2499.896 975.450 313.553 1257.946 4836.890 1160.613
T end (min) 26.035 3.167 28.269 1.895 27.622 2.295 23.394 2.235
ρ (−) 2.189 0.108 2.126 0.104 2.134 0.100 2.265 0.050
R (m) 1334.478 102.519 1289.518 124.661 1301.969 90.475 1387.728 23.115

Secondary variables

αt (°) 290.383 0.480 276.439 0.416 253.518 0.217 310.868 0.229
V b (m s−1) 6.811 0.670 6.648 0.774 6.705 0.768 7.002 0.449
αb (°) 268.218 0.118 264.854 0.138 273.055 0.074 270.827 0.055

Sengupta, 2001). To start clarifying the characteristics of the
different clusters, Fig. 14 shows the scatterplot and distribu-
tion of the touchdown components (XC0,YC0) for all the so-
lutions, partitioned into three clusters. In this figure the cen-
ter (namely the mean) of each cluster and the location of the
touchdown position of the best overall solution are shown.
The figure also shows the position of the city of Sânnicolau
Mare with a black line. Additionally, on the left and on the
top of this figure the histograms of the variable (XC0,YC0)
relative to each cluster are shown.

The three clusters appear well separated in terms of touch-
down position (XC0,YC0). Since it is very unlikely that the
cluster means coincide with one of the solutions present in
the dataset, let us define a “cluster solution” as the solution

which is the closest to the mean of the cluster across all vari-
ables. Accordingly, the cluster solutions, reported in Table 6,
will be used to interpret the average features of each cluster.
The first row of this table is dedicated to the best solution
found by the optimization algorithm (i.e., the one that has
the lowest objective function F among all the solutions); the
best solution is associated with cluster 1.

Figure 15 shows the time histories produced by the best
solution and the three cluster solutions, in terms of wind ve-
locity (Fig. 15a) and direction (Fig. 15b), compared with the
moving-average recorded data. The figure provides a quali-
tative representation of the goodness of fit between the simu-
lations and the recorded data. The goodness of fit is quantita-
tively measured by the objective function F . The simulations
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Figure 14. Scatterplot and histogram density distribution for the variables (XC0,YC0). The dark-black line shows the contours of the city of
Sânnicolau Mare.

Table 6. Best overall solution and representative cluster solutions.

Solutions V t XC0 Tmax V r,max F YC0 T end ρ R αt V b αb
(m s−1) (m) (min) (m s−1) (−) (m) (min) (−) (m) (°) (m s−1) (°)

Best solution 2.76 −3339.53 6.50 29.80 0.73 2826.55 29.89 2.15 1381.38 271.74 5.49 58.35
Cluster 1 2.51 −2944.15 6.05 29.54 0.81 2769.36 27.23 2.09 1287.53 278.25 7.15 268.19
Cluster 2 6.14 −5105.66 14.05 27.07 0.91 383.39 28.18 2.14 1295.33 255.36 7.13 272.82
Cluster 3 9.25 −5930.81 7.15 17.36 0.97 4575.50 22.95 2.27 1392.86 307.61 6.15 272.71

produced from the best solution and the solution for cluster 1
fit the data better than those of clusters 2 and 3. This is quite
obvious since the best solution has the lowest objective func-
tion F and is associated with cluster 1, whereas solutions for
cluster 2 and cluster 3 have a slightly higher objective func-
tion F (refer to column 5 in Table 6).

In order to better understand the nature of the different
solutions relative to each cluster, for each solution present
in Table 6, the downburst two-dimensional wind velocity is
evaluated at the same height of the anemometric station (i.e.,
at 50 m a.g.l.). Figure 16a–d show for each of the four solu-
tions the wind field reconstruction during the intensification
stage of the downburst, while Fig. 16e–h describes the stage

of maximum intensity. Note that the time of maximum inten-
sity is different for each cluster according to the correspond-
ing value of T max reported in column 3 of Table 6.

Cluster 1 touches down very close to the city center and
moves slowly eastward; it is characterized by a low value of
the downburst translation velocity V t, with a mean value of
2.8 m s−1 against the overall mean among all clusters, which
is 6.0 m s−1. In addition, it has a maximum radial velocity
V r,max higher and overall duration of the downburst event
T end which is longer with respect to the mean values of the
other two clusters. The solutions associated with the touch-
down of cluster 2 around 2 km southwest of the city prop-
agate northeastward, with higher translation velocities com-
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Figure 15. Comparison of the moving-average wind (a) speed and
(b) direction obtained from the measurements of the Sânnicolau
Mare downburst, along with the best solution and the three cluster
solutions.

pared to those of cluster 1 and the longest intensification pe-
riods T max overall. The solutions in cluster 3 touch down
about 3 km northwest of the city; they move southeastward,
with the highest values of downburst translation velocity V t,
but they are the shortest, as the duration of the downburst
event T end is on average 23.4 min, while the overall mean
is 26.0 min. They also have the lowest values of maximum
radial velocity V r,max, compensating the high translation ve-
locities. According to these descriptions, it is clear that in
the solution space of the model three different solutions ex-
ist that can describe similarly of the time series measured
at TM_424. The existence of different plausible solutions
means that the problem of finding the downburst wind field
time–space evolution using a single time series is an under-
determined problem.

The Sânnicolau Mare downburst had a strong impact,
causing hail damage to numerous buildings in the town. A
damage survey was conducted to assess the affected areas
and identify buildings that experienced hail damage during
the event. To estimate the extent of the damage, the simulated
wind field generated by the analytical model was utilized.
By analyzing the wind speeds at various locations, the “foot-
print” of the simulated damage was determined. This foot-
print represents the maximum wind speed recorded at dif-
ferent places during the downburst, providing valuable infor-
mation on the areas most affected by the event. Figure 17a–
d depict the complete footprint of the downburst potential
damage area for the best solution and the three cluster so-
lutions. In contrast, Fig. 17e–h provide a closer view of the
footprints overlaying the simulated maximum wind velocity
vectors (indicated by blue arrows) onto the locations of hail

damage. The hail damage is represented by vectors pointing
orthogonally to the damaged facades (represented by pink
arrows). The comparison between the facade damage, which
is related to the trajectory of hail transported by the strong
downburst-related outflow, and the simulated maximum ve-
locity reveals interesting findings. Specifically, the best so-
lution and solution for cluster 1 exhibit the strongest align-
ment between the maximum wind velocity vectors and hail
damage vectors, particularly in the central part of the city
and along the path of the downburst. In contrast, cluster 2
and cluster 3 demonstrate a consistent deviation of the maxi-
mum velocity, with cluster 2 deviating northward and cluster
3 deviating southward, relative to the hail trajectories. This
observation suggests that the actual downburst event likely
followed a pattern more closely resembling cluster 1 rather
than the other two potential solutions.

These observations lead to the conclusion that the optimal
(best) solution, which minimizes the objective function F , is
the most reliable among all possible solutions. In the current
study, this has been achieved through a comprehensive ap-
proach involving numerous simulations, specifically tailored
to cases where only anemometric data are available, despite
having access to additional data types like radar images. This
choice was driven by the higher likelihood and frequency of
availability of anemometric data in practical scenarios, thus
providing a more universally applicable context for the an-
alytical downburst model. The methodology involved con-
ducting a large number of simulations to thoroughly explore
the solution space, given the data-limited scenario. Conse-
quently, this approach enabled the extraction of kinematic
and geometric parameters of the downburst outflow wind
field exclusively from anemometric data.

However, it is important to acknowledge that in scenar-
ios where additional data types such as radar or lidar or
other sensors are available, the approach to reconstructing the
downburst wind field would differ significantly. In such situ-
ations, the availability of more diverse data allows for a more
constrained and targeted reconstruction process. By integrat-
ing specific parameters from these additional data sources,
like storm speed and direction and ABL wind speed and di-
rection, the solution space can be narrowed down more effec-
tively, potentially reducing the number of simulations needed
and enhancing the precision of the model.

6 Conclusions

This study focuses on the analysis of solutions obtained by
combining an analytical model (Xhelaj et al., 2020) with a
global metaheuristic optimization algorithm for the recon-
struction of the wind field generated during the Sânnicolau
Mare downburst event in Romania on 25 June 2021. The an-
alytical model and optimization algorithm are coupled using
the teaching–learning-based optimization (TLBO) algorithm
to estimate the kinematic parameters of the downburst out-
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Figure 16. Two-dimensional wind field reconstruction at 50 m a.g.l. Depicted at the intensification stage of the downburst are (a) the best
solution and (b–d) solutions for (b) cluster 1, (c) cluster 2, and (d) cluster 3. Depicted at the maximum intensification stage of the downburst
are (e) the best solution and (f–h) solutions for (f) cluster 1, (g) cluster 2, and (h) cluster 3.
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Figure 17. Simulated footprints of the downburst that occurred in Sânnicolau Mare. Footprints for (a) the best solution and (b–d) solutions
for (b) cluster 1, (c) cluster 2, and (d) cluster 3. Comparison of hail damage and maximum simulated wind speed for (e) the best solution and
(f–h) solutions for (f) cluster 1, (g) cluster 2, and (h) cluster 3.
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flow. The procedure for this coupling and parameter estima-
tion is described in detail in the study by Xhelaj and Burlando
(2022). Therefore, the objective was to analyze the differ-
ences among the solutions provided by the optimization al-
gorithm and to assess their physical validity as alternatives
to the optimal solution. In the presence of multiple physi-
cal sounding solutions, it has been demonstrated that addi-
tional data describing the downburst thunderstorm event are
necessary to determine which solution best represents real-
ity. To support the analysis a comprehensive damage survey
was conducted in collaboration with the University of Genoa
(Italy) and the Technical University of Civil Engineering of
Bucharest (UTCB) to assess the extent and location of hail
damage on buildings in the affected area. This survey, along
with the wind speed and direction signals recorded during
the downburst event by a telecommunication tower located
approximately 1 km from the city, significantly enhances the
information available for the reconstruction and simulation
of the downburst using the optimization procedure. The anal-
ysis of the solutions generated by the optimization algo-
rithm involves multivariate data analysis (MDA) techniques,
specifically agglomerative hierarchical K-means clustering
(AHK-MC) and principal component analysis (PCA). AHK-
MC is used for classifying the solutions into different clusters
based on their features, while PCA is employed to determine
the importance of the variables in the analytical model for the
downburst event reconstruction.

The application of AHK-MC resulted in the identifica-
tion of three main clusters, each with distinct characteristics,
among the 1024 solutions.

– Solutions associated with cluster 1 are characterized by
slow storm motion, a small touchdown distance from
the city of Sânnicolau Mare, and a long duration of the
downburst event. The best overall solution is associated
with cluster 1.

– Solutions associated with cluster 2 are characterized by
moderate storm motion and a moderate distance of the
touchdown from the town of Sânnicolau Mare. These
solutions are also characterized by a high duration of
the intensification period of the downburst event.

– Solutions associated with cluster 3 are characterized by
fast storm motion and a large distance of the touchdown
from Sânnicolau Mare. They are also characterized by a
low duration of the downburst event and low values of
the maximum radial velocity.

The result of the MDA also allows for establishing at
least for the case under consideration that the variables of
{V t,XC0,T max,V r,max,F ,YC0}, which are ordered from
the strongest to the weakest, are the more important for the
reconstruction/simulation of the downburst event. The re-
maining variables of {T end,ρ,R} have a lower contribution.
It is important to observe that the partitioning in the strongest

and weakest variables does not represent a general case, since
the partition depends on the downburst case under study.

Finally, the comparison between the facade damage,
which is related to the trajectory of hail transported by the
strong downburst-related outflow, and the simulated maxi-
mum velocity shows that the best solution and solution for
cluster 1 seem to have a “good” overlap between maximum
wind velocity vectors and hail damage vectors. Considering
the solutions of cluster 2 and 3, it seems that the match be-
tween maximum wind velocity vectors gradually decreases,
with the worst case represented by the solution for cluster 3.
These observations allow for concluding that the optimal so-
lution, that is, the one that minimizes the objective function
F , is the best with respect to the other three cluster solu-
tions, also from the point of view of the damage analysis.
As a result, for the specific case being examined, relying on
the best overall solution provided by the optimization algo-
rithm appears to yield promising results for reconstructing
the downburst wind field. Obviously, an analysis of this type,
conducted on several downburst events, will be better able to
confirm this statement.

Code availability. The software code that couples the analytical
model with the teaching–learning-based optimization (TLBO) al-
gorithm is available on Zenodo. The code can be accessed via
https://doi.org/10.5281/zenodo.11110453 (Xhelaj, 2024).

Multivariate statistical analysis was performed using the R pack-
age FactoMineR (Lê et al., 2008). The package can be downloaded
from https://cran.r-project.org/package=FactoMineR (last access: 3
January 2024, Lê et al., 2008).

Data availability. The dataset from the optimization algorithm
is available on Zenodo (https://doi.org/10.5281/zenodo.11110453,
Xhelaj, 2024).
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Calotescu, I., Bîtcă D., and Repetto, M. P.: Full-scale behav-
ior of a telecommunication lattice tower under wind loading,
Lightweight Structures in Civil Engineering, XXVII LSCE Łódź,
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