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Abstract. Extratropical storms are one of the major coastal
hazards along the coastline of the German Bight, the south-
eastern part of the North Sea, and a major driver of coastal
protection efforts. However, the predictability of these re-
gional extreme events on a seasonal scale is still limited.
We therefore improve the seasonal prediction skill of the
Max Planck Institute Earth System Model (MPI-ESM) large-
ensemble decadal hindcast system for German Bight storm
activity (GBSA) in winter. We define GBSA as the 95th per-
centiles of three-hourly geostrophic wind speeds in winter,
which we derive from mean sea-level pressure (MSLP) data.
The hindcast system consists of an ensemble of 64 members,
which are initialized annually in November and cover the
winters of 1960/61–2017/18. We consider both determinis-
tic and probabilistic predictions of GBSA, for both of which
the full ensemble produces poor predictions in the first win-
ter. To improve the skill, we observe the state of two physical
predictors of GBSA, namely 70 hPa temperature anomalies
in September, as well as 500 hPa geopotential height anoma-
lies in November, in areas where these two predictors are
correlated with winter GBSA. We translate the state of these
predictors into a first guess of GBSA and remove ensemble
members with a GBSA prediction too far away from this first
guess. The resulting subselected ensemble exhibits a signifi-
cantly improved skill in both deterministic and probabilistic
predictions of winter GBSA. We also show how this skill in-
crease is associated with better predictability of large-scale
atmospheric patterns.

1 Introduction

The coastline of the German Bight, which is shared by
the neighboring countries of Germany, Denmark, and the
Netherlands, is frequently affected by strong extratropical
cyclones and their accompanying hazards, such as storm
surges. These extreme events repeatedly issue challenges
to coastal protection agencies, emergency management, and
other interests in the region. Therefore, local actors and
stakeholders may benefit from skillful predictions of these
events on a seasonal to decadal scale. Still, skillful predic-
tions of storm activity on a regional scale are a challenging
task, even with today’s state-of-the-art modeling capabilities.

In the research field of seasonal predictions, consider-
able progress has been achieved over the course of the past
decade. Several studies have demonstrated that current cli-
mate models show prediction skill for many large-scale at-
mospheric modes of the Earth system on timescales that
go beyond the confines of conventional weather forecasting,
as for example for the Northern Hemisphere winter climate
(e.g., Fereday et al., 2012), the winter North Atlantic Oscil-
lation (NAO; Athanasiadis et al., 2014; Scaife et al., 2014a;
Dunstone et al., 2016; Athanasiadis et al., 2017) and its link
to the stratosphere (Scaife et al., 2016), and to some ex-
tent the Arctic Oscillation (AO; Riddle et al., 2013; Kang
et al., 2014). Further studies were able to show how this good
representation of large-scale atmospheric drivers in seasonal
prediction systems could be used to predict climate extremes
such as windstorms in the northern extratropics (e.g., Renggli
et al., 2011; Befort et al., 2018; Hansen et al., 2019; Degen-
hardt et al., 2022).

On a more local scale, a recent study focusing on the pre-
dictability of German Bight storm activity (GBSA) has indi-
cated that, with a carefully chosen approach, a large model
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ensemble, and an evaluation of different forecast categories,
probabilistic predictions of high storm activity can be skill-
ful for averaging periods longer than 5 years (Krieger et al.,
2022). Krieger et al. (2022) also showed, however, that the
predictive skill for single lead years in general and the next
year in particular is often low and barely statistically signif-
icant, even when using a large-ensemble decadal prediction
system. Using the Met Office Global Seasonal Forecast Sys-
tem version 5 (GloSea5), Scaife et al. (2014a) found large ar-
eas of positive skill for winter storminess over the North At-
lantic regions, but only non-significant correlations of 0.15–
0.3 over the German Bight. Degenhardt et al. (2022) also
found that, using a newer version of GloSea5, even though
several storm metrics are skillfully predictable over large
parts of the northeastern Atlantic Ocean, the skill for the
German Bight is somewhat lower than in adjacent regions.
While Krieger et al. (2022) did not explicitly investigate the
predictability of GBSA on a seasonal scale, the low skill for
lead year 1 warrants an investigation into the seasonal pre-
dictability of GBSA and its potential for improvement.

Even before the onset of advanced computational numeri-
cal modeling, methods were developed to advance the pre-
dictability of the climate system. Lorenz (1969) proposed
the idea of analogue forecasting, a prediction method which
builds on the hypothesis that two observed states of the at-
mosphere which closely resemble each other but are tempo-
rally disconnected (analogues) evolve in a similar manner.
As the number of available observations, reanalyses, and cli-
mate model experiments has grown significantly over the last
few decades, more data have become available that foster
climate reconstruction and prediction attempts through this
method (e.g., Van den Dool, 1994; Schenk and Zorita, 2012;
Delle Monache et al., 2013; Menary et al., 2021). Closely
related to analogue forecasting, another method has recently
emerged which uses observable physical predictors of cli-
mate phenomena to estimate the future state of these phe-
nomena. Previous studies using this technique have demon-
strated that, on seasonal timescales, predictions for the state
of large-scale modes of atmospheric variability like the NAO
can be improved through the use of known atmospheric and
oceanic teleconnections (e.g., Dobrynin et al., 2018). These
studies used first-guess predictions based on the state of mul-
tiple physical predictors to refine large model ensembles and
thereby reduce model spread. Similar ensemble subselection
techniques have also been used to increase the predictability
of the European summer climate (Neddermann et al., 2019)
and European winter temperatures (Dalelane et al., 2020).
This predictor-based ensemble subselection method, how-
ever, has not been applied to small-scale climate extremes
like storm activity yet.

The storm climate of west-central Europe, and in particu-
lar the German Bight, is subject to a prominent multidecadal
variability (e.g., Krueger et al., 2019; Krieger et al., 2021),
which is arguably responsible for the comparably high pre-
dictability of GBSA a decadal scale, especially for multi-

year averages (Krieger et al., 2022). Additionally, GBSA is
connected to the large-scale atmospheric circulation in the
Northern Hemisphere. GBSA has shown to correlate posi-
tively with the NAO; however the strength of this connection
is subject to large fluctuations on a multidecadal scale. Other
atmospheric phenomena during the winter season, such as
the widely studied sudden stratospheric warmings, also play
a role for the extratropical storm climate, since they influ-
ence the tropospheric weather regimes (e.g., Baldwin and
Dunkerton, 2001; Song and Robinson, 2004; Domeisen et al.,
2013, 2015) and are able to suppress or shift surface weather
patterns in the mid-latitudes, sometimes even in a way that is
contrary to the state of the NAO (Domeisen et al., 2020).

Peings (2019) found that a blocking pattern over the Ural
region in November can be used to identify an increased like-
lihood of stratospheric warmings in the subsequent winter,
which in turn favor blocking setups and thus lower-than-
usual storm activity over west-central Europe. Siew et al.
(2020) confirmed this connection to be part of a troposphere–
stratosphere causal link chain with a typical timescale of 2–
3 months. The results of Peings (2019) and Siew et al. (2020)
suggest that the status of the Rossby wave pattern in Novem-
ber might be usable as a predictor for the German Bight
storm climate in the subsequent winter season.

The state of the stratospheric polar vortex in winter has
also been linked to the Quasi-Biennial Oscillation (QBO)
via the Holton–Tan effect (e.g., Ebdon, 1975; Holton and
Tan, 1980). The Holton–Tan effect proposes a connection be-
tween easterly QBO phases, which are characterized by east-
erly wind and negative temperature anomalies in the lower
stratosphere, and a weakened stratospheric polar vortex and
thus positive stratospheric temperature anomalies in the po-
lar Northern Hemisphere. The mechanism behind this effect
has been widely studied and confirmed, e.g., by Lu et al.
(2014). While some studies have already looked into the si-
multaneous occurrence of QBO anomalies and shifts in the
European winter climate and associated windows of opportu-
nity for better predictability (e.g., Boer and Hamilton, 2008;
Marshall and Scaife, 2009; Scaife et al., 2014b; Wang et al.,
2018), the state of the tropical stratosphere has not been used
as a predictor for the upcoming winter storm climate in west-
central Europe yet.

In this paper, we thus show that the predictability of Ger-
man Bight storm activity on a seasonal scale is inherently low
but can be significantly improved through the combined use
of tropospheric and stratospheric physical predictors. Draw-
ing on the proposed links between the European winter storm
climate and the Rossby wave pattern, as well as the state of
the tropical stratosphere, we use temperature anomalies in
the lower tropical stratosphere in September, as well as ex-
tratropical geopotential height anomalies in the middle tro-
posphere in November, as predictors for GBSA. We generate
first guesses of GBSA from these predictors and select mem-
bers from our ensemble based on their proximity to the first
guesses. From the large-ensemble prediction system with
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64 members, we generate both deterministic and probabilis-
tic predictions of winter GBSA, both for the full and the sub-
selected ensemble, and analyze the improvement of GBSA
predictability through the subselection process. We demon-
strate how, compared to the low prediction skill of the full
ensemble, the subselection technique significantly increases
the prediction skill. The large size of the ensemble also en-
ables a thorough sensitivity analysis of the dependency of the
skill on the subselection size.

2 Methods and data

2.1 Storm activity observations

As an observational reference for storm activity in the Ger-
man Bight, we make use of the time series of winter GBSA
from Krieger et al. (2021). The GBSA proxy in Krieger
et al. (2021) is defined as the standardized 95th seasonal
(December–February, DJF) percentiles of geostrophic winds.
These geostrophic wind speeds were originally calculated
from three-hourly observations of mean sea-level pressure
(MSLP) along the German Bight coast in Denmark, Ger-
many, and the Netherlands and cover the period of 1897/98–
2017/18.

2.2 MPI-ESM-LR decadal hindcasts

In this study, we employ the extended large-ensemble
decadal hindcast system based on the Max Planck Insti-
tute Earth System Model (MPI-ESM) in low-resolution (LR)
mode (Mauritsen et al., 2019; Hövel et al., 2022; Krieger
et al., 2022). Even though this study focuses on the sea-
sonal timescale, we choose decadal hindcasts over any sea-
sonal prediction systems, as the already available MPI-ESM
decadal hindcast system provides us with a large ensemble
size. While the ensemble consists of 80 members in total,
we base our analysis on those 64 members for which three-
hourly output is available (see Krieger et al. (2022) for de-
tails). At the time of this study, we are not aware of any
single-model seasonal prediction system of this ensemble
size and with three-hourly MSLP output available.

The MPI-ESM is a coupled climate model with individual
components for the atmosphere (ECHAM6; Stevens et al.,
2013), ocean and sea ice (MPI-OM; Jungclaus et al., 2013),
land surface (JSBACH; Reick et al., 2013; Schneck et al.,
2013), and ocean biogeochemistry (HAMOCC; Ilyina et al.,
2013). Here, we only use the atmospheric output from the
ECHAM6 component, which provides us with data at a tem-
poral resolution of 3 h, a horizontal resolution of 1.875°, as
well as a vertical resolution of 47 levels between 0.1 hPa and
the surface (Stevens et al., 2013). The hindcasts are initial-
ized every 1 November from a 16-member assimilation run,
starting in 1960. We use all hindcast runs initialized between
1960 and 2017 as the observational reference time series of
winter GBSA ends in 2017/18.

2.3 German Bight storm activity (GBSA)

To quantify storm activity in this study, we draw on an
established metric that uses the statistics of the hypotheti-
cal near-surface geostrophic wind speed which is obtained
from horizonal gradients of MSLP (Schmidt and von Storch,
1993). Contrary to direct wind speed observations, which of-
ten show strong inhomogeneities, long MSLP records are
usually more homogeneous and therefore better suited to
provide information about the long-term storm climate (e.g.,
Alexandersson et al., 1998; Krueger and von Storch, 2011).
Since winter GBSA is not directly available as an output
variable of the hindcast system, we derive it from the three-
hourly MSLP output (Krieger and Brune, 2022a). We calcu-
late winter GBSA as the standardized seasonal (December–
February) 95th percentiles of three-hourly geostrophic winds
over the German Bight. For every ensemble member, we
individually convert the horizontal differences of MSLP at
three stations in the German Bight to geostrophic wind
speeds at every time step. We then derive the 95th percentiles
for every winter season and standardize them by subtracting
the mean and dividing by the standard deviation of the win-
ters 1960/61–2017/18 of the respective ensemble member.
The calculation follows the methodology of Krieger et al.
(2022); however it uses seasonal instead of annual 95th per-
centiles. Doing so, we ensure that the calculation of GBSA
in the hindcast is consistent with the derivation of observed
GBSA in Krieger et al. (2021). We perform the GBSA calcu-
lations individually for every member of the hindcast.

2.4 Predictors of GBSA

In this study, we aim to increase the predictability of winter
GBSA by refining a large ensemble by selecting individual
members that are closest to a first-guess prediction of winter
GBSA. To achieve this, we first need to define predictors and
the generation of first guesses.

We use fields of linearly detrended September 70 hPa tem-
perature (T70) and November 500 hPa geopotential height
(Z500) anomalies as our predictors for GBSA. The choice
of the respective vertical levels (70 hPa for temperatures and
500 hPa for geopotential height), as well as the choice of
September for T70, is based on a lead–lag correlation analy-
sis between winter GBSA and temperature, as well as geopo-
tential height fields at different levels and lead times. From
this correlation analysis, September T70 and November Z500
emerged as the best-fitting combinations of lead time and
vertical level (not shown). The data for these predictor fields
are taken from the ERA5 reanalysis (Hersbach et al., 2020),
which in its current state dates back to the year 1940. Anoma-
lies are calculated by subtracting the 1940–2017 mean from
the time series. We ensure that there are regions where the
correlation coefficient between the predictor and GBSA is
significantly different from zero over the whole investigation
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period (1940–2017 for predictors, winters 1940/41–2017/18
for GBSA).

In every prediction year, we generate a first guess of win-
ter GBSA from the state of our chosen predictors. For each
predictor xp, we first analyze which grid points show a lo-
cally significant positive correlation with GBSA for all years
from 1940 to the year before the initialization (p ≤ 0.05).
The statistical significance of the correlation is determined
through a grid-point-wise 1000-fold bootstrapping with re-
placement (Kunsch, 1989; Liu and Singh, 1992), where the
0.025 and 0.975 quantiles of bootstrapped correlations define
the range of the 95 % confidence interval. If the 95 % con-
fidence interval excludes a value of r = 0, we consider the
correlation for this grid point significant and that grid point
is taken into account for the generation of a first guess. As
both the anomalies of the predictors and the index of win-
ter GBSA are defined as standardized anomalies following a
Gaussian normal distribution with a mean of 0 and a standard
deviation of 1, we can directly translate the state of each pre-
dictor into a first guess of our predictand GBSA. Therefore,
we compute the first guess of the predictand (GBSA) as an
area-weighted average yp of the state of the predictor xp for
those grid points (i,j) that show a locally significant positive
correlation with GBSA, following Eq. (1).

yp =

∑sig
i=1,j=1xp(i,j)cos8j∑sig

i=1,j=1 cos8j
(1)

In Eq. (1), cos8j denotes the cosine of the latitude of
each grid point used as a weighting factor. For geopotential
height anomalies, we constrain the region that can contribute
to the first guess to the boreal extratropics between 30–90° N,
as the pattern of geopotential height in this region describes
the Rossby wave train which strongly governs the extratrop-
ical winter storm climate. We make sure that each predic-
tor always contributes significantly positively correlated grid
points in every prediction year, as the correlation strength and
location of the significant correlations may vary from year to
year.

In addition to the grid-point-wise significance test, we also
test the fields of T70 and Z500 for global significance by con-
trolling for the false detection rate (FDR; Wilks, 2006). We
achieve this by ranking the p values of all n grid points from
smallest (p(1)) to largest (p(n)), so that

p(1) ≤ p(2) ≤ . . .≤ p(n−1) ≤ p(n). (2)

Subsequently, we then individually test each p value
against a threshold that is comprised of a predefined crite-
rion of αFDR = 0.05, scaled by the rank i of the respective p
value and the total grid size n. Should a p value satisfy the
condition

p(i) < αFDR ∗
i

n
, (3)

we consider the correlation at this point to be significant
globally. Doing so, we are able to determine whether cer-
tain regions of our predictor fields show up as locally sig-
nificant only due to spatial autocorrelation of the respective
atmospheric fields. Please note that for the calculation of the
predictor states, we still use information from all locally sig-
nificant grid points, regardless of whether the respective grid
points are globally significant or not.

For every model run, we choose a number n of ensemble
members in our forecast ensemble with a GBSA closest to
the state of the two predictors T70 and Z500 in that respec-
tive year. Closeness is hereby defined as the absolute differ-
ence between the predicted GBSA of the respective member
and the state of the predictor. Because we select n members
twice in every run, i.e., once for every predictor, and the two
selections of members might overlap, the size of this result-
ing subselection can vary between n members – if the states
of T70 and Z500 are identical in that year – and 2n mem-
bers – if the states of T70 and Z500 are far enough apart that
there is no overlap between the selected members. From this
resulting subselection, we then calculate deterministic and
probabilistic GBSA predictions. A schematic overview of the
predictor-based subselection is given in Fig. 1. Determinis-
tic predictions are computed by averaging the GBSA predic-
tions over all members in the subselection. For probabilistic
predictions, we calculate the fraction of members within the
subselection that exceed a defined threshold for high storm
activity of 1 standard deviation above the long-term mean. It
should be noted that selected members are weighted equally
in all computations, even though some of them might have
been selected by both predictors.

2.5 Skill metrics

To evaluate the improvement of prediction skill for winter
GBSA, we first define separate skill metrics for deterministic
and probabilistic model predictions.

We measure the skill of deterministic predictions with
Pearson’s anomaly correlation coefficient (ACC) and the
root-mean-square error (RMSE) between predicted and ob-
served quantities. The ACC is defined as

ACC=

∑N
i=1

(
fi − f

)
(oi − o)√∑N

i=1
(
fi − f

)2∑N
i=1(oi − o)

2
, (4)

where fi and oi denote predictions and observations at a time
step i, and f and o mark the long-term averages of predic-
tions and observations. ACC values of 1 indicate a perfect
correlation, 0 no correlation, and −1 a perfect anticorrela-
tion. The statistical significance of the ACC is again deter-
mined through a 1000-fold bootstrapping with replacement
and a significance criterion of p ≤ 0.05.
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Figure 1. Schematic depiction of the predictor-based subselection workflow, adapted from Dobrynin et al. (2018).

The RMSE is calculated from the predicted and observed
quantities fi and oi by

RMSE=

√√√√ 1
N

N∑
i=1
(fi − oi)

2. (5)

Probabilistic predictions of high storm activity are tested
against a climatology-based reference prediction and evalu-
ated with the strictly proper Brier skill score (BSS; Brier,
1950). The climatology-based reference prediction is con-
structed from the climatological frequencies of observed
GBSA (e.g., Wilks, 2011). Here, we draw on the definition
of GBSA from Krieger et al. (2021) which assumes an un-
derlying Gaussian normal distribution.

We calculate the BSS as follows:

BSS= 1−
BS

BScli
. (6)

BS and BScli indicate the Brier scores of the probabilis-
tic model prediction and the fixed climatological reference
prediction, respectively. Positive values show that the model
predictions perform better than the climatology-based pre-
dictions and vice versa. A BSS of 1 would indicate a perfect
model prediction, i.e., all members of the ensemble predict-
ing the occurrence or absence of a high-storm-activity event
correctly in every year.

The individual Brier scores (BSs) are defined as

BS=
1
N

N∑
i=1
(Fi −Oi)

2, (7)

where Fi and Oi denote predictions and observations at a
time step i. In the model, we calculate the predicted proba-
bility Fi from the fraction of ensemble members that predict
a high-storm-activity event. For the climatology-based pre-
diction, Fi is a fixed value. As high storm activity is defined
via a threshold of 1 standard deviation above the mean state,
we calculate the climatological probability of a high-storm-
activity event occurring to be Fi = 1−8(1)= 0.1587, where

8(x) is the cumulative distribution function of the Gaus-
sian normal distribution. This means that the probability of
a random sample from a Gaussian normal distribution with a
mean of µ and a standard deviation of σ being larger than
µ+ 1σ is slightly less than 16 %. The observed probabil-
ity Oi always takes on a value of either 1 or 0, depending
on whether the event happened or not.

2.6 Training and hindcast periods

The recent backward extension of the ERA5 reanalysis ex-
tends the dataset back to 1940. Because the predictions of
GBSA are based on predictors that are derived from regions
where the predictor and GBSA correlate significantly, we re-
quire a sufficiently long training period to identify these re-
gions before the start of the first model run. Hence, we clas-
sify the first 2 decades (1940–1959), for which only ERA5
and observational GBSA data are available, as the training-
only period and start the actual predictor-based first guesses
of GBSA in the year 1960. Doing so, we can ensure that we
only use reanalysis data to predict GBSA that was already
available at the start of the respective hindcast run but still use
the full range of hindcasts which begin in 1960. The hindcast
period, i.e., the period in which we predict GBSA and assess
the skill of the model and the subselection, is thus confined
to a total of 58 winters from 1960/61 to 2017/18.

2.7 Composites

To check whether our prediction mechanism is also phys-
ically represented in the hindcast, we calculate composites
of T70 and Z500 in the years with highest and lowest mod-
eled DJF GBSA, respectively. We use all initialization years
(1960–2019), all 64 members, and all lead years except the
first one after the initialization (2–10), leaving us with 34 560
model years. From these 34 560 years, we select the 100
highest and lowest GBSA winters, compute composite mean
fields of both predictors in the respective years preceding
these winters, and calculate the difference between the com-
posites of high and low GBSA. We then analyze the pat-
terns of the composite differences to determine whether they
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Figure 2. Grid-point-wise correlation coefficients between global T70 anomalies in ERA5 and observed winter (DJF) German Bight storm
activity. Period 1940–2017 for temperature anomalies, 1940/41–2017/18 for storm activity. Hatching indicates local statistical significance
(p ≤ 0.05) determined through 1000-fold bootstrapping. Stippling indicates additional global field significance by controlling for the FDR
at a level of αFDR = 0.05.

resemble the correlation patterns between the predictors in
ERA5 and observed DJF GBSA.

3 Results

3.1 Correlations of predictor fields with winter storm
activity

We identify T70 and Z500 anomalies as physical predictors
for winter GBSA. To illustrate the connection between the
global fields of these two predictors and storm activity, and
to demonstrate which regions mainly contribute to the first-
guess predictions, we correlate grid-point-wise time series of
T70 and Z500 anomalies with observed winter GBSA for the
entire time period of 1940–2017.

The highest correlations between GBSA and T70 anoma-
lies are found in the tropics in a circumglobal band between
roughly 15° N and 15° S, with values as high as 0.5–0.6
(Fig. 2). Notably, correlations are slightly lower directly at
the Equator than a few degrees north and south of it. Over
Europe, a smaller region with slightly negative correlations
is present, surrounded by slightly positive correlations to the
northeast and northwest. Over the Southern Ocean, a signal
of slightly negative correlations emerges as well. However,
none of the regions outside of the tropics correlate with DJF
GBSA as high as the tropics themselves. In total, 21.1 % of
all locally significant grid points (or 6.8 % of all grid points)
fail the global field significance test, indicating random cor-
relation. Most of these grid points belong to regions outside

the tropics, which reinforces the hypothesis that the tropical
stratospheric temperatures show the strongest connection to
winter GBSA.

For Z500 anomalies, the strongest positive correlations
with winter GBSA are found over the British Isles and the
adjacent northeastern Atlantic, as well as over east-central
Asia and the US East Coast with peaks around 0.4 (Fig. 3).
The strongest negative correlations emerge over east-central
Europe, Greenland, and northeastern Siberia, reaching as low
as −0.4. The correlation pattern in the boreal extratropics is
in line with the findings of Peings (2019) and Siew et al.
(2020) in a way that troughing (i.e., the opposite of ridg-
ing) over the Ural region and thus a reduced likelihood of
stratospheric warmings in the following winter season is con-
nected to higher-than-usual storm activity in the German
Bight. These areas of significant correlations also strongly
resemble a Rossby wave pattern which spans the boreal ex-
tratropics. Across the subtropical and tropical latitudes, some
areas of slightly positive correlations can be found over the
Sahel region and the Indian Ocean. Together with the nega-
tive correlations in the Arctic, these significant areas may be
indicative of a relation to the Arctic Oscillation (AO; Thomp-
son and Wallace, 1998). In the Southern Hemisphere, small
patches of slightly positive and negative correlations are dis-
tributed circumglobally. However, the absolute correlations
of the aforementioned regions in the tropics and the South-
ern Hemisphere are much lower than those in the northern
extratropics. In total, 81.8 % of locally significant grid points
(or 13.1 % of all grid points) fail the global field significance
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Figure 3. Grid-point-wise correlation coefficients between global Z500 anomalies in ERA5 and observed winter (DJF) German Bight storm
activity. Period 1940–2017 for geopotential height anomalies, 1940/41–2017/18 for storm activity. Hatching indicates local statistical signif-
icance (p ≤ 0.05) determined through 1000-fold bootstrapping. Stippling indicates additional global field significance by controlling for the
FDR at a level of αFDR = 0.05.

test, leaving just the regions associated with the Rossby wave
pattern globally significant. This test supports the decision of
only taking the boreal extratropics into account for the calcu-
lation of the Z500 predictor states.

3.2 Improvement of GBSA predictability

We use the established connection between T70 and Z500
anomalies and DJF German Bight storm activity to predict
the storm activity of the upcoming winter season for the hind-
cast period of 1960–2017. We use latitude-weighted field
means of T70 and Z500 in ERA5 as our initial guess for DJF
storm activity. Since both the time series of temperature and
geopotential height anomalies and those of GBSA are stan-
dardized, we do not need to apply a scaling factor to trans-
late the field means of temperature and geopotential height
anomalies to GBSA. We only use information from data be-
tween 1940 and the year of the start of the forecast. Thus, the
number and distribution of grid points that are included in the
calculation of the first-guess prediction can vary from year to
year. To generate first-guess predictions of winter GBSA, we
need to select a certain number of ensemble members closest
to the initial guess for each predictor.

One degree of freedom in this process is the sampling size,
i.e., the number of members selected for each predictor. The
choice of this sampling size has an effect on the skill met-
rics of the subselected ensemble predictions. To illustrate the
dependency of the model skill on the sample size, we test
the correlation, RMSE, and high-activity BSS against clima-

tology for all sample sizes between 1 and 64 (Fig. 4a) for
the hindcast period of 1960–2017. Furthermore, we perform
these sensitivity studies for both predictors individually to
show how the combined use of both predictors changes the
skill compared to just using one of the two (Fig. 4b and c).

The sensitivity analysis for the combined use of both pre-
dictors (Fig. 4a) shows a strong increase in correlation to
above 0.6 for up to roughly 50 members. This indicates that
removing only about one-sixth of all members per predictor
is sufficient to increase the correlation between the determin-
istic prediction and observations significantly. The optimal
sample size for correlations is found at 25 members per pre-
dictor (r = 0.64). For the RMSE, smaller sample sizes be-
tween 10 and 40 members yield the biggest improvement,
with an optimum at 25 members (RMSE= 0.70). The BSS
can be maximized by selecting 25 members for each pre-
dictor as well (BSS= 0.28) and shows a similar window of
opportunity as the RMSE between 10 and 40 members. The
sensitivity analysis for T70 alone (Fig. 4b) reveals a slightly
lower potential for probabilistic skill improvements. Here,
the BSS can be increased to 0.23 with a sample size of
33 members, but a deterioration of the BSS compared to the
full ensemble occurs below 10 members. Similarly, choos-
ingZ500 alone (Fig. 4c) only improves probabilistic forecasts
when selecting more than 25 members with a maximum of
0.16 at 45 members.

The deterministic skill metrics also show similar windows
of opportunity for both predictors individually. While corre-
lation and RMSE for Z500 are maximized at sample sizes of
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Figure 4. Dependency of various skill scores (ACC, green; RMSE,
blue; and BSS for high storm activity against climatology, pink)
of model ensemble predictions of DJF GBSA on the sample size
chosen for each predictor during the subselection. The subselection
is performed based on (a) both predictors, (b) only T70, and (c) only
Z500. Dashed baselines show the respective skill scores of the full
64-member ensemble. Optimal skill scores (highest ACC and BSS,
lowest RMSE) are displayed as annotated dots, together with the
optimal sample size in brackets.

44 members (r = 0.5, RMSE= 0.79), the optimum for T70 is
located at 42 members (r = 0.55, RMSE= 0.77). It should
be noted that, for both predictors, the optimal sample sizes
for RMSE and correlation are equal, since the correlation
coefficient and RMSE are directly related for standardized
sets of forecasts and observations (Barnston, 1992). Just like

for the BSS, the individual contributions of the predictors to
correlation and RMSE are smaller than the combined effect,
manifesting the need to combine multiple predictors in the
subselection to achieve the best possible skill increase.

From the sensitivity study, we find that sample sizes of
20–30 members constitute a fair compromise between the
optimal sample sizes of deterministic and probabilistic pre-
dictions. Therefore, we exemplarily analyze the prediction of
winter GBSA in the hindcast period for a subselection size of
25 members per predictor in greater detail (Fig. 5).

Over the forecast period, the first-guess estimates obtained
from combining T70 and Z500 anomalies and observed win-
ter GBSA correlate well (0.64), an improvement of 0.36 from
the deterministic full-ensemble model prediction. The subse-
lected ensemble captures the variability in DJF GBSA much
better than the full 64-member ensemble. High agreements
between first-guess predictions and observations are found in
the late 1970s, the 1980s, and between the mid-1990s and the
mid-2000s. With an RMSE of 0.70, the subselection-based
prediction shows a slightly lower error than the full ensemble
(0.88). Furthermore, the BSS against climatology of the re-
duced ensemble for high storm activity predictions is greatly
increased to 0.28, compared to 0.03 for the full 64-member
ensemble. In 39 out of the 58 individual predictions (67 %),
the subselection leads to an improvement in the prediction as
measured by the absolute difference between ensemble mean
and observations.

Overall, all three metrics show a significant improvement
for the first-guess-based reduced ensemble, revealing that
both deterministic and probabilistic storm activity predic-
tions can be significantly improved by the combined inclu-
sion of T70 and Z500 as physical predictors.

3.2.1 Skill increase for large-scale atmospheric
variables

In order to determine on a physical basis why the subselected
ensemble shows a higher prediction skill for GBSA in both
deterministic and probabilistic modes, we analyze the change
in ACC between the full ensemble mean and the mean of
the subselected ensemble for three atmospheric variables that
can be associated with the state of the winter climate over
Europe (Fig. 6). We choose one variable that we also use for
the ensemble subselection, winter-mean 500 hPa geopoten-
tial height (Z500), and two variables that are not included in
the ensemble subselection, namely winter-mean MSLP and
200 hPa zonal wind (U200). Variations in MSLP indicate the
prevalent distribution of high and low pressure areas, which
directly influence the near-surface wind speed and can be in-
dicative of the mean wind climate during winter. The field of
Z500 provides insight into the state of the Rossby wave pat-
tern in winter and whether the large-scale mid-tropospheric
flow diverts storms away from or towards the German Bight.
The location and strength of the polar jet stream, expressed
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Figure 5. Predictions of DJF GBSA by the 64-member ensemble mean (gray line), the subselected ensemble mean (orange line), and
observed DJF GBSA (black line). Period 1960–2017 for model initializations, 1960/61–2017/18 for storm activity observations. Circles
indicate GBSA predictions of individual members; colored circles indicate the selected 25 members closest to the first-guess predictions
based on T70 (red) and Z500 (teal). Green plus signs and red “x” markers denote forecasts where the subselection is closer to or further away
from the observation than the full ensemble.

Figure 6. Anomaly correlation coefficients (ACC) for ensemble mean predictions of the full 64-member ensemble (a, d, and g), the 25-
member subselection (b, e, and h), and the change in ACC between the full and subselected ensemble (c, f, and i) for winter-mean (DJF)
MSLP anomalies (a–c), 500 hPa geopotential height anomalies (Z500, d–f), and 200 hPa zonal wind anomalies (U200, g–i). Winter-mean
anomalies are calculated by averaging monthly anomalies from December, January, and February. Period 1960/61–2017/18. Stippling indi-
cates statistical significance (p ≤ 0.05) determined through 1000-fold bootstrapping.

asU200, govern the lower tropospheric setup and can enhance
or suppress the formation of storms.

We find that the full ensemble shows significant skill for
deterministic winter MSLP forecasts north of 60° N, as well
as for winter Z500 south of 45° N, but limited skill for both
MSLP and Z500 over west-central Europe and the adjacent
region of the North Atlantic Ocean (Fig. 6a and d). The sub-

selected ensemble shows a slightly higher skill for MSLP
over Scandinavia and the Iberian Peninsula, but not over
the German Bight and more generally west-central Europe
(Fig. 6b and c). The skill of the subselection for Z500 is
also slightly improved from Greenland to northern Scandi-
navia (Fig. 6e and f). Despite not showing an improvement
over the German Bight, higher skill north and south of the
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Figure 7. Like Fig. 6 but for a perfect test; i.e., the 25 members closest to the actually observed GBSA are selected.

German Bight indicates an increase in the predictability of
the meridional gradient of MSLP and Z500, which is crucial
to more accurately predict the wind climate in the German
Bight. For U200, the full ensemble shows significant skill in
a mostly zonally oriented band spanning from the North At-
lantic around 55° N into west-central Europe (Fig. 6g). No-
tably, positive correlations are located closer to the German
Bight than for MSLP and Z500. The subselected ensemble
mostly retains this correlation pattern but extends the signif-
icant skill across the German Bight into east-central Europe
(Fig. 6h and i). The improvement in predictability of U200,
which is associated with the strength and location of the jet
stream, is in accordance with the improvement in GBSA pre-
diction skill, as the jet stream governs the formation and in-
tensification of extratropical cyclones.

3.2.2 Potential capabilities of the model (perfect test)

To determine the theoretical maximum of skill improvement
that the model could achieve, we perform a perfect test. In-
stead of choosing the 25 members closest to the first-guess
winter GBSA determined from the two respective predic-
tors as in the previous section, the perfect test selects those
25 members in each forecast that are closest to the actually
observed winter GBSA. We refer to the set of these mem-
bers selected in the perfect test as the perfect ensemble. For
this perfect ensemble, we again analyze the change in ACC
for MSLP, U200, and Z500 (Fig. 7). Note that operationally
the perfect test would require information from the future, as

the selection of a perfect ensemble at the start of the fore-
cast in November relies on observational data which are not
available until the end of February of the following year.
For this reason, the perfect test is merely a tool of retro-
spective model evaluation and can not be replicated opera-
tionally. Again, we find that the greatest skill increases occur
in regions where the full ensemble already showed signif-
icant skill. For MSLP and Z500, the skill north and south
of the German Bight and therefore the predictability of the
meridional gradient is significantly improved, while the skill
in a region near and slightly west of the German Bight is al-
most unaffected by selecting the perfect ensemble (Fig. 7b,
c, e, and f). Even with knowledge of future GBSA, the per-
fect ensemble is not able to significantly improve predictions
of MSLP and Z500 in the same area. The perfect ensemble
also improves U200 predictability over regions where the full
ensemble already showed skill, i.e., mostly between 50 and
65° N (Fig. 7h and i).

Generally, the patterns of skill increase through ensemble
subselection are similar for the non-cheating hindcast and
the perfect ensemble. The major difference between the two
modes is that the increase in predictability of MSLP, Z500,
and U200 is much larger in the perfect ensemble, which is
to be expected as the model is able to use information from
the future. From the similarity of the skill improvement pat-
terns, however, we construe that the improvement of GBSA
prediction skill through subselecting members is consistent
with the physical mechanisms behind the extratropical winter
storm climate and their predictability. The strong contrast in
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Figure 8. Composite mean T70 of 100 model years with the highest subsequent DJF GBSA minus composite mean T70 of 100 model years
with the lowest subsequent DJF GBSA in MPI-ESM-LR decadal hindcast runs. Data are taken from all initializations, all members, and all
lead years except for the first year after initialization.

Figure 9. Composite mean Z500 of 100 model years with the highest subsequent DJF GBSA minus composite mean Z500 of 100 model
years with the lowest subsequent DJF GBSA in MPI-ESM-LR decadal hindcast runs. Data are taken from all initializations, all members,
and all lead years except for the first year after initialization.

the magnitude of skill improvement points out the potential
of the ensemble for even better predictions of the extratrop-
ical winter climate. However, additional research into more
sophisticated ensemble refinement techniques, possibly also
including the involvement of machine learning, is required to
make use of this potential.

3.3 Representation of the mechanisms in the model

Figures 8 and 9 show differences in composite mean mod-
eled T70 andZ500 fields between years prior to modeled high-
and low-storm-activity winters. The patterns of T70 differ-
ences (Fig. 8) barely resemble the observed correlation pat-

terns that are apparent between reanalyzed T70 fields and DJF
GBSA observations (see Fig. 2). Differences in the tropics,
where observed correlations are highest, hardly exceed 0.3 K.
In contrast, negative differences of up to−2 K, i.e., lower T70
preceding high DJF GBSA, emerge in the austral extratrop-
ics, where slightly negative correlations can also be found in
the observations. Overall, the model appears to be incapable
of reproducing the pathway from stratospheric temperature
anomalies in September to changes in the extratropical win-
ter storm climate in the German Bight.

The patterns in the composite differences of Z500 (Fig. 9),
however, demonstrate a fair agreement with observed corre-
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lation patterns (see Fig. 3). Before high-storm-activity win-
ters, geopotential heights in the model are up 30 gpm higher
over the US East Coast, west-central Europe, and north-
eastern Asia than before low-storm-activity winters. Simi-
larly, up to 30 gpm lower geopotential heights are modeled
over Canada, Greenland, the Ural region, and the Arctic in
years prior to high-storm-activity winters. These regions of
largest geopotential height differences match the regions of
significant correlations between Z500 in ERA5 and observed
DJF GBSA. We thus conclude that the physical link be-
tween November geopotential height anomalies and subse-
quent DJF GBSA is very well modeled by the hindcast sys-
tem.

4 Discussion

We use a decadal prediction system for seasonal predic-
tions because we want to make use of the large ensemble
size and the high temporal resolution of the model output.
While a seasonal prediction system would be sufficient for
this analysis, we are not aware of any available seasonal
single-model initialized large ensembles with 64 members
and three-hourly MSLP output. In addition, the use of the
MPI-ESM-LR decadal prediction system allows us to di-
rectly compare the predictability for the first winter to the
results from Krieger et al. (2022). We find that the full-
ensemble prediction skill for winter GBSA (r = 0.28, BSS=
0.03) is close to what Krieger et al. (2022) found for lead-
year-1 predictions of annual GBSA. This similarity is ex-
plainable by the higher wind speeds of storms in winter and
thus the higher contribution of the winter season to annual
storm activity than the remaining seasons.

Furthermore, the MPI-ESM-LR decadal hindcast offers a
total of about 60 initialization years, while the correspond-
ing seasonal prediction system based on the MPI-ESM-LR
only covers about 40 initialization years. Additionally, the
backward extension of ERA5 to 1940 allows us to define
the initial training period, which is the period from which
we determine areas of significant correlation between GBSA
and the predictors before the first hindcast run by 2 decades,
which fully precede the hindcast. Thus, we are able to gen-
erate predictor-based first guesses for almost 6 decades of
hindcast initializations to test the skill of the model, while
the seasonal system (in Dobrynin et al., 2018) only allowed
for a hindcast period of 2 decades.

The improved prediction skill for winter GBSA (r = 0.64)
is higher than what is typically achieved with full-ensemble
seasonal or decadal prediction systems, especially in the
German Bight, where previous studies on large-scale win-
ter storm activity have demonstrated shortcomings of sea-
sonal (e.g., Scaife et al., 2014a; Degenhardt et al., 2022) and
decadal prediction systems (e.g., Kruschke et al., 2014, 2016;
Moemken et al., 2021). This high skill for storm activity is
especially impressive considering the comparably low ACC

of both the full and even the subselected ensemble for win-
ter MSLP over Europe. Here, the winter MSLP ACC values
remain below ACCs of, for example, a multisystem seasonal
prediction of MSLP (Athanasiadis et al., 2017) and are closer
to those found by Athanasiadis et al. (2020) on the decadal
scale.

While our subselection increases the skill quite notably,
there is still room for more improvement. This becomes es-
pecially apparent in the perfect test plots, where the poten-
tial perfect ACC increase for associated physical parameters
like Z500, U200, and MSLP is a lot larger compared to our
predictor-based ensemble subselection. A possible method
to further improve the predictability and to rely more on the
model physics would be checking which members actually
predicted the observed patterns in November correctly and
subselect those members. However, a test which replaces the
members closest to the state of the Z500 predictor field with
those members that exhibit the highest pattern correlations
with observed Z500 fields in November results in a smaller
increase in prediction skill for GBSA (not shown). We ar-
gue that the ensemble spread in November (i.e., directly after
the initialization) is too low to objectively distinguish “good”
from “bad” members. This method of refining the ensemble
based on the predictions of observed patterns would become
more feasible if the ensemble were initialized earlier than in
November or if the winter prediction were supposed to be
updated during the winter, based on, for instance, the model
representation of certain observed atmospheric fields in De-
cember or January.

The correlation between temperature anomalies in the
tropical stratosphere and GBSA is notably higher than the
correlation between the same predictor and both the winter-
time North Atlantic Oscillation (NAO) and Arctic Oscillation
indices, two climate modes representative of the larger-scale
atmospheric circulation over the northern mid and high lat-
itudes. We argue that the increased correlation with GBSA
is caused by the strong multidecadal signal within both the
tropical stratosphere and GBSA which appears to be in phase
over the investigated period. While GBSA is also connected
to the NAO and the AO to a certain degree with correlations
of 0.51 (NAO) and 0.40 (AO) for 1960/61–2017/18, the con-
nection to the NAO has been shown to fluctuate over time
(e.g., Krieger et al., 2021). In the 1960s, the running corre-
lation between GBSA and the NAO index reached its mini-
mum at values below 0.2, indicating that the decadal to mul-
tidecadal signals in both time series appear to move out of
phase at times. This implies that even with an almost perfect
forecast of the NAO, as for instance achieved by Dobrynin
et al. (2018), a equally good prediction of GBSA cannot
be guaranteed. Furthermore, we conclude that, while Scaife
et al. (2014a) attribute a significant fraction of prediction skill
for winter storm activity to the predictability of the NAO, our
predictors may be better suited for direct GBSA predictions
without simultaneously improving NAO predictions as well.
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Since this is a single-model study based on the MPI-ESM-
LR, our findings are model-specific. Therefore, the conclu-
sions we draw are true for this model and the associated
model physics. However, because the subselection process
is purely based on the statistical relationship between reanal-
ysis data and observations, it could also work in other large
model prediction ensembles, as long as the internal variabil-
ity in the ensemble encompasses the natural variability of
GBSA.

We confirmed the connection between GBSA and the
two chosen predictors through correlation analysis based on
the ERA5 reanalysis. To ensure that the choice of reanal-
ysis does not bias our results, we performed the correla-
tion analysis between the predictor fields and GBSA in the
NCEP-NCAR reanalysis (Kalnay et al., 1996) for the winters
1948/49–2017/18 and found similar patterns of correlations
(not shown).

Despite having increased the predictability for the first
winter on a seasonal scale, the decadal skill matrix for annual
GBSA in Krieger et al. (2022) presents more lead times with
poor predictability between lead year 1 and longer averaging
periods. Using tropospheric patterns as predictors for longer
lead times than the first winter is unphysical given the short
memory of the troposphere. Therefore, new predictors (e.g.,
sea surface temperature) would need to be tested and used
for an improvement of the GBSA prediction skill beyond the
first winter. Alternatively, the model could be optimized to
skillfully predict the state of the tropical stratosphere beyond
the first year, for example via an accurate representation of
the QBO. Such a prediction would then still require a statis-
tical approach to link the QBO to GBSA, since we showed
that the pathway from the tropical stratosphere to the extrat-
ropics in the boreal winter is poorly represented in the model
(Fig. 8). Looking beyond the predictability of GBSA, the en-
semble subselection method may be usable to improve the
predictability of other climate extremes that can be associ-
ated with physical precursors. As long as the internal vari-
ability of a prediction system is able to capture the variabil-
ity of the predicted event or extreme, and precursors with a
stationary link to the event are found, an improvement of the
prediction skill appears feasible. This method is also not lim-
ited to a certain timescale, so that the same approach may be
usable not only in decadal prediction, but also in subseasonal
or weather prediction. Any further analysis in this direction,
however, is beyond the scope of this study.

5 Conclusions

We showed that the ensemble subselection technique first
proposed by Dobrynin et al. (2018) can be applied to large-
ensemble predictions of small-scale climate extremes. Us-
ing September T70 and November Z500 anomalies as pre-
dictors, we were able to increase the prediction skill of the
MPI-ESM-LR large-ensemble decadal prediction system for

winter GBSA for both deterministic and probabilistic predic-
tions over a hindcast period of 58 winters. Compared to the
inherently low prediction skill of the full ensemble, the sub-
selection adds value to the seasonal predictability of GBSA
by improving the ACC from 0.28 to 0.64, RMSE from 0.88
to 0.70, and BSS for high storm activity against climatol-
ogy from 0.03 to 0.28. The sensitivity analysis showed that
the improvement of skill metrics depends on the size of the
subselection and on the combination of predictors. We also
showed that the skill gain can be explained through physi-
cal mechanisms, as the subselected ensemble also displays
a higher ACC for deterministic predictions of winter-mean
U200 over the German Bight, as well as for the meridional
gradient of MSLP and Z500 over north-central Europe, all of
which are closely related to the European winter storm cli-
mate.
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