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Abstract. Wildland–urban interface (WUI) regions are par-
ticularly vulnerable to wildfires due to their proximity to both
nature and urban developments, posing significant risks to
lives and property. To enhance our understanding of the risk
profiles in WUI areas, we analysed seven fire case studies in
central Chile. We developed a mixed-method approach for
conducting local-scale analyses, which involved field sur-
veys, remote-sensing through satellite and drone imagery,
and GIS-based analysis of the collected data. The method-
ology led to the generation of a georeferenced dataset of
damaged and undamaged dwellings, including 16 variables
representing their physical characteristics, spatial arrange-
ment, and the availability of fire suppression resources. A bi-
nary classification model was then used to assess the relative
importance of these attributes as indicators of vulnerability.
The analysis revealed that spatial arrangement factors have a
greater impact on damage prediction than the structural con-
ditions and fire preparedness of individual units. Specifically,
factors such as dwelling proximity to neighbours, distance to
vegetation, proximity to the border of dwelling groups, and
distance from the origin of the fire substantially contribute to
the prediction of fire damage. Other structural attributes as-
sociated with less affluent homes may also increase the likeli-
hood of damage, although further data are required for confir-
mation. This study provides insights for the design, planning,
and governance of WUI areas in Chile, aiding the develop-

ment of risk mitigation strategies for both built structures and
the broader territorial area.

1 Introduction

1.1 General problem: fires are an increasing issue in
the wildland–urban interface

Wildfires are a natural hazard that refers to an out-of-control
wildland fire burning over a large area (Coppola, 2015). Ev-
ery year, more than two million small wildfire events are
registered worldwide, with most of them having no signif-
icant impacts and not evolving into disasters (Bowman et
al., 2017). However, a small proportion of these events es-
calate into very large incidents that have significant ecologi-
cal and socioeconomic impacts (Bowman et al., 2017; Tedim
et al., 2018), including fatalities, physical and psychologi-
cal injuries, property loss, and diverse environmental impacts
(March et al., 2020). Furthermore, 96 % of extreme wildfire
disasters are associated with anomalous meteorological or
climatic conditions (Bowman et al., 2017). Climate change
has already led to a worldwide increase in the severity and
frequency of weather conditions conducive to fires, a trend
that is expected to persist (Jones, 2020). For instance, Ellis et
al. (2022) pointed out that forests in boreal and mid-latitude
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regions have experienced significant increases in fire activity,
driven by more frequent occurrences of extreme fire-prone
weather and longer fire seasons because of anthropogenic cli-
mate change.

Wildland–urban interface (WUI) areas imply a higher
wildfire risk because human lives and material goods are
more exposed to fire (Gill and Stephens, 2009). Wildfires
in WUI areas constitute an “unresolved and growing prob-
lem given population dynamics, climate change and, in some
cases, increasing forest areas” (Sarricolea et al., 2020, p. 2).
In these areas, the likelihood of housing loss due to wildfires
is significantly influenced by housing arrangement and lo-
cation (Syphard et al., 2012). Moreover, settlement patterns,
such as the expansion of low-density urban sprawl and rural-
residential developments that encroach on fire-prone areas,
can also affect the frequency and severity of catastrophic
wildfires (Butt et al., 2009). Therefore, it is important that the
current methods of WUI development be revised (Bowman
et al., 2017; González-Mathiesen and March, 2018; Moritz
et al., 2014).

1.2 Wildfire risk assessment

To revise the current methods of WUI development and re-
duce or mitigate risk, it is of foremost importance that a wild-
fire threat assessment precede development. The need to in-
tegrate wildfire considerations into urban planning systems
is well established in the literature (e.g. González-Mathiesen
and March, 2018; March et al., 2020). The first step toward
integrating wildfire considerations into urban planning sys-
tems is to carry out wildfire risk analyses (AIDR, 2020),
which should provide valuable insights into settlement ex-
pansion decisions, ensuring that new development does not
perpetuate or increase current risks. Furthermore, conduct-
ing assessments of already-developed areas is also the first
step for the targeted implementation of mitigation strategies.

Wildfire assessments can emphasize different perspec-
tives, including risk, hazard, and vulnerability (Galiana-
Martín, 2017). In its general definition, the term hazard refers
to the process or phenomenon that may cause loss of life or
injuries, property damage, social and economic disruption, or
environmental degradation (Goldammer et al., 2017). Wild-
fire hazard is a combination of likelihood, defined as the an-
nual probability of ignition in a specific location, and inten-
sity, which refers to the expansion or energy expected from
a wildfire (Wildfire Risk – Understand Risk, 2024). Usu-
ally, wildfire hazard is associated with vegetation or available
fuel, topography, weather/climate conditions, ignition likeli-
hood, and suppression capabilities (e.g. March et al., 2020).
The assessment of risk aims to quantify the potential losses
caused by fire and its spread (e.g. Jappiot et al., 2009) over
a given period and spatial region and is therefore a prod-
uct of three components: (1) the hazard; (2) exposure or an
inventory of the population, the built assets, the ecosystem
services, the economic activities, or other valuable elements

located in hazard-prone areas (UNISDR, 2009); and (3) the
vulnerability, which represents the propensity of the exposed
elements to be damaged if a wildfire occurs. The vulnera-
bility is determined for example by the socioeconomic fac-
tors, building conditions, and population demographics of
exposed areas (Oom et al., 2022; Wildfire Risk – Understand
Risk, 2024).

Hazard assessments have often been preferred over risk as-
sessments in urban planning as they tend to be simpler and
faster to conduct and can be easier to implement. For exam-
ple, land use planning in Victoria, Australia, is determined
by hazard-based zoning that identifies the wildfire hazards
rather than the risk (DTPLI, 2013). However, this approach
assumes that the fire hazard in urban areas is low, which
could imply an underestimation of the risk in WUI areas.
This suggests that risk assessment techniques that are sim-
ple to conduct and implement would promote the use of risk
analysis over hazard analysis in urban planning contexts.

For the purposes of risk reduction and mitigation, wild-
fire risk assessments should be approached with a medium-
term risk analysis perspective, considering for example time
frames from 2 to 10 years (Jappiot et al., 2009). Several
countries have developed WUI risk assessment methodolo-
gies at varying spatial scales (i.e. local, landscape, regional,
national) and with different data inputs and information pur-
poses, but overall the process usually follows a procedural
approach similar to the one established by ISO 31000 (2018),
which integrates hazard, exposure, and vulnerability compo-
nents (see e.g. Oom et al., 2022; San-Miguel-Ayanz et al.,
2017; Syphard et al., 2012; Mitsopoulos et al., 2015; Calkin
et al., 2019; Caggiano et al., 2020; Zong et al., 2022; Sakel-
lariou et al., 2022). Other novel approaches aim to extend
probabilistic assessments to include WUI resilience; for ex-
ample, Tampekis et al. (2023) propose a holistic theoretical
framework based on performance-based engineering that ex-
pands the components of risk to include potential socioeco-
logical impacts and interactions and to evaluate socioecolog-
ical resilience.

Spatial mapping techniques are an important part of wild-
fire risk analysis and management, evolving alongside tech-
nology, especially in terms of geographic information sys-
tems (GISs). These techniques aim to quantify the risk as
well as its spatial magnitude (Atkinson et al., 2010). During
the 1990s, these analysis methods were generally qualitative
and focused on components such as hazard (involving esti-
mates of fuel load based on vegetation) and risk (associated
with ignition risk to valuable natural and humanmade assets).
These components were put into a matrix and assigned low-,
medium-, or high-risk values, which were then overlaid with
maps to determine high-risk areas (Atkinson et al., 2010).
As technology and data quality have improved, wildfire risk
analysis processes have evolved and become more complex
and multi-faceted. Spatial mapping techniques, such as GISs,
are becoming important tools that can greatly contribute to
reducing the hazards’ impact on society (Chen et al., 2003).
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For instance, Romero-Calcerrada et al. (2008) used GIS-
based spatial models to assess the main causes of wildfire
ignition (and to predict ignition risk) in the south-west of
Madrid, Spain. Their results indicated that proximity to urban
areas and roads is the most significant causal factor. Along
these lines, studies that explore ways to assess wildfire risk
in WUI areas usually distinguish between land cover types.
These studies record vegetated land cover classes, in addi-
tion to one or a few categories of urban land covers (such
as high-density residential, low-density residential, and com-
mercial/industrial) that cover large areas (e.g. Bar Massada
et al., 2009; Zhu et al., 2012). Based on this information,
researchers then construct a burn probability map to iden-
tify the probability of structures being affected by a wildfire,
highlighting those at higher risk. Additionally, some studies
also include housing density as one of the assessment criteria
(e.g. Lu et al., 2009; Sirca et al., 2017).

The use of contemporary modelling techniques that map
the fire risk for structures in WUI areas could play a signifi-
cant role in improving risk reduction and mitigation through
urban planning and governance. However, research that ex-
plores mapping wildfire risk in WUI areas is still in its
seminal stages and is typically conducted at a territorial
scale. Remarkably, the consideration of detailed-scale phys-
ical characteristics of settlements and structures, along with
their nuances, remains an emerging field of research, which
is commonly addressed through the examination of post-
disaster scenarios with data collected through field surveys.
Examples of this type of approach include, for instance,
Papathoma-Köhle et al. (2022), who developed a physical
vulnerability index for buildings subject to wildfire. To do
this, they used data (13 building structural and surrounding
features) from 423 built units affected by the Mati fire that
occurred in Greece in 2018 and applied the random-forest-
based Boruta algorithm to estimate the feature importance
of each of those elements on the degree of damage. In turn,
Dossi et al. (2022) used a similar approach (but only consid-
ering built features and not characteristics from the imme-
diate surroundings), taking a large sample of 17 500 build-
ings exposed to wildfires in California, USA (between 2013
and 2017), and 1190 buildings exposed to the 2017 Pedrógão
Grande fire complex in Portugal. They applied statistical de-
pendence tests to this database to examine the possible cor-
relations between the dependent variable (i.e. the surveyed
damage level) and the independent ones (i.e. each building
feature).

In comparison to the sophisticated models currently avail-
able for assessing wildfire risk in rural contexts, the under-
standing of the feature importance of a built unit’s physi-
cal characteristics as predictors of wildfire damage is still an
emerging field of research. This is evidence of a fundamental
shortcoming of risk assessment and mapping techniques that
requires attention, particularly for the mitigation and preven-
tion of wildfire risk in WUI areas.

1.3 The case of Chile

Chile’s fire regime is dominated by frequent, low-intensity
fires and some rare but exceptionally intense events, all con-
centrated in the south-central territory. Fire occurrence is
highly seasonal and closely associated with precipitation
and temperature variations (González et al., 2011). How-
ever, the occurrence of fire weather is increasing due to
climate change (Urrutia-Jalabert et al., 2018). In this re-
spect, Sarricolea et al. (2020) underline that climate change
(with increasing temperatures and decreasing precipitation)
has increased the probability, intensity, and speed of wild-
fire propagation, especially in subtropical and Mediterranean
regions like the south-central area of Chile. As they point
out, this trend was demonstrated by the tragic summer wild-
fires of 2016–2017, where the total burnt area was more than
500 000 ha (largely exceeding the records of the previous 2
decades, with roughly 50 000 to 100 000 burnt hectares per
season). Moreover, the 2022–2023 summer season proved
to be equally catastrophic, with roughly 440 000 damaged
hectares and approximately 5700 recorded fires (CONAF,
2023a). Historical statistics show that only a small number of
fires, representing approximately 0.6 % to 0.9 % of all fires,
are responsible for 60 % of the burnt areas in the country
(CONAF, 2023b). Furthermore, the central and southern ar-
eas are the most impacted by wildfires in terms of the num-
ber of events and affected surface area (Castillo et al., 2014).
These regions also correspond to the most populated areas
of Chile, with Sarricolea et al. (2020) reporting that almost
3 million people live in WUI areas. Furthermore, fire ignition
is mostly associated with human activities (CONAF, 2023b).

WUI areas impacted by wildfires are a relatively new –
and increasingly common – challenge for Chile. The first
recorded wildfire that impacted the WUI can be traced to an
event that took place in Viña del Mar on 22 January 1968.
More recently, in 2012, the Ñuble fire affected several small
towns and resulted in the destruction of 162 dwellings and
24 000 burnt hectares (La Tercera, 2012). In 2014, the great
Valparaíso fire impacted 11 of the 42 hills in Valparaíso, de-
stroyed more than 2900 houses, burnt 926 ha, caused 15 fa-
talities, injured 500 people, and displaced over 12 500 peo-
ple (Reszka and Fuentes, 2015). Furthermore, in 2017, the
fire event called Tormenta de Fuego, the most devastating
wildfire event recorded in Chile, burnt 546 677 ha, destroyed
2831 buildings, displaced over 8129 people, and caused 11
fatalities. These recent events have increased local aware-
ness of the fact that most populated areas in the south-central
territory might be at risk of wildfires (e.g. Castillo, 2013;
Castillo et al., 2014; Úbeda and Sarricolea, 2016) and that
this needs to be addressed through risk-based modelling ap-
proaches in the planning, governance, and development of
WUI areas (e.g. Arana et al., 2018; Gómez-González et al.,
2018; Reszka and Fuentes, 2015).

In Chile, several wildfire risk analyses have been con-
ducted in the WUI. For example, Garfias et al. (2012)
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used a socioeconomic approach to analyse wildfire-prone
areas within the Valparaíso Viña del Mar WUI through a
semi-structured questionnaire survey that was answered by
403 households in an area of approximately 14 000 ha. The
survey was focused on assessing each dwelling’s basic at-
tributes (e.g. total built area) but also on examining its occu-
pants’ perception of the surrounding natural environment, in-
cluding the fire hazard it poses to them. Castillo et al. (2014)
examined (using high-resolution satellite images) the fire
vulnerability in the Valparaíso WUI area using a sociospa-
tial approach that considered 15 variables that comprised
the physical characteristics of buildings and settlements (e.g.
number of houses per hectare, average dwelling size, con-
struction material) and also socioeconomic variables (e.g.
risk ratio of individuals in each household, average number
of adults and children per household, economic loss factors)
of the dwellings located there. When combined with environ-
mental characteristics such as land slope and vegetation, this
analysis allowed them to model the vulnerability of the ter-
ritory in relation to forest fires. Sarricolea et al. (2020) anal-
ysed the wildfire occurrences using satellite images to iden-
tify WUI areas and determine the population residing in areas
that may be affected by wildfires. In their study, they consid-
ered data regarding the monthly burnt areas, land use and
land cover (LULC), and census block and population data.
The LULC data distinguished land covers such as grasslands,
croplands, wetlands, and diverse types of forests (at 500 m
spatial resolution for the period between 2000 and 2017 and
30 m spatial resolution for the year 2014). It distinguished
urban and built-up land as one type of LULC.

1.4 Research gap and questions

The aforementioned studies have contributed new and valu-
able insights into the wildfire threat in WUI areas in Chile
and around the world. However, it should be noted that the
analyses were undertaken mostly at a territorial scale that
does not commonly allow for the detailed physical charac-
teristics and distribution of buildings and settlements or their
impact on wildfire risk to be distinguished; this more spa-
tially focused approach is still an emerging field of research
globally, not yet carried out in Chile. This highlights the
necessity of small-scale analyses that can provide nuanced
information about how the different physical characteristics
of structures and settlement patterns affect the risk profiles
of WUI areas vulnerable to wildfires in the Chilean con-
text. These nuanced understandings could contribute valu-
able knowledge to guide the design, planning, and gover-
nance of settlements in WUI areas in order to reduce and mit-
igate wildfire risk. Moreover, as several WUI areas in Chile
include informally developed zones, these findings could
also help to inform retrofitting policies with this objective.
Also, we enhance the accuracy and speed of the collection
of post-fire field data by using remote sensing through satel-
lite and drone imagery. Along these lines, this study aims to

answer the following research questions: what are the main
vulnerability parameters that contribute to wildfire risk in
WUI areas in Chile? How can these parameters be rapidly
surveyed and assessed in the aftermath of destructive wild-
fires?

To answer these questions, we proposed a mixed-method
approach that combines remote-sensed satellite and drone
imagery (captured in the field in the aftermath of destructive
WUI wildfires), field reconnaissance, and GIS-based analy-
sis of the collected data, followed by a multivariate classifi-
cation analysis of this information. This approach allowed us
to assess the relative importance of each parameter as an in-
dicator of wildfire vulnerability in the examined WUI areas.
In turn, these conclusions could be used to propose risk mit-
igation strategies for both the built structures and the larger
territory.

The rest of this paper is as follows. Section 2 describes the
methodology, which encompasses a GIS-based examination
of seven wildfire case studies in Chile, followed by a multi-
variate regressive analysis of vulnerability indicators to WUI
fire hazards. Section 3 presents the research results, which we
discuss in Sect. 4. Lastly, Sect. 5 provides the study’s main
conclusions and proposes paths for future investigation.

2 Methods

2.1 Case studies: collection and pre-analysis of damage
data for WUI fire events

Starting in the summer fire season of 2019 and continuing
until December 2022, our fieldwork team conducted data col-
lection campaigns in the aftermath of seven WUI events that
occurred in the central region of Chile. Table 1 summarizes
the case studies, including information about the start date
and location of each wildfire.

Each field survey (typically conducted 1 or 2 d after the
fire) entailed a drone flight over the burnt WUI to ob-
tain high-resolution optical orthomosaics and digital sur-
face models. For this task, we used two small aircraft
that could be easily operated in urban scenarios, a DJI
Mavic 2 Pro and a DJI Phantom 4. We also used the
PIX4Dcapture application (https://www.pix4d.com/product/
pix4dcapture/, last access: 1 April 2022) for flight planning
and drone operation, and all flights were conducted by a li-
censed pilot following the Chilean General Directorate of
Civil Aeronautics guidelines. We processed the aerial im-
ages and generated the RGB orthomosaics, digital surface
models (DSMs), and digital terrain models (DTMs) with
the aid of PIX4Dmapper software (https://www.pix4d.com/
product/pix4dmapper-photogrammetry-software/, last ac-
cess: 1 April 2022). Additionally, we collected photographic
evidence of affected dwellings and made in situ observa-
tions of dwelling characteristics (e.g. materials, age), urban
maintenance conditions (e.g. presence of garbage dumps,
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Table 1. WUI fire case studies considered in this study.

Case study Date of wildfire Location S2 image date S2 image tile
(yyyy/mm/dd) (yyyy/mm/dd)

Limache 2019-01-09 32°59′21′′ S, 71°13′50′′W 2018-12-15 T19HBD
Rodelillo 2019-11-18 33°03′12′′ S, 71°35′00′′W 2019-11-15 T19HBD
Rocuant 2019-12-24 33°04′27′′ S, 71°35′22′′W 2019-12-20 T19HBD
Quilpué 2021-01-15 33°04′51′′ S, 71°25′00′′W 2021-01-13 T19HBD
Laguna Verde 2022-03-30 33°08′24′′ S, 71°40′58′′W 2022-03-29 T18HYJ
Melipilla 2022-12-11 33°47′58′′ S, 71°18′02′′W 2022-12-09 T19HBC
Viña del Mar 2022-12-22 33°02′44′′ S, 71°33′10′′W 2022-12-04 T19HBD

road blockages), data on fire suppression resource availabil-
ity (e.g. water tanks, fire hydrants), and witnesses’ accounts
of the origin and progression of the fire. The combination
of drone imagery and direct visual inspections allowed us to
examine each built unit within the study areas and to classify
it into three possible categories: (1) no damage, (2) partial
damage, and (3) total damage. All data were georeferenced
using mobile GIS systems.

2.2 Generation of burnt area and vegetation layers

For each case study, the burnt area was manually delim-
ited based on visual analysis of the drone RGB orthomo-
saics. In addition, satellite images obtained by the multispec-
tral instrument (MSI) on board Sentinel-2 (S2) were used
to characterize the distribution and density of vegetation in
each study region through the normalized difference vege-
tation index (NDVI; Rouse et al., 1973). This index quanti-
fies the density of plan growth as the normalized difference
between reflection at near-infrared (NIR) and optical (red)
wavelengths and, in the case of Sentinel-2 MSI data, is cal-
culated as NDVI= (B8−B4)/(B8+B4), where B8 and B4
are the NIR and optical red band, respectively, both with a
spatial resolution of 10 m (Drusch et al., 2012). Pixels with
NDVI > 0.6 were selected to generate a vegetation raster
layer (De Fioravante et al., 2021). The details of image dates
and tiles used in each case study are given in the last columns
of Table 1.

2.3 Quantification of context and landscape variables
in WUI fire scenarios

To study the vulnerability of housing units to WUI fires,
we defined a set of 16 physical and spatial features to ex-
amine them as potential predictors (i.e. independent vari-
ables) of the probability of total or partial damage. These
variables, summarized in Table 2, were selected to encom-
pass both the structural and the preparedness conditions of
individual units, the spatial arrangement of units relative to
the surrounding landscape and to each other, and the avail-
ability and extent of fire suppression resources. To measure
the variables, each built unit within the surveyed area was

manually digitized from the drone-based orthomosaic maps
and elevation models to obtain its geographic position, roof
footprint, and ground height. The digital terrain models con-
structed from drone imaging were also used to generate the
terrain slope and orientation layers. Building materials were
inferred from a visual inspection conducted during the field
visit and from pre-event street view imaging. Additionally,
pre-event Sentinel-2 multispectral satellite data, public geo-
databases (see Table 2), and orthomosaics were used to gen-
erate a set of vectorial layers to represent the distribution of
vegetation, location of garbage dumps, evacuation roads, and
availability of water supplies (e.g. water network, water hy-
drants). The likely point of ignition was established based
on information provided by inhabitants of the burnt areas
and/or by emergency management entities like the National
Service for Disaster Prevention and Response (SENAPRED)
and firefighters. The levels of preparedness and maintenance
of dwellings within the study areas were evaluated using
our survey data and high-resolution satellite and street view
imaging accessed through Google Earth (2024).

The areas surveyed by the drone encompass a larger area
than the region of interest for the analysis of WUI fire vul-
nerability, and the generation of a control dataset of undam-
aged dwellings requires the spatial identification of the urban
region that is effectively exposed to the hazard. Given the ab-
sence of a formal or standardized definition of the area ex-
posed to the fire, and to avoid statistical biases, we tested six
different GIS-based strategies for the selection of undamaged
dwellings, considering (i) the full perimeter of the burnt area
(BA) as mapped from our drone imagery and (ii) the con-
vex hull (CH) of damaged units, as well as buffers of 50,
100, and 150 m around each boundary. These area and buffer
definitions are illustrated in Fig. 1 for the Rocuant wildfire
case study. By combining all the case studies, we obtained
six training datasets that differ only in the number and lo-
cation of undamaged units, which were used for sensitivity
analysis as explained in the next section.

In the context of vulnerability analysis, our goal was to
identify attributes of built units that could affect their prob-
ability of being damaged when exposed to WUI fires. The
problem can be posed as one of supervised learning and
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Table 2. Description of spatial variables evaluated for each housing unit in the study areas.

ID Variable name Description Source Units/classification

Target damage Target variable. Categorical variable that identifies the degree of
damage experienced by each built unit as a result of the wildfire

Orthomosaic
Field survey

No damage
Partial damage
Total damage

1 elevation The geographical elevation at each dwelling’s location, relative
to the lowest dwelling in the study area

DTM Metres

2 orientation Categorical variable that represents the geographical orientation
of each dwelling

DTM
Orthomosaic

NW/NE/SW/SE

3 slope Average slope of the dwelling’s terrain DTM
Orthomosaic

Degrees

4 n_storeys Number of storeys of each dwelling Field survey n

5 material Categorical variable that classifies the dwelling’s structural
qualities and building materials
We define three categories:
Light – wood, light wood, other informal materials
Solid – concrete, masonry
Mixed – combination of light and solid materials

Field survey Light
Solid
Mixed

6 floor_area Ground floor area of each dwelling Orthomosaic Square metres

7 area_parcel_ratio Measurement of the dwelling’s floor area in relation to the size
of the parcel that it is located on

Orthomosaic Ratio

8 preparedness Binary variable that classifies the management of the dwelling’s
surrounding area to reduce vegetation and other potentially in-
flammable materials
We define two categories:
Good – the dwelling’s parcel is clear of vegetation or other vis-
ible sources of flammable material (e.g. gas tanks)
Poor – the dwelling’s parcel is occupied by vegetation or other
visible sources of flammable material (e.g. gas tanks)

Orthomosaic
Google Earth
Field survey

Good/poor

9 maintenance Categorical variable that identifies whether the dwelling is in an
acceptable overall material condition
We define two categories:
Good – the dwelling is clear of surrounding garbage dumps or
debris and does not appear to be evidently abandoned
Poor – the dwelling is seen to be surrounded by garbage dumps
or debris or looks evidently abandoned

Orthomosaic
Google Earth
Field survey

Good/poor

10 dist_fire Euclidean distance between each dwelling and the likely point
of fire ignition, as informed by local inhabitants and/or by emer-
gency management entities

Orthomosaic
Field survey

Metres

11 dist_veg Euclidean distance between each dwelling and the boundary
of the vegetation layer delimited from pre-event multispectral
satellite imagery

Sentinel-2
pre-event
multispectral
imagery

Metres

12 dist_group Euclidean distance to the nearest border of the dwelling group Orthomosaic Metres

13 dist_neigh Euclidean distance from each dwelling to its closest neighbour Orthomosaic Metres

14 water_supply Binary variable that identifies if the dwelling is connected to the
water supply network

Database,
Chilean Super-
intendency
of Sanitary
Services

Yes/no

15 emergency_access Binary variable that identifies whether the dwelling is directly
located on an access road

Orthomosaic Yes/no

16 suppression_access Euclidean distance between the dwelling and its closest access
road

Orthomosaic Metres
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Figure 1. The different spatial approaches considered to identify the areas affected by each fire and the undamaged dwellings for the Rocuant
case study. (a) Identification of the burnt area (BA; hatched region) and buffers of 50, 100, and 150 m (greyscale, ranging from dark to light
grey). (b) Identification of the convex hull (CH) polygon of the damaged dwellings, with its respective buffers. In both panels, filled red and
non-filled blue polygons identify units with total and no damage, respectively.

specifically of multivariate classification, where a model is
trained to predict whether a given housing unit is expected to
suffer total, partial, or no damage given a set of observed
input variables. A trained classifier with good generaliza-
tion properties can make predictions with new data, but such
models also provide valuable insights into the contribution
of the individual features to the model’s predictive prowess.
In this study, the focus was on achieving model explainabil-
ity to understand the relative importance of each dwelling
attribute (individual and environmental) in determining the
likely damage classification.

Several of the input variables are categorical, making
the data appropriate for decision tree classification models.
These models divide the predictor space into several sim-
ple regions based on splitting that can be summarized in
a tree scheme (James et al., 2013). In this study, we used
the LightGBM classification model (Ke et al., 2017). This
model was selected due to its ability to deliver shorter run-
ning times without compromising accuracy and because it
is well suited for managing independent variables without
extensive pre-processing. For model training and validation,
we applied a k-fold cross-validation strategy (Mosteller and
Tukey, 1968), stratified relative to the target variable (i.e. the
damage classification of each dwelling), with 120 iterations
to avoid overfitting and to assess performance uncertainties.
These repetitions represent the outcome of splitting the la-
belled data into three training partitions and one testing par-
tition (75/25), with 30 crossed validations. As general per-

formance metrics, we used accuracy and recall. The former
assesses the overall fraction of correct predictions for a bi-
nary or multilabel dataset, and the latter measures the com-
pleteness of positive predictions (Pedregosa et al., 2012), i.e.
the ability of the classifier to correctly identify dwellings that
are likely to experience damage. Lastly, we used SHapley
Additive exPlanation (SHAP) values to interpret the model’s
results. According to Lundberg and Lee (2017), SHAP val-
ues, which align with human intuition, contribute to explain-
ing a model’s predictions and enhancing the interpretation of
its complexity. SHAP regression studies examine the impor-
tance of each independent variable in the presence of multi-
collinearity. To do this, a model is trained for each indepen-
dent variable, both including and excluding it. Subsequently,
the predictions from these two approaches are compared. Fi-
nally, an importance value can be assigned to each feature,
representing its effect on the model predictions. We devel-
oped an ad hoc Python package to carry out our classifica-
tion analyses, using the data analysis libraries NumPy (Harris
et al., 2020), pandas (pandas Developer Team, 2020), scikit-
learn (Pedregosa et al., 2012), and Lundberg and Lee (2017).

3 Results

3.1 Summary of case studies

The field surveys conducted in this study allowed us to
collect georeferenced damage cadastres and high-resolution
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Table 3. Burnt areas and distribution of damaged and undamaged
dwellings for each case study.

Case study Burnt area Partial Total No
(ha) damage damage damage

Limache 12.23 1 29 449
Rodelillo 1.5 1 5 634
Rocuant 74.33 20 221 1250
Quilpué 19.78 1 5 216
Laguna Verde 36.32 14 32 500
Melipilla 87.57 23 42 477
Viña del Mar 117.53 21 314 1806
Total 349.26 81 648 5332

drone imagery for all wildfire events, except the event that
occurred in Viña del Mar. In the case of Viña del Mar, the per-
sistence of smoke and continued fire suppression operations
precluded the operation of small drones. However, we were
granted access to raw imaging captured by a larger drone op-
erated by professionals from the Ministry of Public Works. It
should also be noted that in the Melipilla case study, the fire
had two different focus points, so two separate flights were
required to cover the affected WUI areas. The drone imagery
data collected during the field surveys were used to gener-
ate 30 cm resolution orthomosaics and digital surface mod-
els for each case study. Through the analysis of these image
products, we delineated the burnt areas and identified a to-
tal of 729 houses affected by fire. Of these, 648 suffered to-
tal damage, while 81 were partially damaged. Additionally,
we digitized 5332 built units located within the drone sur-
vey areas but that were not impacted by the fire. In Fig. 2
we show the obtained drone imaging, the footprints of all
digitized dwellings, and the delimitation of the burnt areas.
The extent of the burnt areas and the distribution of damaged
and undamaged dwellings for each case study are detailed
in Table 3. To the best of our knowledge, there are no other
georeferenced, detailed, and consistent damage cadastres for
these events, so we can only compare total damage statistics
to general figures reported in the national press or in com-
munications from public institutions such as municipalities
or SENAPRED. When available, these data align with the or-
der of magnitude recorded in our results (e.g. SENAPRED,
2023; EMOL, 2022; Cooperativa.cl, 2022). Some discrepan-
cies among public sources, as well as between these sources
and the data collected in this study, are expected. These dif-
ferences may be attributed to factors such as the rapid demo-
lition and removal of debris from totally damaged dwellings,
which makes them undetectable in post-event imaging. Addi-
tionally, the incompleteness of damage cadastres conducted
by different governmental entities and the reluctance of in-
formal settlers to report their losses to the authorities may
also contribute to the discrepancies.

The 16 spatial variables detailed in Table 2 were evaluated
for all dwellings reported in Table 3 and plotted in Fig. 2. The
consolidated dataset of damaged and undamaged dwellings
for all case studies is available for download (Aguirre et al.,
2024).

Analysis of the attribute distribution for affected dwellings
shows that most of them were built with light materials
(∼ 70 %), typically had one floor (∼ 80 %), and were mostly
in poor preparedness and maintenance conditions (∼ 60 %).
The multivariate statistical characterizations of dwellings
with partial and total damage were similar, and given that
in the combined dataset the number of records with partial
damage was significantly lower, the partial damage and total
damage categories were merged into a single damaged cate-
gory (N = 729). A similar approach was adopted by Penman
et al. (2019), who examined damage data from several fire
seasons in Australia and found that destroyed houses out-
numbered damaged ones by a ratio of 4 : 1 and therefore
merged them into a single category.

3.2 Model training and sensitivity analysis

As described in Sect. 2.3, the number and distribution of the
spatial attributes for units undamaged by the fire depend on
the chosen delimitation of the study area. We defined six al-
ternative datasets for model training considering the burnt
area (BA) and convex hull (CH) boundaries, with buffers of
50, 100, and 150 m (BA50, BA100, BA150, CH50, CH100,
CH150). We then carried out a sensitivity analysis to study
the impact of the different delineations of the affected area
on the imbalance of training datasets, the performance of the
trained models, and the assessment of feature importance. As
shown in Fig. 3, we found that all models yielded an accuracy
range of∼ 60 %–70 % and had recalls ranging from∼ 80 %–
90 %. We note that in all cases, the accuracy and recall val-
ues obtained in the training dataset were only slightly higher
than in the test dataset, so there is no evidence of overfitting.
In both the CH and the BA approaches, increasing the buffer
distance naturally resulted in more imbalanced datasets with
a higher proportion of no damage records, a trained model
with increased median accuracy (+33 % for BA and +13 %
for CH, when the buffer was increased from 50 to 150 m),
and a slight decrease in recall (−5 % for BA and −3 % for
CH, when the buffer was increased from 50 to 150 m). As
the study region expanded, the accuracy increased, driven by
a higher number of true negatives in the confusion matrix.
This is misleading in terms of model performance given that
its main purpose is to correctly predict and explain true posi-
tives, i.e. damage. This effect was stronger when the BA ap-
proach was used, particularly in the case of large fires (e.g.
Viña del Mar and Rocuant), as it considered buildings further
from the urban areas where damage effectively occurred. For
example, Fig. 2 shows the groups of undamaged dwellings
located on the southern margins of the burnt areas in Rocuant
and Viña del Mar. On the other hand, we found that recall
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Figure 2. Drone-based orthomosaics and identification of exposed and affected building units for each case study. The orthomosaics gener-
ated from drone mapping are plotted at a spatial resolution of 1 m. Damaged and undamaged units are plotted as filled red and unfilled blue
polygons, respectively. The black contours delimit the total burnt area. In all images, north is up, and east is right.

provides a more stable and significant criterion for the selec-
tion of the final dataset to be used as a reference for assessing
feature importance. Considering the trade-off between the
data imbalance, accuracy, and recall of the trained model,
we chose the CH100 scenario as our working definition of
the study region and labelled datasets accordingly for each
wildfire.

3.3 Analysis of feature importance

To represent the relative importance of features for the clas-
sifier trained with the CH100 dataset, we used bee swarm
plots, which summarize the SHAP values of each feature
for the input dataset. The plot is presented in Fig. 4. From
the collection of trained models, we identified five vari-
ables that were consistently more important for predicting
damage: the elevation relative to the lowest unit in the sur-
veyed area (elevation), the distance to the closest neigh-
bour (dist_neigh), the distance to the nearest border of the
dwelling group (dist_group), the distance to the closest veg-
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Figure 3. Comparison of dataset imbalance and model performance for six different definitions of the study regions. (a) Imbalance of the
labelled dataset, expressed as the percentage of undamaged records over the total dataset. (b) Boxplots of accuracy and recall scores obtained
for the test datasets with a k-fold cross-validation strategy.

etated area (dist_veg), and the distance to the likely fire
ignition point (dist_fire). On the opposite end of the bee
swarm plot are six variables that have a negligible impact
on the classification outcome: material, emergency_access,
maintenance, suppression_access, water_supply, and orien-
tation. The low importance of the material feature is ex-
plained by the socioeconomic context of the studied regions,
which correspond to underprivileged developments where a
large majority of dwellings (∼ 70 %–80 %) are built from
light materials. In an intermediate tier, five variables were
grouped together (n_storey, floor_area, preparedness, slope,
area_parcel_ratio), whose relative order of importance for
the model depends on the buffer distance used in the con-
struction of the training dataset. To provide a more detailed
analysis and qualitative interpretation of the trained classi-
fier, Fig. 5 includes individual dependence scatterplots illus-
trating the effect of each feature on the model’s prediction.
This applies to all features except the six at the bottom of
Fig. 4. In the next section, we discuss our findings for each
variable in relation to previous studies in the literature.

4 Discussion

Few studies have systematically examined how the physi-
cal characteristics of individual buildings relate to their vul-
nerability to wildfires and, furthermore, have done so sys-
tematically for several wildfire events or very large datasets.
As relevant examples, Dossi et al. (2022) examined a sam-
ple of 18 690 buildings exposed to wildfires in California,
USA (2013–2017), and Pedrógão Grande fire complex, Por-
tugal (2017). Papathoma-Köhle et al. (2022) developed a
physical vulnerability index based on building structural and
surrounding features recorded for 423 buildings affected by
the Mati fire (Greece, 2018). Penman et al. (2019) analysed
building-level data for 309 units damaged by wildfires in

Figure 4. Bee swarm summary plot for the CH100 model. The y

axis indicates the feature names, ordered by importance from top to
bottom, and the x axis represents the SHAP value or the change in
log odds of the target variable. Each point represents a row of data
from the original dataset, and the colour of each point on the graph
represents the relative value of the corresponding feature, from high
values (yellow) to low values (purple). Categorical variables were
not classified as high/low, so they are plotted in grey.

Australia between 2001 and 2009, while Knapp et al. (2021)
studied the associations between the distance to the near-
est destroyed structure and vegetation for a sample of 400
dwellings in northern California affected by the 2018 Camp
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Figure 5. Data scatterplots showing the distribution of SHAP values compared with the 10 most important independent variables. The x axis
represents the value of the feature, using the corresponding units provided in Table 2. The y axis represents the corresponding SHAP value,
in log-odd units.

fire. To the best of our knowledge, no similar studies have
been conducted in Latin America and Chile, so this study
contributes the first unique dataset that (i) pertains to a geo-
graphical region where physical vulnerability to WUI fires
has not been systematically studied; (ii) includes a set of
building-level variables relative to the individual structures
and their location relative to vegetation, the source of the haz-
ard, and the urban environment, which are quantified for both
damaged and undamaged dwellings; (iii) comprises several
case studies that correspond to a total of 729 damaged units,
which is significantly larger than most comparable studies;
and (iv) was constructed through the intensive use of remote
sensing and image analysis methods that could be further ad-
vanced and scaled using machine learning approaches. The
construction of this dataset is based on a mixed-method ap-
proach that combines satellite and drone imagery, field sur-
vey, and a GIS-based analysis of the collected images and in-
frastructure data provided by public institutions. Such meth-

ods can largely be automatized and scaled by leveraging
open platforms for spatial analysis such as Google Earth En-
gine, building databases like the Microsoft Building Foot-
prints, and state-of-the art segmentation algorithms like the
Segment Anything Model (SAM). However, high-resolution
post-event imaging remains a key element that requires im-
provement. Our experience shows that commercially avail-
able drones are an efficient alternative for generating opti-
cal orthomosaics and digital elevation models for fires un-
der∼ 100 ha, but in the case of more extensively burnt areas,
larger crafts are required to ensure geographical coverage and
operational safety. These resources are available within dif-
ferent government entities that typically deploy emergency
teams in the aftermath of disasters, such as municipalities and
sectorial ministries. Therefore, there is a pivotal opportunity
for institutions to collaborate on gathering comprehensive
data for the purpose of risk assessment. As a long-term goal,
a systematic mapping of the WUI based on spatially resolved
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aerial or satellite imagery would enable a more detailed char-
acterization of damaged and undamaged dwellings in the
case of a future fire. Additionally, this mapping could include
construction dates, which can be used to assess the impact
of evolving building regulations and construction practices
on vulnerability (e.g. Knapp et al., 2021). This is especially
relevant for informal urban developments, which cannot be
traced in official databases such as property tax cadastres.

Regarding model training, the accuracies obtained for the
training datasets considered were in the 65 %–70 % range,
but the recall metrics were significantly higher, reaching
close to 90 % in all cases. Since the purpose of the model
is to identify dwellings that are more susceptible to damage
when exposed to WUI fires, the consequences of type II er-
rors (false negatives) are more undesirable than type I errors
(false positives). In the former, the application of the trained
model to a new urban setting would imply that a dwelling
likely to be damaged is incorrectly predicted to survive a
wildfire and may thus be excluded from maps of vulnerable
assets used as input for risk assessment and decision-making.
On the contrary, incorrectly predicting damage for a given
unit that is not likely to suffer damage would only lead to
redundant safety considerations. Therefore, from an opera-
tional perspective, recall provides a more appropriate perfor-
mance metric for the classifier and supports using the trained
model as a tool for prospective assessment of the vulnerabil-
ity of urban developments close to the WUI, assuming data
availability.

Moreover, the analysis of SHAP values provides a rank-
ing of features in terms of their importance for predicting
damage, which we compared to previous findings in the lit-
erature. In general, we found that the group of variables that
describe the spatial arrangement of dwellings has a greater
effect on damage prediction than other features, relative to
the structural and preparedness conditions of the individual
units or to fire suppression resources. Although the eleva-
tion of each house (relative to the lowest unit in the surveyed
area) appears to be an important feature in Fig. 4, the aver-
age recorded elevation of dwellings (damaged and undam-
aged) from the Viña del Mar and Rocuant fires was higher
than in other case studies. Since these accounted for a large
fraction of damaged dwellings in the combined dataset, they
may be driving the observed trend. In fact, although the sum-
mary of SHAP values suggests a correlation between higher
elevations and damage, Fig. 5 shows that this relationship is
inconsistent across the case studies, with several of them hav-
ing a SHAP value of 0, likely influenced by their local char-
acteristics (similar to the case of the slope variable). While
elevation as a fire-vulnerability feature has been examined in
the literature (see Andersen and Sugg, 2019, and Penman et
al., 2019), these studies typically focus on large, geograph-
ical scales where elevation can influence fire-related factors
like moisture and the type of vegetation, so their results are
not directly comparable to our findings.

Regarding d_neigh (which corresponds to the distance to
the closest neighbouring structure), we found that low values
tend to diminish the odds of fire damage. Cohen (2000) high-
lighted that homes can be victims of wildland fire but also
contribute to its propagation, especially when the distance
between buildings is less than 40 m. This is also supported
by Gibbons et al. (2012) and Penman et al. (2019), who sug-
gested ensuring proper separation between houses (based on
their findings in eastern Australia case studies). However,
Papathoma-Köhle et al. (2022) stated that the presence of
neighbouring buildings was not relevant in the construction
of their physical vulnerability index (PVI), which was statis-
tically developed from the outcomes of a July 2018 wildfire
in Mati, Greece, and included 423 buildings. In this respect,
other research shows that higher building densities might
lead to a “protection” effect among houses. In line with this,
our results for d_neigh can be related to Opie et al.’s (2014),
which pointed out that areas with higher housing densities
were less likely to be damaged during the 2009 wildfires in
Bendigo, Australia. Similarly, drawing upon a study in south-
eastern France, Lampin-Maillet et al. (2010) noted that fire
ignition risk increased significantly when housing density de-
creased; therefore, they encouraged compact urban develop-
ment and housing densification in the WUI.

To the best of our knowledge, the third most important fea-
ture, d_group (i.e. the distance of a housing unit to the near-
est border of the dwelling group), has previously not been
addressed in the literature. In this respect, our results show
that shorter distances result in positive SHAP values, and
the odds of material loss tend to increase if this distance is
less than 40 m. This suggests that buildings located within
a housing arrangement are less vulnerable than those along
the perimeter. This further supports the argument of compact
development as a protective measure.

Next, we focused on dist_veg, which measures the dis-
tance between each house and the closest patch of dense
vegetation. As seen in Fig. 4, houses located shorter dis-
tances from vegetation have slightly higher odds of dam-
age. A more disaggregated examination in Fig. 5 shows that
this effect remains consistent up to distances of ∼ 60 m. Be-
yond this range, its effect on damage prediction becomes in-
creasingly negative. This finding is consistent with the lit-
erature, which reports that reducing physical vulnerability
through a “wildfire-defensible space” minimizes the proba-
bility of fire damage. Such spaces are characterized by the
alteration (treatment, clearing, or reduction) of fuels and veg-
etation in the immediate vicinity of a structure. For example,
Syphard et al. (2014), through regression analysis in their
post-fire analysis of structures in San Diego county, Califor-
nia, suggested that defensible space distances of up to 30 m
effectively prevent house destruction. Our capacity to iden-
tify this small-scale spatial effect in our data was hindered
by the spatial resolution of the Sentinel-2 imagery (10 m)
used in the mapping of vegetation. Additionally, Penman et
al. (2019) suggested that the percentage of mapped forest
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within 100 m of an examined structure significantly influ-
ences the probability of fire damage. Similarly, dist_fire (i.e.
the distance between an examined dwelling and the likely
point of fire ignition) is an important factor. While its re-
sults appear more scattered, as shown in Fig. 5, they clearly
demonstrate that proximity to the ignition point increases the
probability of fire damage, which is an intuitive result. How-
ever, this variable demonstrated significant variability across
our case studies, most likely due to local geophysical char-
acteristics (topography, built environment) and the specific
manner in which the fire began and spread.

As previously mentioned, in our model, the variables char-
acterizing a dwelling’s structural conditions had relatively
less influence on damage classification than the spatial met-
rics mentioned above. Specifically, the contribution of the
variable n_storeys to the SHAP values was close to zero.
However, a few exceptions corresponding to high buildings
(> 10 storeys) built from reinforced concrete (in compli-
ance with the Chilean building code) consistently survived
the fires. Regarding the floor_area variable, the overall trend
showed a negative contribution to the damage prediction
when surfaces were large (200 m2). This could be associated
with higher income and therefore better construction con-
ditions. Analogously, the analysis of the area_parcel_ratio
suggests an association between the damage prediction and
high ratios (i.e. dwellings with little open surrounding space),
which are more typical of lower-income dwellings. Again,
this is related to the concept of defensible space. However,
the material variable had a negligible impact on damage clas-
sification. Although we found some indications that individ-
ual building attributes may be useful for characterizing vul-
nerability, the statistical analysis was hindered by the lim-
ited variability of our dataset, which predominately consisted
of single-storey dwellings (∼ 88 %) built with light materials
(∼ 79 %). For example, Papathoma-Köhle et al. (2022) used
a more detailed characterization of structure type and roof
material, which they identified as the two most relevant in-
dicators of wildfire vulnerability. However, we were not able
to confirm or test these results for the Chilean case with our
current data. Regarding the number of storeys or building
height, this metric has scarcely been examined in the litera-
ture, perhaps due to the same lack of data variability as in our
case studies. Continued observation of WUI fires in future
seasons may enable a statistically significant assessment of
these features as vulnerability indicators. The preparedness
variable, as per our definition (whether houses had managed
surroundings to reduce vegetation and other potentially com-
bustible materials), allowed only two answers, “yes” or “no”
(see Fig. 5). Our data for this variable show that most of the
houses with no preparedness had an increased likelihood of
fire damage. The characteristics that we assigned to the pre-
paredness variable relate to the definition of defensible space
discussed above, for which there is a consensus regarding its
importance in reducing fire vulnerability.

Lastly, the importance of the slope variable also appears
to be significantly dependent on the specific study context,
as shown by the scatterplot in Fig. 5. As a result, a relation-
ship cannot be inferred between the probability of damage
and the average terrain slope of each dwelling’s footprint. In
this regard, several authors have examined the impact of ter-
rain slope on wildfire vulnerability. For example, Papathoma-
Köhle et al. (2022) pointed out that this variable, alongside
roof material and structural type, becomes the most relevant
indicator for predicting wildfire vulnerability when values
exceed 10°. Andersen and Sugg (2019) underlined a posi-
tive correlation between slope and wildfire risk. They also
reported that the cases in which the opposite trend was ob-
served may be related to increased exposure related to the
populations’ tendency to settle in terrains with gentler slopes.
Finney et al. (2021) argued that wildfire can spread more
rapidly on a steeper slope, implying a higher risk. These stud-
ies typically provided the source from which they extracted
the slope values but did not delve into how they measured
them.

In summary, our study aligns with previous research find-
ings on the significance of different wildfire vulnerability in-
dicators (e.g. dist_veg, dist_neigh, preparedness). However,
in some cases, comparisons are limited by the volume and
diversity of the data. These disparities in our analysis reveal
the challenge of weighting the physical wildfire vulnerabil-
ity indicators and extrapolating the selection to other regions
and cases. Therefore, weighted indexes developed for spe-
cific geographic areas, whether based on one or a few large
or small events, cannot be directly generalized to other re-
gions, even if they share some geographical and environmen-
tal conditions. A first key step towards constructing consis-
tent global or regional vulnerability indexes is to standardize
the variables that may constitute them, as well as the spatial
scales and methodologies applied in their measurement. This
standardization could lead to the development of large and
comprehensive datasets for statistical modelling purposes.

Lastly, our findings can contribute to improving current
regulations for building design, construction, and urban plan-
ning in Chilean WUI areas. As González-Mathiesen and
March (2018) point out, countries such as Australia, France,
Spain, and the USA have implemented policies and guide-
lines to enhance the resilience of sites and subdivisions in
wildfire-prone areas, aiming to increase both resistance and
response capacities. In contrast, current Chilean spatial plan-
ning schemes do not adequately address wildfire risk re-
duction. While national-level planning regulations enable
generic disaster risk reduction (with a focus on hazards rather
than on vulnerability), it is important to note that wildfire
is not explicitly included as a threat. While some munici-
palities do incorporate wildfire risk management in their lo-
cal plans, this does not occur systematically throughout the
country (González-Mathiesen and March, 2023).
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5 Conclusions

This study presents a local-scale analysis of the impact of
WUI fires on individual dwellings as a function of their phys-
ical characteristics, their spatial arrangement relative to the
urban settlement and the natural environment, and the avail-
ability and accessibility of fire suppression and emergency
management resources. The aim is to enhance our under-
standing of risk profiles in exposed WUI areas by identify-
ing and measuring key parameters of physical vulnerability
that can be systematically surveyed and assessed. This con-
tribution will enable continued risk monitoring and provide
insights for the design, planning, and governance of WUI ar-
eas in Chile.

To conduct this analysis, we developed a mixed-method
approach that combines field surveys, remote-sensed satel-
lite and drone imagery (captured in the field in the aftermath
of destructive WUI wildfires), and GIS-based analysis of the
collected data, followed by a multivariate classification anal-
ysis. The methodology was applied to seven WUI fire case
studies that occurred in central Chile between 2019 and 2022
and led to the generation of a detailed georeferenced dataset
of 729 dwellings that experienced partial or total damage.
For each of these dwellings, we assessed 16 physical and
spatial attributes that could potentially influence the damage
outcome in the event of exposure to wildfires. Additionally,
we constructed a similar dataset for dwellings that survived
the fires with no damage. We proposed various spatial meth-
ods to select such units to test the performance of classifi-
cation models for different delimitations of the exposed area.
We concluded that the definition that represents the best com-
promise between class imbalance and recall is a 100 m buffer
around the smallest convex polygon enclosing the impacted
dwellings, referred to as CH100. To the best of our knowl-
edge, these data represent the first detailed characterization
of WUI settlements in Latin America and with a volume and
diversity that rival or surpass similar studies conducted in
Greece, the USA, and Australia.

With the CH100 labelled dataset as input, we trained a
LightGBM binary classification model (damage/no damage)
and used SHAP values to explain its results and to assess
the relative importance of 16 physical dwelling parameters
as indicators of wildfire vulnerability. Our findings show
that the group of variables describing the spatial arrange-
ment of dwellings has more impact on damage prediction
compared to other features related to the structural and pre-
paredness conditions of the individual units or to fire sup-
pression resources. Specifically, our results show that the
odds of damage are reduced when the dwelling’s distance
to its closest neighbour is under 40 m, the distance to veg-
etation is over ∼ 60 m, when it is a long distance from the
border of the dwelling group, and when it is a long dis-
tance from the likely fire ignition point. The analysis of
SHAP dependence values for variables characterizing indi-
vidual dwellings (n_storeys, material, floor_area, prepared-

ness) provides some indications that attributes typically as-
sociated with less affluent homes (e.g. light material, small
floor area, lack of preparedness) may increase the likelihood
of damage prediction. However, more data are required to
robustly confirm this association.

While our data show clear correlations between the prob-
ability of damage and some of the variables (e.g. distance to
the nearest border of the dwelling group, distance to dense
vegetation), others have scattered results that may be influ-
enced by each case study’s specific context.

This approach allowed us to assess the relative importance
of each parameter as an indicator of wildfire vulnerability in
the WUI. These findings could be used to develop risk miti-
gation strategies for both the built structures and the broader
territorial area and to enhance current regulations for build-
ing design, construction, and urban planning in Chilean WUI
areas, which are currently underdeveloped.
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