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Abstract. Contributions to social capital, risk awareness, and
preparedness constitute the parameters against which appli-
cations of digital technologies in the field of disaster risk
management should be tested. We propose here an evalua-
tion of four of these: mobile positioning data, social media
crowdsourcing, drones, and satellite imaging, with an addi-
tional focus on acceptability and feasibility. The assessment
is carried out through a survey disseminated among stake-
holders. The frame of the analysis also grants the oppor-
tunity to investigate to what extent different methodologies
to aggregate and evaluate the results, i.e., the Criteria Im-
portance Through Criteria Correlation (CRITIC) model, the
(Euclidean)-distance Criteria Importance Through Criteria
Correlation (dCRITIC) model, the entropy model, the mean
weight model, and the standard deviation model, may influ-
ence the preference of one technology over the others. We
find that the different assumptions on which these method-
ologies rely deliver diverging results. We therefore recom-
mend that future research adopt a sensitivity analysis that
considers multiple and alternatives methods to evaluate sur-
vey results.

1 Introduction

The Sendai Framework for Disaster Risk Reduction (UN-
DRR, 2015) calls for investments in digital technologies and
tools to enhance societal resilience. Recent developments in
digital technologies and tools offer emerging opportunities
for managing disaster risk, i.e., the potential for loss or dam-
ages determined by the function of hazard, exposure, and
vulnerability (Disaster risk, 2023). More specifically, digital
technologies and tools hold significant potential in strength-

ening social capital, risk awareness, disaster preparedness,
and, in the end, societal resilience (Latvakoski et al., 2022).

Many scientific fields adopt the concept of resilience
(Alexander, 2013), including ecology (Holling, 1973), psy-
chology (Garmezy et al., 1984), and disaster research
(Manyena, 2006). As a consequence, resilience is subject to
diverse definitions and conceptualizations (see, for example,
IPCC, 2014; Johansen et al., 2017; Joseph, 2018; Manyena,
2006; Morsut et al., 2021; UNDRR, 2015; Zhou et al., 2010).
Some researchers suggests that resilience refers to the ability
of a system to bounce back to its equilibrium (Capano and
Woo, 2017; Jurgens and Helsloot, 2018). Other researchers,
however, criticize the bounce back metaphor as it fails to cap-
ture changes in the social fabric that occur in the wake of a
disaster (Dufty, 2012). Accordingly, resilience refers to the
ability of a system to bounce forward to a new normal i.e.,
anticipate, recognize, adapt to, and learn from societal dis-
ruptions and disasters (Becker, 2014).

There is a plethora of factors that enable or constrain re-
silience (Javernick-Will and Jordan, 2012). In disaster re-
search, social capital has emerged as a critical determinant
of resilience (Kerr, 2018). Social capital refers to “features of
social organizations, such as networks, norms and trust that
facilitate action and cooperation for mutual benefit” (Putnam,
1993, p. 35).

Greater levels of social capital within a community are
linked to higher levels of disaster preparedness and risk
awareness (Brunie, 2007; Hausman et al., 2007; Morsut et
al., 2021). The nexus between social capital, risk awareness,
and disaster preparedness can improve and facilitate collab-
oration, provide social safety nets, strengthen communica-
tion and information sharing, speed up response and recov-
ery efforts, and in the end improve resilience among the most
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vulnerable segments of the population (Aldrich and Meyer,
2015).

Despite the demonstrated importance of risk awareness,
social capital, and disaster preparedness for effective disas-
ter risk management, their relative degree of importance for
enhancing societal resilience remains unclear. An array of
weighting models exist, all of which can produce different
results (Mukhametzyanov and Pamučar, 2018; Odu, 2019).
Most quantitative vulnerability assessments employ a mean
weighting approach by default, due to the limited knowledge
of the relationship between indicators (Tate, 2012). Compar-
ative studies combining or juxtaposing different weighting
methods are found in other fields of research (Jayant and
Sharma, 2018) and conclude by warning against the belief
that employing a single method may provide sound con-
clusions (Botvinik-Nezer et al., 2020; Wagenmakers et al.,
2022). Similar studies are overall lacking when it comes
to digital technologies and tools for improving societal re-
silience and disaster risk management.

In this paper, we evaluate digital technologies and tools
for improving social capital, risk awareness, and disaster
preparedness by using a multicriteria analysis. We there-
after assess to what extent the findings are sensitive to dif-
ferent weighting methods. We use five different weighting
methods: CRITIC, dCRITIC, standard deviation (SD), mean
weights (MW), and entropy. Final scores for these digital
technologies are computed using two different approaches,
the weighted sum approach (WSA) and the product sum ap-
proach (PSA), to test to what extent the results are dependent
on this last computational step. This research builds on work
carried out within the Horizon 2020 BuildERS project which
aims to improve social capital, risk awareness, and prepared-
ness among the most vulnerable segments of the European
population through digital technologies and research.

The rest of the paper is organized as follows: Sect. 2 intro-
duces the digital technologies we focus on, Sect. 3 describes
the methodology and the data, Sect. 4 presents the results,
Sect. 5 comments on the results, and Sect. 6 concludes the
study.

2 Digital technologies in disaster risk management

Here, digital technologies refer to “tools, systems and de-
vices that can generate, create, store or process data” (John-
ston et al., 2022). Digital technologies can support (i) sens-
ing, i.e., collect data with remote sensors; (ii) communica-
tion, i.e., transmit data; (iii) processing, i.e., modeling and
analysis; and (iv) actuation, i.e., data reconstruction (Bao et
al., 2022). Digital technologies can be applied throughout
the whole disaster risk management cycle – mitigation, pre-
paredness, response, and recovery (Sakurai and Murayama,
2019; Vermiglio et al., 2022). However, certain digital tech-
nologies, such as smartphones, have become ubiquitous in
modern life, but their application to disaster risk manage-

ment remains in its infancy and their potential to improve
social capital, risk awareness, and preparedness require fur-
ther attention.

There are many digital technologies relevant to disas-
ter risk management. We zoom in to four digital technolo-
gies: mobile positioning data, social media crowdsourcing,
drones, and satellite imaging. Previous work in the BuildERS
project indicates that mobile positioning data, social media
crowdsourcing, drones, and satellite imaging have the great-
est innovation potential for disaster risk management (Lat-
vakoski et al., 2022). The identification of these as rele-
vant technologies in disaster risk management is also sup-
ported, outside of the framework of the project, by the re-
views recently carried out by Izumi et al. (2019), Munawar
et al. (2022), and Vermiglio et al. (2022). We therefore pro-
ceed by focusing on mobile positioning data, social media
crowdsourcing, drones, and satellite imaging. We present an
overview of the selected digital technologies below.

2.1 Mobile positioning data

Mobile positioning data provides information on the loca-
tion of a mobile device and its user (Raper et al., 2007). Two
forms of mobile positioning data exist: active, when the sys-
tem operator constantly tracks the mobile device, and pas-
sive, when the system operator only tracks the mobile device
while it is being used. The data encompass pseudonymized
IDs, timestamps, phone activity, cell tower ID, and the na-
tional origin of the SIM card (Latvakoski et al., 2020; Võik
et al., 2021). In a European context, the General Data Protec-
tion Regulation (GDPR) prohibits the use of real-time data
if not anonymized. Mobile positioning data is often there-
fore provided with a minimum of 24 h delay to guarantee the
anonymity and privacy of mobile device users (Bayardo and
Agrawal, 2005; Lasko and Vinterbo, 2010; Terrovitis et al.,
2008). Privacy is indeed a concern when operating with this
kind of data. For instance, privacy concerns over the sharing
of real-time data are identified through the interviews that
Bowser et al. (2017) conducted with project managers that
handle this kind of data.

Mobile position data can be collected to mitigate disas-
ter risk (Indriasari et al., 2017; Munawar et al., 2022; Hi-
rata et al., 2018; Paul et al., 2021). The ubiquity of smart-
phones across the globe has made it possible for authorities
to use mobile positioning data to alert the population about
an approaching hazard by sharing information through SMS
messages and others means of communication (Grantz et al.,
2020). The application designed by Leelawat et al. (2017)
constitutes a good example of such a potential use: risk
awareness is increased by providing the population with an
assessment of the risk they are exposed to in the event of
a tsunami based on their position. Mobile positioning data
can also improve data collection, serving as an input when
mapping disaster impact, drafting risk and vulnerability as-
sessments, and monitoring mobility. The 2020 Covid-19 pan-
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demic accelerated the use of mobile positioning data (Ekong
et al., 2020; Ienca and Vayena, 2020; Santamaria et al.,
2020), employed to assess the exposure to infection across
the population (Grantz et al., 2020). The review performed
by Yabe et al. (2022) is an excellent source to understand
and classify recent applications of such a technology in the
domain of disaster risk management: access to mobile po-
sitioning data allows for an understanding of the displace-
ment patterns in the affected population and for a study of
the evacuation dynamics, with the possibility to predict post-
disaster behaviors of future events based on previous experi-
ences, contributing to better approaches both in the response
and in the preparation phases of the disaster risk manage-
ment cycle. Relocation patterns in the aftermath of a disaster
have also been found to correlate with the amount of dam-
age inflicted on the built environment, a condition that al-
lows to proxy the damages estimation by observing reloca-
tion behaviors (Andrade et al., 2018). Damage estimates and
impacts on local businesses can also benefit from the avail-
ability of mobile positioning data (Yabe et al., 2020). The
popularity of such an application cannot disguise the chal-
lenges that its application entails: the management of the
data, which require discretion given their consequences for
people’s privacy and the difficulty in translating the analysis
of the data into insights that can be easily understood by pol-
icymakers and hence turned into effective policies (Yabe et
al., 2022).

2.2 Social media crowdsourcing

Social media crowdsourcing is the practice of contributing to
the monitoring of disasters by reporting the presence of inci-
dents related to the event through social media (Phengsuwan
et al., 2021). Smartphones and social media use are heav-
ily intertwined. Social media has gained popularity in dis-
aster risk management due to its outreach potential (Reuter
and Kaufhold, 2018). The possibility to establish two-way
communication in which private citizens interact with official
authorities allows for crowdsourcing (Besaleva and Weaver,
2016; Hernandez-Suarez et al., 2019; Kankanamge et al.,
2019; Li et al., 2021; Ogie et al., 2019). There are two
types of contribution: active, when social media users ac-
tively share information to support an initiative, and passive,
when social media users share information independently
and irrespectively of an initiative (Besaleva and Weaver,
2016). Typically, social media crowdsourcing generates large
datasets that can be analyzed using pre-trained high-level
natural language processing software employing artificial in-
telligence (AI), machine learning, or blockchain technology
(Latvakoski et al., 2020).

Social media crowdsourcing has a history of being de-
ployed in disaster risk management, of which some notable
examples include the 2010 Haiti earthquake, 2014 North
Stradbroke Island bushfires (Australia), and 2015 Houston
flooding (USA) (Kankanamge et al., 2019). Social media

crowdsourcing allows the general public to get involved by
reporting the conditions they find themselves in and their po-
sition: photos and videos can be geotagged once shared on
social media, and ad-hoc apps can be downloaded to enable a
two-way communication between first responders and those
in need. Authorities can use this information to construct haz-
ard maps and alert other citizens about the increasing risks if
located in proximity (Zachreson et al., 2021). Besides this
flow of information exchange to construct almost-real time
maps and inform citizens on the presence of risks (Ogie et al.,
2019), the amount of data collected through citizens’ engage-
ment in social media can also be exploited to provide rapid
assessment of the damage, either through direct observation
of the messages shared online (Kryvasheyeu et al., 2016) or
by applying a sentiment analysis that reveals the correlation
between the sentiment level and the impact of the disaster (Li
et al., 2021). The experience with past applications of such
a technology has helped researchers (Tavra et al., 2021) to
identify the challenges that may hinder an effective applica-
tion: besides the need to constantly train and update the mod-
els used for data analysis and interpretation, practitioners will
have to design strategies that guarantee a constant, large, and
reliable source of data from citizens. While they may appear
as the easiest solution, monetary incentives risk undermining
the altruistic reasons that push citizens to contribute to the
application of this technology (Ogie et al., 2019).

2.3 Drones

There is a growing interest in unmanned aerial vehicles, of
which drones represent the most popular example (Gomez
and Purdie, 2016). Drones are used in a vast range of sectors,
such as warfare and agriculture, and also in disaster risk man-
agement (Aydin, 2019). Significant improvements in minia-
turization and computerization have enabled the production
on a large scale of lighter, safer, and cheaper drones (Hall and
Wahab, 2021).

The review carried out by Mohd Daud et al. (2022) high-
lights the operations in disaster risk management that can
be aided by the use of drones. Beyond the standard use of
drones to construct real-time maps of the areas affected by
disasters such as floods, landslide, wildfires, and earthquakes
with a rapidity and a cost-effectiveness that has often justi-
fied their adoption over other image-providing tools, drones
have also found vast application in difficult-to-access areas.
An alternative use is that of using drones to perform a rapid
assessment of the damages to the built environment without
having to put the personnel at risk. In this sense, drones are
often sought by practitioners as drones allow them to per-
form some tasks in a safer manner (Wankmüller et al., 2021).
Mohd Daud et al. (2022) also stress the relevant role that
drones can play in search and rescue operations: their review
identifies several applications where the accessibility to geo-
graphical information on the position of the drone and the use
of thermal cameras significantly increased the chances to find
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and rescue people that went missing during a disaster. Trans-
portation of medical and emergency supplies during an emer-
gency situation or in areas that would otherwise be difficult
to reach is another task that can be performed with drones
and that has contributed to the popularity of this tool (Rejeb
et al., 2021). Further improvements are, however, needed in
order to allow for more efficient helicopter–drone and drone–
drone cooperation to reduce the risk of collision; and image
and video quality will definitely benefit from future techno-
logical developments in image acquisitions (Wankmüller et
al., 2021).

2.4 Satellite imaging

Satellite imaging is a remote sensing technology that takes
pictures with an overhead perspective to detect patterns over
large areas (Campbell and Wynne, 2011). Satellite imaging
made its debut in the 1960s in the first real program for the
acquisition of imagery of earth from space, the Landsat pro-
gram, which was launched by the U.S. government in 1972
(Hemati et al., 2021). The Integrated Global Observing Strat-
egy (IGOS) initiative was launched in 1988 and provided
satellite images to support efforts towards disaster risk man-
agement. Several initiatives followed, increasing the num-
ber of applications of satellite imaging to disaster risk man-
agement: the European “Copernicus” program and its Sen-
tinel missions were deployed in 2014 and constitute, to date,
the largest European initiative. Despite such a long history
compared with other technologies, satellite imaging has not
found an early broad application in the domain of disaster
risk management: the first 1 m resolution commercial satel-
lite images were only made available thanks to the IKONOS
satellite that was launched in 1999; the acquisition of im-
ages still takes around 48 h after the event has occurred de-
spite international efforts and collaborations to guarantee a
shorter delivery (Le Cozannet et al., 2020). Current image
quality and time of delivery already constitute a significant
improvement compared with the standards of the past, and
despite these issues, satellite imaging has now emerged as a
standard technology in the field of disaster risk management
thanks also to recent developments in AI and machine learn-
ing analysis of the images (Dubovik et al., 2021; Goniewicz
et al., 2020; Tellman et al., 2021; Wheeler and Karimi, 2020).

Le Cozannet et al. (2020) offer several points of view to
understand and classify the venues for application of this
technology. In particular, the authors argue, satellite imaging
can be employed to aid in the prevention as well as in re-
sponse to disasters. The benefits that such technology brings
in the prevention of the disaster are acting on those factors
that determine the exposure to disasters, such as the haz-
ards themselves, as well as vulnerability and exposure. We
here exemplify how satellite imaging can be useful across all
these aspects. Reducing hazards often requires access to haz-
ard maps, which are produced by observing the areas and the
territories of interest. This makes satellite imaging particu-

larly useful, such as in the case of understanding the charac-
teristics around a volcanic area (Neri et al., 2013) or in es-
timating geological processes, such as ground deformation,
without the need for in situ observations (Foumelis et al.,
2016). Targeting vulnerability requires information to pro-
duce vulnerability and fragility curves, such as buildings’
shapes, width of streets, and size of buildings (Menichini
et al., 2022). Such data can be collected by direct obser-
vations, but evidence from the recent literature shows the
limit of such an approach and suggests that combining this
with space observations guarantees better results (Geiß et al.,
2014; Le Cozannet et al., 2018). Substantial improvements
in exposure reduction can be achieved by avoiding exposing
assets to the risk of hazards in the first place or by relocating
those that are now at risk, and high-resolution satellite im-
ages can provide the level of detail needed to understand the
dynamics in place (Tellman et al., 2021; Weichenthal et al.,
2019). While future improvements in computational meth-
ods and data quality will make this technology more attrac-
tive (Teodoro and Duarte, 2022, p. 10), current developments
will unlikely be able to fulfill this promise immediately and
satellite earth observations will probably need to be paired
with alternative sources to compensate for issues such as un-
even temporal sampling (Frasson et al., 2019). The timing as-
pect appears to be particularly relevant in those cases where
longer observations may be needed as the hazards hit: this is
the case, for instance, with floods, i.e., with their typical du-
ration of a few hours which can, at times, hardly be matched
by satellites’ capabilities (Almar et al., 2023). The accuracy
of the measurements represents another aspect that highlights
the limitations of this tool (Almar et al., 2023; Melet et al.,
2020).

3 Materials and methods

We apply a multicriteria analysis following the standard ap-
proach outlined in the previous literature: (i) criteria are iden-
tified, (ii) a scale for the scoring options is defined, (iii) cri-
teria weights are produced, and (iv) the final scores are com-
puted using the weights from step (iii) and the results from a
survey (Bana e Costa et al., 2004; de Brito and Evers, 2016;
Gamper et al., 2006). We perform a local sensitivity analysis
where we apply different weighting schemes and different
approaches for the aggregation of weights and scores into fi-
nal figures.

3.1 Criteria identification

The criteria are identified by referring to the work of Mor-
sut et al. (2021), as developed within the framework of the
BuildERS project. The framework outlines the interlinkage
between vulnerability, resilience, risk awareness, and social
capital. The selection of the criteria aligns with the theoret-
ical approach of the previous literature that confirms the in-
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terlinkage between these terms: Barua et al. (2020) on the
connection between preparedness and vulnerability, Bixler
et al. (2021) on the link between social capital and prepared-
ness, Hanson-Easey et al. (2018) on the relationship between
social capital and risk awareness, and Liu et al. (2022) for a
discussion on social capital and resilience. We include two
additional categories to better reflect potential practical bar-
riers that may emerge: feasibility and acceptability, with spe-
cial attention given to regulatory frameworks, costs, and so-
cial acceptance (Barquet and Cumiskey, 2018; Georgieva and
Kae Yanagisawa, 2015).

Each of these five categories is then further developed into
criteria. We identify the criteria in a 1 hour workshop with
project partners. The workshop is held online to allow project
partners representing different European countries to partici-
pate. The participants represent different disciplines and pro-
fessions all pertaining to the sphere of disaster risk manage-
ment. In total, nine people participate in the workshop and
15 criteria are identified (see Table 1 for an overview). We
juxtapose the criteria with previous research on societal re-
silience to ensure their relevance (Carone et al., 2018; DFID,
1999; Hernantes et al., 2019; The Rockerfeller Foundation,
2016).

3.2 Scoring options

We develop a survey to assess the digital technologies against
the defined criteria. We first ask respondents about their field
of expertise and the countries of operation. The respondents
are thereafter presented with Likert scale questions outlining
the 15 criteria listed in Table 1. We use a four-point Lik-
ert scale. We ask the respondents to express whether they
“strongly agree”, “agree”, “disagree”, or “strongly disagree”
with the statement. We also add a fifth “I do not know” op-
tion. The same questions are asked for the four digital tech-
nologies to allow for comparison. The survey is launched on-
line on 5 October 2021 and closes on 21 October 2021. A
reminder is sent halfway to increase the response rate.

We invite respondents with expertise in disaster risk man-
agement or any of the targeted digital technologies to com-
plete the survey. Respondents are contacted by email and
asked to complete an online survey. In total, 118 responses
are collected, but only 116 are used as 2 respondents failed to
complete the survey. All respondents are anonymous. The re-
spondents represent different geographical regions, including
Europe (60 %), Asia (15 %), and North America (5 %). The
respondents represent different fields of expertise, including
disaster risk management (n= 79), remote sensing (n= 36),
drones (n= 18), AI (n= 18), social media crowdsourcing
(n= 16), mobile positioning (n= 11), and Internet of Things
(n= 8). Note that the respondents can indicate more than one
field as their domain of expertise.

We then convert the qualitative data into quantitative data
to allow for the subsequent quantitative analysis. “Strongly
agree” is awarded four points and then decreasing values

down to one for “strongly disagree”. “I do not know” replies
are dropped as they do not contain any insightful value for
the analysis.

We thereafter proceed with creating a performance matrix.
The entry values of the matrix for each of the innovation un-
der each criterion are represented as the mean scores that are
attributed to the innovation by the survey respondents. We as-
sume that all criteria represent positive contributions to dis-
aster risk management, and hence a higher score indicates a
better performance and a positive contribution.

3.3 Weighting of criteria

Weights are normalized values between 0 and 1 and add up
to 1 when summed for all criteria within the same method.
This may sometimes not be the case due to rounding. We ap-
ply a quantitative approach when weighting the criteria, us-
ing a multimethod framework which allows us to investigate
if different methods will lead to different results. The follow-
ing weighting methods are considered: the Criteria Impor-
tance Through Criteria Correlation (CRITIC) (Diakoulaki et
al., 1995; Krishnan et al., 2021; Lai and Liao, 2021; Tuş and
Adalı, 2019), the (Euclidean)-distance Criteria Importance
Through Criteria Correlation (dCRITIC), the standard devi-
ation method (SD), the mean weight method (MW), and the
entropy method (Deng et al., 2000; Xu, 2004), all of which
represent common approaches in the literature (Diakoulaki
et al., 1995; Xu, 2004; Deng et al., 2000; Tuş and Adalı,
2019; Lai and Liao, 2021; Krishnan et al., 2021; Sun et al.,
2020; Odu, 2019). An overview is provided Table 2. We only
provide a brief description of these methods, and the reader
is invited to refer to the previous literature for an analytical
analysis.

We delve into the literature to select the weighting meth-
ods. A review by Krishnan et al. (2021) finds the entropy and
the CRITIC methods to be the most frequently used methods
in the literature. The authors also suggest that the dCRITIC
methodology requires more attention as it may deliver re-
sults that differ from those of the CRITIC method. We add
the MW method, as it is a common method in the vulnera-
bility and resilience literature (Tate, 2012). We also add the
SD method, as it makes an interesting case for comparison
due to its similarities with the CRITIC and dCRITIC meth-
ods (Krishnan et al., 2021).

3.4 Aggregation

The weights obtained through the different weighting meth-
ods and the mean scores obtained through the survey are used
to rank the four alternatives following a weighted sum ap-
proach:

Qi =

∑n

j=1
x∗ijwj , (1)

where x∗ij is the average survey score of technology i under
criterion j and wj is the weight of criterion j . In order to pro-
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Table 1. Criteria used for the analysis.

Category Criterion

Risk awareness C1 : It can strengthen risk and vulnerability assessments.
C2 : It can improve access to crisis information.
C3 : It can improve the quality of crisis information by making it more accurate, timely, or relevant.

Social capital C4 : It can minimize the risk of myopic thinking by strengthening trust and coordination between dif-
ferent organizations.
C5 : It can support citizen engagement in disaster risk management.
C6 : It can enable collaboration and coordination of volunteers.

Preparedness C7 : It can improve data collection, procedures, methods, and sharing.
C8 : It can contribute to the development of plans and strategies to manage crises.
C9 : It can improve emergency management exercises.

Feasibility C10 :It can be viewed as financially viable considering costs and revenues.
C11 : It is likely that there is access to necessary human, infrastructure, knowledge, and technical re-
sources for implementing and maintaining the service.
C12 : It is likely to be supported by regulatory frameworks.

Acceptability C13 : It can meet local expectations in relation to the stated aims and services provided.
C14 : It receives local support from civil society and groups.
C15 : The perception of gains and/or needs is likely to outweigh perceptions of risk and/or threats.

Table 2. Weighting methods.

Name Description

CRITIC CRITIC is inspired by the analysis proposed by Diakolulaki et al. (1995), which is based on a correla-
tion analysis of the criteria. The standard deviation method is meant to capture the contrast intensity.
Diakolulaki et al. (1995) add a correlation study on top of that to account for emerging conflicts among
the criteria.

dCRITIC dCRITIC, as proposed by Krishnan et al. (2021), represents a small variation in the way correlations,
variances, and standard deviations are computed in comparison with the CRITIC method.

Standard
deviation

The standard deviation method presents several similarities to the entropy method in the way the weights
are computed. The method attributes low weights to the criteria that have similar scores across all the
options. The idea behind such a result is straightforward and intuitive: criteria that do not vary across
the options do not provide meaningful results and should therefore be assigned a low weight (Zardari et
al., 2015).

Mean weight The mean weight method does not present any computational complexities as every criterion is assigned
the same weight, which is just the ratio of 1 over the number of criteria. This method makes no use of
the information contained in the performance matrix and just assigns the same weight to all criteria.

Entropy The entropy method entails a certain degree of uncertainty in the information matrix that is accounted
for by making use of probability theory. It suggests that spread and broad distributions contain more
uncertainty than the sharply peaked ones (Zardari et al., 2015).

vide additional sensibility to the analysis, we also aggregate
the results through the weighted product approach, another
methodology that is often employed in the literature (Odu,
2019):

Qi =

∏n

j = 1
(x∗ij )

wj . (2)

4 Results

In this section, we first present responders’ opinions as we
collected them through the survey. We aggregated these opin-
ions into mean score for each technology under each crite-
rion. We then proceed with applying the different weighting
methods to investigate their impacts on the findings. Lastly,
we present the aggregated findings.
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4.1 Survey responses

This section presents the survey responses. An overview is
provided in Fig. 1. The x axis presents the criteria, ordered
and numbered according to Table 1. The y axis shows the
mean score for each innovation under the corresponding cri-
terion. The range of the y axis has been reduced to better
appreciate the difference in scores that each technology was
awarded by the participants in the survey.

Satellite imaging has the highest mean score for crite-
rion 1 (It can strengthen risk and vulnerability assessments)
and criterion 2 (It can improve access to crisis information).
Drones score the highest in criterion 3 (It can improve the
quality of crisis information by making it more accurate,
timely, or relevant). Social media crowdsourcing receives the
lowest mean score in all criteria related to risk awareness
(i.e., criteria 1–3).

Looking at social capital, mobile positioning data holds
the highest mean score for criterion 4 (It can minimize the
risk of myopic thinking by strengthening trust and coordina-
tion between different organizations) and criterion 6 (It can
enable collaboration and coordination of volunteers). Social
media crowdsourcing has the highest mean score for crite-
rion 5 (It can support citizen engagement in disaster risk
management). Both drones and satellite imaging score low
in all criteria related to social capital.

When it comes to preparedness, satellite imaging scores
the highest in criterion 7 (It can improve data-collection, pro-
cedures, methods, and sharing) and criterion 8 (It can con-
tribute to the development of plans and strategies to manage
crises). Drones have the highest mean score in criterion 9 (It
can improve emergency management exercises). Social me-
dia crowdsourcing receives the lowest mean score across all
criteria.

In terms of feasibility, all digital technologies receive a
high mean score for criterion 10 (It can be viewed as fi-
nancially viable considering costs and revenues), of which
drones score the highest. Mobile positioning data have the
highest mean score in criterion 11 (It is likely that there is
access to necessary human, infrastructure, knowledge, and
technical resources for implementing and maintaining the
service). All digital technologies score low in criterion 12 (It
is likely to be supported by regulatory frameworks). Social
media crowdsourcing scores the lowest in criterion 12.

In the final category, acceptability, most digital technolo-
gies scored low across all criteria. Mobile positioning data
received the lowest overall score, whereas satellite imaging
received the highest overall score. Satellite imaging has the
highest mean score in criterion 13 (It can meet local expec-
tations in relation to the stated aims and services provided),
and social media crowdsourcing has the highest mean score
in criterion 14 (It receives local support from civil society and
groups). Satellite imaging and drones received a high mean
score in criterion 15 (The perception of gains and/or needs is
likely to outweigh perceptions of risk and/or threats).

4.2 Weighting methods

This section presents the results from the weighting assess-
ment. The weights are reported in Fig. 2. The x axis presents
the 15 criteria. (See Table 1 for criteria explanations.) The
MW method is not included in Fig. 2, as it assigns all crite-
ria the same weight by construction. The weighting methods
produce different rankings of criteria and some of these dif-
ferences are substantial.

Weights’ ranges are large in both the CRITIC and the
dCRITIC methods. In Fig. 2, under the CRITIC method, the
largest weight is about 13.5 % and the smallest weight is
about 4 %. Similarly, under the dCRITIC method, the largest
weight is about 14 % and the smallest weight is about 3.8 %,
i.e., for both methods the largest weight is more than three
times the smallest weight. Technologies that score high in
the criteria with the largest weights will rank higher. Crite-
rion 6 (It can enable collaboration and coordination of vol-
unteers) is assigned the largest weight under the CRITIC
method, whereas criterion 8 (It can contribute to the devel-
opment of plans and strategies to manage crises) receives
the lowest weight. The distance correlation correction that
is introduced by the dCRITIC method seems to bring some
changes, though not substantial, when compared with the
original CRITIC method: criterion 10 (It can be viewed as
financially viable considering costs and revenues) receives
the largest weight, while criterion 6 still ranks among the top
three. Criterion 13 (It can meet local expectations in relation
to the stated aims and services provided) receives the lowest
weight under the dCRITIC method and it ranks 14th under
the CRITIC method. In conclusion, some changes are indeed
produced by computing a distance correlation instead of the
standard Pearson correlation. The changes are, however, mi-
nor at the top and bottom of the weights rank.

The SD method and the CRITIC method return similar re-
sults in relative terms, i.e., which weights are assigned the
largest weights, but the values of these are different. The
CRITIC method uses the standard deviations within each cri-
terion to compute the correlation matrix and to correct the
values of the final weights, and this could explain the simi-
larity. The SD method assigns the highest weight value to cri-
terion 6 (It can enable collaboration and coordination of vol-
unteers), just like the CRITIC method. The smallest weight
in the SD method is assigned to criterion 12 (It is likely to
be supported by regulatory frameworks), which has the third
smallest weight under the CRITIC method. In other words, in
relative terms, the two methods seem to assign large weights
to the same criteria, but the actual weights determined by the
SD method are much closer to each other than those observed
under the CRITIC method. In fact, we find the SD method to
be the one, after the MW method, to return the smallest range
of weights.

The SD and MW methods lead to similar distribution
of the weights: both methods return a narrow range. The
weights defined by the SD method are narrowly distributed:

https://doi.org/10.5194/nhess-24-145-2024 Nat. Hazards Earth Syst. Sci., 24, 145–161, 2024



152 T. Piseddu et al.: Potential improvements in social capital, risk awareness, and preparedness

Figure 1. Questionnaire results (average scores).

Figure 2. The methods’ weights.

the maximum weight is about 7.8 % and the minimum is
about 5.9 %, with a difference between the largest and the
smallest weight of about 1.9 percentage points. This can be
seen in Fig. 2, where although the bars have different heights,
overall, the graph looks “flat”, with no criterion being as-
signed a weight that is much larger than the other criteria and
hence no bar being significantly taller than the others. The
difference between the largest and the smallest weight in the
case of the MW method is 0 as all the criteria are awarded
the same weight by construction. Each criterion is assigned
a weight of 0.066 % or 6.66 % under the MW method. A bar
plot of the MW’s weights would show a set of 15 identical

bars. If all the weights are similar, as in the case of the re-
sults produced by the SD or MW methods, the innovation
with the highest average performance score across all crite-
ria will rank higher, which can be supported by statistical
claims. By exploiting the narrow range of the SD and of the
MW methods, one could be able to predict, with a significant
degree of confidence, which technology will rank first under
these methods by simply looking at the survey results as pre-
sented in Fig. 1: even without resorting to statistical analysis,
it is evident that satellite imaging scores the highest under
most of the criteria (7 out of 15), is expected to have a high
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average score, and will probably rank high using the weights
determined by the SD and MW methods.

The entropy method returns weights that are different from
those found in other methods. A large range of different
weight values are observed under this method too, as in the
CRITIC and dCRITIC methods, but the criteria awarded the
largest weights are different from those of other methods.
Five of the criteria alone – criterion 15 (The perception of
gains and/or needs is likely to outweigh perceptions of risk
and/or threats), criterion 1 (It can strengthen risk and vul-
nerability assessments), criterion 13 (It can meet local ex-
pectations in relation to the stated aims and services pro-
vided), criterion 12 (It is likely to be supported by regula-
tory frameworks), and criterion 8 (It can contribute to the
development of plans and strategies to manage crises) – ac-
count for about 40 % of the total weight and satellite imag-
ing scores first under all of these criteria. It is reasonable to
expect this innovation to score high under this method. As
for the CRITIC and dCRITIC methods, we observe a large
distribution of the weights awarded to the criteria. It is in-
teresting to note that some of these receive similar weights
under the three methods – CRITIC, dCRITIC, and entropy –
such as criterion 14 (It receives local support from civil so-
ciety and groups) and criterion 15 (The perception of gains
and/or needs is likely to outweigh perceptions of risk and/or
threats). However, a striking aspect that should already be
observed from Fig. 2 is that the most relevant criteria un-
der the CRITIC and dCRITIC methods, i.e., those that are
awarded the largest weights are assigned the smallest weights
under the entropy method. Just by looking at these prelimi-
nary results, it is reasonable to expect large differences in the
final rankings among these methods.

The Spearman correlation matrix in Table 3 provides ad-
ditional insights for a comparison of the weights that are pro-
duced by the different methods. The correlation between the
entropy method and the CRITIC and dCRITIC methods is
negative and large, meaning that the ranking order may be
really inverted and that the weights vary significantly, con-
firming what is observed in Fig. 2. As expected, the dCRITIC
and CRITIC methods have a high positive correlation value
as the way in which the correlation matrix is computed con-
stitutes the only difference between the two. No correlation
can be computed between the MW method and any of the
other methods as there is no variation in the assigned weights
of the former, i.e., the variance of the MW method is 0. A null
denominator in the correlation formula impedes any compu-
tation.

4.3 Aggregation

Figure 3 offers an overview of how the four digital technolo-
gies rank under the different weighting methods. Only results
from the weighted sum approach are presented as the results
produced by the weighted product approach are identical.
The rankings are produced according to the final score that is

Table 3. Spearman correlation matrix.

Entropy MW dCRITIC SD CRITIC

Entropy 1 – −0.79 −0.45 −0.76
MW – – – – –
dCRITIC −0.79 – 1 0.575 0.9
SD −0.45 – 0.575 1 0.65
CRITIC −0.76 – 0.9 0.65 1

Figure 3. Final ranking of the technologies. MDP stands for Mo-
bile Data Positioning, SMC stands for Social Media Crowdsourc-
ing, and SatImag stands for Satellite Imaging.

computed for every technology: we use the weights produced
by the methods, presented in Fig. 2, and the average survey
scores in Fig. 1 by feeding these values into Eqs. (1) and (2),
presented in the “Materials and methods” section. We find
here a confirmation of the correlations that were produced in
Table 3: the high negative correlation between the entropy
method and the CRITIC and dCRITIC methods results in a
complete reversal of the ranking order. The entropy method
returns results that are, at the top and bottom, the same as
those returned by the SD and MW methods: satellite imaging
still ranks as the most preferred innovation and social media
crowdsourcing as the least.

As expected from the computation of the Spearman cor-
relation matrix, the CRITIC, dCRITIC, and SD methods are
the ones that produce the closest results. Across all weighting
methods, with the sole exception of CRITIC, social media
crowdsourcing seems to be the least preferred option among
respondents. Satellite imaging ranks as the best innovation in
three out of five methods (SD, MW, and entropy) with mobile
positioning data ranking first in the remaining two. Overall,
the results suggest that satellite imaging is the most preferred
innovation. It is evident, however, that the results are very
sensible to the methodology used. The best innovation ac-
cording to the entropy method, satellite imaging, ranks third
under the CRITIC method. The opposite is true for mobile
data positioning, which ranks first under the CRITIC method
and the dCRITIC method but then falls to third place under
the entropy method.
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As we had been able to anticipate, satellite imaging is the
technology that ranks first under the SD and MW methods.
We attribute this, again, to the small range of weights pro-
duced by these two methods. It is also interesting to note that
these two are the only methods where the ranking orders are
exactly identical.

5 Discussion

Below we first discuss the findings in relation to disaster risk
management and societal resilience, with a focus on their im-
pact on social capital, risk awareness, and disaster prepared-
ness. We thereafter delve into the weighting methods and
make some recommendations for scholars assessing digital
technologies for disaster risk management.

5.1 Digital technologies for enhancing societal
resilience

The different weighting methods produce different results,
which makes it difficult to draw conclusions about which
digital technologies can improve social capital, risk aware-
ness, and disaster preparedness. In general, the findings show
positive or neutral perceptions of the digital technologies un-
der investigation. When juxtaposing the digital technologies,
we find some emerging patterns that indicate a preference of
some technologies over others.

Social media crowdsourcing received the lowest score in
the survey in all criteria except criterion 5 (It can support cit-
izen engagement in disaster risk management), criterion 10
(It can be viewed as financially viable considering costs and
revenues), and criterion 14 (It receives local support from
civil society and groups). We attribute the poor ranking to the
interdependence between social capital, risk awareness, and
disaster preparedness in which a negative performance in one
of them may reinforce negative performance in the others. It
creates a vicious circle of cascades and unintended conse-
quences. In the case of social media crowdsourcing, schol-
ars find that it may generate data inaccuracies due to mis- or
disinformation and social biases (Fang et al., 2019; Nguyen
et al., 2019). Data inaccuracies may have a negative impact
on preparedness if integrated into risk and vulnerability as-
sessments, contingency plans, and emergency exercises. Di
Felice and Iessi (2019) note that inaccurate data generated
from social media crowdsourcing may exacerbate disaster
impacts. In line with previous research (Han et al., 2011;
Nicholls and Picou, 2013), we believe that ineffective dis-
aster response can erode social capital and trust as it might
cause a loss in confidence in disaster risk management au-
thorities.

Regardless of the weighting method, satellite imaging and
drones yield similar benefits for risk awareness and disas-
ter preparedness including improvements in data collection,
better input to risk and vulnerability assessments, support to

emergency exercises and contingency plans, and improve-
ments in quality and access to crisis information. Given these
similarities, satellite imaging and drones may be considered
as alternatives i.e., investments should be made in one or
the other, but not both, as they yield similar benefits. How-
ever, in line with previous research (Sajjad and Kumar, 2019;
Gray et al., 2018; Kucharczyk and Hugenholtz, 2021), we ar-
gue that satellite imaging and drones can complement each
other when applied in disaster risk management. Satellites
and drones can support different aims and offset different
challenges with regard to accessibility and feasibility. Our
findings indicate that satellite imaging and drones differ in
terms of compliance with regulatory frameworks, financial
viability, and social acceptance, as also noted by Bansod et
al. (2017). Furthermore, satellites and drones offer imagery
at different scales and therefore have different purposes and
attributes. In disaster risk management, drones are used on a
local scale and case-by-case basis, while satellite imaging is
more standardized.

Practical barriers seem to pertain to all digital technolo-
gies, regardless of the weighting method, and these barri-
ers impede their integration in disaster risk management de-
spite their potential benefits for social capital, risk aware-
ness, and disaster preparedness. Noncompliance with regula-
tory frameworks, inadequate access to resources, and limited
social acceptability apply across all digital technologies. In
line with previous research (Gambino and Tuzzolino, 2022;
Bu-Pasha, 2018; Tsiamis et al., 2019; Harrison and Johnson,
2019; Santos and Rapp, 2019), this indicates a gap between
technological advancements and institutional contexts. Tech-
nological development seems to accelerate faster than regu-
latory frameworks and capacity development. We see a need
for going beyond technological solutions and consider the
practical constraints faced by actors in disaster risk manage-
ment, in order to strengthen social capital, risk awareness,
disaster preparedness, and societal resilience.

We collected data from respondents representing various
regions with differences in disaster exposures and social con-
ditions. Vulnerabilities are represented differently depending
on context, hence requiring different types of disaster risk re-
duction measures. For example, satellite-based remote sens-
ing cannot operate in cloudy conditions, whereas drones can
(Emilien et al., 2021). This study does not capture these con-
textual and situational differences. We therefore recommend
that future research investigate social capital, risk awareness,
and disaster preparedness in depth and in context, in order to
make recommendations for policymakers and practitioners.

5.2 Reflections on the weighting of the criteria

We find that the choice of weighting method has a signif-
icant impact on the final ranking of the alternatives, while
the way in which survey results and weights are aggregated
to produce the final scores does not affect the ranking or-
der. The final rankings produced by the methods are the re-
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sults of the underlying assumptions on how to better treat
the uncertainties and the distributions of stakeholders’ opin-
ions. We therefore refrain from recommending one method
over another. Instead, we suggest applying different weight-
ing methods to observe what outputs are produced under dif-
ferent assumptions. This can mitigate potential uncertainties
and biases. Using different weighting methods can increase
robustness, reduce uncertainty, and improve credibility of the
results.

Our findings suggest that, when selecting the methods for
evaluating alternatives, methods that share similar underly-
ing assumptions and compute scores in a similar way should
be avoided as the additional information they provide is not
substantial and risk reinforcing the decision bias. The com-
bination of methods with diverging theoretical assumptions
can better recognize the uncertainty found in the dataset and
account for unseen patterns. In our case, the CRITIC and
dCRITIC methods yielded similar results and are hence in-
sufficient on their own, as they both rely on an approach
that is based on a correlation analysis among the criteria.
The similarity of results under these two methods can be ex-
plained by the distance correction that the dCRITIC method
adds to the CRITIC method and that has little effect on the
computation of the results. It can be said that these two meth-
ods belong to the same family, as both stress the analysis
of the correlation between the criteria as their main feature.
Both methods thus build on similar assumptions. Because of
this common trait, they may award similar weights to the
same criteria leading then to similar results. We observed that
the only two methods that produced the same exact ranking
preferences of the technologies are the SD method and the
MW method. We argue that this result is due more to a se-
lection choice by the researchers than to the similarity in the
computational steps. The MW method returns a null range
of weights by construction: all criteria are assigned the same
weight. The fact that we observe similar results from the SD
method, we argue, is instead linked to the selection of a four-
point Likert scale. The selection of such a small scale returns
a mean that is significantly close to the median. To provide
an example, mobile positioning data has an average score of
3.36 under criterion 1 (It can strengthen risk and vulnerabil-
ity assessments) and the distribution of scores for this tech-
nology under this criterion does not differ much from this
mean: 51 of the respondents awarded three points and 50
awarded four points. The narrative does not change for the
same technology under criterion 2 (It can improve access to
crisis information), where the mean score is 3.37 and 53 re-
spondents awarded three points and 49 respondents awarded
four points. The argument we are stressing is that with these
distributions of results from the survey, all the criteria present
similar, small, standard deviations. As the SD method awards
each criterion a weight that is expressed as the ratio between
that criterion’s standard deviation and the sum of all standard
deviations across all criteria, it is clear that the weights will
have close values and will then show a distribution that is

similar to the one obtained with the MW method. The dis-
tribution of survey results, centered closely around the mean
and therefore all very close to each other, is the reason, we
argue, why the SD method returns weights that have similar
value, e.g., the “flat distribution” observed in Fig. 2. A larger
Likert scale, i.e., with more scoring options, could potentially
prevent such a result and return a different range of weights.

Additional methods that consider alternative weight spec-
ifications and assumptions should be included to provide a
robust analysis of the performance. In this case, we rely both
on the entropy method to provide additional insights as it
makes use of probability theory instead of correlation or stan-
dard deviation analysis, and on the mean weight method,
which makes no assumption regarding the uncertainties in
stakeholders’ opinions by assigning every criterion the same
weight. We show that the introduction of a method that builds
on a different set of assumptions, the entropy method, may
completely change the results of the analysis.

5.3 Limitations

The geographical distribution of the responses collected
through the survey should stand as a caveat against the ex-
ternal validity of the results presented here. The way local
governments, communities, enterprises, and other local ac-
tors interact generates a dynamic that makes every applica-
tion extremely case specific (Maskrey, 2011). Moreover, the
adoption and the application of certain digital technologies in
areas that are already characterized by uneven distribution of
vulnerability and inequalities may risk exacerbating these sit-
uations (Hao et al., 2021). The case holds both for the Global
North, as shown in Wang et al. (2019), where social vulner-
ability of certain communities has been exacerbated by the
use of social networking sites for information exchange dur-
ing responses to Hurricane Sandy, and for the Global South
as well, as exemplified in the case of the 2015 earthquake
that hit Nepal: technological innovations in disaster manage-
ment were introduced in the context of deep social and digi-
tal inequalities, benefitting mostly those less at risk (Mulder,
2020).

6 Conclusions

Our study makes a contribution to the literature on disas-
ter risk management by evaluating digital technologies for
improving social capital, risk awareness, and disaster pre-
paredness. We applied a multicriteria analysis that incorpo-
rated different weighting methods in order to test uncertain-
ties in the relative degree of importance of social capital, risk
awareness, and disaster preparedness for societal resilience.
The conclusions of our analysis, we hope, will benefit the
academic community and practitioners as well. For the for-
mer, the warnings we raised on the implications of the choice
of the model to aggregate stakeholders’ opinions may raise
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awareness among researchers working with similar methods,
even in a different field; for the latter, the conclusions of the
analysis inform practitioners on the suitability of adoption of
one or more of the tools to achieve their goals of increasing
awareness, social resilience, and disaster responsiveness.

To overcome some of this study’s shortcomings, we rec-
ommend that future research engage in comparative case
studies and provide a contextual assessment of how digi-
tal technologies can improve social capital, risk awareness,
and disaster preparedness. We suggest looking into an ar-
ray of empirical contexts to test their application in vari-
ous geographical areas and situations. Future research can
also explore potential negative spillover effects that cascade
across social capital, risk awareness, and disaster prepared-
ness when implementing the digital technologies in practice.
We argue that the size of the scoring scale also may have a
significant impact on the ranking of preferences in a multi-
criteria assessment. We therefore encourage further research
on this topic to increase the awareness around this issue and
prevent selection biases.

In conclusion, our study shows the potential of digital
technologies in strengthening social capital, risk awareness,
and disaster preparedness. We highlight the importance of
using rigorous methodologies when assessing different in-
novative solutions for disaster risk management. Sensitivity
analysis by comparing different weighting methods and test-
ing different assumptions on how to treat uncertainties from
survey results can enhance the communication of findings
and improve confidence in the reliability of the results. The
number of choices that a researcher makes is high, from the
selection of a scoring scale to that of the weighting mod-
els, and this increases the likelihood of uncertain results that
would not be confirmed by an alternative approach. Different
assumptions and different approaches should always be con-
sidered as a means to increase the robustness of the results.
Above all, this can improve decision-making and societal re-
silience, and in the long run it can protect human lives and
economic assets.
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