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Abstract. Surface water flooding (SWF) is a severe haz-
ard associated with extreme convective rainfall, whose spa-
tial and temporal sparsity belie the significant impacts it has
on populations and infrastructure. Forecasting the intense
convective rainfall that causes most SWF on the temporal
and spatial scales required for effective flood forecasting
remains extremely challenging. National-scale flood fore-
casts are currently issued for the UK and are well regarded
amongst flood responders, but there is a need for complemen-
tary enhanced regional information. Here we present a novel
SWF-forecasting method, FOREWARNS (Flood fOREcasts
for Surface WAter at a RegioNal Scale), that aims to fill
this gap in forecast provision. FOREWARNS compares rea-
sonable worst-case rainfall from a neighbourhood-processed,
convection-permitting ensemble forecast system against pre-
simulated flood scenarios, issuing a categorical forecast of
SWF severity. We report findings from a workshop structured
around three historical flood events in Northern England,
in which forecast users indicated they found the forecasts
helpful and would use FOREWARNS to complement na-
tional guidance for action planning in advance of anticipated
events. We also present results from objective verification of
forecasts for 82 recorded flood events in Northern England
from 2013–2022, as well as 725 daily forecasts spanning
2019–2022, using a combination of flood records and pre-
cipitation proxies. We demonstrate that FOREWARNS offers

good skill in forecasting SWF risk, with high spatial hit rates
and low temporal false alarm rates, confirming that user con-
fidence is justified and that FOREWARNS would be suitable
for meeting the user requirements of an enhanced operational
forecast.

1 Introduction

Surface water flooding (SWF) represents all pluvial flood-
ing caused directly by intense rainfall, prior to water en-
tering natural or human-made drainage networks or water-
courses (Speight et al., 2021). In the United Kingdom (UK)
such events are treated distinctly from in-channel fluvial flash
floods, but both hazards pose similar challenges to forecast-
ers and responders. More UK properties are at risk from
SWF than from the combined risk from rivers and the sea
(DEFRA, 2018), while the frequency and impacts of SWF
events are expected to increase under current climate projec-
tions (Kendon et al., 2014; Chen et al., 2021). In urban areas
with impermeable ground surfaces these events can readily
cause major incidents (Green et al., 2017), while the forma-
tion of rapid torrents in steep terrain can lead to hazardously
high peak-flow rates (Archer and Fowler, 2018). The major-
ity of short-duration, high-intensity precipitation in the UK
falls from summertime convective weather systems (Hand et
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al., 2004), which are challenging to forecast accurately at the
temporal and spatial resolutions required for flood warnings
(Golding et al., 2016).

Ensemble forecast systems quantify this uncertainty, pro-
vide a range of possible future outcomes and allow forecast-
ers to assess the probability of different scenarios (Speight
et al., 2021). This is of particular importance for the pre-
diction of extreme events (Swinbank et al., 2016; Hawcroft
et al., 2021). Regional convection-permitting ensemble fore-
casts are now a mature feature of numerical weather pre-
diction (NWP) systems at meteorological services globally
(Brousseau et al., 2011, 2016; Beck et al., 2016; Klasa et al.,
2018; Frogner et al., 2019a, b), and they have increasingly
been adopted as the drivers for hydrological models and SWF
forecasting (Golding et al., 2016; Speight et al., 2018, 2021;
Wu et al., 2020).

The level of complexity involved in an SWF forecast can
vary from using simple empirical triggers to using real-time
hydraulic modelling (Henonin et al., 2013; Speight et al.,
2021). High-resolution modelling is appropriate on nowcast-
ing (below 6 h) timescales (Yu and Coulthard, 2015; Coles et
al., 2017; Green et al., 2017), but at longer lead times high
uncertainties in the driving rainfall limit the utility of such
forecasts (Moore et al., 2015; Flack et al., 2019; Birch et al.,
2021). A suitable compromise is to link rainfall forecasts to
pre-simulated impact scenarios, built from offline modelling,
using lookups. This method has been successfully applied
at urban, regional and national scales (Dottori et al., 2017;
Saint-Martin et al., 2016; Speight et al., 2018), including in
operational settings (Pilling, 2016; Aldridge et al., 2020).

The scientific and technical feasibility of an SWF-
forecasting method are necessary, but not sufficient, crite-
ria for operational adoption: the requirements of end users
must also be balanced (Flack et al., 2019). The flood re-
sponse community has a growing familiarity with, as well as
appetite for, probabilistic forecasts which convey uncertainty
(Demeritt et al., 2013). The growth of impact-based forecast-
ing enables good decision-making despite high uncertainties,
focussing attention on areas with the highest expected im-
pacts (Ramos et al., 2013; Merz et al., 2020). Many stud-
ies have investigated the added value for flood responders
of new SWF-forecasting tools, typically by using individual
interviews, group workshops and discussion, and interactive
exercises (Frick and Hegg, 2011; McEwen et al., 2014; Arnal
et al., 2016, 2020; Ochoa-Rodríguez et al., 2018). Including
users in the co-design of new products, combined with com-
munication and training, is an essential step of forecast de-
velopment (Golding, 2022).

A further step required to enable users to optimise
decision-making, as well as to improve objective skill, is
forecast verification. Verification is routinely conducted for
operational ensemble forecasts of precipitation, typically
against continuous rain gauge and radar observations (Ray-
naud et al., 2019; Porson et al., 2020). For hazardous ex-
tremes such as SWF, however, verification methods are often

lacking due to the sparsity of reliable and accurate observa-
tions against which to test forecasts, as well as the relative
extremity and hence rarity of the events themselves (Welles
et al., 2007). For river flooding, in situ gauges and satellite-
derived spatial datasets (e.g. GLoFAS, Alfieri et al., 2013)
provide appropriate observations; however these sources typ-
ically have limited application to flash flooding and SWF
(Gourley et al., 2012; Speight et al., 2021). Records may
instead be generated using rainfall accumulations exceeding
predefined thresholds as flood proxies, but such datasets are
method dependent and can differ significantly from records
of known floods (Herman and Schumacher, 2018). Promis-
ing complementary datasets are crowdsourced observations,
obtained from public reporting systems (Kirk et al., 2021;
MacLeod et al., 2021), news reports (Archer et al., 2019;
Jackson, 2023) or social media (de Bruijn et al., 2018, 2019).
The potential of crowdsourced data for supporting verifica-
tion has been widely acknowledged and demonstrated (Smith
et al., 2017; Witherow et al., 2018; Zhang et al., 2019;
MacLeod et al., 2021). Given the sparsity of alternative ob-
servations, such crowdsourced evidence is critical for sup-
porting the operational adoption of new forecasting systems.

Here we present the development and verification of
a novel SWF-forecasting method, FOREWARNS (Flood
fOREcasts for Surface WAter at a RegioNal Scale),
which neighbourhood-processes output from a convection-
permitting ensemble NWP system to compute reasonable
worst-case rainfall scenarios (Böing et al., 2020) and com-
pares these scenarios against rainfall drivers of pre-simulated
flood modelling. Our aim is to meet the UK user need
for enhanced regional guidance that complements existing
national-scale products (Ochoa-Rodríguez et al., 2018) while
offering useful guidance beyond existing static SWF risk
mapping (Aldridge et al., 2020; Birch et al., 2021). We
present findings from a case-study-based workshop with
forecast users, the outcomes of which informed the develop-
ment of new objective verification methodologies designed
to operate within the constraints of limited observations, the
rarity of forecast events, and the need to evaluate both spatial-
and temporal-forecast performance. We conduct verification
for samples of 82 recorded flood events and 725 daily fore-
cast issuances, computing categorical measures of forecast
performance against flood records and proxies. Combining
these results with workshop outcomes, we present a complete
picture of the suitability of FOREWARNS for enhanced op-
erational SWF forecasting.

2 Methods

2.1 Operational forecasting capabilities and
responsibilities in the UK

SWF-forecasting systems in the UK are tailored towards
supporting users who are responsible for incident planning
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and responding to flood events and those issuing subsequent
public warnings. Lead local authorities (UK local govern-
ment) are responsible for SWF incident management, and
therefore expertise can vary widely between regions (Ochoa-
Rodríguez et al., 2018). This stands in contrast to fluvial
flooding, for which the Environment Agency, a national pub-
lic body responsible for protecting and improving the envi-
ronment, has primary responsibility. Whilst the Environment
Agency does not have a statutory responsibility for SWF, it is
involved in some SWF response, in coordination with local
authorities, who are also supported by the emergency ser-
vices (typically fire and rescue).

The Met Office National Severe Weather Warning Service
(NSWWS) provides public warnings for all severe weather,
including thunderstorms and associated impacts (Neal et al.,
2014). Warnings are issued for individual hazard types based
on ensemble NWP output (Roberts et al., 2023) and expert
forecaster judgement. National warnings of SWF are typi-
cally only issued when substantial impacts are expected, so
they do not usually cover minor events.

The NSWWS service is informed by the UK regional
Met Office Global and Regional Ensemble Prediction System
(MOGREPS-UK), a convection-permitting ensemble fore-
cast with a 5 min temporal resolution covering north-western
Europe, with a 2.2 km inner domain spanning the UK and
Ireland (Hagelin et al., 2017; Porson et al., 2020). The model
is nested within a global ensemble, MOGREPS-G, which
yields boundary and initial conditions for regional mem-
bers. These are further centred (Tennant, 2015) on analyses
from the 4D-Var (4D variational) data assimilation system
of the UKV 1.5 km resolution deterministic model (Milan et
al., 2020), while ensemble perturbations are generated us-
ing RP2 scheme stochastic physics (McCabe et al., 2016).
All FOREWARNS forecasts used in this paper are gener-
ated from post-processed MOGREPS-UK ensembles. Flood
forecasting is a key application of MOGREPS-UK, and its
development has occurred in concert with that of the UK’s
SWF capabilities (Golding et al., 2016; Hagelin et al., 2017;
Speight et al., 2018).

Since 2019, three regional ensemble members have been
available in hourly cycles, initialised from the most re-
cent UKV analyses. Typically, members from six cycles are
grouped to generate an 18-member time-lagged ensemble
which contains a single unperturbed control member and
spans a common forecast period of 120 h (Porson et al.,
2020). Prior to 2019 the ensemble comprised 12 members,
initialised every 6 h, spanning a forecast period of up to
54 h (Hagelin et al., 2017). The post-2019 system offers the
advantages of being updated hourly and having ensembles
that incorporate observations from additional high-resolution
analyses. Under objective verification, this has led to im-
proved skill scores and ensemble spread (Porson et al., 2020).

MOGREPS-UK rainfall forecasts are routinely used to in-
form the Flood Guidance Statement (FGS), issued for Eng-
land and Wales by the Flood Forecasting Centre (FFC),

which is the current primary source of flood risk warnings
for flood responders. The FGS provides daily local-authority-
level guidance for fluvial, pluvial, groundwater and coastal
flooding and is disseminated to all flood responders and some
community groups (Pilling, 2016). The existing audience
for FGS warnings is taken as the intended user for FORE-
WARNS.

FGS guidance is issued daily on a four-category scale for
each type of flooding, covering lead times of 0 to 4 d. Ar-
eas of concern are highlighted by operational forecasters and
accompanied by risk matrices and textual detail. The fore-
cast is informed by ensemble outputs from a 1 km resolution
grid-to-grid (G2G) rainfall-runoff model (Bell et al., 2009;
Cole et al., 2015), driven by MOGREPS-UK. Assessments
of SWF risk are informed by the SWF Hazard Impact Model
(SWFHIM; Aldridge et al., 2020), which processes G2G
outputs to select the most appropriate grid-point representa-
tive from a set of pre-calculated impact maps from multiple
sources. For national FGS guidance these are aggregated to
local-authority-level risk areas. SWF risk at a given location
is assessed using UK Risk of Flooding from Surface Water
(RoFSW) maps, a national dataset of street-level SWF risk
(publicly accessible at https://check-long-term-flood-risk.
service.gov.uk/map, last access: 18 April 2024). RoFSW
mapping is informed by the modelling of nine flood scenarios
(1, 3 and 6 h accumulations for 30-, 100- and 1000-year re-
turn period events), which are aggregated to form compound
hazard maps (Environment Agency, 2019).

2.2 Enhanced SWF forecasting: FOREWARNS

The FOREWARNS forecasting method is an evolution of
Böing et al. (2020) and Birch et al. (2021) and comprises two
distinct components: (1) post-processing of MOGREPS-UK
rainfall to generate reasonable worst-case rainfall scenarios
(RWCRSs) of possible exceptional accumulations and (2) a
lookup comparison of these scenarios against hydrological
reference data to quantify the likely severity of SWF asso-
ciated with the forecast rainfall. The outputs from each sce-
nario’s lookup are then combined to generate a single fore-
cast map. Note that by severe events we mean temporal ex-
tremes associated with high rainfall return periods – we do
not assess hazard impact or potential damage.

2.2.1 Reasonable worst-case rainfall scenarios
(RWCRSs)

To generate RWCRSs we use the neighbourhood post-
processing method presented in Böing et al. (2020). For each
grid point, the method samples a specified threshold per-
centile p of the maximum accumulations in period T (min),
for all neighbouring points within a radius r (km). In this
study all accumulation periods start within the same calen-
dar day, but this requirement could be varied. The processing
may be conducted either on a single rainfall field or across
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multiple ensemble member fields (covering common forecast
periods) by sampling the distribution of maximum accumu-
lations generated by all ensemble members – see Böing et
al. (2020). Any RWCRS is then parameterised as (r , p, T ).
The timings of maximum accumulation periods may also be
extracted and used for forecasting (not featured in this study).
As with all neighbourhood processing methods, output fore-
cast fields are smoothed, which is appropriate for fields with
high degrees of spatial uncertainty, such as convective rain-
fall (Schwartz and Sobash, 2017).

A major benefit of the RWCRS method is that it is ap-
plicable to radar observations, allowing for verification of
post-processed forecasts against comparable observations.
We use 5 min, 1 km grid composite Met Office Nimrod data,
a blended radar and nowcasting/NWP product which is ver-
ified by rain gauges (Harrison et al., 2000, 2012). At high
accumulations, radar-derived rainfall observations can suffer
from substantial quantitative errors (Harrison et al., 2012)
but cannot be replaced with gauge data for extreme events
due to the limited spatial coverage of gauge networks (Mit-
termaier, 2008). The possibility of erroneous grid-point ex-
tremes in radar (or forecast) fields motivates focussing on
high-percentile accumulations rather than maximum values.
Figure 1 shows an example ensemble RWCRS forecast and
neighbourhood-processed and unprocessed radar observa-
tions for Northern England on 30 July 2019. Three distinct
bands of intense rainfall occurred (Fig. 1c); these features
caused severe SWF across a large area around the town of
Leyburn (Kendon, 2019). The smooth fields output by the
neighbourhood processing when applied to the forecast and
radar observations may be clearly seen (Fig. 1a, b) relative to
the unprocessed observed maximum daily rainfall accumula-
tions (Fig. 1c).

2.2.2 Flood threshold lookups

To translate RWCRSs into an SWF forecast we match
RWCRS rainfall hyetographs (time series) with pre-
simulated scenarios by comparing different rainfall thresh-
olds. Specifically, we conduct lookups of forecast daily
RWCRS accumulations against the Flood Estimation Hand-
book (FEH) 2022 depth–duration–frequency (DDF) rainfall
curves (Vesuviano, 2022), previous versions of which un-
derpin the national RoFSW mapping database (Environment
Agency, 2019). The FEH rainfall modelling covers the en-
tire UK at a 10 km grid resolution, both providing the rain-
fall hyetographs which locally yield a given SWF return pe-
riod and forming the basis for determining return periods
for UK rainfall (Stewart et al., 2013). Comparing a forecast
hyetograph for a given location against these values therefore
gives an indication of the SWF return period associated with
that rainfall. To identify the return period we use a categori-
cal lookup against the DDF threshold values (obtained from
https://fehweb.ceh.ac.uk/Map, last access: 18 April 2024) for
floods with return periods of 5, 10, 30, 100 and 1000 years.

It is important to note that by taking this approach, we are
only considering the return period associated with the rain-
fall, rather than estimating the return period associated with
river flow or discharge, which will be impacted by multiple
processes, including antecedent conditions. This is consistent
with approaches used to map surface water flooding, such as
the UK RoFSW maps (Environment Agency, 2019).

The lookup comparison requires sampling a subset of the
forecast grid and comparing forecast values against thresh-
olds indicated by the DDF curves. Advancements in the
methods underpinning the FEH rainfall modelling grid have
ensured that recent rainfall extremes are reflected and that
large local variations are minimised and results are con-
sistent across the UK (Vesuviano et al., 2021; Vesuviano,
2022). Considering this and the use of neighbourhood pro-
cessing used to generate RWCRSs, local lookup results will
remain smooth and can therefore be extrapolated. We adopt
local fluvial catchments as a suitable spatial scale on which
to sample rainfall fields. Varied hydrological characteristics
mean that different catchments typically respond differently
to SWF events, and in the UK they are used at an administra-
tive level to define catchment management activities (Envi-
ronment Agency, 2009). Here we sample the RWCRS fore-
casts at the centroid of each Level 9 catchment (roughly
20–70 km catchment scale) from the global HydroBASINS
database (Lehner and Grill, 2013), with additional sampling
conducted over urban areas. This method provides a hy-
drologically consistent approach to defining the catchments,
sampling and forecast results, while the use of centroid loca-
tions to determine return periods is consistent with the devel-
opment of other surface water datasets, such as the RoFSW
maps (Environment Agency, 2019). Figure S1 in the Supple-
ment shows the locations of the catchment boundaries and
sampling points.

At each sample point, a categorical lookup is conducted
for daily RWCRS accumulated rainfall in T = 60, 180 and
360 min. The highest associated return period of SWF over
all accumulation periods is taken as the day’s catchment fore-
cast; similarly, for catchments with multiple sampling points
the highest overall return period is selected. In this manner
we synthesise the forecasts of multiple RWCRSs, covering
multiple timescales, to provide a single forecast of the SWF
risk in each catchment.

The output of FOREWARNS is a single guidance map
spanning the forecast domain (Fig. 2, column 2) which can
be produced for any MOGREPS-UK ensemble (available
hourly). Forecast return periods indicating SWF severity are
displayed through categorical colour shading of individual
catchments, which are overlaid onto boundaries of local au-
thorities and an Ordnance Survey basemap. Comparison with
operational FGS assessments of national flood risk (Fig. 2,
column 1) clearly shows the enhanced level of regional de-
tail.
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Figure 1. Forecast and radar observations of maximum daily rainfall accumulation (accum.) in 3 h for Northern England, valid for
30 July 2019. (a) Accumulation forecast by (r30, p98, T 180) RWCRS generated from the previous day’s 20:00 UTC 18-member
MOGREPS-UK ensemble rainfall forecast. Black contours show regional boundaries of the lead local authority. (b) Benchmark (r30, p98,
T 180) RWCRS generated from Met Office Nimrod radar observations on 30 July 2019. Labelled town of Leyburn, North Yorkshire, recorded
severe SWF impacts. (c) Exact (unprocessed) maximum rainfall accumulations in 3 h, from same radar product.

2.3 Objective verification

We adopt several methods to verify FOREWARNS fore-
casts, using a combination of recorded SWF events and
radar-derived proxies as our observations (Table 1). We
consider two distinct sets of May–October forecasts for
Northern England: a sample of days with known, recorded
flood events, spanning 2013–2022, and a sample of con-
tinuous daily forecasts covering the period of time-lagged
MOGREPS-UK forecast availability (2019–2022). To enable
continuity across MOGREPS-UK’s upgrade from 6-hourly
to hourly cycling in 2019, all verification (except Fig. 7) is
conducted using 15:00 UTC ensembles. Under the present
system, FOREWARNS forecasts produced from this cycle
would be available to users at approximately 19:00 UTC.

2.3.1 Flood observations

There is no comprehensive record of UK SWF events, so
we construct a record of known May–October days with
flood events across Northern England by collating partial
SWF records from official reports, news publications and
social media. We primarily use the Global Flood Monitor
(GFM; https://www.globalfloodmonitor.org/, last access: 18
April 2024), which applies natural language processing to
social media activity, identifying all flood types and geolo-
cating likely locations with an accuracy rate of ∼ 90 % (de
Bruijn et al., 2019). Given the restricted domain of this study,
we manually verified each flood event identified by the GFM,
only recording events flagged more than twice that could be
subjectively identified as SWF based on expert judgement.
Due to variability in the available data and the difficulty in
interpreting it, we did not quantify the severity or timing of

the recorded flooding but did identify the catchments where
SWF was recorded.

Using both the GFM and official reports, we recorded
82 May–October days with SWF events, spanning 2013–
2022 (Table S3). This record represents a lower bound on
the actual occurrence of SWF. Events in remote areas or at
night may not have been recorded, while the years of 2013
and 2014 are not covered by the GFM and are based on offi-
cial reports only.

An upper bound on SWF events may be obtained from
a precipitation proxy. This technique is a well-established
aspect of US flash flood forecast verification, where prox-
ies are integrated with flood reports in the NOAA Unified
Flooding Verification System (UFVS; Erickson et al., 2019,
2021). Various such proxies are evaluated in detail in Her-
man and Schumacher (2018). Given the absence of such a
UK record but the availability of national coverage of the
Nimrod radar network and RoFSW mapping, we construct
flood proxies for Northern England using lookups of radar
hyetographs against FEH DDF curves to combine the exist-
ing datasets. Since lookups are conducted at discrete sample
points, it is necessary to use neighbourhood-processed radar
fields. For consistency we adopt radar RWCRSs as the pro-
cessing method and adopt (r30, p98) FOREWARNS bench-
marking driven by radar RWCRSs as radar SWF proxies. See
Fig. S3 for verification of multiple parameterisations against
catchment-level recorded flood locations. We emphasise that
this proxy should be interpreted as an upper bound on flood
occurrence that inevitably overestimates the spatial extent of
SWF events. The proxy measure does not account for an-
tecedent hydrological conditions or any intensity of flood
damage and should not be considered a replacement for real-
istic, but expensive, hydraulic modelling. We generate a radar
SWF proxy for all 82 d with recorded floods and daily May–
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Figure 2. Forecasts and observations for case studies utilised in the user workshop. Each row pertains to a single case study. The first column
shows operational FGS forecasts issued by the Flood Forecasting Centre at 09:30 UTC on the day of the event. Shading indicates flood risk
for areas of concern, with yellow indicating “LOW” risk and green indicating “VERY LOW” risk. The second column shows (r30, p98)
FOREWARNS forecasts generated from the 20:00 UTC MOGREPS-UK ensemble the previous day. These forecasts would be available to
users at 00:00 UTC the same day. Shading indicates the expected return period of SWF, from 5 to 1000 years. Areas within the forecast
domain with no SWF forecast are bright and unshaded, while areas outside the forecast domain are greyed. The third column shows (r30,
p98) radar SWF proxy observations (shading) and catchment-level locations of recorded floods (bold borders and stippling) for each event.
Ordnance Survey MiniScale® basemaps used in columns 2 and 3 contain public sector information licensed under the Open Government
Licence v3.0. River catchments derived from HydroBASINS (Lehner and Grill, 2013).
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October from 2019 to 2022. Example radar SWF proxies and
accompanying catchments with recorded SWF are shown in
column 3 of Fig. 2.

2.3.2 Defining contingency tables

FOREWARNS offers a categorical forecast of the SWF re-
turn period for each catchment with its domain. We thus base
our verification methodology on catchment-level yes/no bi-
nary contingency tables. We do not attempt to verify exact
catchment-level severity; instead we only examine thresholds
for all SWF return periods (5 years and above) or severe SWF
return periods (30 years and above). A “yes” event occurs
in a catchment when SWF severity meeting the threshold is
shown by the forecast, event record or radar SWF proxy. If
a catchment is highlighted in both the forecast and observa-
tions, a hit a is recorded. Forecast-only “yeses” constitute
false alarms b; conversely, for observations only we record a
miss c. A catchment appearing in neither forecast nor obser-
vations is a correct rejection d.

Assessing forecast performance requires combining n con-
tingency tables to obtain a performance record. For North-
ern England, each FOREWARNS forecast issue predicts
the SWF risk for 166 individual catchments. Combining
catchment-level contingency tables may be done either spa-
tially for each forecast issue such that n is the number of
catchments or, conversely, across all forecast issues for a
given catchment such that n is the number of forecasted
days. For the former, skill scores pertain to the performance
of single forecast issues in predicting the spatial coverage
of SWF. We refer to such measures as spatial skill scores.
The distribution of such scores across multiple forecast is-
sues then indicates the overall ability of FOREWARNS to
accurately warn forecast users of SWF locations. Selecting
a single catchment and combining contingency tables across
multiple forecast issues meanwhile generates a time series
of forecast performance. We denote measures obtained from
such records temporal skill scores, since they indicate the
relative frequency of forecast yeses and misses for a given
catchment. The distribution of temporal skill scores across
all catchments then indicates the relative reliability of FORE-
WARNS.

Skill distributions may be aggregated to give single-value
measures, for which we report mean values and their stan-
dard errors. However, it is important to recognise that such
an approach does not give a complete picture of performance:
mean temporal skill scores only aggregate point-location as-
sessments and cannot reflect spatial patterns in forecasts.
Likewise, mean spatial skill scores do not provide a clear
indication of temporal reliability. For categorical, regional-
level warnings such as FOREWARNS, headline score val-
ues combining these features may instead be found by re-
ducing each issue to a single, regional contingency table
category, generating one time series of spatially aggregated
performance. There is no unique way to achieve this objec-

tively: one must impose how to define an overall hit, miss or
false alarm, and this choice should reflect the requirements
of users (Sharpe, 2016). Given the limited observational data
available for SWF, we choose to only assess regional-level
contingency categories subjectively. Forecast issues are char-
acterised using the individual expert judgement of multiple
meteorologists to assign a unique category based on a visual
inspection of forecast–proxy pairs.

2.3.3 Skill scores

From contingency tables we calculate skill measures cover-
ing all aspects of forecast performance (Wilks, 2019). Given
the spatial and temporal rarity of flood events, where possi-
ble we choose scores which do not reward correct rejections.
Such a measure for forecast accuracy is the threat score,

TS=
a

a+ b+ c
, (1)

the proportion of correct forecasts after omitting correct re-
jections. TS is an equitable score, where a score is equitable
if random or constant forecasts are rated equally, typically
scoring 0, while perfect forecasts score 1. The ability of a
forecast to discriminate between different forecast outcomes
is meanwhile measured by the hit rate H and false alarm
rate F ,

H =
a

a+ c
, F =

b

b+ d
. (2)

H is equitable and is the probability of detection for a yes
event. F is not equitable (0 for perfect forecasts) and com-
pares the rate of false alarms against the rate of non-events.
To instead measure forecast reliability, i.e. the proportion of
correct yes forecasts, we use the (equitable) success ratio,

SR=
a

a+ b
. (3)

For a single score measuring all attributes we adopt the
Pierce skill score,

PSS=
ad − bc

(a+ c)(b+ d)
=H −F, (4)

for which random forecasts score 0 and -1 is the worst
score. However, PSS can trivially degenerate to H for ex-
treme events where the proportion of observed yes events,
(a+ c)/n, is very small. This measure has different inter-
pretations for spatial and temporal skill scores. For spatial
assessment of single forecasts, the ratio constitutes the spatial
coverage q for the day in question (i.e. proportion of catch-
ments showing an event).

For temporal records the ratio (a+ c)/n instead corre-
sponds to the (climatological) base rate s, i.e. the frequency
of events for a given location (Stephenson et al., 2008). Fig-
ure 3 shows the spatial variation in s across Northern Eng-
land, determined from the daily series of radar SWF proxy
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Table 1. Summary of datasets and methodologies used in this study for the multifaceted verification of FOREWARNS.

Dataset Source Details Application

User survey responses Debrief survey for work-
shop participants

– Qualitative responses to questions listed
in Table S1
– Survey completed by 20 workshop partic-
ipants, including 7 forecast users

– Gathering and evidencing
user feedback
– Informing design of verifica-
tion analysis

Recorded flood loca-
tions

– Global Flood Monitor
– Official flood reports
– News publications

– Northern England flood events identified
from May–October 2013–2022: 82 d with
recorded flood
– Catchment-level locations identified
– 28 d with especially significant SWF se-
lected from subjective analysis of recorded
flood impacts

– Identification of days with
known flood events
– Selection of radar SWF proxy
parameterisation

Radar SWF proxies
for days with recorded
floods

(r30, p98)
FOREWARNS applied to
Met Office Nimrod radar
fields

– Radar SWF proxy generated over North-
ern England for all 82 d with recorded flood
events
– Records categorical SWF return period
(none, 5-, 10-, 30-, 100-, 1000-year) for 166
catchments

Objective verification: calcula-
tion of spatial skill scores for all
82 d

Daily radar SWF proxy
record

Same as row above – 725 radar SWF proxies generated over
Northern England for May–October 2019–
2022
– 12 d omitted from full period due to radar
errors

Objective verification: calcula-
tion of temporal skill scores for
all 166 catchments

Subjective, visual fore-
cast assessment

Forecast versus radar SWF
proxy pairs

– Human, visual classification of 155
forecast–proxy pairs showing a forecast or
proxy “flood”; for Northern England, May–
October 2019–2022
– Assessment by 10 meteorologists: 6 au-
thors, 4 external from Met Office and JBA
Consulting

Subjective verification: calcula-
tion of integrated skill scores
for daily forecast period

observations. SWF does not occur uniformly over the do-
main, with hillier and wetter western regions experiencing
more events (higher s). However, values only range from
0.003 (2/725 d) to 0.042 (32/725 d).

A more appropriate skill score in this regime, designed for
verifying rare-event forecasts, is the symmetric extremal de-
pendence index (Ferro and Stephenson, 2011),

SEDI=
logF − logH − log(1−F)+ log(1−H)

logF + logH + log(1−F)+ log(1−H)
. (5)

The behaviour of SEDI in the small s limit depends on the
bias,

B =
a+ b

a+ c
, (6)

or comparison of the average forecast against the average ob-
servation. Here a perfect score is 1, with larger values denot-
ing over-forecasting and values less than 1 viewed as under-
forecasting (Wilks, 2019). SEDI is designed to apply to un-
biased forecasts. Ferro and Stephenson (2011) recommend

SEDI be calculated for forecasts recalibrated such that B =1,
but uncalibrated forecasts may be used if bias is also indi-
cated (North et al., 2013) – see “Technical Note on SEDI
calculation” in the Supplement.

3 Forecast co-production

3.1 Workshop aims and outcomes

We tested FOREWARNS at a workshop in November 2022
based around three recent, but contrasting, SWF events in
Northern England (Table 2 and Fig. 2). There were a total of
21 workshop attendees, who can be split into the broad cat-
egories of forecast users, forecast providers and others. The
forecast users included five flood responders and/or flood risk
managers from lead local authorities in Northern England,
who have primary responsibility for SWF response in their
regions; two voluntary community flood wardens; and one
emergency services representative. The forecast providers in-
cluded six weather and flood forecasters and/or research staff
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Figure 3. Spatial distribution of base rate s (i.e. proportion of days
with events at a 5-year return period or higher) across Northern
England, determined from 725 (r30, p98) radar SWF proxy ob-
servations spanning May–October 2019–2022. Values range from
0.003 (2/725) to 0.044 (32/725). River catchments derived from Hy-
droBASINS (Lehner and Grill, 2013).

from the Met Office, Flood Forecasting Centre and Environ-
ment Agency. In addition, there were five attendees from UK
universities and two from private consultancies.

The aims of the workshop were to

– gather user feedback on existing SWF forecast provi-
sion and understand the actions available to flood risk
managers and responders prior to an event

– understand how flood responders interpret FORE-
WARNS and whether the forecasts would be useful in
their decision-making

– gather suggestions for further improvements to FORE-
WARNS.

The workshop began with an introduction to FORE-
WARNS and how it should be interpreted. Participants were
then split into four groups for discussions structured by a fa-
cilitator. Each case study event was discussed in turn, be-
ginning with some details of the event’s impact and discus-
sion of the existing flood forecast provision issued in the 4 d
prior to the event and on the day itself (primarily FGS and
NSWWS). The facilitator then introduced FOREWARNS to
the group at lead times of 4 to 1 d prior to the event and
at midnight the night before. A wider discussion between
all participants followed, with each group feeding back their
main points. At the end of the workshop all participants were
asked to fill in a survey (Table S1, question numbers labelled
in text).

3.1.1 Reflections on existing forecast provision

Operational NSWWS and FGS warnings were valued by
workshop participants and are consulted regularly. Of the
seven flood forecast users that completed the survey, four
stated that both the NSWWS and FGS products would be ei-
ther “useful” or “very useful” for informing decision-making

during the three workshop case studies, whilst the remaining
three gave the neutral response of “neither unhelpful nor use-
ful” (Q6 and Q7).

The group discussions highlighted that user interpretations
of the FGS headline risk statements and maps can differ from
interpretations of the written guidance. Experienced flood
forecast users placed particular importance on the risk ma-
trices included in these guidance products, far more so than
the mapped areas of concern, with changes in the risk ma-
trix generating significant attention and often changing ac-
tions put in place. The detailed language and descriptions
of impacts used in the FGS were also generally considered
more useful than the prescriptive “very low” or “low” head-
line statements, which can sometimes lead to detail within
these categories being missed. Indeed, case study 3 was a
good example of an event where, although the headline risk
level remained constant, the risk matrix indication of likeli-
hood increased with decreasing lead time, which is suscepti-
ble to being overlooked.

While getting a national picture of SWF risk is valued,
many users reported (Q8) that the broad risk areas, lack of in-
formation about the timing of events during a day and lack of
spatial detail make it difficult to apply the information at a lo-
cal level. The group of forecast users, which mainly consisted
of flood professionals, understand the challenges of forecast-
ing convective rainfall and the reasons for false alarms and
have an appetite to access more detailed forecast information
with the understanding no forecast is perfect.

3.1.2 Actions prior to a flood event

The group discussions of the three case studies highlighted
that actions in advance of a forecast flood event are currently
limited to a small number of low-cost, low-regret activities.
At 2 or 3 d prior to the forecasted event users can monitor
forecasts in detail during office hours; clean trash screens to
clear urban drainage systems; inform local flood wardens;
and alter worker shift patterns to arrange more cover and
more on-call staff for the event day, particularly if it is over
the weekend. At 1 d prior to the event, response vehicles and
other equipment can be made ready to deploy, forecasts can
be monitored outside of office hours, and key organisations
such as National Highways can be informed. The key period
for flood responders is the few hours in the lead-up to and
during an event, when they monitor radar observations and
short lead time forecasts of rainfall via public websites, in-
cluding the Met Office public web pages. On the same day
of an event actions can include notification of the public, clo-
sure of public places susceptible to flooding and more dis-
ruptive actions such as road closures.

3.1.3 User feedback on the new forecasts

All flood forecast users (seven respondents) reported that
FOREWARNS would be useful or very useful for their or-
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Table 2. Summary of workshop case studies. The locations of the recorded floods are shown by catchments with bold borders and hatching
in column 3 of Fig. 2.

Event Type of region Date Severity Impacts/other details

Case 1: north-eastern
Yorkshire Dales

Rural area in national
park, with villages and
small towns

30 July 2019 Major Destruction of infrastructure and prop-
erties; flooding of properties (includ-
ing emergency response facilities);
widespread flooding of roads (followed
anomalously wet month; some impacts
listed in Kendon, 2019)

Case 2: Shipley Small town, suburban
river valley

30 June 2022 Minor Localised flooding of one road and inter-
change, during evening peak in traffic

Case 3: South Yorkshire,
North Lincolnshire

Major city (Sheffield),
small towns and rural

16 August 2022 Moderate Flooding of residential roads and proper-
ties; damage to roads and property; trans-
port disruption (followed national heat-
wave)

ganisation (Q12), and all users reported that these forecasts
were easy to interpret (Q16). Responses indicated forecasts
would be used in combination with existing provision on the
same day as the event and 1 d in advance of potential flood
events for action planning, including to gain approval from
managers for actions, and up to 3 d in advance for routine
monitoring (Q19 and Q20).

For the two more major flood case studies (1 and 3), all
flood forecast users stated that they “agreed” or “strongly
agreed” that the new forecasts would have made a posi-
tive difference to their decision-making prior to the events
(Q9 and Q11). For the minor flood (case study 2, Q10),
the responses were spread between “strongly disagree” and
“agree”, with the most frequent response of “disagree”. The
flooding in this case was caused by an extremely intense, but
isolated and short-lived, shower and was minor in extent and
impact (i.e. no properties flooded) at a location without a
prior history of SWF. From a forecasting perspective such
events were considered impractical to predict for a specific
location, while it was clear from discussions that, from a
response perspective, such events are not of high concern.
Many responders indeed questioned whether the recorded
event classified as a flood and also noted that its impacts
could be dealt with reactively. Although participants did not
generally find that the FOREWARNS forecast information
made a difference to their decision-making in this case study,
they agreed that NSWWS, FGS and FOREWARNS all per-
formed well in not flagging any increased risk. A clear out-
come from the group discussions was that the primary con-
cern for flood responders is major SWF events that lead to
property damage and widespread disruption. Improving fore-
casts for such floods should be the priority, rather than trying
to anticipate the more minor events.

Flood forecast users were comfortable with the use of an
RWCRS and understood that impacts would not occur ev-

erywhere marked on the map with a level of elevated SWF
risk. There was general agreement that the use of reason-
able worst-case scenarios was better than under-forecasting
events. Given participants’ understanding of the challenges
involved in forecasting SWF events, there was general toler-
ance during the group discussions of a certain level of false
alarms. False alarms were viewed as less of a concern within
the professional community but more of a concern for the
general public (at whom FOREWARNS is not aimed). Users
also noted that there were inconsistencies or “jumpiness” be-
tween forecast lead times (e.g. Fig. S2, case study 3) and be-
tween FOREWARNS and the FGS, which could cause con-
fusion (Q15). Such inconsistences are not isolated to FORE-
WARNS (e.g. Speight et al., 2018) and can be alleviated by
expert interpretation.

Users felt that the spatial resolution of the forecasts was
about right for providing general guidance, given the uncer-
tainties in forecasting SWF events. The users did not see the
benefit of the forecasts being at an even higher resolution.
Users stated that they would especially value an indication
of the time of day of the event, which is not currently pro-
vided in the FGS but could be provided as part of the FORE-
WARNS system. Users said they would routinely check fore-
casts from about 08:00 UTC in the morning, so a forecast is-
sued daily at this time would be most useful, perhaps with
an update by lunchtime on days with a forecasted SWF event
(note the FOREWARNS flood forecast could be driven by
nowcast- rather than NWP-derived RWCRSs at these short
lead times).

Several participants stated through the survey (e.g. Q15)
and the group discussions that the labelling of the flood level
by return periods was potentially confusing and could be im-
proved. Users were not necessarily able to relate a certain re-
turn period (e.g. 1 in 100 years) to a set of expected impacts
and were unsure whether or not the return periods commu-
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nicated likelihood or severity. Indeed, the forecasts currently
do not explicitly include a measure of likelihood but rather
present a reasonable worst-case scenario. Suggestions dur-
ing the workshop were to label the different levels simply
as high, medium and low severity and consider what colour
scheme is best to represent this.

In summary, aspects of FOREWARNS that were particu-
larly valued by all workshop participants were the following:

– the improved level of local detail;

– the clear presentation that is not text heavy and presents
the information by river catchment;

– the translation of rainfall forecasts into a visual flood
forecast that indicates impacts, rather than just present-
ing a weather forecast;

– the use of RWCRSs.

Aspects that participants felt required further improvement
were the following:

– the communication of flood severity through return pe-
riods, since it was not clear what level of impact each
return period related to;

– the appearance of potentially unrealistically high return
period values (1 in 1000 years) in some forecasts;

– the jumpiness of forecasts as lead time decreased and
the poorer reliability of the longer lead times;

– the lack of any likelihood indication;

– provision for, as well as indication of, the time of day
when flooding was expected;

– the colour scheme – currently potentially misleading.

4 Forecast verification

4.1 Verification of forecasts on days with recorded
floods

Figure 4 shows pairs of FOREWARNS forecasts and corre-
sponding radar SWF proxies for 28 d where especially signif-
icant flood events were recorded. These events are a subset
of the 82 d with recorded flooding over Northern England
from May–October 2013–2022 and represent days where
the reported impacts identified damage to property or ma-
jor disruption. From the figure it is apparent that for (r30,
p98) forecasts SWF was anticipated within the domain for
all but four events. Radar proxy panels also display catch-
ments with recorded flooding. The recorded flooding is iden-
tified by the proxy in all but two cases (20 July 2014 and
30 September 2017). Catchment-level locations of recorded
flood events were forecast in 19 of the events. Subjectively,

the forecasts appear to reasonably capture the subdomains at
risk of SWF but overestimate the actual extent compared to
the (RWCRS) radar results, which themselves are an upper
bound on flood occurrence.

Figure 5 shows spatial skill scores for the forecasts, shown
in Fig. 4, of the 28 d where significant SWF was identified.
Scores are plotted on a Roebber performance diagram, where
skilful forecasts lie in the top right corner, indicating high
forecast accuracy (TS) and reliability (SR) (Roebber, 2009).
Score markers are scaled and shaded based on the SWF cov-
erage q, i.e. proportion of catchments highlighted as yes in
the radar proxy. More than half of the forecasts have TS > 0.3
and H > 0.5, suggesting good accuracy in forecasting the lo-
cation of SWF. This is particularly the case for forecasts of
events with higher q values, which generally show higher
scores than for lower-coverage events. The slope of a lin-
ear regression line with zero intercept fitted to all points is
B = 1.26, indicating a bias towards over-forecasting SWF
extent (versus the radar proxy). The radar proxies for both
more major flood events featured in the user workshop are
circled (case 1 is pink, case 3 is yellow).

The forecast for workshop case study 1 shows good
skill, with TS= 0.61 and H = 0.76, whereas scores for case
study 3 are far lower (TS= 0.07 and H = 0.14). From Fig. 4
the low TS values for this case (event 27 in the figure) can
be seen to arise from an incorrect prediction of the regions at
risk of SWF. Furthermore, the forecasts for case study 3 vary
significantly with lead time (see Fig. S2) – at the shortest
lead time TS increases to 0.49, with all recorded flood loca-
tions identified. The difference in skill between these cases
can likely be traced back to differing synoptic-scale regimes:
intense rainfall in case 1 was embedded within an intense
summer low that tracked across Northern England (Kendon,
2019), whereas in case 3 widespread hydrostatic instability
following the breakdown of a national heatwave led to con-
vective precipitation events across much of the UK.

Figure 6 shows distributions of spatial skill scores for r30
FOREWARNS forecasts of all 82 d with recorded flooding.
Figure 6a shows results for all return periods, whereas Fig. 6b
displays results for return periods higher than 30 years only,
which we refer to as severe SWF (note that this is at the
catchment level). Both figures show the importance of using
a high-percentile threshold: for p90 the interquartile range
for most scores is nearly 0, and the same applies for p95
for severe SWF. However, the higher percentiles show far
larger spreads for the false alarm scores (F and SR), espe-
cially p99. While this percentile achieves higher hit rates
than p98 for both return period thresholds, the increased cost
of spatial false alarms is reflected in the far less pronounced
improvement in TS and PSS between these percentiles. The
scores calculated here are taken against the radar SWF proxy,
so false alarm measures likely represent lower bounds on
truth values. With these considerations, the improvement in
hit rate from p98 to p99 is arguably not sufficient to justify
the increased occurrence of spatial false alarms. Note that the
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Figure 4. Pairs of (r30, p98) FOREWARNS forecast and radar SWF proxies for 28 d recording especially significant SWF over Northern
England, recorded 2013–2022. Locations of recorded floods highlighted in radar proxy panels. All forecasts are based on the previous day’s
15:00 UTC MOGREPS-UK ensemble rainfall forecast. River catchments derived from HydroBASINS (Lehner and Grill, 2013).

effect on forecast performance of changing p is far more pro-
nounced than changing neighbourhood radius r , with Fig. S4
showing that changing r has little effect on mean skill com-
pared to changing p. Based on this analysis, we focus the re-
mainder of our evaluation on the (r30, p98) FOREWARNS
parameterisation.

Figure 7 shows how spatial skill distributions for (r30,
p98) forecasts change for a range of lead times when cal-
culated for the 41 d since 2019 with recorded flood events.

Here we use a smaller sample size since prior to 2019,
MOGREPS-UK produced ensembles every 6 h, with a max-
imum lead time of (up to) only 54 h. Post-2019, the most
up-to-date MOGREPS-UK ensemble available for issuing a
complete FOREWARNS forecast (i.e. full calendar day from
00:00 UTC) is the previous 20:00 UTC cycle. This 5 h de-
crease in lead time (blue bars) is sufficient to slightly improve
both the distribution spread and average values for the hit rate
(H ) and PSS. Conversely, there are generally slight decreases
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Figure 4.

for forecasts available at longer lead times. As may be antic-
ipated, forecasts available 4 d in advance of an event (purple
bars) show the poorest skill, especially in H and PSS, but
overall the results show remarkably consistent spatial fore-
cast skill with lead time.

4.2 Verification of daily forecasts

The previous results assess the spatial skill of FOREWARNS
for 82 d with recorded flood events. Here we assess 725 daily
forecasts and radar SWF proxies (May–October 2019–2022,

12 d omitted due to radar errors). There are 41 d during this
period with recorded SWF events, of which 29 were cor-
rectly detected by the radar proxy. An additional 79 d showed
SWF in the radar proxy, yielding 108 proxy flood days in to-
tal. Across the same period, (r30, p98) FOREWARNS fore-
casts SWF in at least one catchment on 107 d. There was at
least one catchment-level hit against the radar proxy on 52
of these days, versus 570 d which exclusively showed cor-
rect rejections. The remaining 103 d showed only catchment-
level false alarms and/or misses. Figure S5 shows that across
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Figure 5. Roebber performance diagram for (r30, p98) FORE-
WARNS forecasts of the 28 d recording significant flood events,
for 2013–2022. Values plotted are spatial skill scores for individ-
ual forecast issues, computed against the corresponding radar SWF
proxy (as shown in Fig. 4) for all return periods (any indication
of SWF, i.e. 5-year return period or higher). Markers shaded and
sized based on proportion q of highlighted catchments in the radar
proxy. All scores shown are equitable (worst score of 0, perfect
score of 1), so forecasts close to the top right corner of the diagram
show the highest skill. Entries for four trivial (no highlighted catch-
ment) forecasts are not plotted. The pink circle indicates the forecast
for user workshop case study 1, and the yellow circle is case study
3. Case study 2 does not appear because it does not fit the criteria
of an especially significant SWF event. All forecasts are based on
the 15:00 UTC MOGREPS-UK ensemble forecast issued the day
before an event. The set of 28 d recording significant flood events
was identified from the full record of 82 d with recorded flooding
by subjective analysis of recorded impacts.

all days there was a bias towards over-forecasting the spatial
extent of SWF.

Figure 8 shows plots of objective temporal hit rates H

against F (ROC diagram, receiver operating characteristic)
and SR (Roebber diagram), i.e. one point for each of the 166
individual catchments in the forecast domain. Correspond-
ing distributions, as well as results for spatial and temporal
skill scores from this forecast sample, are shown in Fig. S6.
Figure 8a shows that for all catchments F is extremely low,
whereas H spans a wide range of values, with a mean value
of 0.37± 0.01. In only six catchments do we find that SWF
was not correctly forecast at all (H = 0). The F values show
a low rate of erroneous warnings for days with no flooding –
the frequency of forecast issues reflects the temporal sparsity
of flood events, indicating very good discrimination. How-
ever, F depends on the correct rejection rate and does not
reflect the reliability of event forecasts.

The distribution of SR values plotted in Fig. 8b indicates
that overall, the probability a catchment-level yes forecast
of SWF is correct is relatively low (mean of 0.26± 0.01).
However, when we account for the variability in the base
rate s (i.e. proportion of days with events) of SWF across
Northern England (Fig. 3), we see relatively consistent H

values but a notable improvement in SR for catchments
which have higher base rates. Indeed, for catchments with
s>3 % the mean SR increases to 0.44± 0.01, while mean
H = 0.44± 0.02. This indicates that forecasts are generally
more accurate for catchments which experience more SWF
events. The improvement in accuracy also corresponds to a
general decrease in the degree of over-forecasting, as indi-
cated by a trend towards the unit bias line. Figure S7 shows
that the spatial variability of many temporal skill scores also
strongly reflects that of s (Fig. 3).

The plots in Fig. 8 comprise objective results for individ-
ual catchments assessed in isolation and do not account for
the overall spatial distribution of any given day’s forecast.
To include spatial skill in the assessment of the daily fore-
cast series we use results from a subjective assessment (see
Sect. 2.3.2). A group of 10 meteorologists (6 paper authors,
4 practitioners from Met Office and JBA Consulting) visually
examined all forecast–proxy pairs from May–October 2019–
2022 that did not exclusively show correct rejections (i.e. 155
pairs). Individual assessments and subsequent skill scores
are given in Table S2, which shows a mean miss count of
50.2±3.2, compared to mean false alarm count of 34.7±1.7,
suggesting regional misses were prioritised over false alarms.
This implies that from a human perspective, accounting for
both forecasts’ spatial distribution and temporal frequency,
SWF is viewed as under-forecast over Northern England. In-
deed, the mean subjective bias of B = 0.81± 0.04 is less
than 1.

Mean subjective skill scores include a hit rate of H =

0.40±0.05 and reliability SR= 0.48±0.05 (purple, Fig. 8b).
These scores are not directly comparable to their objective
counterparts, since subjective scores reflect the spatial dis-
tribution of forecasts, whereas mean objective scores are de-
rived from individual catchments. However, from spatial skill
assessment in Sect. 4.1 we know that forecasts overestimate
the extent of SWF, and over an extended period this will
lead to temporal false alarms. The improved subjective scores
(versus objective results, Fig. 8b) reflect the value humans
placed on forecast spatial patterns of SWF over individual
catchment-level comparisons.

Figure 9 shows the distributions of individual catchments’
objective temporal skill scores at a range of lead times. Grey
bars correspond to the 1 d lead time used for the preceding
objective and subjective assessments (Fig. 8). For all scores
we see a decrease in skill with longer lead times, which is
more marked than that shown in Fig. 7 for the spatial skill
of recorded flood events (2013–2022). Catchment-level ac-
curacy measures, as indicated by TS, are generally quite low,
with a maximum score of 0.37 at a 1 d lead time, reflect-
ing the tendency towards spatial over-forecasting. However,
at this lead time PSS shows good levels of skill in nearly
all catchments, reflecting the very low F values in Fig. 8a.
Since PSS scores random forecasts 0, we also note that at
all lead times FOREWARNS performs better than a random
SWF forecast nearly everywhere across Northern England –
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Figure 6. Distributions of spatial skill scores for r30 FOREWARNS forecasts of all 82 d with recorded floods, grouped by increasing
percentiles. (a) Distributions for TS, H , 1−F , SR and PSS, calculated against (r30, p98) radar SWF proxy for all return periods. Shading
indicates the percentile, while mean (median) values are shown as purple triangles (horizontal black lines). All measures are equitable (worst
score of 0, perfect score of 1) except PSS, for which random forecasts score 0 and the worst score is −1. Each distribution calculated from
82 forecasts based on the 15:00 UTC MOGREPS-UK ensemble issued the day before a recorded flood event in Northern England between
May–October 2013–2022. (b) Repeated for severe SWF return periods (30 years or higher) only.

Figure 7. Distributions of spatial TS, H , 1−F , SR and PSS for (r30, p98) FOREWARNS forecasts of all 41 d with recorded flooding since
2019, grouped by decreasing lead time. Scores calculated against the (r30, p98) radar SWF proxy for all return periods. Shading indicates
time FOREWARNS would be available to users, and lead time is in days prior to a recorded flood event in Northern England between May–
October 2019–2022. Forecasts available at 19:00, 14:00 and 00:00 UTC are based on MOGREPS-UK ensemble forecasts from 15:00, 10:00
and 20:00 UTC respectively. Distributions calculated from 41 forecasts, with mean (median) values shown as purple triangles (horizontal
black lines). All measures are equitable (worst score of 0, perfect score of 1) except PSS, for which random forecasts score 0 and the worst
score is −1.

at a 1 d lead time the only exceptions are the six catchments
where H = 0 (identified in Fig. S7f). Changes of spatial skill
distributions for these daily forecasts are shown in Fig. S8
and, as with Fig. 7, show lower variability in skill than the
temporal scores shown here. This suggests consistent pre-
dictions for the occurrence of convective rainfall by the input
MOGREPS-UK ensemble but with decreasing uncertainty in
location as lead time decreases.

The very low base rates s of SWF observed across North-
ern England require that skill scores be interpreted with cau-
tion, as many measures take trivial values in the low s limit
(Stephenson et al., 2008). We therefore include distributions
for the SEDI score, which does not degenerate in this regime
(Ferro and Stephenson, 2011). The distributions of SEDI val-
ues plotted in Fig. 9 are universally positive, thereby again
showing performance better than random at all lead times. At
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Figure 8. Temporal skill scores for (r30, p98) FOREWARNS forecasts. (a) ROC diagram for scores from 166 catchments in Northern
England, calculated for 725 daily forecast issues against radar SWF proxy for May–October 2019–2022. All forecasts are based on the
15:00 UTC MOGREPS-UK ensemble, where FOREWARNS would be available to users at approximately 19:00 UTC and valid the next day.
Perfect forecasts lie towards the top left of the diagram. Mean forecast (F,H ) values plotted (black), with error bars indicating the standard
deviation. Mean values from subjective verification indicated by a purple cross (error bars also show the standard deviation). Standard
deviations for F are included but extremely low. (b) Roebber diagram for the same forecast sample; perfect forecasts lie towards the top right
of the diagram. Shading and marker style indicate base rate s for each catchment. Mean forecast (SR, H ) values plotted (black), with error
bars indicating the standard deviation. Mean (SR, H ) values from subjective verification indicated by a purple cross (error bars also show the
standard deviation).

Figure 9. Distributions of temporal TS, H , SR, PSS and SEDI for (r30, p98) FOREWARNS forecasts available to users at approximately
19:00 UTC (based on the 15:00 UTC MOGREPS-UK ensemble) and grouped by decreasing lead time. Scores computed for all return periods
against the radar SWF proxy on the forecast validity date for 725 d for May–October 2019–2022. Shading indicates lead time in days, with
scores for forecasts issued at a 1 d lead time shaded grey. Distributions calculated from forecasts for 166 catchments, with mean (median)
values shown as purple triangles (horizontal black lines). All measures are equitable (worst score of 0, perfect score of 1) except PSS and
SEDI, for which random forecasts score 0 and the worst score is −1. Distributions for SEDI exclude catchments where B<0.67 or B>1.5.

a 1 d lead time SEDI has a high mean value of 0.61±0.01 and
maximum of 0.85. Since the SEDI score is designed to apply
to unbiased forecasts (B ∼ 1), at all lead times we have ex-
cluded catchments with anomalously high bias values from
the distributions shown here. Although difficult to translate
into an intuitive interpretation of forecast performance, the
SEDI score values clearly reinforce our finding that, despite

the rarity of SWF events, FOREWARNS provides a skilful
forecast of the catchment-level hazard.

5 Summary and recommendations

The UK is underprepared to deal with convective rain-
fall events (Greater London Authority, 2022). As the cli-
mate changes, such events are predicted to intensify and
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occur more frequently in many parts of the UK; improv-
ing tools and capabilities to increase preparedness is essen-
tial. In this paper we have demonstrated and tested a novel
SWF-forecasting method, FOREWARNS (Flood fOREcasts
for Surface WAter at a RegioNal Scale). FOREWARNS
combines neighbourhood-processed ensemble NWP rainfall
forecasts with pre-simulated hydrological modelling to pro-
vide SWF forecasts for a reasonable worst-case rainfall sce-
nario (RWCRS). We have examined whether FOREWARNS
meets the requirements of UK forecast users through a work-
shop structured around facilitated group discussions of three
case study events in Northern England. We have objectively
assessed FOREWARNS’ performance by conducting veri-
fication over this region, examining aspects of spatial and
temporal performance for recorded flood days, and analysing
continuous proxy records.

Although FOREWARNS aims to meet a UK user need
for enhanced regional-level SWF forecasts that complement
existing national guidance (Ochoa-Rodríguez et al., 2018;
Birch et al., 2021), the methodology and findings are not ge-
ographically restricted. Indeed, FOREWARNS would com-
plement existing efforts to improve global flash flood guid-
ance (Georgakakos et al., 2022). RWCRSs may be derived
from any convection-permitting forecast system (Böing et
al., 2020), while the threshold lookups used to derive flood
impacts require only a database of flood records or pre-
simulated scenarios. FOREWARNS does not account for an-
tecedent hydrological conditions and is intended to comple-
ment forecast systems based on hydraulic models, limiting
its application but also minimising hydrological data input,
which may often be unavailable. Here we have used FEH
DDF modelling underpinning UK RoFSW maps (Vesuviano,
2022), but datasets such as NOAA’s gauge-data-derived At-
las 14 product for the contiguous United States could be
adopted (described in Herman and Schumacher, 2018).

Meanwhile, the verification of any SWF forecast faces
the same issues of poor observational datasets and temporal
sparsity faced here. Our solution, a combination of recorded
events and radar proxy observations of SWF providing only
lower and upper bounds on flood hazards from severe rain-
fall, extends previous verification of US flash flood guid-
ance (Erickson et al., 2019) and could be applied anywhere
with high-resolution radar observations or globally through
satellite-derived rainfall estimates. For the UK a priority
should be to build on this approach and create an integrated
dataset combining SWF records and radar/gauge proxies,
similar to the NOAA Unified Flooding Verification System
(Erickson et al., 2021). Our methods do not attempt to verify
the impact of flood damage, which should be also be included
in such a resource.

We conducted objective verification of FOREWARNS
against radar SWF proxy observations for 82 May–October
days with recorded SWF events from 2013–2022 and a
725 d continuous period spanning May–October 2019–2022.
From this verification we recommend adopting the (r30,

p98) RWCRS parameterisation. FOREWARNS demon-
strates high spatial hit rates (mean of H = 0.55± 0.04) for
days with recorded flood events, demonstrating that just over
half of the proxy flood locations were forecast. Since the
radar SWF proxy overestimates flood extent, the real hit rate
is likely higher as there will be fewer misses. This skill is,
in part, inherited from the MOGREPS-UK system (Porson
et al., 2020) and will change if other rainfall ensembles are
applied to the forecasting system instead. The catchment-
level severity of SWF is typically underestimated, with lower
hit rates for return periods of 30 years or higher. Over-
all spatial reliability scores are considerably lower (mean
of SR= 0.35± 0.03), with nearly two in three catchment-
level yes forecasts being false alarms, but this is to be ex-
pected given the application of RWCRSs. The workshop
found that forecast users understood and supported the use
of reasonable worst-case forecasts, prioritising the success-
ful prediction of SWF over minimisation of false alarm rates.
Actions considered by users in response to forecasts are typ-
ically low cost but require a lead time of a day or greater.
Given the potential impacts of SWF, false alarms thus carry
far lower costs for communities than forecast misses.

The frequency of occurrence of SWF events is low across
the region but does show spatial variation, with more events
in hillier and wetter western areas. The temporal false alarm
rate of FOREWARNS for any given location is extremely
small and reflects the relative frequency of events in north-
ern English catchments. The temporal hit rate of forecasts
for single locations does not vary significantly by catch-
ment, but FOREWARNS tends to forecast SWF too often
in catchments where (proxy) flooding occurs less frequently.
FOREWARNS forecasts show excellent values for the SEDI
score designed to evaluate forecasts of extreme, temporally
rare events, with values for all catchments (and at all lead
times) higher than for a random forecast. Under a visual, sub-
jective verification combining spatial and temporal perfor-
mance, a tendency for FOREWARNS to miss regional-scale
SWF events was recorded. This reinforces that correctly pre-
dicting the regional hazard necessitates issuing false alarms
for any given point location; what is important is that this rate
remains at a similar order of magnitude to the low frequency
of events, which is the case here.

In a workshop survey all flood forecast users stated FORE-
WARNS would be useful or very useful for their organi-
sation. Respondents foresaw using the forecasts in combi-
nation with existing national provision for action planning
on the same day as and 1 d in advance of potential flood
events, especially where major flooding is forecast. The sub-
sequent quantitative verification demonstrates that user con-
fidence in FOREWARNS is warranted. Although few ver-
ification studies of comparable forecasts are published and
none are directly comparable, FOREWARNS’ performance
compares favourably with the literature. Roebber diagrams
for spatial skill of extreme rainfall forecasts analysed in Er-
ickson et al. (2019) show notably lower skill than apparent
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Figure 10. Summary of the envisioned place of FOREWARNS within future UK SWF guidance available to flood responders.

here, while Erickson et al. (2021) report comparable mean
temporal skill scores (specifically H and TS) for NOAA Ex-
cessive Rainfall Outlook forecasts but with higher false alarm
rates. Mean SEDI scores are slightly lower than values pre-
viously reported for extreme rainfall forecasts (North et al.,
2013; Sharpe et al., 2018), reflecting the additional complex-
ities of forecasting SWF.

Specific results support the adoption of FOREWARNS for
users’ specific requirements: the strongest forecast skill is
evident at short lead times (1 d ahead), and although the spa-
tial skill of individual forecasts can vary markedly, in general
skill is higher for more significant events with higher spatial
coverage. For operational purposes the FOREWARNS sys-
tem verified here does not issue forecasts at suitable times,
but it would be possible to issue forecasts at any hour for the
following day. Based on the workshop discussions, forecasts
issued roughly midday the day before and updated early the
next morning would better satisfy the needs of users. An ideal
system would then issue rainfall nowcast-derived warnings
(instead of using ensemble NWP rainfall forecasts) where
appropriate, fulfilling the user need for very short lead time
forecasts.

One issue not addressed in this study is forecasting prob-
abilities of predicted outcomes. Although FOREWARNS is
ostensibly a categorical forecast of SWF risk, the underly-
ing ensemble RWCRSs are inherently probabilistic. How-
ever, the forecasts do not communicate an overall probability
of a given RWCRS occurring. Given the high uncertainties
in forecasting SWF, a priority for development should be the
accurate calculation of this information and its dissemination
with forecasts. The time within the 24 h forecast period that
the SWF events may occur is additional valuable informa-
tion that can be provided from the RWCRSs. Forecast users
stated in the workshop discussions that time-of-day informa-
tion would be extremely valuable, and verifying this addi-
tional feature should be the subject of future work.

We have shown both qualitatively and quantitatively that
FOREWARNS has the potential to meet the needs of UK
forecast users as an operational system if integrated with fu-
ture national SWF forecast provision in the manner illus-
trated in Fig. 10.

In summary, our specific recommendations for the fur-
ther development, operationalisation and dissemination of
FOREWARNS include the following.

– Using features of the existing RWCRS method, modify
FOREWARNS to communicate the time of day an event
will occur and its likelihood. These features should be
evaluated.

– Review the use of return periods (1 in 5, 10, 30, 100 and
1000 years) as the indicator of catchment-level SWF
severity within FOREWARNS. Consider the use of a
colour scale labelled by “low, moderate, high, very high
severity” instead.

– Consider how to ensure that FOREWARNS is con-
sistent with the national guidance issued within the
FGS, particularly around the jumpiness of some FORE-
WARNS issues at different lead times.

– FOREWARNS is intended for experienced, trained
forecast users only and should be disseminated either
by a password-protected platform or via email along-
side other types of national provision such as the Flood
Guidance Statement.

– Forecasts should be issued daily in the morning for the
following 1 to 3 d and could include more regular up-
dates for days where an SWF event is predicted.

– Further research is required to assess whether or not it is
appropriate to issue FOREWARNS updates with a lead
time of 6 h or less that are driven by rainfall nowcasts
or if real-time inundation modelling (e.g. Birch et al.,
2021) is more appropriate at these timescales.

– Expand the region covered by FOREWARNS to all of
England and Wales, and test in a pseudo-operational set-
ting alongside operational SWFHIM and FGS guidance
over a summer season (planned for 2023).

– Alongside the development of FOREWARNS we have
illustrated the use of quantitative, qualitative and com-
bined verification methods that address the challenges
of limited data. To enable improved SWF forecast veri-
fication we recommend developing a complete, consis-
tent historical record of the timing, extent and severity
of SWF events over England and Wales.
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Code and data availability. Code used for forecast generation
is publicly available at https://doi.org/10.5281/zenodo.10987887
(Böing et al., 2024). Nimrod radar data are available publicly
from the CEDA Archive (http://catalogue.ceda.ac.uk/uuid/
82adec1f896af6169112d09cc1174499, Met Office, 2003), and
FEH DDF rainfall threshold data can be purchased from the
FEH Web Service (https://fehwebdocs.hydrosolutions.co.uk/
.attachments/TheFEH22rainfalldepth-duration-frequency(DDF)
model-caa11347-4ff7-4c89-b707-bf5bb1c05d79.pdf, Vesuviano,
2022). MOGREPS-UK ensemble forecast data are not publicly
available.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-24-1415-2024-supplement.
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