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Abstract. Extreme winds are by far the largest contributor
to Norway’s insurance claims related to natural hazards. The
predictive skills of four different damage functions are as-
sessed for Norway at the municipality and national levels
on daily and annual temporal scales using municipality-level
insurance data and the high-resolution Norwegian hindcast
(NORA3) wind speed data for the period 1985–2020. Spe-
cial attention is given to extreme damaging events and oc-
currence probabilities of wind-speed-induced damage. Be-
cause of the complex topography of Norway and the result-
ing high heterogeneity of the population density, the wind
speed is weighted with the population. The largest per capita
losses and severe damage occur most frequently in the west-
ern municipalities of Norway, which are more exposed to
incoming storms from the North Atlantic, whilst there are
seldom any large losses further inland. There is no single
damage function that outperforms others. However, a good
agreement between the observed and estimated losses at mu-
nicipality and national levels for a combination of damage
functions suggests their usability in estimating severe dam-
age associated with windstorms. Furthermore, the damage
functions are able to successfully reconstruct the geograph-
ical pattern of losses caused by extreme windstorms with a
high degree of correlation. From event occurrence probabil-
ities, the present study devises a damage classifier that ex-
hibits some skill at distinguishing between daily damaging
and non-damaging events at the municipality level. While
large-loss events are well captured, the skewness and zero in-
flation of the loss data greatly reduce the quality of both the
damage functions and the classifier for moderate- and weak-
loss events.

1 Introduction

Wind-related damage claims account for 56 % of Norway’s
insurance payouts related to natural hazards from 1980 to
2017 and are by far the largest component of loss claims re-
lated to natural hazards (DSB Norway, 2019). They can af-
fect all sectors from forests to marine and housing infrastruc-
tures (Jensen et al., 2010; Gardiner et al., 2013). However, a
detailed investigation into the relationship between Norwe-
gian windstorms and damage has so far not been conducted
for Norway. A comparison of different proposed storm dam-
age models has only been conducted in a few countries due
to a lack of long and sufficiently homogeneous insurance
claims data (Cole et al., 2010; Prahl et al., 2015). Determin-
ing the best storm damage model is important in order to
make accurate predictions of future damage, whether it be in
a few days (short-term forecast) or in many years (climate
change range). In this paper, we investigate the relations be-
tween windstorms and their associated damage by analysing
36 years of daily insurance data on the municipality level
and daily maximum wind speed data using a set of storm
damage functions. Furthermore, we develop a probabilistic
damage classifier that distinguishes between damaging and
non-damaging wind speeds to help improve early warning
systems.

Establishing robust windstorm–damage relations may help
predict storm damage risk in the weather forecasting context
(Merz et al., 2020), roughly estimate the storm impact di-
rectly after it occurred in order to better plan the emergency
response (Welker et al., 2021) and evaluate the change in risk
in the longer term in conjunction with climate change. More-
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over, understanding the monetary risk involved in extreme
wind events is crucial from the insurer’s perspective in or-
der to fix reasonable premiums and estimate portfolio risk.
Several methods in the literature assess the risk associated
with extreme wind events across various sectors such as agri-
culture, transport and energy at varying spatial resolutions
(Gliksman et al., 2023). Storm damage functions are one
such method which describes the mathematical relation be-
tween the intensity of a natural hazard, here the wind speed,
and the monetary loss incurred due to the event. There are
mainly two types of storm damage functions: (1) the storm-
based approach, which links historical losses to wind speed
information, and (2) the hazard-based approach, which, in
addition, makes use of micro-scale information such as the
vulnerability, exposure and value of the assets. However, as
detailed information about the damage is often proprietary,
the most common approach, also used in the present study, is
the storm-based approach (Dorland et al., 1999; Klawa and
Ulbrich, 2003; Prahl et al., 2012, 2015). These storm dam-
age functions can also be split into deterministic and proba-
bilistic types (Prahl et al., 2012). The deterministic damage
functions do not estimate the uncertainty in the wind speed–
loss relation, whereas the probabilistic damage functions as-
sume a statistical distribution for the model error. To make
the deterministic and probabilistic models comparable, esti-
mates from deterministic models are treated as equivalent to
the mean of the estimates from the probabilistic models.

Storm damage functions must be regionally fitted because
they are highly dependent on local features. The number and
spatial extent of the damage caused by extreme wind strongly
depend on the exposure level of assets (Cardona et al., 2012),
which is connected to demography and economy both chang-
ing over time due to a variety of reasons such as urbanisa-
tion, higher infrastructure standards and economic growth.
Moreover, building types, building codes, differing insurance
policies and claims settlement practices can also influence
the performance of storm damage functions (Walker, 2011)
especially if they are not locally fitted. Norway has a com-
plex topography with mountains and valleys and a rugged
coastline with many fjords, with a major share of the pop-
ulation living along the coasts and in the valleys (Simensen
et al., 2021). Therefore, the population density is an impor-
tant factor to take into account when establishing storm dam-
age functions (Donat et al., 2011a).

A number of studies have investigated storm damage and
risk in relation to residential structures and other insured
losses, mainly for Europe and, more particularly, Germany,
using various damage functions and local information. Dor-
land et al. (1999) suggested a deterministic damage function
by which loss increases exponentially with wind speed such
that a slight increase in storm intensity can cause a signif-
icant increase in economic damage in the Netherlands and
northwestern Europe. Meanwhile, analysing annual insur-
ance loss due to windstorms in Germany, Klawa and Ulbrich
(2003) advocated for a cubic relationship between the de-

viation in wind speed from its 98th percentile and the loss.
Donat et al. (2011b) estimated the losses by fitting the Klawa
and Ulbrich (2003) damage function at the district level for
Germany. Heneka and Ruck (2008) and Heneka and Hofherr
(2011) applied a probabilistic damage function for Germany,
which incorporates the extreme value theory in conjunction
with a non-linear function. However, this probabilistic dam-
age function requires both claim and loss ratios, which are
not commonly shared data and which we lack for Norway.
To estimate the daily and annual losses at the district lev-
els in Germany, Prahl et al. (2012) proposed a power-law-
based probabilistic damage function where loss is propor-
tional to a power of wind speed. They found out that the
exponents range between 8 and 12, thus highlighting the
need to fit the functions locally. Welker et al. (2016) sim-
ulated the spatial pattern of losses associated with histori-
cal windstorms that happened in Switzerland using the as-
set amount and the vulnerability, the latter depending on the
wind gust. The agreement between the simulated loss and
the observed insurance loss was shown to be not only rea-
sonable but also case-dependent. They pointed to the uncer-
tainty not only in the input data, such as in the wind gust, but
also in the estimation of the assets and vulnerability. More
recently, Koks and Haer (2020) developed an open-source
hazard-based model that uses publicly available hazard, ex-
posure and vulnerability data, and the loss estimates can be
treated as a baseline for further research. Using three differ-
ent methods, Held et al. (2013) found a steady increase in the
values associated with a 10-year return loss by the end of the
twenty-first century when considering only German private
houses. Schwierz et al. (2010) suggested that, with climate
change and increased storm intensity, Norway can expect a
16 % increase in annual losses associated with windstorms.
However, a recent study by Severino et al. (2023) indicated a
significant decrease in winter storm damage over Norway.

In the following section, we introduce the insurance loss
data and NORA3 hindcast wind speed data along with the
different storm damage functions. In Sect. 3, the climatology
of the extreme winds and damage is presented in addition to
the modelling results. We summarise and discuss the results
in Sect. 4.

2 Data and methods

2.1 Insurance loss data

We use daily insurance loss data, composed of the daily accu-
mulated number of claims and monetary loss, from the Nor-
wegian Natural Perils Pool for each of the 356 municipalities
constituting Norway. The data span 36 years, from 1985 to
2020. The loss data distinguish losses by natural event types
such as floods, landslides, storm surges and windstorms. The
present study focuses on the damage associated with wind-
storms.
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Natural peril insurance is a compulsory part of the fire in-
surance held by almost all households in Norway (Sandberg
et al., 2020). Because of the Norwegian Natural Perils Pool
act, all buildings and movable properties which are insured
against fire damage are also insured against natural disas-
ters. All insurance companies underwriting fire insurance in
Norway are obliged to become members of the Norwegian
Natural Perils Pool and archive their losses. The fraction of
households having fire insurance has stayed relatively con-
stant over the period of interest; thus, the effect of varying
market penetrations is small. In many previous studies, the
loss ratio and claim ratio, which are dimensionless, are used
to model storm–damage relations (Huang et al., 2001; Held
et al., 2013; Prahl et al., 2015; Welker et al., 2016). How-
ever, Norwegian insurance does not include the total insured
value, which prevents us from using the loss and claim ratios
in the present study.

For a long time series of loss data, it is necessary to
account for inflation. To adjust for the effect of inflation,
the insurance loss is modified using the official Norwegian
consumer price index (CPI) at a fixed year (SSB Norway,
2023a). The base year for the CPI in Norway is 2015, which
we also use here. As an example, the relative difference of
loss after an inflation adjustment is +60 % for the 1992 New
Year’s Day Storm and +7 % for Cyclone Dagmar in 2011.

Changes in exposure are another key variable that deter-
mines the intensity of losses incurred. Many studies use pop-
ulation as a proxy for exposure (see e.g. Simpson et al.,
2014). Statistics Norway publishes yearly population data at
the municipality level, which go back to 1951 (SSB Norway,
2023b). To address the change in exposure to a certain ex-
tent, we compute the loss per person for each municipality
by dividing the insurance loss data by the yearly population.
Other factors, which may influence exposure, such as chang-
ing building standards and wealth distribution, are not ac-
counted for in the present study.

A few extreme events have caused the majority of the total
damage associated with windstorms. The five largest events
were responsible for NOK 4.3 billion (Norwegian krone) in
damages (2015 values), which represents 36 % of the to-
tal insurance loss from 1985 to 2020. The most damaging
events and their associated losses are given in Table S1 in
the Supplement. As expected from the more intense cyclones
reaching Norway in winter rather than in summer (Hoskins
and Hodges, 2019), the most extreme events occur between
November and April. The presence of such extreme events
brings skewness into the loss distribution, and the absence
of losses on most days of the year makes loss data zero in-
flated (excess number of zeroes in the data). The distribution
skewness and the zero inflation (Fig. S1 in the Supplement)
in the loss data are challenging for conventional fitting meth-
ods, such as the least squares method or maximum likelihood
method. Figure S1 highlights a record high number of claims
in the years 1994; 2015; and, to a lesser extent, 2011. This

can be attributed to the storm of 1994, Cyclone Dagmar in
2011, and the Nina and Ole storms in 2015 (Table S1).

2.2 The wind speed data from the NORA3 hindcast

The high-resolution NORA3 hindcast covers the period
1979–2021 (and is being extended). The spatial resolu-
tion of NORA3 is 3 km× 3 km, and the surface variables
are archived at an hourly resolution. The non-hydrostatic,
convection-permitting model HARMONIE-AROME (Seity
et al., 2011; Haakenstad et al., 2021; Haakenstad and Breivik,
2022) ingests surface observations through a simple sur-
face analysis scheme and blends this with initial fields from
ERA5 (Hersbach et al., 2020). Boundary conditions are also
taken from ERA5. The data are publicly available on https:
//thredds.met.no/thredds/catalog/nora3/catalog.html (last ac-
cess: 1 March 2024). The domain covers the North Sea,
the Norwegian Sea, the Barents Sea, and Svalbard, and it is
bounded by Finland to the east. The hindcast consists in a se-
quence of 9 h forecasts initialised at 00:00, 06:00, 12:00 and
18:00 UTC every day from 1985 to 2020, which comprised
the 36 years available at the time of our analysis. Aggregating
the 4–9 h lead times provides an hourly dataset from which
we extract the daily maximum wind speed and gust. NORA3
only slightly underestimates the maximum observed wind
speed (Haakenstad et al., 2021; Solbrekke et al., 2021) and
its interquartile range for the 10 strongest windstorms that
affected Norway between 2009 and 2018 (Haakenstad et al.,
2021), outperforming both the earlier hydrostatic 10 km Nor-
wegian hindcast archive (NORA10; Reistad et al., 2011) and
the recent ERA5 reanalysis.

2.3 Municipality-level wind speeds

As the insurance loss is at the municipality level, we must es-
timate a municipality-relevant wind speed to apply the storm
damage functions. A simple approach is to average the daily
maximum wind speed over all grid points contained in a
given municipality. However, to compensate for the com-
plex topography and disparate demography of Norway, we
calculate a population-weighted wind speed to remove ex-
treme wind events occurring over mountains, lakes and other
population-sparse regions. We make use of the gridded pop-
ulation data at 1 km× 1 km for Norway for the period 2001
to 2019 (https://www.ssb.no/natur-og-miljo/geodata, last ac-
cess: 1 March 2024; Strand and Bloch, 2009). As it does
not cover the whole period of the study, we compute the
average of the population in each grid cell over the avail-
able period (2001–2019). Then, this averaged population is
remapped on the same 3 km× 3 km grid as the NORA3 data.
To achieve this, we assign each population grid cell to the
nearest NORA3 grid cell. If more than one non-zero popula-
tion grid cell corresponds to a NORA3 cell, we assign the
sum of the population grid cells to the NORA3 grid cell.
Finally, in order to have the wind speed at the municipal-
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ity level, as are the insurance data, we take the population-
weighted average of the daily maximum wind speed in each
municipality. We repeat the process for the daily maximum
wind gusts.

2.4 Storm-loss models

Storm damage functions connect the intensity of a storm
event to the monetary damage caused by the storm. With the
available historical data of insurance loss and wind speed, we
apply the storm-based approach to fit several storm damage
functions. The storm damage functions discussed here are
macroscale statistical models calibrated at the municipality
level. Our key objective is to compare and assess the qual-
ity of various proposed storm damage functions applied to
our data. We employ three damage functions: the determin-
istic exponential model (Dorland et al., 1999; Huang et al.,
2001; Murnane and Elsner, 2012), the deterministic model
of Klawa and Ulbrich (2003), and the probabilistic function
by Prahl et al. (2012). In addition, we suggest a modified
version of the Prahl model to better simulate the very steep
damage curves found in some Norwegian municipalities. All
damage models are fitted to loss per person to ensure unifor-
mity among the storm damage approaches and easier inter-
comparison of models and parameters. Finally, we devise a
simple ensemble mean of the estimates from the four damage
functions listed above to check if it performs better than any
of the four individual functions. In Sect. 2.4, we describe in
detail the damage functions applied. From now on, L refers
to the insurance loss, ν to the weighted wind speeds and d to
the damage function.

To fit and assess the skill of the storm damage models,
we split the data into a testing and a training set. We assign
the years from 1985–1989 and 2010–2012 to the testing part.
The rest of the data from 1990–2009 and 2013–2020 are the
training data. A necessary condition for splitting the data is
that the training and testing data should have identical distri-
butions. We split the data so that both the testing and training
data include extreme storm events, with Cyclone Dagmar in
the testing data and the New Year’s Day Storm in training
data.

For robust storm–damage relations, extreme care should
be taken while calibrating the damage functions. To make
sure that the small losses, which are more frequent, are not
better fitted than the high losses, which are much less fre-
quent, we bin the loss data with respect to wind speeds to
reduce the weight of low-loss events. Note that we do not
perform binning for the Klawa damage function as the model
is only suitable for high-loss events and inherently decreases
the number of zero and low losses with the use of a high wind
speed threshold. More about binning in individual models is
explained in the following sections.

As many previous studies before (Donat et al., 2011b;
Prahl et al., 2012, 2015; Pardowitz et al., 2016), we choose to
fit the storm damage functions at the municipality level. De-

spite the issue with a larger number of zero or low losses, this
method is more meaningful and has the potential to be more
accurate than doing fits using a country-averaged population-
weighted wind speed. For example, the number of loss days
when the population-weighted wind speed exceeds its 98th
percentile is high along the Norwegian coast and low for
further-inland regions (Fig. S2a). Moreover, there are many
local factors influencing the damage, such as building rules
and building types, that promote local fits of the storm dam-
age functions. As a test, we pooled all municipalities together
to perform the fits, but they did not show any improvement
in the estimation of both municipal- and national-level losses
(Fig. S3).

2.4.1 Exponential model

The exponential damage function assumes that loss increases
exponentially with increasing wind speed (Dorland et al.,
1999). It is a simple damage function with only two parame-
ters to be estimated and is formulated as

d(ν)= eα(ν−β), (1)

where α is the scale parameter and β is the location pa-
rameter. The loss is estimated from the damage function as
L(ν)= d(ν). The exponential model, by its shape, can be ex-
tended to low wind speeds that may cause low- to medium-
size losses. To take advantage of this, we choose the 95th per-
centile of the population-weighted wind speed in each mu-
nicipality as the threshold for the exponential model above
which the aggregated losses represent 82 % of the national
losses that occurred in the training period. Such a threshold
ensures that the model accounts for low to medium losses
while discarding the very small losses in the lower-loss spec-
trum. The associated loss values are split into 10 equally
spaced bins with respect to the wind speeds and with a pre-
condition that at least 5 loss days belong to each bin, as in
Prahl et al. (2015). Note that Fig. 1a only displays six bins
because the four other bins do not include the minimum of
5 loss days required in each bin. The binned losses are log-
transformed, and with the assumption of normality, the least
squares method is employed to estimate the model parame-
ters. Figure 1a shows the shape of the damage function with
the red line. Although we only use the wind speed bins above
the 95th percentile of the wind speed to calculate the fit, the
obtained exponential model can also be applied to the wind
speeds below the 95th percentile, and we can get loss esti-
mates for those wind speeds as well, as shown in Fig. 1a (see
the dashed red line).

2.4.2 Cubic excess over the threshold model

The damage function proposed by Klawa and Ulbrich (2003)
suggests that the loss increases cubically for wind speeds be-
yond a certain threshold. The Klawa model was originally
developed as a loss index for Germany to estimate annual
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Figure 1. Shapes of the damage functions for an arbitrary municipality for (a) the exponential damage function where the green triangle
denotes the loss corresponding to the 95th percentile of the wind speed and the dotted red line represents the loss estimates below the 95th
percentile of the wind speed, (b) the cubic excess over the threshold damage function where the dotted red line represents the loss estimates
below the 98th percentile of the wind speed, (c) the magnitude term in the probabilistic damage function by Prahl, and (d) the magnitude
term in the modified Prahl probabilistic damage function. Panel (e) shows an example of the sigmoid function that estimates the probability
of an event occurrence for an arbitrary municipality. The estimated parameters in this municipality are as follows: γ0 = 0.99, γ1 = 0.99 and
γ2 = 13.75. Note that the y axis for (a)–(d) is on a logarithmic scale and that the zero loss on the y axis is only for reference. The zero losses
are not plotted.

national losses using German insurance data. Later, using the
same insurance data, the damage function was calibrated by
Donat et al. (2011b) for the German districts and by Pinto
et al. (2012) for the affected areas of individual storm events.
In the present study, we chose to calibrate the Klawa damage
function with insurance loss at the municipality level sim-
ilarly to Prahl et al. (2015), who applied it at the district
level to daily German insurance losses. This damage func-
tion takes the third power of wind speeds above the 98th per-
centile of the wind speed determined using the whole study
period (1980–2020) scaled by the same 98th percentile of the
wind speed as follows:

d(ν)=

(
ν− ν98

ν98

)3

. (2)

The loss is obtained by linear regressing the damage function
as follows:

L(ν)= β0+β1d(ν). (3)

The intercept term β0 in the fitted linear regression can be
interpreted as the base loss, which is the loss estimate for
all wind speeds below the 98th percentile. However, using
this loss offset for all wind speeds below the 98th percentile
does not address the randomness in the lower-loss spectrum.
Figure 1b shows the model fit for this damage function (see
the solid red and dashed red lines). β1 is the slope of the
line. The two β parameters are obtained using a least squares
regression method.

Several studies across Europe used the 98th percentile of
the wind speed as a threshold for the Klawa damage function
(Pinto et al., 2012; Karremann et al., 2014a, b). Ideally, the
threshold for damaging wind should be locally chosen us-
ing statistically determined estimates; however, for simplic-
ity, we have kept the frequently used 98th percentile. In Nor-
way, 72 % of the insured losses are caused by wind speeds
above the 98th percentile. As the Klawa model is not de-
signed for low-loss cases, this is a fairly reasonable simpli-
fication. Note that if grid point wind speeds are chosen, this
choice of percentile can be problematic for places with weak
winds, such as southeastern Norway (see Fig. S4a). To alle-
viate this, Karremann et al. (2014b) and Little et al. (2023)
suggested a 9 m s−1 fixed threshold for wind speeds causing
damage in Norway. However, in our study, we do not need
this 9 m s−1 threshold as we use the population-weighted av-
eraged wind speeds, reducing the relative importance of grid
cells with very low wind speeds and therefore avoiding the
problem of the very low 98th percentile. Note that even wind
speeds above the 98th percentile can be associated with no
loss. Figure S2a shows that this often happens in the southern
inland regions of Norway, where it contributes to the uncer-
tainty in the loss estimation.

Here we weight the wind speeds with the population and
aggregate it to the municipality-level resolution such that it
corresponds to the loss data resolution. However, other stud-
ies, such as Pinto et al. (2007), weight the loss index and ag-
gregate it to the district or national resolutions. As discussed
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later in the paper, these two methods do not give very differ-
ent results.

2.4.3 Probabilistic damage function by Prahl

The power-law-based probabilistic damage function by Prahl
et al. (2012) consists of a two-step fitting procedure: the first
step is estimating the occurrence probability of damage for a
given wind speed, and the second step is estimating the loss
magnitude. For both steps, we use wind speed bins, and each
bin must have at least 5 loss days, as Prahl et al. (2015) did.
We then fit the following sigmoid function to the binned wind
speeds:

p(ν)= 1−
γ0

1+ eγ1(ν−γ2)
, (4)

where the parameter γ1 determines the steepness of the
curve, γ2 is the wind speed threshold beyond which the curve
gets steeper and γ0 determines the base probability of losses.
Figure 1e shows the fit of the probability term (Eq. 4) of
the damage function (see the red line). In addition, for a
given wind speed ν, the magnitude of the loss M for non-
zero losses is estimated through a power-law-based function
(Fig. 1c) and is related to the wind speed as follows:

M(ν)= σ0+

(
ν

σ2

)σ1

, (5)

where σ2 scales the wind speed, σ1 is the shape parameter
and σ0 is the offset loss. The magnitude term is fitted on
losses binned with respect to wind speeds.

The probability term makes use of the whole loss range,
while the magnitude term only uses non-zero losses. The
probability of damage and the magnitude of loss are treated
as independent variables. The damage function is then the
product of the probability and the magnitude of loss:

d(ν)= p(ν)M(ν). (6)

The damage function includes the assumption that the
observed losses follow a log-normal distribution (Mobs ∼

LN(µ,σ ), whereMobs is the observed non-zero loss). There-
fore, the expected loss for a given wind speed is

L= p(ν)E(M(ν)). (7)

The probabilistic damage function by Prahl has a complex
fitting procedure with eight parameters to be estimated. We
refer the readers to the work by Prahl et al. (2015) to learn
more about the parameters and fitting procedures of the
model. The location (µ) and scale parameters (σ ) of the log-
normal distribution are estimated using the maximum likeli-
hood method, and the other parameters of the damage func-
tion are estimated with the least squares method.

2.4.4 Modified probabilistic damage function by Prahl

The rationale behind Prahl’s damage function is that the loss
increases steeply for extreme wind events (Fig. 1c). How-
ever, based on inspection of the quality of the fitted curves
for very-high-loss events, we identified a need for an even
steeper damage function for certain municipalities in Nor-
way. As the deterministic exponential damage function in-
creases sharply and shows good fits for some of the munici-
palities, we propose a modified version of the damage func-
tion by Prahl that combines an exponential fit with the prob-
abilistic aspect of the Prahl model. The magnitude term in
Eq. (5) of the Prahl damage function is modified as follows:

M(ν)= σ ′0exp

[(
ν

σ ′2

)σ ′1]
. (8)

The rest of the fitting procedure and assumptions are the
same as for the Prahl damage function. The shape of the mag-
nitude term in Eq. (8) is displayed in Fig. 1d with the red line.

2.4.5 Ensemble mean method

The four damage functions presented above have different
advantages and drawbacks. The ensemble mean is calcu-
lated as the arithmetic mean of the loss estimates of the four
functions, with the hope to improve the overall accuracy, as
proven for ensembles of numerical weather/climate simula-
tions.

2.5 Damage classifier

A damage classifier labels a given wind speed as damaging
or not and adds useful information for event preparedness.
The probabilistic damage occurrence probability function in
Eq. (4) gives us the opportunity to define a classifier that dis-
tinguishes between a damaging and a non-damaging event.
To build a robust classifier, it is necessary to define the prob-
ability threshold that separates an event from a non-event.
With non-event days outnumbering the event days (class im-
balance), it is not straightforward to define the probability
threshold as 0.5 or to evaluate the model performance for var-
ious probability thresholds on the basis of traditional receiver
operating characteristic (ROC) curves and the correspond-
ing area under the curves (AUC). To circumvent the problem
of class imbalance in identifying the best probability thresh-
old, we employ the precision recall curve and the associated
F scores (cf. Sect. 2.6; Sokolova and Lapalme, 2009). Fig-
ure 2 shows the precision recall curve for an arbitrary munic-
ipality. The split point of the damage classifier corresponds
to the probability threshold with the highest F score from the
precision recall curve.

2.6 Model evaluation metrics

We evaluate the models’ performance on the training and
testing parts at the municipality level using the mean absolute
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Figure 2. The orange line is the precision recall curve for an arbi-
trary municipality, the dashed blue line is the model with no skill,
and the black dot corresponds to the point where the F score is max-
imum. In this example, the highest F score of 0.41 is achieved at the
probability threshold of 0.30. The precision and recall are shown in
brackets.

error (MAE) and coefficient of variation (CV). In addition,
the predictive skill of the probabilistic function in the Prahl
damage function is evaluated using accuracy, recall, preci-
sion and F scores.

As its name indicates, the MAE is the mean of the absolute
differences between the observations and the model fits and
is formulated as

MAE=
1
n

n∑
i=1
|yi − ŷi |, (9)

where yi is the observed loss and ŷi is the estimated loss.
A high MAE indicates a poor skill of the model. Another
evaluation metric used here is the CV based on the root mean
square error defined by Prahl et al. (2015) as follows:

CV=
1
y

(
1
n

n∑
i=1
(yi − ŷi)

2

) 1
2

, (10)

where y is the mean of the observed loss. High values of the
CV indicate large loss variability compared to the mean loss.

To quantify the classification skill of the damage classi-
fier, we employ the precision, recall, accuracy and F scores,
which are defined as follows:

– Precision is the proportion of correctly classified posi-
tive samples to the total number of samples classified as
positive.

– Recall is the proportion of correctly classified positive
samples to the total number of positive samples.

– Accuracy is the proportion of correctly classified sam-
ples to the total number of samples.

– The F score is, theoretically, defined as the harmonic
mean of precision and recall. It indicates the balance
between precision and recall. The F score ranges be-
tween 0 and 1, and the higher the F score, the better.
We take advantage of the F scores to define the proba-
bility threshold for the damage classifier.

The binary damage classifier is optimised using the preci-
sion recall curve and associated F scores. The precision re-
call curve is obtained by calculating the precision and recall
for all potential probability thresholds obtained from the ob-
served occurrence probabilities. The F scores are computed
for all points of the precision recall curve (i.e. all probabil-
ity thresholds), and they simultaneously evaluate the ability
of each probability threshold to minimise false positives and
capture true positives. The probability threshold at which the
F score is at its maximum is chosen as the split point for the
event classifier.

The damage functions are sensitive to the extreme-loss
observations, and the presence of a few extreme events can
heavily alter the damage functions’ shape. Therefore, differ-
ent training datasets may result in differing damage function
fits. Cross-validation is an effective method to estimate the
uncertainties involved in the choice of the testing and train-
ing data. We perform a 7-fold cross-validation by splitting
the data into seven sets with each set of testing data having
5 consecutive years of data. So, in the first fold the testing
period is 1985–1989 and the training period is 1990–2020.
In the second fold, the testing period is 1990–1994 and the
remaining years are in the training dataset, and so on.

3 Results

In this section, we analyse the spatial and temporal distri-
bution of the insurance loss and compare the population-
weighted daily maximum wind speed, the population-
weighted daily maximum wind gust and the daily maxi-
mum wind speed at the municipality level. We then com-
pare the different damage functions along with the modified
Prahl and ensemble mean models. However, considering the
high degree of detail involved, we emphasise the following
aspects: (1) daily losses at the municipality level, (2) top
three extreme damaging wind events during the study pe-
riod, (3) losses aggregated to the national level and (4) the
probability function in Prahl et al. (2012) as a classifier. Fur-
thermore, we discuss the pitfalls of the loss data, wind data
and storm damage functions.

3.1 Overview of the losses from windstorms

The municipalities on the west coast of Norway experience
higher losses per person, whereas there is hardly any loss
further inland in southeastern Norway (Fig. S5a). Skewness
and zero inflation are especially high for some municipalities
in southeastern Norway where wind-related losses are rare.
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This rarity of loss days greatly limits the performance of the
damage functions.

The 10 most damaging windstorms, in terms of cost, that
reached Norway during the study period occurred between
October and March and mainly affected central and south-
western Norway and, more marginally, Northern Norway
(Table S1). An example of such a damaging storm is Cyclone
Dagmar in 2011, which affected western Norway, causing
more than NOK 1 billion in losses (Fig. S5b). The insurance
losses caused by the 10 largest events are given in Table S1
and represent a total of NOK 5347 million, which is 44 % of
the total losses due to windstorms between 1985 and 2020.

We find no significant temporal trends in the insurance
losses caused by extreme winds. Trends in the loss time se-
ries should arise from inflation or changes in wealth distribu-
tion. However, the effect of inflation is nullified by adjusting
the insurance losses with the consumer price index, and a
change in wealth distribution is overlooked by the skewness
in the losses. Therefore, the Mann–Kendall trend test that we
conducted on the annual national losses (Fig. S6) fails to de-
tect any significant trend in losses.

The choice of wind data has the potential to influence the
performance of the damage functions (Prahl et al., 2015).
Also, the 98th percentile of the wind speed is widely regarded
as critical from a damage perspective (Klawa and Ulbrich,
2003; Schwierz et al., 2010; Donat et al., 2011a). Figure S4a
shows that the west coast and Northern Norway experience
high-magnitude wind events in comparison with southeast-
ern municipalities. The 98th percentile of the population-
weighted daily maximum wind speed exhibits a high correla-
tion with the 98th percentile of the population-weighted daily
wind gust (0.91) but a lower correlation with the 98th per-
centile of the unweighted daily maximum wind speed (0.61)
(Fig. S4b). This difference can be attributed to the added in-
formation of population as weights for wind speed and em-
phasises the importance of accounting for demography.

From the damage perspective, the extreme damaging
events are of topmost concern. For each municipality, we
define the losses higher than the 99.7th percentile as the
extreme-loss class and losses lying between the 98th and
99.7th percentiles as the high-loss class. The aggregated mu-
nicipality losses in the extreme-loss class account for 85 %
of the total national loss, while the high-loss class com-
prises 8 % of the total national loss. In each municipality,
the extreme-loss class includes approximately 31 d in the
training data and 9 d in the testing data (occurring on aver-
age around once a year). Segregation of losses into different
classes helps to assess the performance of the damage func-
tions for events of different severity.

By applying the different damage functions, we get daily
fits of insurance loss for 10 227 d in the training dataset and
predictions for 2922 d in the test dataset for every municipal-
ity in Norway.

3.2 Municipality-level loss estimations

To demonstrate the advantage of weighting wind speed with
population, damage functions were also fitted with the orig-
inal wind speed as the predictor variable. The prediction er-
ror in the test data shows that the population-weighted wind
speed has a lower CV in 67 % of municipalities (see also
Fig. S4c in the Supplement for the spatial distribution of
where the original wind speed data perform better). From
these results, we conclude that weighting wind speeds with
population tends to improve the predictive performance of
the damage functions. Therefore, from now on, we only use
the population-weighted wind speeds when fitting the dam-
age functions. The deterministic damage models, which are
the Klawa and exponential damage functions, perform best in
nearly two-thirds of the municipalities across all loss classes
in terms of the MAE. Table 1 shows the performance of
the four different damage functions defined in the methods
section and of the ensemble mean for different loss classes.
The deterministic models exhibit the smallest median MAE
across all municipalities. Using the CV as the evaluation
metric gives similar model performances as when using the
MAE. The ensemble mean method does not massively out-
perform the competing models but tends to give better results
than Prahl’s two damage functions (Table 1). A map of the
best model for each municipality exhibits a high heterogene-
ity with no obvious spatial pattern; that is, no model performs
best in certain regions (Fig. S2b). Overall, our results suggest
that the Klawa storm damage function is the best model for a
large share of municipalities (37.6 %).

The spatial distribution of the MAE is not uniform but can
be linked to the magnitude of the variance of losses, with
municipalities with a large-loss variance having the largest
MAEs (Fig. 3). In addition, the spatially heterogeneous dis-
tribution of losses (Fig. S5a) gives rise to spatially heteroge-
neous errors (Fig. 3b). The CV, which shows the extent of
variability in losses in relation to the mean losses, exhibits a
relatively heterogeneous structure (Fig. 3c). On the one hand,
there is a tendency for a high CV in some inland municipal-
ities of southeastern Norway, where the rarity of windstorms
could be part of the reason. On the other hand, the northwest
part of southern Norway also exhibits a high CV although
windstorms are more frequent there (Fig. 3b).

Pooling all municipality-level population-weighted wind
speeds together to perform the storm damage functions fits
does not give better municipality-level loss estimations as
expected because of local effects, such as a different popula-
tion density and vulnerability. The most skilled model in each
municipality is associated with a larger MAE than when the
fit is performed at the municipality level (see Fig. S3a). This
reduction in skill also occurs for the national-level losses
(Fig. S3b).

Unlike previous studies (e.g. Pinto et al., 2007), which
weighted the spatially aggregated loss index devised from
cubic exceedance of wind speed above a sufficiently high
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Table 1. Number of municipalities for which a model performs the best; that is, it has the smallest MAE as a function of the loss class,
as defined in the text. The medians of the MAE and CV in all 356 municipalities are also given. Note that the results are based on the
performances on the unseen testing data. Also, some municipalities are not evaluated in the high-loss class due to a lack of data.

Loss class Damage function Number of MAE CV
municipalities

All loss days

Modified Prahl 32 31 245
Prahl 46 28 238
Klawa 134 22 212
Exponential 91 24 218
Ensemble mean 53 26 226

High-loss class

Modified Prahl 16 5 184
Prahl 25 5 176
Klawa 141 4 156
Exponential 99 4 134
Ensemble mean 39 5 161

Extreme-loss class

Modified Prahl 53 73 153
Prahl 65 67 147
Klawa 121 49 132
Exponential 75 55 143
Ensemble mean 42 66 143

Figure 3. (a) Scatter plot of the loss variance against the smallest MAE for losses above the 99.7th percentile in the testing data where
each dot represents a municipality. The orange line represents the linear trend obtained using a least squares regression with the correlation
indicated in the bottom-right corner. (b) Map of the smallest MAE among the five models in the extreme-loss class fitted on the test data and
(c) the corresponding coefficient of variation in the root mean square error. In (b) and (c), the legends have non-linear class boundaries at the
5th, 10th, 20th, 40th, 60th, 80th, 90th and 95th percentiles. Note that the results are based on the performances on the unseen testing data.

threshold (computed as in Eq. 2), we weight the wind speed
with the population first and then aggregate it to a coarser
resolution. We compare the Klawa damage function, as in
Eq. (2), obtained from the proposed methodology with the
alternative methodology employed in Pinto et al. (2007).
We found both the damage estimates and their errors to be
strongly correlated (Fig. S7a). An independent sample t test
failed to find any significant differences between the mean of
the MAEs from both methodologies. A detailed comparison
can be found in the Supplement.

The 7-fold cross-validation reveals that the parameters in
the storm damage functions obtained during the fitting step

depend on the choice of the training dataset. Moreover, the
model evaluation metrics are highly dependent on the choice
of the training dataset (see the range in Fig. S8a, b, d, e, g and
h). However, independent of the training dataset, the Klawa
and exponential models have the best skill in most of the mu-
nicipalities (as also shown in Table 1) across the different loss
classes (see Fig. S8c, f and i).

The fits of the four damage functions and of the probabil-
ity term largely vary not only between models but also from
municipality to municipality (Fig. S9). Figure S9a, c and d
illustrate the variety among the fits for the exponential, Prahl
and modified Prahl damage functions with very steep lines
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for some municipalities and much flatter lines for others. Fig-
ure S9b highlights the fact that the Klawa damage function
does not increase as steeply as the other models and the vari-
ability among the municipalities is smaller. Finally, Fig. S9e
also shows that the sigmoid functions depicting the probabil-
ity of damage occurrence have different shapes in different
municipalities, with some curves not reaching a loss prob-
ability of 1 within the wind speed range represented. Note
that the fit can lead to negative probabilities that we set to 0
afterwards.

3.3 Extreme damaging events

As extreme damaging windstorm events are of foremost im-
portance, for example from the insurers’ point of view, the
ability of the damage functions to reproduce the damage as-
sociated with these events has to be assessed. To compare the
estimated and observed losses caused by major storm events,
we sum the loss within the date range as given by the Norwe-
gian Natural Perils Pool in Table S1. Using only the model
exhibiting the best performance, on the whole testing period,
in each municipality, we manage to reproduce the spatial pat-
tern of the damage for the three most damaging windstorm
events (Fig. 4; see Fig. S10 for estimates from individual
models for the three most damaging windstorm events and
Table S2 for their corresponding correlations; also, Fig. S11
shows the spatial patterns of seven other damaging events
as given in Table S1). Statistically significant spatial correla-
tions between the observed and estimated losses reaffirm the
suitability of the damage functions to estimate the economic
impacts of extreme damaging events.

In the extreme-loss class, the probabilistic damage func-
tions and the Klawa damage function perform best in a third
of the municipalities each. The Klawa damage function also
shows the smallest median error in the extreme-loss class,
which is in agreement with previous comparison studies on
storm damage functions over Germany (Prahl et al., 2015).

3.4 National-level loss

Aggregating the municipality-level loss observations and es-
timates yields a time series of daily national losses for each
model, and we find an overestimation of low-magnitude
losses as all damage functions are calibrated in favour of ex-
treme losses (Fig. 5). Moreover, the models’ estimates cap-
ture well the magnitude and temporal evolution of the ob-
served annual losses at the national level, with a Spearman
rank correlation coefficient of 0.84 (Fig. 6). Figure 6 also
reveals that the losses in the extreme-loss class are slightly
overestimated in the training period in years where extreme
storm events have occurred, while there is an underestima-
tion of loss in 2011 (part of the testing data) when Cy-
clone Dagmar occurred. The aggregated annual national-
level losses for individual models are shown in Figs. S12
and S13. Figure S12 shows that the deterministic models

Figure 4. Spatial patterns of observed and estimated losses for the
three most damaging events. Panels (a), (c) and (e) display the ob-
served losses of the New Year’s Day Storm, Cyclone Dagmar and
Storm Nina. Panels (b), (d) and (f) are their respective estimates
from the closest model to the observed loss in the testing period.
The class boundaries of the colour bar are the 20th, 40th, 60th, 80th,
85th, 90th and 95th percentiles of the observed losses of their re-
spective events. The spatial Spearman rank correlation between the
observed and estimated losses of the New Year’s Day Storm, Cy-
clone Dagmar and Storm Nina are 0.67, 0.58 and 0.62 respectively.
For each storm, we sum all the loss days as given in Table S1.

are able to estimate well the losses in the extreme-loss class
at the national level. The probabilistic models overestimate
the losses in certain municipalities by a large margin, re-
ducing the models’ ability to estimate national-level losses
(Fig. S13). While fitting the probabilistic damage functions,
there are not enough extreme-loss observations in certain
municipalities, which prevents us from requiring a minimum
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Figure 5. Observed and estimated daily losses (in NOK) on a log–
log scale at the national level. Panels (a), (b), (c), (d) and (e) corre-
spond to the ensemble mean method, the Klawa damage function,
the exponential damage function, the Prahl damage function and the
modified Prahl damage function respectively. The dashed blue lines
represent the 1 : 1 line.

number of loss observations in each bin. This is one of the
reasons for the very large differences between the observed
and estimated losses for the probabilistic models.

3.5 Probability of damage occurrence

The damage classifier, devised here from the probability
term in Prahl’s function (see Sect. 2.6), demonstrates some
skill at predicting the most extreme events but struggles for
the weaker events. It correctly predicts the top five extreme
events (Table S3) for over 70 % of the municipalities. Even

though we try to address the excess number of zeroes with
the precision recall curve, the classifier was only able to de-
tect 20 %–40 % of the actual damaging events in most mu-
nicipalities (see the number of municipalities in the [0.2, 0.4]
interval in Fig. S14a) and zero events in around 15 % of the
municipalities (' 50 municipalities for the null true positive
rate in Fig. S14a). Moreover, the false positive rate is small
(< 4%) in all municipalities (Fig. S14b). Because of the
noisy lower-loss regime, the calculated probability thresh-
olds are low (Fig. S15) for most municipalities with values
between 0.02 and 0.4 (median of 0.23; Fig. S15a). Only a few
municipalities exhibit probability thresholds above 0.4, espe-
cially in southeastern Norway where damaging wind events
are rare (Fig. S15b).

Although its skills are relatively poor, the damage classi-
fier defined from event occurrence probabilities clearly out-
performs a classifier that solely relies on wind speed. To
demonstrate this, we define a damage classifier based on
wind speed thresholds in which all wind speeds above the
98th percentile are labelled as damaging (as is done in the
Klawa model). A comparison between these two classifiers
shows a far higher accuracy for the classifier using the proba-
bility threshold (Fig. 7b) than for the classifier using the wind
speed classifier threshold (Fig. 7a).

4 Conclusions

Windstorms are the natural hazard that makes up more than
half of the monetary losses in Norway. The capability of
four storm damage functions and their mean to reproduce
the monetary losses associated with damaging wind events
is evaluated for the complex topography and demography
of Norway. The models’ ability to reproduce spatial loss
patterns of extreme-loss events with a high degree of ac-
curacy confirms the utility of both deterministic and prob-
abilistic damage functions in estimating extreme-loss events.
However, the relatively poor performance of the damage–
no-damage classifier points towards the difficulty of devel-
oping an early warning system that also encompasses small-
loss events. Our results confirm the importance of weighting
wind speed with population, of locally fitting the storm dam-
age functions and of using various damage functions to best
estimate the losses from windstorms.

The deterministic Klawa model performs best in estimat-
ing extreme losses, and this result is consistent with previ-
ous studies, such as Prahl et al. (2015). In our study, the
Klawa model also exhibits the smallest error in the entire loss
range. However, the Klawa model’s inability to account for
losses associated with wind speed below the 98th percentile
greatly limits its applicability in the lower-loss range. The
Prahl damage functions have the ability to model the whole
loss range and show the smallest error in a third of the mu-
nicipalities. The models’ performances suggest that relying
on one single damage model may not be the best strategy
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Figure 6. Annually aggregated national losses using only the loss days in the extreme-loss class from the insurance data (red line) along with
the annual national loss estimates (blue line), which are the sum of each municipality’s best-performing-model estimate (see also Table 1).
Note that the y axis is logarithmic and that the shaded region represents the testing period.

Figure 7. Distributions of (a) the accuracy of the damage classifier based on the 98th percentile of the wind speeds (median: 18 %) and of
(b) the accuracy of the proposed damage classifier (Sect. 2.5) devised from the Prahl damage function (median: 68 %) for wind speeds above
the 98th percentile, over all municipalities.

if all the municipalities in Norway are to be modelled. Due
to the high spread in the fits of damage functions, the en-
semble mean method mostly fails to outperform the individ-
ual models. Although the damage/no-damage classifier does
very well at predicting extreme damaging events, more re-
search is needed to propose a well-functioning damage clas-
sifier across all loss ranges.

Wind speed is the most common variable used to estimate
storm damage. A drawback of this approach is that the same
wind speed at the municipality-level resolution may cause
small damage in some cases or no damage in most cases.
Such inconsistencies occur mainly due to extremely local
high wind gusts and incorrect reporting of damage. As a con-
sequence, the lower end of the wind speed–damage relations
becomes noisy, thus making it very difficult to model. To
check how the wind gust from NORA3 compares to the wind
speed, we performed the same population-weighting exercise
with daily maximum wind gusts and found a high correlation
(0.91) in the 98th percentiles calculated from wind speeds
and wind gusts (Fig. S4b). With insurance data being at a
coarser resolution than the wind gusts, which are very lo-

cal (a few hundred metres), it is difficult to get meaningful
wind gust values at the municipality level because the impact
of high values will be weakened by the population-weighted
averaging step.

Due to the unavailability of the gridded population data for
the earlier part (1985–1999) of our study period, we had to
use a constant spatial distribution of the population to weight
the wind speed at every grid point. Therefore, we cannot take
into account the spatial change in population density, such as
the spatial expansion of cities with time. This is a source of
uncertainty in our storm-damage fits.

High-quality data on loss and wind speed are necessary
for the calibration of damage functions. A long time series
of loss data is desired to reduce uncertainties and increase
accuracy of model fitting and predictions. However, loss in-
formation, as used in this study, is rarely available. In such
cases, a general approach is to approximate the losses using
the population of the respective regions and then quantifying
the impact of windstorms (Donat et al., 2011a). In addition,
there are open-source climate risk assessment models, such
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as CLIMADA (Aznar-Siguan and Bresch, 2019), which can
be coupled with loss data for damage estimation.

There are several limitations to the damage functions, in-
cluding the inability of the models to account for the duration
of the events and their tuning to model the extreme losses at
the expense of the low losses. Furthermore, the randomness
of the losses towards the lower-loss spectrum diminishes the
damage classifier’s predictive skill. There are also certain pit-
falls in the insurance data, such as incorrect reporting of time,
location and type of claims. Also, the slight underestimation
of maximum wind speeds in NORA3 may affect the shape of
the damage curves. A direct comparison between other stud-
ies that employ damage functions is not possible because the
unit of loss in this study is NOK per person, while most other
studies use the loss ratio (insured loss / total value of the in-
sured assets) instead of the actual insured loss.

Applications of damage functions can range from impact-
based forecasting of damage to damage assessment right af-
ter an event, as well as assessment of future losses in the
context of climate change with an ensemble of wind–damage
relations providing a measure of the uncertainty in the mon-
etary loss amount. Previous studies suggest that with cli-
mate change the intensity of future windstorms may increase
(see, for example, Priestley and Catto, 2022; Michel and
Sorteberg, 2023). It would be worthwhile to assess the fu-
ture changes in windstorm-induced losses using the damage
functions discussed here and future wind speed projections.
Impact-based forecasting, by which risks associated with a
natural hazard are predicted in the short term, is gaining
more popularity for climate risk management (Taylor et al.,
2018; Zhang et al., 2019). The performance of these damage
models, especially on the regional level, suggests their utility
for impact-based forecasting. However, to use trained storm
damage models on new data, one has to make sure that the
distributions of the wind speed in the training dataset and the
testing dataset are identical. To ensure this, statistical adjust-
ment methods may be required. For forecasting purposes, an
ideal starting point would be to apply a damage classifier to
distinguish between damaging and non-damaging winds, as
part of an early warning system, followed by a prediction of
losses using a variety of damage functions. Also, from the
risk-modelling perspective, coupling the damage functions
with the asset exposure, i.e. information on infrastructures in
addition to the population density, is a possible future direc-
tion.
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