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Abstract. Annual maxima of daily precipitation sums can
be typically described well with a stationary generalized
extreme value (GEV) distribution. In many regions of the
world, such a description does also work well for monthly
maxima for a given month of the year. However, the descrip-
tion of seasonal and interannual variations requires the use of
non-stationary models. Therefore, in this paper we propose
a non-stationary modeling strategy applied to long time se-
ries from rain gauges in Germany. Seasonal variations in the
GEV parameters are modeled with a series of harmonic func-
tions and interannual variations with higher-order orthogonal
polynomials. By including interactions between the terms,
we allow for the seasonal cycle to change with time. Fre-
quently, the shape parameter ξ of the GEV is estimated as a
constant value also in otherwise instationary models. Here,
we allow for seasonal–interannual variations and find that
this is beneficial. A suitable model for each time series is se-
lected with a stepwise forward regression method using the
Bayesian information criterion (BIC). A cross-validated ver-
ification with the quantile skill score (QSS) and its decompo-
sition reveals a performance gain of seasonally–interannually
varying return levels with respect to a model allowing for
seasonal variations only. Some evidence can be found that
the impact of climate change on extreme precipitation in
Germany can be detected, whereas changes are regionally
very different. In general, an increase in return levels is more
prevalent than a decrease. The median of the extreme precip-
itation distribution (2-year return level) generally increases
during spring and autumn and is shifted to later times in the
year; heavy precipitation (100-year return level) rises mainly
in summer and occurs earlier in the year.

1 Introduction

Climate change has been identified as the cause of increasing
risks from meteorological extreme events affecting almost all
areas of the economy, nature, and human life, and those will
be even more endangered in the future (Pörtner et al., 2022,
and the references therein). One of the main targets of cur-
rent and future generations is to avoid further changes and to
develop adaptation strategies to reduce risks and burdens.

While climate change can be measured very reliably for
the surface temperature, for other variables like extreme pre-
cipitation the connection is not yet clear. For regions with
good data availability, it has already been shown that fre-
quency and intensity of heavy precipitation have likely in-
creased on the global scale (Seneviratne et al., 2021). Fur-
thermore, climate projections show that future extreme pre-
cipitation will continue to intensify (e.g., Pörtner et al., 2022;
Rajczak et al., 2013). Since the consequences of heavy pre-
cipitation are extensive and can lead to different threats and
damages, for example, due to flash floods, river floods, mud-
slides or soil erosion, an accurate assessment of extreme pre-
cipitation changes is crucial for an adequate adaptation. The
potential risk due to extreme precipitation is not only depen-
dent on its magnitude, but it also can be related to a change
in its seasonal cycle. For example, a shift of strong precipi-
tation from summer to spring leads to an increased flood risk
due to a larger likelihood of strong rainfall and snowmelt oc-
curring at the same time (Vormoor et al., 2015; Teegavarapu,
2012). Furthermore, crop losses may rise, since plants are
more vulnerable during earlier growing stages (Rosenzweig
et al., 2002; Zeppel et al., 2014; Derbile and Kasei, 2012).

Analyses of extreme precipitation in Ger-
many for different seasons have already been
done(Zolina et al., 2008; Łupikasza, 2017; Fischer et al., 2018;
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Fischer et al., 2019; Zeder and Fischer, 2020; Ulrich et al.,
2021). Zolina et al. (2008) and Łupikasza (2017) analyzed
quantiles of daily precipitation sums separately for the
seasons DJF, MAM, JJA and SON, while Fischer et al.
(2018, 2019) used available data more efficiently by mod-
eling monthly maxima of daily precipitation sums for all
months simultaneously. This approach has been proven to
lead to more robust and reliable results than considering
months separately. Ulrich et al. (2021) extended this method
by including different durations to efficiently estimate
intensity–duration–frequency curves. Furthermore, Zeder
and Fischer (2020) analyzed the effect of climate change
on seasonal extreme precipitation and found a positive
connection to the northern-hemispheric temperature rise.
In our approach we combine the simultaneous modeling of
available data for all months with interannual variations,
thus accounting for potential changes in the seasonality due
to climate change and natural variability. Here, we point
out that when referring to interannual variations, we are not
addressing differences between successive years, but rather
the trend over the entire observation period, which could be
potentially non-linear.

Extreme value statistics (EVS) (e.g., Coles, 2001; Bous-
quet and Bernardara, 2021) are used to quantify the mag-
nitude and occurrence probabilities of these seasonally–
interannually varying extremes. EVS have been applied in
many different research fields (e.g., Katz et al., 2002; Ferreira
et al., 2017; Szigeti et al., 2020; Arun et al., 2022). One way
to analyze extremes is the block maxima approach, where
the observations are divided into blocks with equal lengths.
The probability distribution for the maxima of these blocks
is represented by the generalized extreme value (GEV) dis-
tribution. Instead of considering annual maxima of precipita-
tion, which are frequently used in risk assessment, we take a
monthly block size to resolve the seasonal cycle. Contrary
to a stationary approach with an individual extreme value
model for each calendar month, we take advantage of the
smooth variations in the probability distributions of the block
maxima across adjacent calendar months. Because of the pe-
riodic nature of the seasonal changes, a series of harmonic
functions is an appropriate choice for describing the corre-
sponding variations in the GEV parameters. This modeling
strategy has already been widely applied (e.g., Méndez et al.,
2007; Rust et al., 2009; Galiatsatou and Prinos, 2014; Fis-
cher et al., 2019; Min and Halim, 2020). It has been shown
to provide more accurate monthly and annual return levels
(quantiles of the GEV) (Fischer et al., 2018).

Interannual variations in precipitation have been shown
to be associated with its natural variability (e.g., Willems,
2013), increased air temperatures (Trenberth et al., 2003;
Westra et al., 2013, 2014), and other effects influencing
large-scale atmospheric circulations and precipitation char-
acteristics (Pinto et al., 2007, 2009; Davini and d’Andrea,
2020; Detring et al., 2021). Most of these effects are highly
non-linear, and their roles are difficult to quantify. Here,

we use time as a proxy to combine those different un-
known effects. One possibility to model non-linear interan-
nual changes is polynomial regression (e.g., Kjesbu et al.,
1998; Mudelsee, 2019; Bahrami and Mahmoudi, 2022). Or-
thogonal polynomials are used to reduce multicollinearity
and to improve the parameter estimation (Shacham and
Brauner, 1997). Here, we use Legendre polynomials up to
an order of 5 to describe the variations across years. On the
one hand, this enables the reflection of changes potentially
associated with climate change, and, on the other hand, this
allows for modeling of natural variability in extreme precip-
itation. The concept of using higher-order Legendre poly-
nomials has also been applied to assess spatial variations
(Ambrosino et al., 2011; Rust et al., 2013; Fischer et al.,
2019). As the seasonal and interannual covariates are con-
ceptually equal, we combine both approaches. Additionally,
interactions between the covariates allow the seasonal cycle
to change across years.

The goal of this paper is to assess the performance of the
seasonal–interannual modeling with a special attention to a
flexible shape parameter ξ . This parameter is difficult to esti-
mate as it interferes with the scale parameter (Ribereau et al.,
2011) and requires long records for reliable results (Papalex-
iou and Koutsoyiannis, 2013). Nevertheless, it describes the
behavior of the very rare events and consequently plays an
important role for assessing extreme precipitation changes.
Furthermore, the possible impact of climate change on the
seasonal cycle of extreme precipitation is analyzed. We for-
mulate three research questions to be addressed in this study.

RQ1 Can a model with interannual variations better repre-
sent the observations than a seasonal-only model?

RQ2 How important is a flexible shape parameter to reflect
recorded variations?

RQ3 How does climate change affect the seasonal cycle of
extreme precipitation in Germany?

We carry out this investigation for observations from Ger-
many with more than 500 long (≥ 80 years) records, pre-
sented in Sect. 2. The seasonal–interannual modeling is
described in Sect. 3. Model selection and validation tools
are covered in Sect. 4. The gain of modeling seasonal–
interannual variations with respect to a just seasonal model
(RQ1) and the importance of a flexible shape parameter ξ
(RQ2) are assessed in Sects. 5 and 6. The impact of climate
change on the seasonal cycle of heavy precipitation (RQ3) is
tackled in Sect. 7. Finally, we discuss the results in Sect. 8.

2 Data

A dataset of almost 5700 rain gauges measuring daily pre-
cipitation amounts (DWD, 2021) is provided by the German
Meteorological Service (Deutscher Wetterdienst, DWD) via
the continuously updated Open Data Server (DWD, 2022).
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Those observation stations are set up according to the WMO
guidelines (WMO, 1996). The daily sums of precipitation
are obtained from amounts accumulated between 05:50 and
05:50 UTC of the following day and have been checked for
spatial consistency (DWD, 2021).

For investigating long-term trends a sufficiently long time
series is crucial; thus, we only consider the most recent
stations with at least 80 years of observations lasting until
31 December 2021. We allow for missing values and larger
gaps of several consecutive years, often occurring for the
years of the second world war. The 519 stations fulfilling the
mentioned criteria are depicted in Fig. 1; the color coding
shows the station’s altitude. The locations are not homoge-
nously distributed in space: some areas are closely covered,
while for other areas, for example, in the east of Germany
or in the state of Saarland in western Germany, long time
records which are still being updated are missing. The com-
mon time period for all 519 observation records covers the
years from 1941 to 2021. The four stations Krümmel (1 Jan-
uary 1899 until 31 December 2021), Mühlhausen/Oberpfalz-
Weihersdorf (1 January 1931 until 31 December 2021), Rain
am Lech (1 January 1899 until 31 December 2021) and
Wesertal-Lippoldsberg (1 January 1931 until 31 Decem-
ber 2021) are highlighted in Fig. 1 and will be discussed
exemplarily in this study. We have selected these stations
as they are characterized by different changes in seasonal-
ity (see Sect. 7) represented by divergent model setups (see
Sect. 4.1). Additionally, their interannual changes are more
pronounced than for other stations. We consider monthly
maxima of daily precipitation sums while months with less
than 27 measured days are discarded from the analysis.

3 Modeling seasonal–interannual extreme
precipitation

In order to describe the changes in seasonality of extreme
precipitation, we build a statistical model. This can be done
with concepts of extreme value statistics (EVS), which are
widely explored and applied in different scientific fields
(e.g., for the financial sector, Gilli and Këllezi, 2006; Gkillas
and Katsiampa, 2018; or for geosciences, Yiou et al., 2006;
Naveau et al., 2005; Ulrich et al., 2020; Fauer et al., 2021;
Moghaddasi et al., 2022; Jurado et al., 2022). One major
strategy in EVS is the block maxima approach leading to
an asymptotic model for extreme values: the generalized ex-
treme value (GEV) distribution, briefly described in the fol-
lowing.

3.1 Block maxima approach

For a sequence of independent and identically distributed
(iid) random variables X1, . . .,Xn, the block maxima are de-
fined as

Mn =max{X1, . . .,Xn} . (1)

Figure 1. The 519 long stations covering at least the years
from 1941 to 2021. Station altitude [m] is encode with colors.
Additionally, the locations of stations Krümmel (orange rectan-
gle), Mühlhausen/Oberpfalz-Weihersdorf (green rhombus), Rain
am Lech (violet triangle pointing up) and Wesertal-Lippoldsberg
(blue triangle pointing down) are depicted.

The Fisher–Tippett–Gnedenko theorem (FTGT) (Coles,
2001) states that for a sufficiently large block size n, the prob-
ability distribution function (PDF) of the block maxima can
be well described either with the Gumbel, the Fréchet or the
Weibull distribution. The three families can be combined into
the generalized extreme value (GEV) distribution:

G(z)=

{
exp

{
−
[
1+ ξ

(
z−µ
σ

)]−1/ξ
}

,ξ 6= 0

exp
[
−exp

{
−
(
z−µ
σ

)}]
,ξ = 0,

(2)

with {z : 1+ξ(z−µ)/σ > 0}. This distribution has three pa-
rameters: location −∞ < µ < ∞, specifying the position
of the PDF; scale σ > 0, defining the width of the PDF; and
shape−∞ < ξ < ∞, characterizing the behavior of the up-
per tail. The value of ξ determines the type of extreme value
distributions (limξ → 0: Gumbel; ξ > 0: Fréchet; ξ < 0:
Weibull).

The choice of the appropriate block size is dependent on
the nature of the considered random variable (Embrechts
et al., 1997; Rust, 2009). Studies (e.g., Rust et al., 2009; Ma-
raun et al., 2009) show that a block size of 1 month is al-
ready sufficiently large for extreme precipitation in the mid-
latitudes. Others confirm the choice of monthly maxima for
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the considered datasets by using Q–Q plots (Fischer et al.,
2018, 2019). The advantage of a higher temporal resolution
of the maxima series makes it possible to analyze the sea-
sonal cycle of extreme precipitation. This requires indepen-
dent block maxima of successive months. However, this as-
sumption can be violated if two monthly maxima belong to
the same precipitation event, e.g., if one maximum occurs
at the end of the month and the second one at the begin-
ning of the next month. For the given records, about 0.6 %
of the monthly maxima have been registered at successive
days. Since the percentage is low, we neglect temporal de-
pendencies and assume independent monthly maxima.

In the frame idea of vector generalized linear models
(VGLMs Yee, 2015), we describe the variation of GEV pa-
rameters as linear functions depending on different variables.
The variations throughout the course of the year are captured
in Fischer et al. (2018) and are extended to a seasonal–spatial
variation of extreme precipitation in Fischer et al. (2019).
Ulrich et al. (2020) applied spatial variations to a duration-
dependent GEV. Additionally, a change in the GEV param-
eters with other meteorological variables – e.g., temperature
and the El Niño–Southern Oscillation (ENSO) index (Vil-
lafuerte et al., 2015), the North Atlantic Oscillation (NAO)
index (Golroudbary et al., 2016), or an index of synoptic air-
flow (Maraun et al., 2011) – has been accomplished by vari-
ous authors. In this study the seasonal and interannual varia-
tions are in focus. For each of the three GEV parameters, we
build a linear model as shown here in a conceptional way for
µ:

g(µ)= µ0+
∑

µiXi +
∑

µi,jXiXj , (3)

where g is a link function – for µ the identity function
g(µ)= µ , for σ the logarithm g(σ )= ln(σ ) and for ξ the
logarithm with an offset of 0.5 g(ξ)= ln(ξ)+ 0.5; µ0 de-
notes the constant intercept (offset); the second term denotes
the direct effects of a covariate Xi , e.g., seasonal or inter-
annual; and the third term denotes the interactions between
different dimensions (indicated by i and j ), e.g., seasonal and
interannual.

3.2 Modeling seasonality

To account for the periodic nature of the seasonal cycle, the
dependence of GEV parameters on the months can be de-
scribed with a series of harmonic oscillations with amplitude
A and a phase α. For the first harmonic oscillation (h= 1)
the location parameter µ can be written as

µh=1
ct
= µ0+Asin(ωct +α) , (4)

with t = 1, . . .,12 the months in the year, ct the center of
the t th month given in days starting from 1 January and
ω = 2π/365.25 the angular frequency of Earth’s rotation.

To describe the oscillation Eq. (4) in the framework of a
linear model, we use a linear combination of sine and cosine,

µh=1
ct
= µ0+ a sin(ωct )+ bcos(ωct ) , (5)

with the coefficients a and b defining the amplitude A and
the phase α as

A=
√
a2+ b2 (6)

and

α =


π
2 , a = 0

0, b = 0
atan2(b,a), a 6= 0,b 6= 0.

(7)

The harmonic series for location,

µct = µ0+

H∑
h=1
(µhsin sin(hωct )+µhcos cos(hωct )), (8)

with h= 1, . . .,H indicating the order of harmonic function,
approximates an arbitrary periodic function (Priestley, 1992).

3.3 Modeling interannual variation

To capture interannual variations, polynomials typically pro-
vide a good approximation. With orthogonal polynomials
such as Legendre polynomials, we avoid dependence be-
tween terms which have proven useful for modeling spatial
variations (Rust et al., 2013; Fischer et al., 2019). We adopt
this approach here to describe interannual variations. For the
location parameter µ this reads

µY =

I∑
i=1

µiP Pi(Y ) , (9)

with i = 1, . . ., I indicating the order of Legendre polynomial
P and Y the transformed year of the observation. The trans-
formation of the time axis needs to be done since Legendre
polynomials are only defined on [−1,1]. For that we use

Y =
2(Y ′−Y ′min)

Y ′max−Y
′

min
− 1 , (10)

with Y ′ being the respective year and Y ′min/Y
′
max denoting

the first/last year of the record. This transformation has been
done for each station separately depending on its observation
period. We exemplify the Legendre polynomials up to order
5 in Fig. 2.

3.4 Modeling the interannual variation of seasonality

We focus on the interannual changes in the seasonal cycle,
which can be incorporated into the statistical model using
interactions between the seasonal and interannual terms in
the predictor of the vector generalized linear model. It can be
thought of as the amplitude and phase of the seasonal cycle
changing in time.

Using Eq. (6) with coefficients a(Y )= a Pi(Y ) and
b(Y )= bPi(Y ) being modulated by time-dependent Leg-
endre polynomials P(Y ), the amplitude A varies with the
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Figure 2. The Legendre polynomials for the orders 1 to 5.

Figure 3. Standard interaction terms (left-hand side) between the
first-order sine and the Legendre polynomials of order 1 (top row,
orange), order 2 (middle row, green) and order 3 (bottom row, red).
A negative and a positive scaling of the Legendre polynomials lead
to the desired interaction terms (right-hand side).

square of the Legendre polynomials P(Y ): with the com-
pact support on [−1,1] interaction of harmonics with a lin-
ear change with years P1(Y ) leads to a quadratic change for
the squared amplitude A2 and thus to an interaction term
a sin(ω ct )P1(Y )+b cos(ω ct )P1(Y ) with decreasing ampli-
tude on [−1,0] and increasing amplitude on [0,1] as illus-
trated in Fig. 3 (top row, with b = 0 for simplicity). The fol-
lowing rows of Fig. 3 show the corresponding interaction
terms for P2(Y ) (middle) and P3(Y ) (bottom).

To avoid the bipartite behavior we use two transforma-
tions of the Legendre polynomials: P−i = 1/2 (Pi(Y )− 1)
and P+i = 1/2 (Pi(Y )+1), such that P t1i = 1/2 (Pi(Y )−1) :
[−1,1] → [−1,0] and P t2i = 1/2 (Pi(Y )+ 1) : [−1,1] →
[0,1].

The transformed Legendre polynomials are illustrated in
Fig. 4.

Figure 4. Positively (solid) and negatively (dashed) transformed
Legendre polynomials of order 1 to 5.

Thus, the interactions with the harmonic functions for the
location parameter µ can be expressed as

µ−int =

H∑
h=1

I∑
i=1

(
µ−h,i,sin sin(hωct )

Pi(Y )− 1
2

+

µ−h,i,cos cos(hωct )
Pi(Y )− 1

2

)
, (11)

µ+int =

H∑
h=1

I∑
i=1

(
µ+h,i,sin sin(hωct )

Pi(Y )+ 1
2

+

µ+h,i,cos cos(hωct )
Pi(Y )+ 1

2

)
. (12)

These terms show the desired behavior as depicted exem-
plarily in Fig. 3 on the right-hand side.

Combining the seasonal and interannual variations with
these interactions leads to a flexible model for the location
parameter:

g(µ)= µ0+µct +µY +µ
−

int+µ
+

int . (13)

Using a VGLM, we allow the scale σ and shape ξ to vary
in the same way. In many publications (e.g., Golroudbary
et al., 2016; Rust et al., 2009) the shape parameter is de-
scribed merely with a constant offset ξ0 to be estimated or is
even set to a fixed value. The reason is that this parameter is
regarded as difficult to estimate as it describes the behavior of
the most extreme and thus very rare events. Papalexiou and
Koutsoyiannis (2013) state that “the record length strongly
affects the estimate of the GEV shape parameter and long
records are needed for reliable estimates”. We assume our
dataset will be sufficiently long. Fischer et al. (2019) have
shown by means of an example station in Germany that a
pronounced seasonal cycle in ξ exists with lower, partly neg-
ative, values in winter and higher values in summer. Those
differences could be explained with the predominance of
less intense stratiform precipitation in the winter months and
more intense convective precipitation in the summer months.
The performance gain of a seasonal–interannual shape pa-
rameter will be discussed in detail in Sect. 6.
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3.5 Return levels

The p quantile of the GEV gives the return level rp for a cer-
tain non-exceedance probability p (or occurrence probability
1−p) and can be written as

rp = µ−
σ

ξ
[1− [− log(p)]−ξ ]. (14)

Instead of stating the non-exceedance probabilities it is com-
mon to consider the respective average return period T =

1
1−p . The interpretation is that the return level is exceeded
on average once in this particular time period. Since we con-
sider return levels changing in time, the concept of a tem-
poral change of a return period might be difficult to capture.
Thus, in the following we refer to a (time-dependent) non-
exceedance probability p(t) and the return period T (t) si-
multaneously. As we consider monthly maxima we calculate
monthly return levels as well. Similar to, e.g., 100-year re-
turn levels obtained with annual maxima, we determine the
100-January return levels, the 100-February return levels and
so on. In the following we state them as monthly 100-year re-
turn levels instead of naming respective months. This should
not be confused with annual return levels. However, they can
be calculated as well with monthly maxima, leading to more
accurate and reliable annual results (Maraun et al., 2009; Fis-
cher et al., 2018).

4 Model building and verification

4.1 Stepwise model selection

After introducing the model setup in the previous section, the
maximum orders for harmonic functions and Legendre poly-
nomials have to be selected. Here, we set maximum orders
H and I to five to ensure a feasible model selection proce-
dure. The result of the model selection, which is described
below, confirms that no order higher than 5 is required to ad-
equately describe the data. With H = I = 5 the full model
consist of 348 coefficients (116 for each GEV parameter: 1
constant offset, 10 for seasonal variations, 5 for interannual
variations and 100 interaction terms) for each station sep-
arately. This model is reduced to the necessary complexity
with stepwise model selection using the Bayesian informa-
tion criterion (BIC) (e.g., Neath and Cavanaugh, 2012). The
procedure has two parts: first, only the direct effects are se-
lected; in the second part, the interactions are added subse-
quently. Starting point is the stationary GEV (Eq. 2). In each
iteration, every possible covariate is added once to the ref-
erence (in the first iteration: stationary GEV) and the BIC is
determined. For the first iteration of part one this leads to 45
different models (15 for each GEV parameter). The model
with the lowest BIC is selected as the best candidate for the
next step. If the difference 1BIC= BICref−BICmodel > 2
(as suggested by Fabozzi et al., 2014), the model is consid-
ered superior to the reference and becomes the new refer-

ence for the next iteration. Again, all remaining covariates
are probed once for model improvement (leading to 44 dif-
ferent models for iteration two of part one), and the stepwise
model selection is continued. If 1BIC < 2 for all probed
covariates, the current reference model is taken as the final
model.

Now, the procedure is repeated for interaction terms start-
ing with the final model from part one. To answer RQ1
(Sect. 5), in which we analyze the gain of including inter-
annual variations, we also select for each station a seasonal-
only model without interannual variability as a reference
model. To address RQ2, model selection with different se-
tups is used; details are given in Sect. 6.

Figure 5 illustrates the stepwise selection for the four ex-
ample stations. The BIC (x axis) decreases when adding nec-
essary covariates (y axis from top to bottom). All covariates
listed in the panels (Fig. 5) for the corresponding parameter
(color) are included in the final model. Numbers following
sin, cos and P indicate the respective harmonic/polynomial
order. Terms with a colon denote interactions. For all four ex-
ample stations, interannual terms in addition to seasonal ones
have been included following the procedure described above;
however, the type of interannual variation differs for each sta-
tion. On the one hand, stations Rain am Lech and Wesertal-
Lippoldsberg are characterized by a linear change in param-
eters. These changes occur in the µ and σ parameters for
the former station, while for the latter the seasonal cycle of
ξ changes linearly with the years. On the other hand, the
extreme precipitation of the stations Mühlhausen/Oberpfalz-
Weihersdorf and Krümmel is described with higher-order
Legendre polynomials.

The model selection procedure was applied for all 519 sta-
tions individually. About 65 % of the stations (338/519) pre-
fer a model with an interannual component. Those gauge sta-
tions are roughly equally distributed in space, and no com-
mon characteristics (e.g., stations altitude or record length)
are apparent compared to stations without an interannual
component. All models of the 338 stations contain seasonal
variations as well. The properties of the interannual vari-
ability of those models are depicted in Fig. 6: (a) indicates
those GEV parameters which show an interannual compo-
nent; (b) shows whether an interannual component is part of
a direct effect and/or an interaction; (c) gives the counts and
portions of the selected Legendre polynomials (x axis) for
the GEV parameter (y axis) and kind of covariate (direct:
top; interactions: bottom). We do not show the spatial dis-
tribution of the Legendre polynomials since no clear pattern
can be detected.

It can be seen that the selected interannual covariates are
partly very variable in space. This can be explained by (1) a
large spatial variability in extreme precipitation due to partly
small-scaled events and (2) the model selection procedure,
which chooses one suitable model, even if other models are
comparably appropriate. However, common characteristics
can be detected. The GEV’s location and scale parameter
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Figure 5. Stepwise model selection for example stations. BIC
against stepwise-selected covariates for location (yellow), scale
(pink) and shape (blue) for each iteration. All covariates listed are
included in the final model.

are mainly affected, and interannual changes in the seasonal
cycle (interactions) dominate. Nevertheless, changes in the
shape parameter and changes without affecting the seasonal
behavior occur, often for several stations of the same region,
indicating common local characteristics. The stations with

direct effects are mainly characterized by a linear interan-
nual change in the location parameter. For the interactions,
the preferred Legendre polynomial is not so obvious.

4.2 Model verification tools

To answer RQ1 and RQ2 the performance of a model
with respect to a reference has to be analyzed. We use the
quantile skill score (QSS) (Bentzien and Friederichs, 2014;
Friederichs and Hense, 2007), which is based on the quantile
score (QS) defined as

QS=
1
N

N∑
n=1

ρp(on− rp,n) . (15)

Here ρp denotes the check function, defined as

ρp(u)=

{
pu u≥ 0

(p− 1)u u < 0,
(16)

with u= on−rp,n. The QS is a weighted mean of differences
between the N observations on and the quantiles (return lev-
els) rp,n for a certain non-exceedance probability p. It is pos-
itively oriented and optimal at zero. We use leave-one-year-
out cross validation to obtain a robust quantile score estimate.

The quantile skill score (QSS) is defined as

QSS=
QSmodel−QSref

QSperf−QSref
= 1−

QSmodel

QSref
, (17)

with the perfect score QSperf = 0. For a model outperforming
the reference, the QSS is in the range (0,1], giving the frac-
tion of improvement with respect to the difference between
the perfect and the reference model; for models worse than
the reference, QSS < 0.

For stratifying verification along months or stations we use
the decomposition of the QSS (Richling et al., 2024) to learn
about peculiarities of certain subset,

QSS=
K∑
i

Ni

N
·

(
1−

QSi,model

QSi,ref

)
·

QSi,ref

QSref
, (18)

with K being the number of different subsets; e.g., for
monthly stratification K = 12. The quantile skill score for
the full dataset can be decomposed into the sum of a
weighted quantile skill score for the different subsets. The
term 1− QSi,model

QSi,ref
in Eq. (18) represents the subset QSS,

weighted, on the one hand, with the so-called frequency
weighting Ni

N
, indicating how many data points can be at-

tributed to that subset, and, on the other hand, with the refer-
ence weighting QSi,ref

QSref
, indicating how well the reference can

represent the data for the given subsets with respect to the
complete dataset. The weighted subset QSS can be regarded
as the contributions to the total QSS.
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Figure 6. Properties of the interannual variability components of those 338 models including at least one. (a) GEV parameter with interannual
component, location (yellow), scale (pink) and shape (blue). (b) Direct (orange) and/or interactions (green) with interannual components.
(c) Counts (color intensity) and portion (percentage) of selected orders of the Legendre polynomials (x axis) for different GEV parame-
ters (y axis) divided for direct (top) and interactions (bottom) for the 338 models. Stations with no interannual component are marked as
transparent circles.

5 Gain of interannual variability

We address RQ1: can a model with interannual variations
better represent the observations than a seasonal-only model?
As mentioned in Sect. 4.1, a model with at least one interan-
nual component in any of the GEV parameter was chosen
only for 338 of 519 stations (∼ 65 %). To assess the impor-
tance of the interannual variations of these 338 stations, we
analyze the skill with respect to the seasonal-only model. Ta-
ble 1 shows the total QSS for different non-exceedance prob-
abilities (return periods). Skill is positive but small . 2%,
increasing with non-exceedance probability (return period).
The latter has to be interpreted with care as there are very few
observations in the range of the upper quantiles. Return lev-
els with a return period higher than the time range of the data
should be treated cautiously, since the quantile score cannot
reasonably evaluate those values (Fauer and Rust, 2023). As
we consider for each station at least 80 years of observations,
this only matters for non-exceedance probabilities (return pe-
riods) of 0.99 and 0.995 (100 and 200 years). The small in-
crease in skill due to the inclusion of interannual variation is
expected as most of the signal can be described already with
the strong seasonal cycle.

We analyze whether interannual variations improve the es-
timates of return levels for a particular month and stratify
the QSS along months, Fig. 7a. To understand the impor-
tance of the monthly subset scores, the reference weight-
ing QSi,ref/QSref (Fig. 7b) and the contribution to the to-
tal skill score (Fig. 7c) are shown. The frequency weight-
ing Ni/N is (almost) identical for all subsets (as the records
generally contain complete years) and is not shown. Aver-
aged over all 338 stations, the monthly QSS (Fig. 7a) is
positive for all months, and non-exceedance probabilities for

Table 1. Total QSS for different non-exceedance probabilities p (re-
turn periods T ) of the seasonal–interannual model with respect to
the seasonal-only model averaged over 338 stations with an inter-
annually varying component.

p (T ) QSS

0.5(2a) 0.006
0.8(5a) 0.007
0.9(10a) 0.008
0.95(20a) 0.010
0.96(30a) 0.012
0.98(50a) 0.015
0.99(100a) 0.019
0.995(200a) 0.021

spring (March, April) and summer (July, August) stand out.
For the contribution to the total QSS, the reference weight-
ing (Fig. 7b) gives more importance to the summer months,
leading to the strongest contribution to total QSS in July. The
structure of the reference weighting term (Fig. 7b) indicates
that the seasonal-only model does not represent the observa-
tions in summer as well as in winter. This probably indicates
a stronger need for taking interannually varying return levels
in summer into account. Adding the values of Fig. 7c by row
leads to the values depicted in Table 1. The monthly QSS av-
eraged over 338 stations leads to a consistently positive skill,
but the performance varies strongly for the different stations.

We now stratify verification also along stations (K = 338)
and average over all time steps. The subset QSS for the
non-exceedance probabilities of p = 0.9,0.98,0.99,0.995
are plotted in Fig. 8, and the reference weighting is exem-
plarily illustrated for p = 0.99 (since the patterns are simi-
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Figure 7. Subset QSS (a), reference weighting (b) and the contri-
bution to the total QSS (weighted subset QSS) (c) for the months
of January to December (x axis) averaged over 338 stations with
interannual components for different non-exceedance probabilities
(left y axis)/return periods (right y axis). Positive/negative val-
ues (orange; plus sign/blue; minus sign) of the QSS (weighted
QSS) indicate an increased/decreased performance of the seasonal–
interannual model with respect to the seasonal-only model. The
reference weighting describes how well the seasonal-only model
describes the subset data with respect to the full dataset: green
(squares)/pink marks (circles) a better/worse representation.

lar for all non-exceedance probabilities) in Fig. 9. The fre-
quency weighting and the contribution to the total QSS are
not shown, since the first one does not exhibit any spatial
pattern and the last one does not visually distinguish from
the figure of the subset QSS. For most of the stations the

seasonal–interannual model can represent the observations
better than the seasonal-only model.

Only for a few records and higher non-exceedance proba-
bilities/return periods do the variations with the years lead to
more uncertain return levels, for example station Wesertal-
Lippoldsberg. The monthly contribution to the QSS for this
station is depicted in Fig. 10b. The negative skill mainly
arises from overestimated return levels for the summer
months, especially for the recent years (visually verified in
Sect. 7). This merely occurs for higher return periods due
to the interannually varying shape parameter ξ (see Fig. 6).
However, a worse skill for stations with an interannual com-
ponent in ξ cannot be detected in general (not shown).
We discuss the change in the seasonal cycle of Wesertal-
Lippoldsberg in more detail in Sect. 7.

Compared with the location heights of Fig. 1, the refer-
ence weighting for the station-wise analysis in Fig. 9 shows
a clear relationship to station altitude and specifies that the
seasonal-only model cannot reflect the data in mountain-
ous regions as well as in lowlands. Analyzing the skill of
the seasonal–interannual model with respect to the altitude
does not show an improvement, especially for higher lo-
cated stations (b, blue crosses). This might indicate that both
model setups miss important mechanisms for extreme pre-
cipitation in mountainous regions (e.g., convection due to
lifting or flow direction). Thus, these processes cannot be
approximated by solely including temporal covariates but
need to be modeled directly and/or via appropriate spatial
covariates. This weak point cannot be seen for the example
stations, since they are located in the lowlands (Krümmel:
64 m; Wesertal-Lippoldsberg: 176 m) or in the low moun-
tain ranges (Rain am Lech: 409 m; Mühlhausen/Oberpfalz-
Weihersdorf: 420 m).

Besides the monthly contribution to the station-wise skill
for Wesertal-Lippoldsberg, Fig. 10 also shows the results for
the other three example stations. Rain am Lech serves as an
example with a very high skill mainly dominated by a better
reflection of the data for the months of May and September.
At Mühlhausen/Oberpfalz-Weihersdorf the return levels for
spring can be estimated slightly better than for autumn, and
Krümmel is dominated by a positive skill for June and July.

In summary, it can be noted that modeling interannual
variations is beneficial for estimating return levels for all
months, especially for the summer season. However, at a
few stations the flexible modeling leads to a partly worse
representation, in particular for larger return periods. Both
seasonal modeling and seasonal–interannual modeling may
have difficulties capturing mechanisms for precipitation for-
mation in alpine regions.

6 Importance of a flexible shape parameter

Analyzing the selected models of the 519 considered stations
shows that about 34 % (178/519 stations) prefer a model
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Figure 8. Subset QSS for 338 different stations for the non-exceedance probability/return period of (a) 0.9/10 years, (b) 0.98/50 years,
(c) 0.99/100 years and (d) 0.995/200 years. The distribution of the subset QSS is depicted as a box–whisker plot and in space (map).
Positive/negative (orange circles/blue squares) values mark a gain/loss in skill.

with interannual and/or seasonal variations in ξ . Figure 11
illustrates the spatial occurrence and the kind of variation
(seasonal, interannual or interaction). It is noticeable that the
density of stations with a flexible ξ is much higher in the
north and east of Germany than in the south. The reason for a
location-dependent variable shape parameter is an interesting
question for further studies. We assume that different mete-
orological processes play a major role, e.g., the influence of
weather types or the kind of precipitation (stratiform or con-
vective). A dependence of flexibility in ξ on the record length
is not obvious (not shown). Most of the stations (106/178,
about 60 %) are represented by a model including seasonal
variations, whereby many of them (92/106 stations) do not
favor an interannually varying shape parameter at all. Only a
few stations (17/178, about 10 %) prefer a model with direct
interannual changes. Nevertheless, two regions with a slight
agglomeration of direct interannual changes can be detected:
in the middle of Bavaria (federal state in the southeast) and
in the northeast around the Mecklenburger Seenplatte (also
known as Mecklenburg Lake Plateau) represented by the ex-
ample station Krümmel. About 39 % of the stations (69/178)
show an interannually varying seasonal cycle (interactions);
these stations are almost uniformly distributed across Ger-
many, with a somewhat higher density around the example
station Wesertal-Lippoldsberg.

We (a) quantify the gain from a flexible shape parame-
ter with respect to a model with constant ξ and (b) analyze
the contributions of the seasonal, interannual and interacting
variations. To this end we use four model selection setups
with a focus on ξ : setup (1) with constant ξ ; setup (2) with
seasonal components in ξ ; setup (3) with seasonal and in-
terannual components in ξ ; and setup (4) with seasonal and
interannual components, as well as their interactions in ξ .
All other parameters are allowed to have seasonal, interan-
nual and interacting components in all setups. Figure 12 il-
lustrates the gain in performance for the different steps. The
monthly skill for seasonal–interannual variations including
interactions against a constant ξ averaged over the 178 sta-
tions expressed as the contribution to the total QSS is de-
picted in the top panel. There is positive skill for all months
and return periods (with some exceptions with slightly nega-
tive values). The highest contribution to the total skill arises
from the summer months, for which the reference weighting
is increased (Sect. 5).

To analyze the contribution of the seasonal component to
the skill, we use setup 2 (seasonal-only in ξ ) against a con-
stant ξ (setup 1). Setup 2 results in a variable shape parame-
ter for 106 of 178 stations; for the rest of the records a model
with no variations in ξ was preferred. The skill of these 106
stations with respect to setup 1 is depicted in the left panel
of Fig. 12. Seasonal flexibility in ξ improves in particular the
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Figure 9. Map of reference weighting for non-exceedance proba-
bility 0.99/return period 100 years (a). Green/violet values refer to
a better/worse representation of the data by the reference (seasonal-
only model). The reference weighting of other non-exceedance
probabilities is barely different. Reference weighting plotted against
station altitude (b, black dots) indicates better performance for the
reference in the lowlands than in mountainous regions. The subset
QSS (second axis, blue crosses) of the seasonal–interannual model
does not show an improved skill for stations at higher altitude.

return levels for summer; there is a very small gain in winter.
For the transitional months March/April and September the
increased flexibility led to a slightly worse model. A change
in the shape parameter could indicate a change in the domi-

Figure 10. Monthly contribution (x axis) to the station-wise QSS
depicted in Fig. 8a for the example stations shown for different non-
exceedance probabilities (left y axis)/return levels (right y axis).
Positive/negative values (orange/blue) indicate a gain/loss in skill
of the seasonal–temporal model with respect to the only seasonal
model.

nating precipitation type (convective in summer, stratiform in
winter). The flexible modeling does not benefit months char-
acterized by the transition of the precipitation regime, since
no dominating precipitation type exists. A variable ξ for the
season mainly improves the return levels of the higher return
periods, while the skill for 2 and 5 years is slightly decreased.
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Figure 11. Spatial distribution of stations with flexible shape pa-
rameter ξ . Seasonal variations (yellow) occur at 106/178 stations,
interannual (pink) at 17/178 stations and interactions (blue) at
69/178 stations. Gray circles mark the stations without variations
in ξ .

Setup 3 evaluates the gain by adding an interannual com-
ponent to ξ with respect to a seasonal-only model (setup 2).
Only 17 stations preferred this type of model, but for those
we found an improvement of the return level estimates for all
months (bottom panel). The interannual variations do not im-
prove the performance for the transitional months of March
and September. Additionally, the lower return periods of 2
and 5 years do not benefit from this flexibility.

In setup 4 we allow additionally for interactions and
compare the selected models with those chosen in setup 3
(seasonal–interannual model without interactions). The skill
averaged over 69 stations with interaction terms for ξ is
shown in the right plot of Fig. 12. The interactions improve
the return levels for all months and return periods, especially
for the summer months, and are able to faintly compensate
for the lack of skill for the lower return periods and the transi-
tional months. The skill shown in Fig. 12 is averaged over the
respective stations; however, the performance for the individ-
ual stations can differ. For example, as already mentioned in
Sect. 5 and analyzed in more detail in Sect. 7, the 100-year
and 200-year return levels at the example station Wesertal-
Lippoldsberg are overestimated (visually obtained by com-
paring return levels and observations) for the last decades,

resulting in a worse representation of the most recent data.
The overestimated return levels can be explained by consid-
ering the seasonal cycle of the shape parameter ξ for different
years (1931, 1976, 2021) in Fig. 13. As depicted in Fig. 5
the shape parameter at this station can be expressed with
ξ = ξ0+ ξ

+

1,1,cos (according to Eq. 13), i.e., a linear rise in
the amplitude. Thus, for the first observational year 1931 the
amplitude is modeled to be zero and increases linearly with
time, reaching its maximum for the last year in the record
(2021). While for earlier years this linear change represents
the extreme precipitation quite well, for the end of the record
the values of ξ , especially for summer, become very large,
which cannot be supported by the sparse database.

Additionally, Fig. 13 shows the seasonal cycle in ξ for
the example station Krümmel, whose shape parameter is
composed of ξ = ξ0+ ξ1cos + ξ3P . Seasonality remains un-
changed while the direct effect of the third Legendre poly-
nomial leads to a shift of the cycle to smaller/larger values
of ξ in 1976/2021 compared to 1931, leading to pronounced
variability in the return levels of this station. The seasonal cy-
cles for the example stations will be discussed in more detail
in Sect. 7.

A negative shape parameter is unusual for describing the
GEV distribution of extreme precipitation (Papalexiou and
Koutsoyiannis, 2013; Ragulina and Reitan, 2017) since the
resulting distribution is characterized by an unnatural upper
bound. In our analysis the shape parameter is able to change
with time such that negative values for ξ for a certain period
are considered to be unproblematic.

In general, a varying shape parameter leads to a better rep-
resentation of the data for all months and return periods, in
particular for the very extreme events in summer; the flexi-
bility leads to a worse skill of return level estimates only for
very few stations.

7 Impact of climate change on the seasonality of
extreme precipitation

In this section we aim to assess the impact of climate change
on seasonal extreme precipitation (RQ3). With a simple lin-
ear model for each month and station, we quantify the inter-
annual variation of return levels for a given non-exceedance
probability. We compare the time period from 1941 to 2021
where all stations have data. Note that estimating linear
trends for fixed (and short) periods of time can yield very
different results, depending on the considered time period
due to decadal variability. Thus, the trend estimates presented
here for the given time period serve as a rough indicator for
climate change effects; for a more detailed analysis, all the
datasets should be taken into account for each station. Ap-
pendix A explains the calculation of the linear trend in more
detail. Figure 14 illustrates the proportion of stations with a
positive, negative or no trend for (a) the 2-year, (b) 10-year
and (c) 100-year return levels. The trends are stated in rel-
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Figure 12. Scheme for analyzing the importance of and performance gain by a flexible shape parameter as contribution to the total QSS.
Illustrations (axes, colors, signs) equal to Fig. 10. The gain of adding seasonal variations in ξ (left plot) is analyzed for 106 stations as a result
of a model selection with only seasonal components in ξ (setup 2). A model selection with constant ξ (setup 1) is used as reference. The
bottom panel shows the gain of seasonal and interannual components (17 stations, setup 3) with respect to a seasonal-only ξ (setup 2). The
right panel finally show the gain by allowing interactions (setup 4) with respect to setup 3 (without interactions) for 69 stations. The skill of
a flexible shape parameter (seasonal, interannual and interactions) with respect to a constant ξ is shown in the top panel for 178 stations.

Figure 13. Seasonal cycle of the shape parameter ξ for the exam-
ple stations Krümmel (orange) and Wesertal-Lippoldsberg (blue)
for the years 1931 (dotted), 1976 (dashed) and 2021 (solid). The
station symbols in the legend are selected according to the station
positions of Fig. 1.

ative changes from 1941 to 2021. Changes are mainly very
weak (< 5 %); only 15 % to 35 % (depending on the month
and occurrence probability) show more pronounced trends.
In general, an increase in the return levels occurs more of-
ten than a decrease for all return periods, especially in June

(more than 3 times more often). A decline slightly prevails
only for the return levels in April. The patterns of the 5- to
200-year return levels are similar but with smaller trends for
the shorter return periods. The characteristics of the 2-year
return level differ: an increase is more often visible for the
months of March and September to November with a less
pronounced signal for the summer months. In contrast to that,
the trends of the 100-year return level are stronger in summer.

About 35 % to 50 % of the considered 338 stations
(121/338 2-year return level, 164/338 10-year return level,
170/338 100-year return level) show a change larger than
5% for at least 1 month of the year. The trends are region-
ally very different (maps for 2-year and 100-year return lev-
els are given in Appendix B). Despite the partly very small-
scaled characteristics, uniform behavior for several regions
can be detected. Two of these regions with more pronounced
changes are considered in more detail: one in southern Ger-
many represented by the station Rain am Lech and the other
one in the center of Germany exemplified by the station
Wesertal-Lippoldsberg.

The 2-, 10-, and 100-year return levels for the station Rain
am Lech are depicted in Fig. 15a. Besides the interannual
changes (a.1), the seasonal cycle for the first/last record year
(1899/2021) and the first year of the common time period
(1941) is shown (a.2). The return levels of this region are
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Figure 14. Proportion of stations with a positive (light/dark orange), negative (light/dark blue) or neutral (white) relative change from 1941
to 2021 for the (a) 2-year return level (p = 0.5), (b) 10-year return level (p = 0.9) and (c) 100-year return level (p = 0.99) for the months of
January to December (rows).

characterized by an increase for all months and return pe-
riods. For instance, the largest 100-year return level in the
year occurring in summer rose from 54.6 mm d−1 in 1899 to
86.0 mm d−1 in 2021, corresponding to an increase of about
58 %. Considering the 100-year return levels of the seasonal-
only model demonstrates that a non-interannual approach
leads to highly underestimated values, especially for the first
record decades. The model selection reveals that not only the
location parameter changes linearly with the years but also
the scale parameter (Fig. 5). The model verification (Fig. 10)
confirms that the trend in the return levels is necessary for an
adequate description of the observations, especially for the
transitional months of May, September and October. Thus, an
increase in extreme precipitation amounts as expected from
the anthropogenic climate change can be seen very clearly
for this region.

The second region, which is considered in more detail, is
characterized by a decrease in return levels in winter and an
increase in summer, leading to a rise of the seasonal cycle’s
amplitude. Figure 15b shows the 2-, 10-, and 100-year re-
turn levels for the station Wesertal-Lippoldsberg. Since the
interannual change for this station is best described by a
model with a flexible shape parameter only (Fig. 5), the 2-
year return levels remain constant with the years. Towards
higher return periods, changes are more prominent. They
are pronounced for summer and winter, while the transi-
tional months of March/April and September/October re-
main unaltered. The change in the seasonal cycle could be
attributed to a combination of different processes. On the

one hand, a higher water content of the air due to a tem-
perature rise leads to an increased potential for extreme pre-
cipitation, particularly pronounced in summer. On the other
hand, climate change can affect the characteristics of weather
types and large-scale atmospheric circulations (e.g., NAO),
which could result in a change in extreme precipitation as
well in winter. The model verification (Fig. 10) confirms that
a model with a changing seasonal cycle better represents the
data observed in summer for return periods of 10 to 50 years,
while the 100- and 200-year return levels are strongly over-
estimated with respect to the observations, especially for the
most recent decades. In contrast, the seasonal–interannual
model is more beneficial for estimating winterly return levels
with return periods longer than 30 years. These characteris-
tics can be seen as well by comparing the 100-year return
levels of the seasonal–interannual model with those of the
seasonal-only model.

In addition to a change in the precipitation’s magnitude, a
phase shift can influence the risk of damage as well. There-
fore, we also analyze the linear change in the phase expressed
as the day in the year with the highest return level for the
time period 1941–2021. Here, a simple linear model is ad-
equate for the cyclic variable since a shift of the day with
the highest precipitation from December to January or vise
versa does not happen at all. The change of the phase in days
for different return periods is illustrated in Fig. 16a. More
than two-thirds of the stations show less pronounced changes
(< 5 d). In general, a shift to earlier times in the year appears
more frequently for almost all return periods except of the
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Figure 15. Observations and return levels for the stations Rain am Lech (1 January 1899 until 31 December 2021) (a), Wesertal-Lippoldsberg
(1 January 1931 until 31 December 2021) (b), Mühlhausen/Oberpfalz-Weihersdorf (1 January 1931 until 31 December 2021) (c) and Krüm-
mel (1 January 1899 until 31 December 2021) (d). The top row shows the observations (dots) and the 2-year (yellow), 10-year (green) and
100-year return levels (blue) for the months with lowest/highest return level (dashed/solid) against time (years, x axis). Additionally, the
100-year return levels of the seasonal-only model are depicted for the same 2 months (burgundy). The bottom row depicts the seasonal
cycle of the return levels for the first observation year (dotted), 1941 (dashed), and 2021 (solid) and the observations as box–whisker plots.
Additionally, the 100-year return levels of the seasonal-only model (burgundy) are depicted in both rows as well.

2-year return level. For the latter, several different regions
with strong shifts to later times and only one large contigu-
ous area in the north with a shift to earlier times can be de-
tected (Fig. 16b). For the 100-year return level (Fig. 16c),
such distinct regions do not appear, but in general a shift to
earlier times prevails for the whole country. The latter be-
havior can be appreciated in station Mühlhausen/Oberpfalz-
Weihersdorf, whose 2-, 10- and 100-year return levels are
depicted in Fig. 15c. The shift of the seasonal cycle to ear-
lier times leads to increased return levels for the first half
of the year, such that the 100-year return level in spring is
about 13 mm d−1 higher in 2021 than it was in 1931. The de-
crease in autumn appears weaker, with a maximum change in
the 100-year return level of about−8 mm d−1. During the 90
years of observations the annual maxima of the 100-year re-
turn level has shifted forward by 35 d. Since only a shift and
not a rise of the seasonal cycle occurs, the analysis of annual
maxima would not show any changes. In general, a shift of
the seasonal cycle to earlier times leads to an increased risk
potential. The probability of flooding events rises since snow
melting and heavy precipitation coincide in spring. Addition-
ally, higher crop losses may occur since plants are more vul-

nerable to extreme precipitation during early growing stages.
Although differences between the 100-year return levels of
the seasonal-only and the seasonal–interannual model are not
very pronounced, the shift from late summer to early sum-
mer, which might be continued in the future, cannot be de-
tected with the non-interannual approach.

The example station Krümmel (Fig. 15d) shows neither a
linear change in the return levels nor a phase shift but points
out other interesting features. It serves as a representative of
the region Mecklenburger Seenplatte, since several neighbor-
ing records show similar characteristics. Here, pronounced
climate variability can be detected in the seasonal cycle of ex-
treme precipitation, which might be important for risk assess-
ment and the design of hydraulic structures. Due to that cli-
mate variability, it can be shown that the commonly used sta-
tionary approach for a fixed historical time period can lead to
erroneous return levels. For example, in Germany the station-
ary return levels based on the observations since 1951 have
been used for infrastructure planning (DWD, 2000, 2024).
That means that for the example station Krümmel the heavy
precipitation events from the 1930s have been discarded, po-
tentially leading to underestimated return levels and to hy-
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Figure 16. Phase shift in days from 1941 to 2021 for the non-exceedance probability/return period of (a) 0.5/2 years, (b) 0.8/5 years,
(c) 0.9/10 years and (d) 0.99/100 years. A shift to later/earlier times is marked with triangles pointing up/triangles pointing down. Minor
changes (< 5 d) remain uncolored; stronger shifts to later/earlier times are highlighted in orange/blue.

draulic systems with dimensions that are too small for the
precipitation of recent years. A non-stationary approach in-
cluding the whole dataset can improve the accuracy of the
return levels. For this example, the seasonal-only approach
applied to the whole record might be beneficial in terms of
long-term risk assessment and hydraulic design since natural
variability does not play a key role for longer planning hori-
zons. However, for short- to mid-term risk assessment, e.g.,
for agriculture or tourism sector, the natural variability might
be of relevance.

We sum up that monotonous trends are spatially different
and mainly weak compared to return level uncertainties (not
shown). Nevertheless, we detect regions with common and
more pronounced changes. In general, the characteristics of
the 2-year return levels differ from those of longer return pe-
riods.

8 Conclusion

We analyze seasonal–interannual variations of extreme pre-
cipitation at 519 stations (with at least 80 years of obser-
vations until 31 December 2021) in Germany using a non-
stationary block maxima approach. The three parameters of
the generalized extreme value (GEV) distribution are allowed
to vary with the months (seasonal variation) and the years
(interannual variation), whereby the seasonal variations are
captured with a series of harmonic functions and the interan-
nual variations with Legendre polynomials with a maximum
power of 5. Interactions between seasonal terms (months)
and interannual terms (years) allow the description of an in-
terannually varying seasonal cycle. Since we consider higher

polynomial orders than linear trends, the models are able
to reflect other than linear trends, e.g., more complex cli-
mate variability. A stepwise model selection based on the
Bayesian information criterion (BIC) identifies a suitable
model for each station separately, which is used to calcu-
late seasonally–interannually changing return levels for dif-
ferent return periods (non-exceedance probabilities). To vali-
date the models, we use a leave-one-year-out cross-validated
quantile score to measure the model performance for individ-
ual quantiles (return-levels). The quantile skill score (QSS)
and its decomposition for stratified verification provide addi-
tional information about the skill of the model with respect to
only a seasonally varying non-stationary GEV. We addressed
three research questions:

8.1 RQ1: can a model with interannual variations
better represent the observations than a
seasonal-only model?

For 334/519 stations (about 65 %) the BIC favors a model
with interannually varying return levels. For the other sta-
tions, the BIC-based model selection strategy does not give
any evidence for a model more complex than the one with
only seasonal variation. For the 334 selected records, the
cross-validated verification confirms that the models with
interannual variations yield a more adequate description of
the data than models with only seasonal variations. The
seasonal–interannual return levels are more inaccurate only
for very few stations, in particular for higher return periods in
summer. A stratified verification along months ascertains that
modeling interannual variations are more beneficial for sum-
merly extreme precipitation. A stratified verification along
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different stations points out a lack of capturing important
mechanism for extreme precipitation in mountainous regions
by only modeling seasonal and interannual variations.

8.2 RQ2: how important is a flexible shape parameter
to reflect recorded variations?

As the shape parameter ξ describes the behavior of the most
sparse events, it is considered to be difficult to estimate and
hence frequently kept at a constant but estimated value in
other works. The BIC-based model selection strategy favors
a flexible shape for 178/519 stations (about 34 %), whereby
about 52 % (92/178) of these records prefer a seasonal-only
component. For the remaining stations with variable ξ , an in-
terannually changing seasonality occurs more often than the
direct interannual variations. Furthermore, we find many of
the records with ξ varying with season and/or years in the
north and east of Germany. We suggest that location-related
weather regimes might be responsible. The spatial distribu-
tion of stations described with an interannually varying shape
parameter provides an interesting topic for further investiga-
tions. In our study the flexible shape parameter leads to a bet-
ter representation of the observations for all months and re-
turn periods; this is particularly evident for the very extreme
events in summer. A stepwise addition of seasonal, interan-
nual and interactional variations in ξ enables an analysis of
the performance of those individual components. All three
components lead to improved return levels. The seasonal and
interannual variations mainly improve the statistical models’
representation of the summerly and winterly return levels
with longer return periods (20 to 200 years), while interac-
tional variations are favorable for all months and return peri-
ods.

8.3 RQ3: how does climate change affect the seasonal
cycle of extreme precipitation in Germany?

To quantify the consequences of climate change for the sea-
sonal cycle, we obtain linear trends of the interannually vary-
ing return levels and the phase of the seasonal cycle (day
in year with the highest return level) for the common anal-
ysis period from 1941 to 2021. A unambiguous signal in
these trends which could be related to climate change cannot
be found since only about one-fifth to one-third of the 519
considered stations (2-year return level: 23 %; 10-year return
level: 32 %; 100-year return level: 33 %) show a stronger lin-
ear change (> 5 %), either positive or negative, for at least
1 month of the year. However, in general an increase in the
return level is more prevalent than a decrease. The 2-year re-
turn levels mainly rise during spring and autumn, while for
the 100-year return period the trends are more pronounced
in summer. Nevertheless, for many of the records the trends
of the return levels are weak. Trends are regionally very dif-
ferent; for some areas the changes are more pronounced. We
assume spatially independent datasets, although we cannot

exclude that the same large-scale precipitation event causes
similar trends for neighboring stations. By means of example
stations, two regions with different changes in the seasonal
cycle are considered in more detail. In parts of southern Ger-
many, extreme precipitation is characterized by rising return
levels for all months of the year with 50 % higher values in
2021 than for the beginning of the 20th century for some
stations. In parts of the center of Germany, the amplitude of
the seasonal cycle increases due to higher/lower return levels
in summer/winter. The phase shift of the seasonal cycle re-
gionally diverges, but in general extreme precipitation occurs
earlier nowadays. Depending on the timing of snowmelt, this
may lead to a higher risk potential due to the coincidence of
heavy precipitation and melting snow masses but also crop
losses since plants are more vulnerable to extreme precipi-
tation in earlier growing stages. Several different distinct re-
gions show a shift towards the later year only for the 2-year
return period.

8.4 Discussion

Since extreme precipitation is highly variable in time and
space and long datasets are rare, coherent outcomes of dif-
ferent research studies are crucial for a suitable risk assess-
ment and risk adaptation. Zolina et al. (2008) and Łupikasza
(2017) analyzed the seasonal 0.95 and 0.99 quantile of daily
precipitation sums using quantile regression and detected
an increase in spring, autumn and winter for the period of
1950–2004 and 1950–2008 in Germany, while summer quan-
tiles decrease. Their results seem to be in contradiction to
our findings of more intense heavy precipitation in summer.
These differences could have various reasons. First of all,
the time period considered for the linear trends is different,
which could be decisive in particular if pronounced climate
variability exist. Furthermore, we consider a more recent
dataset (17 and 13 more recent years). An investigation of
the damage related to extreme precipitation in Germany in-
dicates intensified heavy precipitation events during the last
decade (Trenczek et al., 2022). Finally, the methods intro-
duced in this paper and those of the references mentioned
above are different. While our analysis is based on extreme
value statistics for block maxima, Zolina et al. (2008) and
Łupikasza (2017) consider precipitation sums for all days;
both have a different interpretation of resulting quantile in-
formation. Furthermore, Zeder and Fischer (2020) detected a
positive connection between extreme precipitation over Ger-
many and the rising northern-hemispheric temperature for
summer.

The pronounced climate variability in extreme precipita-
tion which can be detected at the example station Krümmel
partly fits the results of Willems (2013) discovering mul-
tidecadal oscillations with more often and intense extreme
precipitation events in northwestern Europe in the 1910s, in
1950–1960 and since 2000, while in southwestern Europe
the oscillation is anti-correlated with highs in the 1930s–
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1940s and 1970s. Willems attributed the multidecadal varia-
tions to oscillations in North Atlantic climate and determined
a coincidence of pressure anomalies between the Azores
and Scandinavia (ASO index) and extreme precipitation in
winter. Periods with increased summer extreme precipitation
are explained with the occurrence of more cyclonic weather
types. Unfortunately, station Krümmel did not record for a
few years around 1950, and thus the interannual variability
around this time cannot be verified due to the data gap. The
variations at the station Krümmel roughly fits to the North
Atlantic Oscillation (NAO) as well (Hurrell, 1995; Hurrell
and Deser, 2010), at least for the winter months, although
Willems (2013) reported a weaker relation between NAO and
extreme precipitation.

An understanding of physical mechanisms leading to the
observed results was not in the focus of this study but needs
to follow. We imagine a combination of increased convec-
tion due to higher surface temperatures and moisture (Wes-
tra et al., 2014; Aleshina et al., 2021), as well as changes in
large-scale atmospheric circulations (Casanueva et al., 2014).

Seasonal and interannual variation in extreme precipita-
tion can be described with a combination of harmonic func-
tions and orthogonal polynomials like the Legendre polyno-
mials. For this investigation but also for previous studies, the
latter has proven to be helpful to approximate highly non-
linear variations. However, their nature of having the high-
est/lowest values at the borders of the time period potentially
leads to very high or low return levels for the beginning and
the end of the time series. This could mislead the analysis
of trends. A possible strategy to prevent the boundary prob-
lem is to select a slightly larger scaling area than the period
observed for obtaining the Legendre polynomials.

A possible application of the presented seasonal–
interannual approach in the field of risk adaptation could be
realized by calculating design-life levels. This concept has
been introduced by Rootzén and Katz (2013) and widely ap-
plied in research and risk management (e.g., Thomson et al.,
2015; Mondal and Daniel, 2019; Xu et al., 2019; Byun and
Hamlet, 2020). The design-life level is a measure for quanti-
fying and communicating environmental risks in a changing
climate accounting for the service life of a system (design-
life period, e.g., 30 years) and the time when the system will
be installed (e.g., in 2025). Due to changing extreme precip-
itation characteristics, the 2025–2055 1 % design-life level
could be different from the 2055–2085 1 % design-life level.
More detailed explanations and example calculations can be
found in Appendix C. The seasonal–interannual modeling
approach can be used to calculate future seasonal design-life
levels either by extrapolating past climate trends or by apply-
ing outputs from climate projections. Since for risk adapta-
tion in an engineering context annual design-life levels are
more beneficial than seasonal ones, the same methodological
concept can be applied to obtain annual values out of a sea-
sonal modeling approach (Maraun et al., 2009; Fischer et al.,
2018).

8.5 Outlook

Extreme precipitation is influenced by many different effects
(e.g., location, air temperature, large-scale atmospheric cir-
culation, lifting effects), and most of them are highly non-
linear and difficult to quantify in terms of their role. In this
study, we utilize the time as a covariate since it can be seen
as a proxy combining those different unknown effects. Based
on our results, the consequences of climate change could be
assessed in more detail by using surface temperature, green-
house gas emissions or indices of large-scale atmospheric
circulation patterns as terms in the predictor. This offers also
an opportunity to evaluate the climate variability of extreme
precipitation and the processes associated with it.

As discussed above, the interannual variability of one ex-
ample station visually matches the results of Willems (2013)
and the North Atlantic Oscillation (NAO) (Hurrell, 1995;
Hurrell and Deser, 2010). For robust conclusions in this re-
spect, our findings might be used as a starting point for a
more detailed analysis. Determining the responsible mecha-
nisms for the climate variability of seasonal extreme precipi-
tation will not only enhance the understanding of the connec-
tions but also will improve the heavy precipitation datasets of
climate models, since the predictability of those mechanisms
(e.g., NAO, surface temperature) is often better than for pre-
cipitation.

Additionally, trends might differ for different durations
of the precipitation events, changes for, e.g., hourly or sub-
hourly extreme precipitation are worthwhile to consider apart
from daily precipitation sums. Typically, observation records
of higher resolved extreme precipitation are shorter, and
hence analysis of interannual variability is more uncertain.
One possibility to improve accuracy is to use a smooth rela-
tionship between different durations directly in the formula-
tion of the GEV (e.g., Ulrich et al., 2020, 2021) for an effec-
tive data usage by considering different durations simultane-
ously.

Furthermore, a different approach for modeling the in-
terannual variations could be considered to overcome the
boundary problem of the Legendre polynomials; it might
be worthwhile to consider different orthogonal polynomials,
e.g., the first kind of the Chebyshev polynomials, or to use
a vector generalized additive model (VGAM, Yee, 2015) to
become smooth, non-parametric variations. An extrapolation
of the calculated values towards the design-life period (e.g.,
for the next 50 years) is required and should be carried out
carefully. The corresponding design-life levels (Rootzén and
Katz, 2013) form the basis for the construction of the hy-
draulic systems. However, this requires a modeling strategy
being able to reliably estimate future return levels.

In our investigation we consider return level estimates.
However, analyzing their uncertainties is crucial. For further
investigations, confidence intervals, e.g., calculated with the
delta method (Coles, 2001), should be taken into account.
A comparison of uncertainties evolved by the seasonal–
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interannual model and those of a seasonal-only model could
deepen the investigation if interannual models are beneficial
for risk assessment or if the changing return levels are rather
within the uncertainty range of non-interannually varying re-
turn levels.

8.6 Main achievements

We introduce a seasonal–interannual modeling approach to
assess variations of extreme precipitation, leading to more
accurate return levels. The interactive consideration enables
a modeling of a changing seasonal cycle in the form of a
changing amplitude and/or phase. The approach is able to re-
flect long-term changes and climate variability. In addition,
we show that a flexible shape parameter of the GEV is bene-
ficial. Finally, we use the approach to detect regions in Ger-
many for which extreme precipitation is likely to be affected
by climate change. In general, changes are weak; however,
an increase is prevalent compared to a decrease. The lower
extreme precipitation rises generally in spring and autumn,
and its seasonal cycle is shifted to later times in the year;
heavy precipitation increases mainly in summer and occurs
earlier in the year.

Appendix A: Linear trends in return levels and phase

The linear trend in return levels and phase of seasonal cycle is
calculated for each station, month and occurrence probability
separately using a simple linear model. The relative change
from the first to the last year included in the linear model is
obtained with

c% =
vl− vf

vf
· 100 %, (A1)

with c% being the relative change and vf / vl the first and the
last value of the linear regression line. Figure A1 illustrates
exemplarily the dependence of the selected time period on
the linear trend. While the relative change in the 100-year re-
turn level at the station Krümmel for the period 1899–2021
equals to 3.17 %, the return level in 2021 is increased by
8.16 % with respect to 1941. According to the rating scheme
of Fig. 14 the first belongs to a neutral and the latter to a weak
positive trend. Thus, linear trends for fixed (and short) time
periods should be regarded with care.

Figure A1. The 100-year return level in millimeters per day
(mm d−1) for station Krümmel (blue), the linear trend for the whole
time period (black, solid) and the linear trend for the period 1941–
2021 (black, dashed). Dots mark the first and the last value of the
respective regression line.

Appendix B: Maps of relative changes in return levels

Figures B1 and B2 show the relative changes in the 2-year re-
turn level (p = 0.5) and the 100-year return level (p = 0.99)
for the 338 stations with interannual variations. Changes are
regionally divergent; however, several contiguous regions are
visible.
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Figure B1. Relative change from 1941 to 2021 for the 2-year return level (non-exceedance probability of p = 0.5) for 338 stations. Increas-
es/decreases are marked with triangles pointing up/triangles pointing down. Minor changes (< 5 %) remain uncolored with small symbols;
stronger increases/decreases are highlighted in orange/blue.
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Figure B2. Relative change from 1941 to 2021 for the 100-year return level (non-exceedance probability of p = 0.99) for 338 stations.
Increases/decreases are marked with triangles pointing up/triangles pointing down. Minor changes (< 5 %) remain uncolored with small
symbols; stronger increases/decreases are highlighted in orange/blue.
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Appendix C: Design-life level

According to Rootzén and Katz (2013), the design-life level
is a measure to quantify risks for engineering design pur-
poses in a changing climate. This measure can be regarded
as a logical extension of the return level approach, which
can only be meaningfully interpreted in a stationary setting.
For example, a 100-year return level of extreme precipita-
tion is the value which is expected to be exceeded on average
once in hundred years. Due to changing climate, an event
can occur in 2023 once every 100 years; in 2050 the same
event might be exceeded on average once in 90 years. The
changing return period (or exceedance probability) is an ob-
stacle for engineering applications. One solution is given by
the design-life level, which accounts for the time when the
hydraulic system will be built and the service life of the sys-
tem, called the design-life period. While the design-life pe-
riod should be very long for dike design (e.g., 10 000 years in
Netherlands (Botzen et al., 2009)), the service life of a rain
gutter is much shorter.

The design-life level rp can be obtained by numerically
optimizing the equation:

I∏
i=1
Gi(rp)= p, (C1)

with Gi being the generalized extreme value distribution for
year i, p the non-exceedance probability and I the design-
life period. This approach assumes independent maxima. The
design-life level is stated as T1−T2 (1−p) % extreme level,
with T1/T2 indicating the start/end of the design-life period.
To calculate future design-life levels, we use the seasonal–
interannual and the seasonal-only model to extrapolate the
parameters of the GEV for the month of July at the sta-
tion Rain am Lech until 2051 (Fig. C1). With Eq. (C1),
the 2022–2051 1 % extreme precipitation level (I = 30 ,p =
0.99) for the month of July at Rain am Lech obtained with
the seasonal–interannual model equals to 161.4 mm d−1. In
other words, there is a 1 in 100 risk that the largest daily
precipitation event during 2022–2051 will be higher than
161.4 mm d−1. The 2022–2051 1 % extreme precipitation
level for the seasonal-only approach is 132.5 mm d−1. If the
detected trend at Rain am Lech continues for the years 2022–
2051, as assumed here, the seasonal-only approach will lead
to underestimated risks and the designed risk adaptation sys-
tem will be strained beyond its planning purpose.

Figure C1. Estimated parameter for location µ (a), scale σ (b) and
shape ξ (c) at the example station Rain am Lech for the month of
July using a seasonal–interannual model (pink) and a seasonal-only
model (black). In addition to the estimates for the observation pe-
riod (solid line), extrapolated values since 2022 are also illustrated
(dashed lines).

Code availability. The analysis was carried out using R, an en-
vironment for statistical computing and graphics (R Core Team,
2022), based on the VGAM package (Yee, 2015). The code remains
unavailable to the public due to its extensive proprietary compo-
nents and the utilization of numerous external libraries with varying
dependencies. Furthermore, the code lacks the requisite documen-
tation and comprehensive testing required for seamless integration
into different environments or for other datasets. Regrettably, the
constraints of resources within the scope of this scientific research
have hindered the thorough preparation of the code for publication.
In order to prevent potential misuse of the code in its current state, a
decision has been made to withhold its publication. However, inter-
ested readers are welcome to reach out directly to the main author
to inquire about accessing the underlying code and accompanying
explanations.

Data availability. Daily precipitation sums in Germany are
provided by the National Climate Data Center of the German
Weather Service (DWD) and are publicly accessible under
https://opendata.dwd.de/climate_environment/CDC/observations_
germany/climate/daily/more_precip/historical/ (DWD, 2023).
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