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Abstract. In this paper, we anticipate geospatial population
distributions to quantify the future number of people living
in earthquake-prone and tsunami-prone areas of Lima and
Callao, Peru. We capitalize upon existing gridded popula-
tion time series data sets, which are provided on an open-
source basis globally, and implement machine learning mod-
els tailored for time series analysis, i.e., based on long short-
term memory (LSTM) networks, for prediction of future time
steps. Specifically, we harvest WorldPop population data and
teach LSTM and convolutional LSTM models equipped with
both unidirectional and bidirectional learning mechanisms,
which are derived from different feature sets, i.e., driving fac-
tors. To gain insights regarding the competitive performance
of LSTM-based models in this application context, we also
implement multilinear regression and random forest models
for comparison. The results clearly underline the value of
the LSTM-based models for forecasting gridded population
data; the most accurate prediction obtained with an LSTM
equipped with a bidirectional learning scheme features a
root-mean-squared error of 3.63 people per 100× 100 m grid
cell while maintaining an excellent model fit (R2

= 0.995).
We deploy this model for anticipation of population along a
3-year interval until the year 2035. Especially in areas of high
peak ground acceleration of 207–210 cm s−2, the population

is anticipated to experience growth of almost 30 % over the
forecasted time span, which simultaneously corresponds to
70 % of the predicted additional inhabitants of Lima. The
population in the tsunami inundation area is anticipated to
grow by 61 % until 2035, which is substantially more than
the average growth of 35 % for the city. Uncovering those re-
lations can help urban planners and policymakers to develop
effective risk mitigation strategies.

1 Introduction

Socio-natural disasters represent a perpetual peril to humans.
Such events frequently result in substantial losses. The an-
ticipated growth of the world population with a peak of
9.7 billion people in the year 2050 (United Nations, 2022)
is expected to expose more people to natural hazards than
ever before (Iglesias et al., 2021; Cremen et al., 2022). The
dynamic change in geospatial population distributions due
to both population growth and urbanization processes (UN
Habitat, 2016) demands a frequent update and anticipation of
(future) geospatial population distributions in hazard-prone
areas. Such an approach enables urban planners and poli-
cymakers to develop effective strategies for risk mitigation.
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This need is also embedded in the UN Sendai Framework
for Disaster Risk Reduction, which explicitly stresses the
importance of preparing for future socio-natural disasters
via strategies that minimize uncontrolled settlement devel-
opment in areas in peril (UNISDR, 2015).

As a key variable to characterize natural-hazard-related
exposure, obtaining geospatial data on population distribu-
tion is essential. To anticipate future geospatial population
distributions, different families of methods can generally be
considered; rule-based methods establish a set of explicitly
defined rules for transition trajectories over time. This family
of methods contains (i) cellular automata techniques (Clarke,
2014), which represent discrete spatiotemporal dynamic sys-
tems based on local rules; (ii) agent-based modeling, which
simulates dynamic interactions among agents in a virtual en-
vironment (Abar et al., 2017); and (iii) Markov chain models,
which represent a stochastic process that produces sequential
states in which each prediction is dependent on the previous
state (Gagniuc, 2017).

However, especially recently, a second family of methods,
i.e., techniques of machine learning (ML), was deployed for
predicting transition trajectories in the context of population
modeling. The underlying idea is to infer a decision rule (e.g.,
a function) from properly encoded prior knowledge (i.e., la-
beled training samples) related to time series data to predict
changes (Zhu, 2023). For instance, Chen et al. (2020) inte-
grate historical population maps and multiple machine learn-
ing algorithms, namely XGBoost, random forest (RF), and a
multilayer perceptron neural network, to predict future built-
up land and population distributions. Kubota et al. (2022) im-
plemented a graph convolutional network for short-term pop-
ulation prediction based on population count data collected
through mobile phone signals. Zheng and Zhang (2020) im-
plement a convolutional LSTM (ConvLSTM) network for
weekly population distribution prediction based on geolo-
cated social media data, i.e., Tencent positioning data.

Generally, Earth observation is customarily used to mea-
sure changes on the land surface in a spatially continuous
way over long time frames (Koehler and Künzer, 2020).
Multiple authors have employed such data sets in combi-
nation with advanced ML techniques to anticipate land-use
and land-cover expansion (e.g., Zhu et al., 2021a, b; Wang
et al., 2022). By integrating Earth observation data, differ-
ent initiatives offer continuous gridded geospatial population
data over a long time frame; WorldPop (Lloyd et al., 2017;
Stevens et al., 2015) and LandScan (Dobson et al., 2000) pro-
vide yearly geospatial population estimates starting in the
year 2000. The data sets are created with a top-down ap-
proach by disaggregating census information based on Earth
observation imagery and ancillary spatial covariates. In this
study, from a data-oriented perspective, we make use of ex-
isting time series population data sets, which are provided on
an open-source basis globally, to anticipate future geospatial
population distributions along a 3-year interval up to the year
2035.

From a methodological point of view, we implement ad-
vanced ML models tailored for time series analysis, i.e., net-
works based on long short-term memory (LSTM; Hochreiter
and Schmidhuber, 1997). We follow different model config-
urations to exploit the sequential nature of the training data;
we use unidirectional and bidirectional learning mechanisms.
The former mechanism analyzes the input data in a sequence
from the first time step to the last, whereas the latter mech-
anism additionally considers the reversed sequence from the
last time step to the first. Moreover, to explicitly enable spa-
tiotemporal modeling, i.e., to encode topological and spa-
tial contextual relationships, we also implement ConvLSTM
models (Shi et al., 2015). Consequently, in the experimental
evaluation, we exhaustively disentangle the prediction accu-
racies as a function of the actual prediction model; the learn-
ing mechanism; and the deployed driving factors, i.e., dif-
ferent feature sets used for the prediction. Experimental re-
sults are obtained from Peru’s capital Lima and Callao, which
features a high population dynamic. To gain an insight into
the competitive performance of LSTM-based models in this
application context, we also deploy multilinear regression
(MLR) and RF models for comparison.

Regarding the application context of this study, only a
few works have explicitly focused on applying time series
ML methods for mapping future natural-hazard-related ex-
posure and vulnerability. For instance, Johnson et al. (2021)
simulated future changes in urban land use up to the year
2050 with a trend-based logistic regression cellular automa-
ton model and evaluated potential flood exposure for the
Philippines. Scheuer et al. (2021) modeled residential-choice
behavior on a city level and examined how this process could
translate into future trends regarding exposure, vulnerability,
and risk. Calderon and Silva (2021) forecasted the spatial dis-
tribution of the population and residential buildings for the
assessment of future seismic risk based on geographically
weighted regression and multi-agent systems for Costa Rica.
Here, from an epistemological point of view, we uniquely
combine the forecasted population data with earthquake and
tsunami hazard models to quantify the future number of peo-
ple living in earthquake-exposed and tsunami-exposed areas
in Lima and Callao, Peru.

The remainder of the paper is organized as follows. In
Sect. 2 we detail the proposed methodology. We describe the
study area and experimental setup in Sect. 3. Experimental
results are revealed in Sect. 4, and concluding remarks are
given in Sect. 5.

2 Material and methods

Figure 1 provides an overview of the proposed workflow for
the spatiotemporal forecasting of population data and quan-
tification of exposure. First, multitemporal gridded popula-
tion data are compiled and aligned to a set of geospatial co-
variates, i.e., driving factors. The data are fed into the LSTM-
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based models to establish a population forecast. The mod-
eled future population is utilized with hazard models to quan-
tify the number of people living in earthquake-exposed and
tsunami-exposed areas in Lima and Callao, Peru, in the year
2035.

2.1 Multitemporal gridded population data

As the key input variable for the spatiotemporal forecasting
of population, we harvest multitemporal gridded population
data from the WorldPop initiative (Lloyd et al., 2017; Stevens
et al., 2015). The data set consists of annual multitemporal
gridded population data with a spatial resolution of 100 m
for the period 2000–2020, which describes the residential
population (Fig. 2). Thereby, WorldPop provides population
counts adjusted to the United Nations population estima-
tions (United Nations, 2022). The data set was created with a
regression-tree-based semi-automated dasymetric modeling
approach. First, a weighting layer was created with an RF
approach and multiple spatial covariates, including country-
specific census counts; land cover; digital elevation models
(DEMs); nighttime lights; net primary productivity; weather
data; road networks; bodies of water and waterways; pro-
tected areas; and “facility” locations such as hospitals and
schools. The modeled layer was subsequently deployed to
perform a dasymetric redistribution of the census counts at a
country level (Stevens et al., 2015). Actual census counts are
redistributed from the smallest available administrative unit
to the population grid with a higher spatial resolution. The
modeled layer determines the weight of the population for
each grid cell. Figure 2 also displays the absolute population
change per grid cell for the time interval 2000–2020. It is
traceable that the core of the settlement area faced a decrease
in population, while the vast majority of grid cells document
an increase in population over the last 2 decades.

2.2 Driving factors

We compute a set of geospatial covariates, i.e., driving
factors, for spatiotemporal forecasting of population data.
The driving factors are either time-variant or time-invariant
(Fig. 3). Time-variant driving factors vary substantially over
time and thus must be computed consistently along the
timely resolution of the time series data, whereas the lat-
ter remain rather static over time. Land cover is an impor-
tant driving factor for describing urban dynamics. The Mod-
erate Resolution Imaging Spectroradiometer (MODIS) land
cover data (Fig. 3a) from the National Aeronautics and Space
Administration (NASA) have been provided annually since
2001 and thus match the temporal resolution of the popula-
tion data (Friedl and Sulla-Menashe, 2019). We group the
thematic classes of the data set into four distinctive cate-
gories, namely “vegetation”, “built-up”, “barren”, and “wa-
ter”. From this multi-class data set, we create one-hot lay-
ers for each of the four thematic classes to be used as in-

put for the models. Besides, the data feature a spatial res-
olution of 500 m, which corresponds to the coarsest resolu-
tion of all input features used. Consequently, we compute
the second time-variant driving factor, i.e., distance to the
boundary of built-up areas (Fig. 3b) based on the Euclidean
distance function, by deploying the higher spatially resolved
multitemporal gridded population data sets (Sect. 2.1). One
very important geographic input factor for modeling popu-
lation dynamics is the topography of the terrain, since hu-
man settlements mostly appear on terrains with flat or solely
moderate slopes (Dobson et al., 2000). In this study, we use
the Copernicus DEM (ESA, 2022), provided by the Euro-
pean Space Agency (ESA), with a spatial resolution of 30 m
to compute slope estimates (Fig. 3c). The Copernicus DEM
data set also contains information about bodies of water. We
combine the data with the information on the bodies of water
contained in the OpenStreetMap (OSM) data set (2022) to
compute a layer indicating the distance to bodies of water for
the study area (Fig. 3d). The OSM data set also served for the
compilation of geospatial vector data representing roads and
computing distances thereof (Fig. 3e). Lastly, we also com-
pute a distance grid to the city center. In this study, we define
the center of our study area as the point coordinate situated
between the current central business district and the historic
city center, i.e., the centro histórico of Lima (Fig. 3f). The
compilation of a set of geospatial covariates that enables ac-
curate estimations is a frequent challenge. For instance, Zhu
(2023) lists more than 50 predictor variables which were em-
ployed in existing studies of land-use and land-cover predic-
tions. Here, the collected driving factors represent frequently
adopted variables in past studies (Gómez et al., 2020; Liu
et al., 2017; Pijanowski et al., 2002). In detail, we inter-
nalize the main variable categories (Zhu, 2023), i.e., land-
use-related variables (Fig. 3a–b, f), environmental variables
(Fig. 3c, d), and infrastructural variables (Fig. 3e), as well as
socio-economic variables (Fig. 2).

2.3 LSTM-based models

The population data of time steps t1, t2, . . ., tn and the cor-
responding driving factors are concatenated as the input for
the LSTM models, which map the input to a prediction of
the population at time step tn+1. Generally, LSTM models
belong to the family of recurrent neural networks (RNNs).
The latter represents a generalization of feedforward neu-
ral networks with internal memory and which are designed
to process sequential information (Rumelhart et al., 1986).
RNNs model the input as sequentially arranged time steps
while preserving the information of each past element as
state memory in the hidden unit (LeCun et al., 2015). Such
networks are referred to as recurrent, since the architecture is
repeated over the time steps, whereby the weights are shared
among the different temporal layers and the underlying func-
tion remains fixed over all time steps (Aggarwal, 2018).
However, Hochreiter and Schmidhuber (1997) introduced
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Figure 1. General workflow for the spatiotemporal forecasting of population data in earthquake- and tsunami-exposed areas of Lima and
Callao, Peru.

Figure 2. Starting point (population of the year 2000) and end point (population of the year 2020) of the annual gridded WorldPop population
time series data, which serve as input for the forecasting models, and the corresponding visualized absolute population change between 2000–
2020 for Lima and Callao, Peru.

LSTM networks to overcome the problem of vanishing gra-
dients. LSTM networks are equipped with complex blocks
as hidden layers. Those blocks implement gates and mem-
ory cells, which control the flow of information and accu-
mulate the state information in order to obtain the capability

of long-term memory. The blocks or the so-called “LSTM-
cells” contain an internal recurrence mechanism additional
to the outer recurrence mechanism of the RNN (Goodfellow
et al., 2016). Thus, LSTMs can be considered for sequence
learning and forecasting, especially when long-term depen-
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Figure 3. Driving factors deployed for the spatiotemporal forecasting of population data.

dencies should be encoded from the input data. The main
model architecture comprises an LSTM unit with the follow-
ing equations:

it = σ(WxiXt +WhiHt−1+Wci ◦Ct−1+ bi),

ft = σ(WxfXt +WhfHt−1+Wcf ◦Ct−1+ bf ),

Ct = ft ◦Ct−1+ it ◦ tanh(WxcXt +WhcXt−1+ bc),

ot = σ(WxoXt +WhoHt−1+Wco ◦Ct + bo),

Ht = ot ◦ tanh(Ct ), (1)

where Xt represents the input to the cell, Ct the memory
state, and Ht the hidden state. The notation ◦ denotes the
Hadamard product or the element-wise product. In the equa-
tions, it , ft , and ot refer to the input, forget, and output gates,
respectively. Subscript t is the time step, σ the sigmoid acti-
vation function, tanh the hyperbolic tangent function, W the
weight matrices, and b the biases (Fig. 4a).

To enable spatiotemporal modeling, we also employed
ConvLSTMs. ConvLSTMs further contain convolutional
structures with respect to both the input-to-state and state-to-
state transitions. Thus, ConvLSTMs predict the future state
of an entity (e.g., image pixel) from the current and past
states of its surrounding entities (Shi et al., 2015). The inputs,

cell outputs, hidden states, and gates are three-dimensional
tensors with rows and columns of the two-dimensional in-
put image as the last two dimensions. The internal opera-
tions use convolutions, which encode the spatial information
(Shi et al., 2015). The architecture of a ConvLSTM is similar
to an LSTM with the addition of the convolutional opera-
tor (Fig. 4b). Equations in Eq. (2) describe the ConvLSTM,
which differ from the LSTM equations in the convolution
operator denoted by ∗:

it = σ
(
Wxi

∗Xt +Whi
∗Ht−1+Wci ◦Ct−1+ bi

)
,

ft = σ(W∗xfXt +Whf
∗Ht−1+Wcf ◦Ct−1+ bf ),

Ct = ft ◦Ct−1+ it ◦ tanh(Wxc
∗Xt +Whc

∗Xt−1+ bc),

ot = σ(Wxo
∗Xt +W∗hoHt−1+Wco ◦Ct + bo),

Ht = ot ◦ tanh(Ct ). (2)

In this study, we train both models with a unidirectional
forward (Fig. 4c) and bidirectional (Fig. 4d) learning mecha-
nism. Vector xt refers to the input data stacks for the chosen
input years, i.e., x1,x2,x3, . . .,xn. Vectors yt and zt are the
generated output vectors at each time step, with the chosen
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Figure 4. Implemented LSTM components and network architectures: (a) LSTM cell, (b) ConvLSTM cell, (c) unidirectional forward net-
work, and (d) bidirectional network.

hidden dimension of 64. For the bidirectional network, the
forward layer outputs yt are computed iteratively using the
input data in a sequence from the first time step to the last,
while the backward layer outputs zt are calculated from a re-
versed sequence of the inputs from the last time step to the
first. To retrieve a one-dimensional output that represents the
predicted population number pn+1 at time step n+1, a linear
layer is applied to the last output vectors. For the bidirec-
tional networks, the last outputs yn and zn are concatenated.
The ConvLSTM networks have the same architecture as in
Fig. 4c–d but with convolutional operations included in the
ConvLSTM cells as shown in Fig. 4b.

2.4 Hazard models: earthquake and tsunami

The RIESGOS 2.0 project, which focuses on the creation of
scenario-based multi-risk assessment in the Andes region,
provided earthquake and tsunami simulation data for this
study (RIESGOS, 2022). The simulations are based on the
historical earthquake of the year 1746 with an offshore epi-
center and a magnitude of 8.9 (Gomez-Zapata et al., 2021).
To assess the population affected by this earthquake and the
corresponding tsunami, spatially distributed peak ground ac-
celerations (Fig. 5a) and maximum flow depths (Fig. 5b) are
used, respectively. The ground motion fields are generated

based on ground motion prediction equations according to
Montalva et al. (2017). The tsunami simulations (Androsov
et al., 2023) are based on parameters proposed by Jimenez et
al. (2013). The two data sets are provided with 1 km and 10 m
spatial resolution, respectively, and we resample the data sets
to the spatial resolution of 100 m of the population grid for
the exposure analysis.

3 Experimental setup

As previously mentioned, the study area comprises the set-
tlement area of Peru’s capital Lima and the neighboring
province of Callao, which has a spatial coverage of approx-
imately 6500 km2. We re-project all data sets to the World-
Pop projection EPSG:4326, i.e., the World Geodetic System
1984, and resample them to the spatial resolution of 100 m,
which corresponds to the gridded population data. We nor-
malize all layers individually and stack them to a multidi-
mensional array of the shape (20, 10, 888, 888). Thereby,
the first position carries the 20 years of gridded population
data, whereas the second position contains the driving factors
while establishing an image size of 888× 888 elements. The
WorldPop time series data are deployed along a 3-year inter-
val (which provides an acceptable tradeoff here between the
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Figure 5. Considered hazard models: (a) the peak ground acceleration characterizing the historical earthquake of 1746 with an offshore
epicenter and a magnitude of 8.9 and (b) the corresponding tsunami characterized by maximum flow depth.

forecasting capability of the model and having a sufficient
number of time steps available for training the model) and
split into a training data set and validation data set along the
temporal dimension. The training data set contains the earlier
six time steps (2002, 2005, . . ., 2017), whereas the valida-
tion data set contains the later six time steps (2005, 2008, . . .,
2020) of the time series. In both training and validation data
sets, we used the variables of the first five time steps as input
and the last time step as the ground truth. As such, the target
of the training data set is to predict the population of the year
2017, and the goal of the validation data set is to forecast the
population map for the year 2020 (Fig. 6).

We carry out experiments with three sets of driving factors
deployed for forecasting: (i) all driving factors described in
Sect. 2.2; (ii) solely the time-invariant driving factors, i.e.,
slope, distances to bodies of water, roads, and the city center;
and (iii) the population data only. Here it can be noted that the
latter two reduced sets of variables enable the prediction of
multiple time steps in the future. When also including time-
variant driving factors, i.e., land cover and distance to the
boundary of built-up areas, only one future time step can be
predicted; a model learns the changes during a specific time
interval and can thus predict the same time interval in the
future. Equation (3) describes this relation:

tn+1 = tn+ i, (3)

with tn+1 being the forecasted year, tn the year of the last
input, and i the interval size. Here, we train all models with
an interval i of 3 years including every third year as training
data from the WorldPop time series data. To be more specific,
if we input the years 2008, 2011, 2014, 2017, and 2020, the
model is expected to produce an estimation for the year 2023.

Subsequently, the year 2026 can be forecasted with the data
of the year 2023 as input. The time-invariant driving factors
can be assumed to be valid for 2023 too, and we predict the
corresponding population data prior to that moment. In con-
trast, no valid estimates for 2023 are available regarding the
time-variant driving factors. Thus, excluding the time-variant
driving factors from the training enables iterative predictions
of multiple intervals. We implement the sliding time window
approach similarly to the forecasting strategy deployed by
Wang and Lee (2021). A corresponding scheme is displayed
in Fig. 6.

We train all the tested models for 50 epochs, using Adam
as the optimizer and implementing mean-squared-error loss
as the loss function, and set the initial learning rate to 0.0012.
We reduce the learning rate by the factor 0.1 through a learn-
ing rate scheduler when the error reaches a minimum plateau.
To evaluate the proposed framework, we adopt two baseline
methods, i.e., MLR and RF. Thereby, we tune the hyper-
parameters of RF heuristically as follows: ntree= 500 and
mtry= 1,2, . . ., 51.

4 Experimental results and discussion

4.1 Model evaluation

To provide a first comparative overview regarding prediction
accuracy, Fig. 7 contains scatterplots of the different meth-
ods for the predicted year 2020. Thus, it illustrates the devi-
ations in the forecasts (y axis) concerning the actual popula-
tion values (x axis). Each point corresponds to one grid cell
in the study area. The color coding reflects the point den-
sity in percentages, the red line is the regression line of fore-
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Figure 6. Forecasting concept; the training data set utilizes the earlier six time steps (e.g., 2002, 2005, . . ., 2017), whereas the validation data
set utilizes the later six time steps (e.g., 2005, 2008, . . ., 2020) of the time series. We use the variables of the first five time steps as the input
and the last time step as the ground truth labels. The aim of the training data set is to predict the population of the year 2017, and the aim of
the validation data set is to forecast the population map for the year 2020. Forecasting beyond the year 2023 is obtained with a sliding time
window strategy, where previous forecasted years are deployed for model training (adapted from Wang and Lee, 2021).

casts and population values, and the black line corresponds
to the identity line where y = x. It reveals that all models fea-
ture a substantial concentration of the density along the iden-
tity line, which underlines the overall validity of this study’s
setup. However, traceable differences regarding the different
models exist. The majority of the baseline models based on
linear regression and RF feature a lower point density along
the identity line compared to the LSTM-based models, espe-
cially for grid cells with medium and high population values.
The corresponding root-mean-squared error (RMSE) values
also clearly indicate that the LSTM-based models outper-
form both the ConvLSTM models and the baseline methods.
In detail, the uncertainty in terms of RMSE could be reduced
from 4.298 (RF), 4.109 (MLR), and 3.946 (ConvLSTM, bidi-
rectional), respectively, to 3.629 (LSTM, bidirectional) while
maintaining an excellent model fit (R2

= 0.995). Along this
line of models, this corresponds to an increase of more than
14 % in terms of model accuracy.

It can be noted that using the static features for the base-
line models, i.e., MLR and RF, and solely deploying the pop-
ulation data for the LSTM and ConvLSTM with a bidirec-
tional learning mechanism enabled the respective best pre-
dictions. Counterintuitively, the LSTM models outperform
the ConvLSTM models unambiguously. Past works showed
that the inclusion of additional spatial context information
via ConvLSTMs can be beneficial for increasing prediction
accuracy (Shi et al., 2015; Gavahi et al., 2021). However,
in our idiosyncratic data setting, some inconsistencies in the
WorldPop data can be found; bodies of water, conservation
areas, or industry districts are traceably not masked during
the disaggregation, which leads to mostly non-zero grid cell
values in these areas. Solely the individual grid cells lying in

these regions hold zero values in the WorldPop data. All con-
volutional models predict these grid cells with non-zero pop-
ulation, as they learn from the surrounding grid cells. This
can be seen in Fig. 7 at x = 0, where the actual population
is zero, but the prediction differs quite strongly. Neverthe-
less, across all models, mean absolute error (MAE) values
indicate a deviation of fewer than three people per grid cell,
which stresses the overall soundness of this study’s setup.

Figure 8 provides prediction differences from the ac-
tual numbers of 2020 from a spatial perspective. Grid cells
with overestimated population numbers are colored in green,
whereas grid cells with underestimated population numbers
are colored in red. Thereby, it can be traced that the LSTM-
based and ConvLSTM-based predictions overestimate popu-
lation numbers for the majority of grid cells, while both the
MLR-based and RF-based predictions underestimate popula-
tion numbers for the majority of grid cells (also revealed by
the regression line in Fig. 7). However, both the LSTM-based
models and ConvLSTM-based models consistently follow
the overall trend of area; they tend to exaggerate popula-
tion numbers in areas of increasing population and under-
estimate population numbers in areas of decreasing popu-
lation (see also Fig. 2 for a visualization of areas of in-
creasing and decreasing population numbers in Lima and
Callao). MLR-based and RF-based predictions do not reflect
this overall trend, whereby overestimations and underestima-
tions are more dispersedly distributed across the study area.

4.2 Population forecasting

We carry out the actual population forecasting, which is de-
ployed for the subsequent exposure analysis, based on the
most favorable model, i.e., the LSTM trained on the popu-
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Figure 7. Scatterplots and corresponding error measures, i.e., mean absolute error (MAE), median absolute error (MedAE), root-mean-
squared error (RMSE), and R2, for the predicted year 2020 as a function of the actual prediction model, the learning mechanism, and the
deployed driving factors.

Figure 8. Maps of prediction differences in the models with respect to the actual numbers of 2020.
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Figure 9. The upper row provides a visualization of the WorldPop data for the year 2020 and the forecasted population until the year 2035
on a 3-year interval. The lower row contains the corresponding predicted change in the population for the different time intervals.

Figure 10. Predicted number of people affected by different hazard intensity levels on a 3-year interval (2002–2035) regarding (a) earth-
quakes and (b) tsunamis.
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Figure 11. Maps of the predicted population affected by earthquakes (upper panel) and tsunamis (lower panel) for the year 2035 with
corresponding hazard intensities. The solid grey bars indicate the population of the year 2020. The additional colored bar (on top) or textured
bar indicates the estimated increase or decrease in the population until the year 2035, respectively. The corresponding color coding indicates
the hazard intensity.
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lation data with a bidirectional learning mechanism. We im-
plement this model in our forecasting concept (Fig. 6), where
forecasting beyond the year 2023 is obtained with a sliding
time window strategy; i.e., previously forecasted years are
deployed for model training. Figure 9 displays both the fore-
casted population and the change between subsequent time
steps until the year 2035. Thereby, the population increases
by about 3.6 million, which accounts for 35 % of Lima’s pop-
ulation in 2020.

4.3 Exposed future population

The hazard models (Sect. 2.4) and the predicted population
distribution (Sect. 4.2) are employed to compute the future
population count as a function of different hazard intensity
levels. Figure 10 provides accumulated population numbers
for different levels of peak ground acceleration (Fig. 10a) and
maximum flow depth (Fig. 10b) along the 3-year time inter-
val. It can be observed that the majority of the future popula-
tion, i.e., 12.5 million inhabitants, lives in areas of high peak
ground acceleration, i.e., PGA≥ 207 cm s−2. This number of
future exposed population is induced by a growth of almost
30 % over the forecasted time span. This is lower than the
35 % growth in the whole Lima metropolitan area. However,
more than 82 % of Lima’s inhabitants reside in these districts
today already. Consequently, this growth accounts for more
than 70 % of the predicted additional people in Lima. Fur-
thermore, more than 600 000 people are anticipated to live in
areas which may face tsunami flow depths of 2 m or more.
The population in the tsunami inundation area will grow by
61 % until 2035, much more than the average growth of 35 %.
In the considered scenario, waves of up to 20 m are antici-
pated, and more than 430 000 people of the exposed popula-
tion would be hit by waves higher than 5 m.

The forecasted spatial distribution of the population along
with hazard intensities is visualized in Fig. 11 from a south-
western viewing angle. We aggregate the grid cells from the
100 m resolution to a 1 km resolution for visual representa-
tion. The visual inspection uncovers new future hot spots of
the exposed population, i.e., areas that simultaneously face
high population increases and severe hazard intensities, such
as Lima and Callao’s northwestern and southwestern settle-
ment areas along the coastline. Anticipating those patterns
can help urban planners and policymakers to proactively de-
velop effective strategies for risk mitigation. For instance, the
created information about exposed population can be part of
modern decentralized information systems for (multi-)risk
assessment (Schöpfer et al., 2023). Here, one core element
is to enable end users to explore various scenarios (“sto-
ries”) of multiple hazards and cascading effects and their im-
pacts by quantifying different “what-if” scenarios. Utilizing
such a narrative-driven methodology empowers individuals
to replicate diverse situations within a predetermined, multi-
risk context, enabling them to assess and contrast outcomes.
This multi-scenario approach proves invaluable for crafting

strategies that fortify or enhance resilience, evaluating the ef-
fectiveness of proposed or already executed measures (e.g.,
benchmark scenarios) in the face of various hazard scenarios
(acting as a “stress test”) or in response to evolving condi-
tions. Thereby, the importance of implementing mechanisms
to visualize epistemic and aleatory uncertainties about the
risk assessment procedure in graphical form is stressed to
allow appropriate communication with end users.

5 Conclusions and outlook

In this paper, we encode population-related geospatial
change trajectories over time in an ML model and provide
population forecasts for Peru’s capital Lima and Callao to
identify future hot spots of earthquake and tsunami exposure.
The experimental results underline the superior performance
of temporal models, i.e., LSTM-based networks, in accurate
forecasting of the changes in population distribution. Given
that the source data set with the tested data is openly accessi-
ble and has global coverage, our workflow can be generalized
to forecast population changes in other locations with only
a few adaptations (e.g., determine the best model hyperpa-
rameters empirically for a specific area/data set) for optimal
forecasting accuracies.

Several extensions can be explored in future work. Fore-
most, it is crucial to obtain a picture of future risks and
not solely of aspects of the exposure, i.e., the population at
risk. This would require the collection of time series data for
model training with multiple risk-related target variables in-
cluding population, building types, and occupancies, among
others, to also align vulnerability information, i.e., earth-
quake and tsunami-related fragility functions in order for a
more thorough forecasting of future earthquake and tsunami
risks to be conducted. From a methodological point of view,
the consideration of multiple risk-related target variables
also enables the development of multi-task learning models,
which can encode interdependencies between the considered
target variables to enhance the prediction accuracy (Geiß et
al., 2022). Also, a multi-task model is able to learn the time-
variant driving factors for enhanced forecasts and, thus, draw
a more robust picture of future risks.
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