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Abstract. The present work proposes a simulation-based
Bayesian method for parameter estimation and fragility
model selection for mutually exclusive and collectively ex-
haustive (MECE) damage states. This method uses an adap-
tive Markov chain Monte Carlo simulation (MCMC) based
on likelihood estimation using point-wise intensity values. It
identifies the simplest model that fits the data best, among
the set of viable fragility models considered. The proposed
methodology is demonstrated for empirical fragility assess-
ments for two different tsunami events and different classes
of buildings with varying numbers of observed damage and
flow depth data pairs. As case studies, observed pairs of
data for flow depth and the corresponding damage level
from the South Pacific tsunami on 29 September 2009 and
the Sulawesi–Palu tsunami on 28 September 2018 are used.
Damage data related to a total of five different building
classes are analysed. It is shown that the proposed methodol-
ogy is stable and efficient for data sets with a very low num-
ber of damage versus intensity data pairs and cases in which
observed data are missing for some of the damage levels.

1 Introduction

Fragility models express the probability of exceeding certain
damage thresholds for a given level of intensity for a specific
class of buildings or infrastructure. Empirical fragility curves
are models derived from observed pairs of damage and inten-
sity data for buildings and infrastructure usually collected,
acquired and even partially simulated in the aftermath of dis-
astrous events. Some examples of empirical fragility models

are seismic fragility (Rota et al., 2009; Rosti et al., 2021),
tsunami fragility (Koshimura et al., 2009a; Reese et al., 2011;
a comprehensive review can be found in Charvet et al., 2017),
flooding fragility (Wing et al., 2020) and debris flow fragility
curves (Eidsvig et al., 2014). Empirical fragility modelling is
greatly affected by how the damage and intensity parameters
are defined. Mutually exclusive and collectively exhaustive
(MECE, see next section for the definition) damage states are
quite common in the literature as discrete physical damage
states. The MECE condition is necessary for damage states
in most probabilistic risk formulations, leading to the mean
rate of exceeding loss (e.g. Behrens et al., 2021).

Tsunami fragility curves usually employ the tsunami flow
depth as the measure of intensity; although different studies
also use other measures like current velocity (e.g. De Risi et
al., 2017b; Charvet et al., 2015). Charvet et al. (2015) demon-
strate that the flow depth may cease to be an appropriate mea-
sure of intensity for higher damage states, and other parame-
ters such as the current velocity, debris impact and scour can
become increasingly more important. De Risi et al. (2017b)
developed bivariate tsunami fragilities, which account for the
interaction between the two intensity measures of tsunami
flow depth and current velocity.

Early procedures for empirical tsunami fragility curves
used data binning to represent the intensity. For example,
Koshimura et al. (2009b) binned the observations by the in-
tensity measure, i.e. the flow depth; however, the latest pro-
cedures have mostly used point-wise intensity estimates in-
stead.

Fragility curves for MECE damage states are distin-
guished by their nicely “laminar” shape; in other words, the
curves should not intersect. When fitting empirical fragility
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curves to observed damage data, this condition is not satis-
fied automatically. For example, fragility curves are usually
fitted for individual damage states separately, and they are fil-
tered afterwards to remove the crossing fragility curves (e.g.
Miano et al., 2020), or ordered (“parallel”) fragility mod-
els are used from the start (Charvet et al., 2014; Lahcene et
al., 2021). Charvet et al. (2014) and De Risi (2017a) also
used partially ordered models to derive fragility curves for
MECE damage states. They used the multinomial probabil-
ity distribution to model the probability of being in any of
MECE damage states based on binned intensity representa-
tion. De Risi et al. (2017a) used Bayesian inference to derive
the model parameters for an ensemble of fragility curves.

Empirical tsunami fragility curves are usually constructed
using generalised linear models based on probit, logit or the
complementary loglog link functions (Charvet et al., 2014;
Lahcene et al., 2021). As far as the assessment of the good-
ness of fit, model comparison and selection are concerned,
approaches based on the likelihood ratio and Akaike in-
formation criterion, (e.g. Charvet et al., 2014; Lahcene et
al., 2021) and on k-fold cross validation have also been
used (Chua et al., 2021). For estimating confidence intervals
for empirical tsunami fragility curves, bootstrap resampling
has been commonly used (Charvet et al., 2014; Lahcene et
al., 2021; Chua et al., 2021).

The present paper presents a simulation-based Bayesian
method for inference and model class selection for the en-
semble modelling of the tsunami fragility curves for MECE
damage states for a given class of buildings. By fitting the
(positive definite) fragility link function to the conditional
probability of being in a certain damage state, given that
building is not in any of the preceding states, the method en-
sures that the fragility curves do not cross (i.e. they are “hier-
archical” as in De Risi et al., 2017a). The method uses adap-
tive Markov chain Monte Carlo simulation (MCMC, Beck
and Au, 2002), based on likelihood estimation using point-
wise intensity values, to infer the ensemble of the fragility
model parameters. Alternative link functions are compared
based on log evidence, which considers both the average
goodness of fit (based on log likelihood) and the model par-
simony (based on relative entropy). This way, among the set
of viable models considered, it identifies the simplest model
that fits the data best. By “simplest model”, we mean the
model having maximum relative entropy (measured using the
Kullback–Leibler distance; Kullback and Leibler, 1951) with
respect to the data. This usually means the model has a small
number of parameters.

2 Methodology

2.1 Definitions of intensity and damage parameters

The intensity measure, IM, (or simply “intensity”, e.g. the
tsunami flow depth) refers to a parameter used to convey in-

Figure 1. Graphical representation of damage levels Dj and dam-
age states DSj , where j = 0 :NDS.

formation about an event from the hazard level to the fragility
level – it is an intermediate variable. The damage parame-
ter, D, is a discrete random variable, and the vector of dam-
age levels is expressed as

{
Dj ,j = 0 :NDS

}
, where Dj as

the j th damage level (threshold) and NDS as the total num-
ber of damage levels considered (depending on the damage
scale being used and on the type of hazard, e.g. earthquake,
tsunami, debris flow). Normally, D0 denotes the no-damage
threshold, while DNDS defines the total collapse or being to-
tally washed away. Let us assume that DSj is the j th damage
state defined by the logical statement that the damage D is
between the two damage thresholds Dj and Dj+1; i.e. D is
equal to or greater thanDj and smaller thanDj+1 as follows
(see also Fig. 1 for a graphical representation of the above
expressions):

DSj ≡ (D ≥Dj ) · (D <Dj+1) , (1)

where (·) denotes the logical product and is read as “AND”.
Obviously, for the last damage state, we have DSNDS ≡D ≥

DNDS .
Damage states

{
DS0,DS1, . . .,DSNDS

}
are mutually

exclusive and collectively exhaustive (MECE) if and
only if P(DSi ·DSj | IM)= 0 (if i 6= j , j = 0 :NDS) and∑NDS
j=0P(DSj | IM)= 1; (·) denotes the logical product and

is read as “AND”. In simple words, the damage states are
MECE if being in one damage state excludes all others and if
all the damage states together cover the entire range of possi-
bilities in terms of damage. The ensemble of MECE damage
states DSj , j = 0 :NDS is usually referred to as the damage
scale (e.g. the EMS98; Grünthal, 1998).

The proposed methodology herein is also applicable to
fragility assessment in cases where observed damage data
are not available for some of the damage levels. Let index
be the vector of j values (j = 0 :NDS), indicating damage
levels Nj for which observed data are available (j values
are in ascending order). The new damage scale formed as{
DSindex(1),DSindex(2), . . .,DSindex(N)

}
, where N is the

length of vector index, is also MECE. It is noteworthy that
the number of fragility curves derived in this case is going to
be equal to N − 1. In the following, for simplicity and with-
out loss of generality, we have assumed that observed data
are available for all damage levels, i.e. index = {0 :NDS},
that is, NDS =N − 1. However, the proposed methodology
is also applicable to the modified damage scale formed by
damage level indices in vector index(1 :N). We will later
see examples of such applications in the case studies.
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2.2 Fragility modelling using generalised regression
models

The generalised regression models (GLMs) are more suitable
for empirical fragility assessment with respect to the stan-
dard regression models. This is mainly because the depen-
dent variable in the case of the generalised regression models
is a Bernoulli binary variable (i.e. only two possible values:
0 or 1). Bernoulli variables are particularly useful in order
to detect whether a specific damage level is exceeded or not
(only two possibilities). In the following, fragility assessment
based on GLMs is briefly described.

The term P(DSj | IM) denotes the probability of be-
ing in damage state DSj for a given intensity level IM.
Based on NDS damage thresholds, this conditional probabil-
ity P(DSj | IM) can be read (see Eq. 1) as the probability that(
D ≥Dj

)
and

(
D <Dj+1

)
and can be estimated as follows

(see Appendix A for the derivation):

P(DSj | IM)

= P
[(
D ≥Dj

)
·
(
D <Dj+1

)
| IM

]
=

{
P(D ≥Dj | IM)−P(D ≥Dj+1 | IM) for 0≤ j < NDS

P(D ≥Dj | IM) for j =NDS
, (2)

where P(D ≥Dj | IM) is the fragility function for damage
level Dj .

For each damage threshold, fragility can be obtained for
a desired building class considering that the damage data
provide Bernoulli variables (binary values) of whether the
considered damage level was exceeded or not for given IM
levels. For damage threshold Dj , all buildings with an ob-
served damage levelD <Dj will have a probability equal to
zero, while those with D ≥Dj will have an assigned proba-
bility equal to one. In other words, for building i and damage
state j , the Bernoulli variable Yij indicates whether building
i is in damage state j

Yij =


1 if building i exceeds Dj

with probability P(D ≥Dj |IMi)

0 if building i does not exceed Dj
with probability 1−P(D <Dj |IMi)

, (3)

where IMi is the intensity evaluated at the location of build-
ing i. A Bernoulli variable is defined by one parameter,
which is P(D ≥Dj | IMi) herein. This latter is usually linked
to a linear logarithmic predictor in the form

lij = α0,j +α1,j ln IMi, (4)

where α0,j and α1,j are regression constants for damage
level j . We have employed generalised linear regression (e.g.
Agresti, 2012) with different link functions “logit”, “probit”
and “cloglog” to define probability function πij as the fol-

lowing:

πij = πj (IMi)=


(
1+ exp(−lij )

)−1 logit

8
(
lij
)

probit

1− exp
(
−exp(lij )

)
cloglog

. (5)

The logit link function is equivalent to presenting πj (IM)
with a logistic regression function. The probit link function
is equivalent to a lognormal cumulative distribution function
for πj (IM). In the cloglog (complementary log–log) trans-
formation, the link function at the location of building i can
be expressed as lij = ln

[
− ln

(
1−πij

)]
. It is noted that the

generalised linear regression based on maximum likelihood
estimation (MLE) is available in many statistical software
packages (e.g. MathWorks, Python, R).

In the following, we have referred to the general method-
ology of fitting fragility model to data – one damage state at
a time – the “Basic method”. In the Basic method, the proba-
bility of exceeding damage level j is equal to the probability
function defined in Eq. (5); that is, πij = P(D ≥Dj | IMi).
This method for empirical fragility curve parameter estima-
tion is addressed in detail in the section “Results”, under the
“MLE-Basic” method. The fragility curves obtained under
the “MLE-Basic” method could potentially cross, leading to
the ill condition that P(DSj | IM) < 0. To overcome this, a
hierarchical fragility modelling approach has been adopted
like that in De Risi et al. (2017a).

2.3 Hierarchical fragility modelling

Equation (2) for 0≤ j < NDS, and given IMi , can also be
written as follows using the product rule in probability:

P(DSj | IMi)= P
[(
D <Dj+1

)
·
(
D ≥Dj

)
| IMi

]
=
[
1−P(D ≥Dj+1 |D ≥Dj , IMi)

]
·P(D ≥Dj | IMi). (6)

The term P(D ≥Dj+1 |D ≥Dj , IMi) embedded in Eq. (6)
denotes the conditional probability that the damage exceeds
the damage threshold Dj+1 knowing that it has already ex-
ceeded the previous damage level Dj given IMi . By mak-
ing πij = P(D ≥Dj+1 |D ≥Dj , IMi) (see Eq. 5, which is
positive definite), we ensure that the fragility curve of a
lower damage level will not fall below the fragility curve
of the subsequent damage threshold (the ill condition of
P(DSj | IM) < 0 does not take place). Hence, Eq. (6) can be
expanded as follows (see Appendix B for derivation):

P(DSj | IMi)

=


(
1−πij

)
·

1−
j−1∑
k=0

P(DSk | IMi)

 for j ≥ 1

1−πi0 , P(D <D1 | IMi) for j = 0

. (7)

In this way, the fragility curves are constructed in a hier-
archical manner by first constructing the “fragility incre-
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ments” P(DSj | IMi). Note that for the last damage state
DSNDS , the probability P(DSNDS | IMi), which is also equal
to the fragility of the ultimate damage threshold DNDS , i.e.
P(D ≥DNDS | IM) (see Eq, 2), can be estimated by satisfy-
ing the collectively exhaustive (CE) condition

P(DSNDS | IMi)= P(D ≥DNDS | IMi)

= 1−
NDS−1∑
j=0

P(DSj | IMi). (8)

Accordingly, the fragility of other damage levels P(D ≥
Dj | IMi), where 0< j < NDS, can be obtained from Eq. (2)
by starting from the fragility of the higher threshold P(D ≥
Dj+1 | IM) and adding successively P(DSj | IM) (see Eq. 7)
as follows:

P(D ≥Dj | IMi)= P(DSj | IMi)

+P(D ≥Dj+1 | IMi)

for 0< j < NDS. (9)

As a result, the set of hierarchical fragility models based on
Eq. (9) has 2×NDS model parameters with the vector θ =[{
α0,j ,α1,j

}
,j = 0 :NDS− 1

]
. Obviously, with reference to

Eq. (8), no model parameter is required for the last damage
level, which is derived by satisfying the CE condition. The
vector θ of the proposed hierarchical fragility models can be
defined by two different approaches

1. MLE method. A generalised linear regression model (as
explained in previous the section) is used for the condi-
tional fragility term πij = P(D ≥Dj+1 |D ≥Dj , IM)
for the j th damage state DSj (see Eq. 7, 0≤ j < NDS).
Herein, we need to work with partial damage data so
that all buildings in DSj (with an observed damage
Dj ≤D <Dj+1) will be assigned a probability equal to
0, while those in higher damage states (withD ≥Dj+1)
will be assigned a probability equal to 1 (i.e. in order to
model the conditioning on D ≥Dj , the domain of pos-
sible damage levels is reduced to D ≥Dj ).

2. Bayesian model class selection (BMCS). The Bayesian
inference for model updating is employed to obtain the
joint distribution of the model parameters.

Detailed discussion about these two approaches, namely
“MLE” and “BMCS”, for parameter estimation of empirical
fragility curves are provided in Sect. 3.

2.4 Bayesian model class selection (BMCS) and
parameter inference using adaptive MCMC

We use the Bayesian model class selection (BMCS) herein
to identify the best link model to use in the generalised
linear regression scheme. However, the procedure is gen-
eral and can be applied to a more diverse pool of candidate
fragility models. BMCS (or model comparison) is essentially

Bayesian updating at the model class level to make compar-
isons among candidate model classes given the observed data
(e.g. Beck and Yuen, 2004; Muto and Beck, 2008). Given a
set of NM candidate model classes {Mk,k = 1 :NM}, and in
the presence of the data D, the posterior probability of the
kth model class, denoted as P(Mk |D) can be written as fol-
lows:

P(Mk |D)=
p(D |Mk)P (Mk)

NM∑
k=1

p(D |Mk)P (Mk)

. (10)

In lieu of any initial preferences about the prior P(Mk),
one can assign equal weights to each model; thus, P(Mk)=

1
/
NM . Hence, the probability of a model class is dom-

inated by the likelihood of p(D|Mk) (a.k.a. evidence). It
is important to note that p herein stands for the prob-
ability density function (PDF). Here, data vector D =

{(IM,DS)i, i = 1 :NCL} defines the observed intensity and
damage data for NCL buildings surveyed for class CL. Let us
define the vector of model parameters θk for model class Mk

as θk =
[{
α0,j ,α1,j

}
k
,j = 0 :NDS− 1

]
. We use the Bayes

theorem to write the “evidence” p(D |Mk) provided by data
D for model Mk as follows:

p(D |Mk)=
p(D |θk,Mk)p (θk |Mk)

p (θk |D,Mk)
. (11)

It can be shown (see Appendix C; Muto and Beck, 2008)
that the logarithm of the evidence (called log-evidence)
ln
[
p(D |Mk)

]
can be written as

ln
[
p(D |Mk)

]
=

∫
�θk

ln
[
p(D |θk,Mk)

]
p(θk |D,Mk)dθk

︸ ︷︷ ︸
Term 1

−

∫
�θk

ln
[
p(θk |D,Mk)

p (θk |Mk)

]
p(θk |D,Mk)dθk

︸ ︷︷ ︸
Term 2

, (12)

where�θk is the domain of θk , and p(D |θk,Mk) is the like-
lihood function conditioned on model class Mk . “Term 1”
denotes the posterior mean of the log likelihood, which is a
measure of the average data fit to model Mk . “Term 2” is
the relative entropy (Kullback and Leibler, 1951; Cover and
Thomas, 1991) between the prior p(θk |Mk) and the poste-
rior p(θk |D,Mk) of θk given model Mk , which is a measure
of the distance between the two PDFs. The latter Term 2 mea-
sures quantitatively the amount of information (on average)
that is “gained” about θk from the observed data D. It is in-
teresting that Term 2 in the log-evidence expression penalises
for model complexity; i.e. if the model extracts more infor-
mation from data (which is a sign of being a complex model
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with more model parameters), the log-evidence reduces. The
exponential of the log-evidence, p(D |Mk), is going to be
implemented directly in Eq. (10) to provide the probability
attributed to the model class Mk . More details on how to es-
timate the two terms in Eq. (12) are provided in Sect. 3.

The likelihood p(D |θk,Mk) can be derived, based on
point-wise intensity information, as the likelihood of nCL,j
buildings being in damage state DSj (considering that∑NDS
j=0nCL,j =NCL), according to data D defined before

p(D |θk,Mk)=

NDS∏
j=0

nCL,j∏
i=1

P(DSj | IMi). (13)

The posterior distribution p(θk |D,Mk) can be found based
on Bayesian inference

p(θk |D,Mk)︸ ︷︷ ︸
posterior

=
p(D |θk,Mk)p (θk |Mk)∫

�θk

p(D |θk,Mk)p (θk |Mk)dθk

= C−1p(D |θk,Mk)︸ ︷︷ ︸
likelihood

p(θk |Mk)︸ ︷︷ ︸
prior

, (14)

where C−1 is a normalising constant. In lieu of additional in-
formation (or preferences), the prior distribution, p(θk |Mk),
can be estimated as the product of marginal normal PDFs for
each model parameter, i.e. a multivariate normal distribution
with zero correlation between the pairs of model parameters
θk (see Appendix D). More detail about an efficient prior
joint PDF is provided in Sect. 3. To sample from the posterior
distribution p(θk |D,Mk) in Eq. (14), an adaptive MCMC
simulation routine (see Appendix E) is employed. MCMC is
particularly useful for drawing samples from the target pos-
terior, while it is known up to a scaling constant C−1 (see
Beck and Au, 2002); thus, in Eq. (14), we only need un-
normalised PDFs to feed the MCMC procedure. The MCMC
routine herein employs the Metropolis–Hastings (MH) algo-
rithm (Metropolis et al., 1953; Hasting, 1970) to generate
samples from the target joint posterior PDF p(θk |D,Mk).

2.5 Calculating the hierarchical fragilities and the
corresponding confidence intervals based on the
vector of model parameters θk

For each realisation of the vector of model parameters θk ,
the corresponding set of hierarchical fragility curves can be
derived based on the procedure described in the previous
sections. Since we have realisations of the model parame-
ters drawn from the joint PDF p(θk |D,Mk) (based on sam-
ples drawn from adaptive MCMC procedure, see also Ap-
pendix E), we can use the concept of robust fragility (RF)
proposed in Jalayer et al. (2017) (see also Jalayer et al., 2015;
Jalayer and Erahimian, 2020) to derive confidence intervals
for the fragility curves. RF is defined as the expected value
for a prescribed fragility model considering the joint proba-
bility distribution for the fragility model parameters θk . The

RF herein can be expressed as

P(D ≥Dj | IM,D,Mk)

=

∫
�θk

P(D ≥Dj | IM,θk)p(θk |D,Mk)dθk

= Eθk |D,Mk

[
P(D ≥Dj | IM,θk)

]
, (15)

where P(D ≥Dj | IM,θk) is the fragility given the model
parameters θk associated with the model Mk (it has been as-
sumed that once conditioned on fragility model parameters
θk , the fragility becomes independent of data D); Eθk |D,Mk

is the expected value over the vector of fragility parameters
θk for model Mk . The integral in Eq. (15) can be solved
numerically by employing Monte Carlo simulation with Nd
generated samples from the vector θk as follows:

P
(
D ≥Dj | IM,D,Mk

)
∼=

1
Nd

Nd∑
l=1

P
(
D ≥Dj | IM,θk,l

)
, (16)

where P
(
D ≥Dj | IM,θk,l

)
is the fragility given the lth

realisation (l = 1 :Nd ) of the model parameters θk for
model Mk . Based on the definition represented in Eqs. (15)
and (16), the variance σ 2

θk |D,Mk
, which can be used to es-

timate a confidence interval for the fragility considering the
uncertainty in the estimation of θk , is calculated as follows:

σ 2
θk |D,Mk

[
P(D ≥Dj | IM,θk)

]
= Eθk |D,Mk

[
P(D ≥Dj | IM,θk)2

]
︸ ︷︷ ︸
∼=1/Nd

∑Nd
i=1P(D≥Dj | IM,θk,l)

2

−
(
Eθk |D,Mk

[
P(D ≥Dj | IM,θk)

])︸ ︷︷ ︸
=P(D≥Dj | IM,D,Mk)

2 (Eq. 16)

. (17)

The empirical fragilities derived through the hierarchical
fragility procedure are not necessarily attributed to a lognor-
mal distribution. Hence, we have derived equivalent lognor-
mal statistics (i.e. the median and dispersion) for the result-
ing fragility curves. The median intensity, ηIMC

, for a given
damage level is calculated as the IM corresponding to 50 %
probability on the fragility curve. The logarithmic standard
deviation (dispersion) of the equivalent lognormal fragility
curve at the onset of damage threshold, βIMC

, is estimated as
half of the logarithmic distance between the IMs correspond-
ing to the probabilities of 16 % (IM16

C ) and the 84 % (IM84
C )

on the fragility curve; thus, the dispersion can be estimated
as βIMC

= 0.50×ln
(
IM84

C

/
IM16

C

)
. The overall effect of epis-

temic uncertainties (due to the uncertainty in the fragility
model parameters and reflecting the effect of limited sample
size) on the median of the empirical fragility curve is con-
sidered through (logarithmic) intensity-based standard devi-
ation denoted as βUF (see Jalayer et al., 2020). βUF can be
estimated as half of the (natural) logarithmic distance (along
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Table 1. The classification of damage thresholds (the damage scale)
used for the 2009 South Pacific tsunami (from Reese et al., 2011).

the IM axis) between the median intensities (i.e. 50 % prob-
ability) of the RF’s derived with 16 % (denoted as IM84)
and 84 % (IM16) confidence levels, respectively; i.e. βUF =

0.50× ln
(
IM84/IM16 ). The RF and its confidence band, the

sample fragilities θk,l (where l = 1 :Nd ), the equivalent log-
normal parameters ηIMC

and βIMC
of the RF, the epistemic

uncertainty βUF, and finally the intensities IM16 and IM84

are shown in Figs. 2d to 6d in the following Sect. 3.

3 Results

3.1 Case study 1: the 2009 South Pacific tsunami

The central South Pacific region-wide tsunami was trig-
gered by an unprecedented earthquake doublet (Mw 8.1 and
Mw 8.0) on 29 September 2009, between about 17:48 and
17:50 UTC (Goff and Dominey-Howes, 2011). The tsunami
seriously impacted numerous locations in the central South
Pacific. Herein, the damage data related to the brick masonry
residential (1 storey) and Timber residential buildings associ-
ated with the reconnaissance survey sites of American Samoa
and the Samoan Islands were utilised. Based on the observed
damage regarding different indicators (see Reese et al., 2011
for more details on damage observation), each structure was
assigned a damage state between (DS0 and DS5). The orig-
inal data documented in Reese et al. (2011) reporting the
tsunami flow depth and the attributed damage state to each
surveyed building can be found on the site of the European
Tsunami Risk Service (https://eurotsunamirisk.org/datasets/,
last access: 30 November 2022). The five damage levels
(NDS = 5) and a description of the indicators leading to the
classification of the damage states are given in Table 1 based
on Reese et al. (2011).

3.2 Case study 2: the 2018 Sulawesi–Palu tsunami

On Friday 28 September 2018, at 18:02 local time, a shal-
low strike-slip earthquake of moment magnitude Mw 7.5 oc-
curred near Palu City, Central Sulawesi, Indonesia followed
by submarine landslides, a tsunami, and massive liquefaction
caused substantial damage (Muhari et al., 2018; Rafliana et
al., 2022). In Sulawesi, more than 3300 fatalities and miss-
ing people, 4400 serious injuries and 170 000 people were
displaced by earthquake, tsunami, landslides, liquefaction or

Table 2. The classification of damage thresholds (the damage scale)
used for the 2018 Sulawesi–Palu tsunami (from Paulik et al., 2019).

building collapse, or combinations of these hazards (Paulik
et al., 2019; Mas et al., 2020). Herein, the damage data re-
lated to the non-engineered unreinforced clay brick masonry
(1 and 2 storey) and non-engineered light timber buildings
located in Palu City were utilised. Based on the observed
damage (see Paulik et al., 2018 for details on damage obser-
vation), each structure was assigned a damage state between
(DS0 and DS3). The original data reporting the tsunami flow
depth and the attributed damage state to each surveyed build-
ing can be found as the Supplement to Paulik et al. (2018).
The three damage levels (NDS = 3) and a description of the
indicators leading to the classification of the damage state are
given in Table 2.

3.3 The building classes

Table 3 illustrates the building classes, for which fragility
curves are obtained based on the proposed procedure and
based on the databases related to the two tsunami events de-
scribed above. The taxonomy used for describing the build-
ing class matches the original description used in the raw
databases. The number of data points available for different
building classes showcases both classes with large number
of data available, e.g. brick masonry 1 storey (South Pacific)
and non-engineered brick masonry 1 storey (Sulawesi), and
classes with few data points available, e.g. timber residen-
tial (South Pacific) and non-engineered masonry 2 storeys
and timber (Sulawesi). The fifth column in the table shows
the proportion of the number of damage levels for which ob-
served data are availableN (see Sect. 2.1) to the total number
of damage levels in the corresponding damage scales, namely
NDS+1= 6 for South Pacific and NDS+1= 4 for Sulawesi
tsunami events (to include level 0). If the ratio is equal to
unity, it indicates that data are available for all the damage le-
vels from 0 to NDS. Note that the number of fragility curves
derived is going to be equal to N − 1, that is, equal to the
number of damage levels for which observed damage data
are available minus one.

3.4 The different model classes

For each building class considered, we have considered the
set of candidate models consisting of the fragility models re-
sulting from the three alternative link functions used in the
generalised linear regression in Eq. (5). That is, M1 refers to
hierarchical fragility modelling based on “logit”, M2 refers
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Table 3. The building classes.

Building class Tsunami event Number N/(NDS+ 1), index
of data

1 Brick masonry residential, 1 storey
South Pacific 2009

120 6/6, index = {0,1,2,3,4,5}

2 Timber residential 23 4/6, index = {2,3,4,5}

1 Non-engineered masonry, unreinforced with clay brick, 1 storey
Sulawesi–Palu 2018

279 3/4, index = {0,1,2}

2 Non-engineered masonry, unreinforced with clay brick, 2 storeys 37 3/4, index = {0,1,2}

3 Non-engineered light timber 14 3/4, index = {1,2,3}

to hierarchical fragility modelling based on “probit”, and M3
refers to hierarchical fragility modelling based on “cloglog”.
For each model, both the MLE method using the MATLAB
generalised regression toolbox and the BMCS using the pro-
cedure described in the previous section are implemented.

3.5 Fragility modelling using MLE

The first step towards fragility assessment by employing
the MLE method (see Sect. 2.3) is to define the vector
of model parameters θ =

{
α0,j ,α1,j

}
, where j = index(1 :

(N − 1)) and where vector index is defined in Sect. 2.1
as the vector of damage level indices (in ascending order)
for which observed damage data are available and N is the
length of index. To accomplish this, the model parame-
ters

{
α0,j ,α1,j

}
are obtained by fitting the link functions in

Eq. (5) to conditional fragility P
(
D ≥Dj+1

∣∣D ≥Dj , IM)
according to Eq. (6). Herein, we have used MATLAB as
a statistical software package (developed by MathWorks)
to estimate the maximum likelihood of model parame-
ters

{
α0,j ,α1,j

}
using the following MATLAB command:

glmfit(log(xj ),yj , ‘binomial’, ‘link’,model’). The ‘model’
will be either ‘logit’, ‘probit’, or ‘comploglog’. For each
damage level Dj+1, index(1)≤ j < index(N), the vector
xj is the IM’s for which the condition D ≥Dj is satisfied;
yj is the column vector containing one-to-one probability as-
signment to the IM data in xj , with zero (= 0.0) assigned
to those data corresponding to DSj (Dj ≤D <Dj+1) and
one (= 1.0) to those related to higher damage states (with
D ≥Dj+1).

The vectors defining the MLE of the model parameters,
θMLE, are presented in Table 4 for each of the building
classes listed in Table 3 and for each of the three mod-
els M1, M2, and M3 defined in Sect. 3.4. Given the model
parameter θMLE, the damage state probability P

(
DSj |IM

)
can be estimated based on the recursive Eqs. (7) and (8).
Then, the fragility for the ultimate damage level is calcu-
lated first based on Eq. (8). For the lower damage thresholds,
the empirical fragility is derived based on Eq. (9). The re-
sulting hierarchical fragility curves by employing the direct
fragility assessment given θMLE, i.e. P(D ≥Dj

∣∣ IM,θMLE)

for j = index (2 :N), are shown later in the next section by
comparison with those obtained from the BMCS method.

3.6 Fragility modelling using BMCS

In the first step, the model parameters are estimated for each
model class separately. For each model class Mk , the model
parameters θk are estimated through the adaptive MCMC
method described in detail in Appendix E, which yields the
posterior distribution in Eq. (14). With reference to Eq. (14),
the prior joint PDF p(θk|Mk) is a multivariate normal PDF
with zero correlation between the pairs of model parameters
(see Appendix D). The vector of the mean values, µθ is set
to be the MLE tabulated in Table 4 (= θMLE related to Mk).
We have attributed a high value for the coefficient of varia-
tion (more than 3.20 herein) for each of the model param-
eters. Appendix F illustrates the histograms representing the
drawn samples from the joint posterior PDF p(θk|D,Mk) for
a selected building class.

The RF curves derived from the hierarchical fragility
curves (see Sect. 2.5) and the corresponding plus/minus
1 standard deviation (±1σ ) intervals from Eqs. (16) and (17)
are also plotted in Figs. 2a to 6a corresponding to Classes 1–
2 South Pacific tsunami and Classes 1–3 Sulawesi–Palu for
one of the model classes Mk (k ∈ {1,2,3}) and for the dam-
age thresholds Dj , j = index (2 :N). The colours of the
hierarchical robust fragility curves, labelled as Dj -BMCS,
match closely with those shown in Tables 1 and 2. The corre-
sponding ±1σ confidence interval curve, which reflects the
uncertainty in the model parameters, is shown as a light grey
area with different colour intensities. Figures 2b to 6b com-
pare the hierarchical robust fragility and its confidence inter-
val with the result of hierarchical fragility assessment based
on maximum likelihood estimation (see previous Sect. 3.5)
labelled as Dj -MLE. The fragility curves are shown with
similar colours (and darker intensity) and with the same line
type (and half of the thickness) of the corresponding robust
fragility curves. The first observation is that the results of
MLE-based fragilities and the BMCS-based fragilities are
quite close in all damage thresholds (as expected, see Jalayer
and Erahimian, 2020). Moreover, the BMCS provides also
the confidence bands for the fragility curves, which can-
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Table 4. The model parameters θMLE.

Building Model α0,0 α1,0 α0,1 α1,1 α0,2 α1,2 α0,3 α1,3 α0,4 α1,4
class class

So
ut

h
Pa

ci
fic

ts
un

am
i2

00
9 1 M1 5.242 4.190 3.900 4.255 −1.175 4.805 −1.345 2.887 −1.994 2.917

M2 2.742 2.190 2.007 2.221 −0.670 2.804 −0.803 1.745 −1.157 1.733
M3 2.079 2.011 1.322 1.850 −1.268 3.057 −1.366 1.961 −1.981 2.218

2 M1 1.127 1.512 2.484 0.771 −2.846 7.708
M2 0.657 0.909 1.390 0.426 −1.575 4.316
M3 0.251 0.862 0.883 0.355 −2.141 4.648

Su
la

w
es

i–
Pa

lu
ts

un
am

i2
01

8 1 M1 6.059 4.355 −0.630 2.909
M2 3.264 2.340 −0.371 1.709
M3 2.498 2.088 −0.907 2.056

2 M1 3.556 3.672 −2.486 5.126
M2 2.077 2.144 −1.464 3.036
M3 1.664 2.239 −2.451 4.217

3 M1 0.466 1.375 0.474 1.195
M2 0.295 0.847 0.296 0.774
M3 −0.041 1.068 −0.076 0.835

not be directly provided by the MLE method. To show-
case an individual fragility curve, Figs. 2c to 6c illustrate
the empirical fragility curves associated with the lth real-
isation of the vector of model parameters θk,l for model
class Mk (where l is defined on each figure separately), i.e.
P(D ≥Dj

∣∣ IM,θk,l) (see Sect. 2.5). Figures 2d to 6d il-
lustrate the robust fragility curve associated with the ulti-
mate damage thresholdDindex(N), together with all the sam-
ple fragilities. The intensity values for which the damage
level is not exceeded are shown with blue circles having
the probability equal to zero. Other IMs that lead to the ex-
ceedance of the damage level are shown with red circles with
a probability equal to one. Figures 2d to 6d also illustrate all
the fragility parameters described in Sect. 2.5 including the
equivalent lognormal parameters ηIMC

and βIMC
; the epis-

temic uncertainty in the empirical fragility assessment βUF;
and also the intensities IM16

C , IM84
C , IM84, and IM16 (the lat-

ter two are IMs at the median, i.e. 50 % probability, from the
RF±1 standard deviation, respectively. For all five building
classes considered (see Table 3), ηIMC

, βIMC
, and βUF are

tabulated in Table 5 for all damage thresholds associated to
model classes M1 to M3.

3.7 Model selection

With reference to Eq. (12), the log-evidence ln
[
p(D|Mk)

]
can be estimated by subtracting Term 2 from Term 1. Term 1
denotes the posterior mean of the log likelihood, and Term 2
is the relative entropy between the prior and the posterior.
Within the BMCS method, these two terms are readily com-
putable.

Given the samples generated from the joint posterior PDFs
θk , Term 1 (the average data fit) can be seen as the expected

value of the log likelihood over the vector of fragility param-
eters θk given the model Mk , i.e. E θk |D,Mk

(
ln
[
p(D|Mk)

])
.

Term 2 (the relative entropy) is calculated as the expected
value of information gain or entropy between the two PDFs
posterior and prior over the vector θ given the model Mk ,
i.e. E θk |D,Mk

(
ln
[
p(θk|D,Mk)

/
p(θk|Mk)

])
. It is noted that

based on Jensen’s inequality, the mean information gain (rel-
ative entropy) of the posterior compared to the prior is al-
ways non-negative (see e.g. Jalayer et al., 2012; Ebrahimian
and Jalayer, 2021). Hence, Term 2 should always be positive.
Herein, p(θk|D,Mk) is constructed by an adaptive kernel
density function (see Eq. E5, Appendix E) as the weighted
sum (average) of Gaussian PDFs centred among the sam-
ples θk given model Mk (k = 1 : 3). The prior p(θk|Mk) is
a multivariate normal PDF, respectively, with the mean and
covariance described previously for each model (see Eq. D1
in Appendix D). Table 6 shows the results for model class
selection for all five building classes considered. The last
column illustrates the posterior probability (weight) of the
model P(Mk|D) according to Eq. (10) assuming that the
prior P(Mk)=

1
3 (where k = 1 : 3). The best model for each

building class is shown in bold.
For instance, for Class 1 (masonry residential) for the

South Pacific tsunami, model class M3 (using a complemen-
tary log–log “cloglog” transformation of πij to the linear log-
arithmic space, see Eq. 5) is preferred, since it has an over-
all larger difference between data fit and mean information
gain, which leads to a higher log-evidence. The posterior
weights (last column of Table 6, see also Eq. 10) of 6 %, 11 %
and 83 % are stabilised through different runs of the BMCS
method. It should be noted that in Figs. 2 to 6 we reported di-
rectly the fragility results for the “best” fragility model class
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Figure 2. Building class 1 (brick masonry residential, 1 storey) of the South Pacific 2009 tsunami considering fragility model class M3
(a) hierarchical robust fragility curves and their ±1 standard deviation confidence intervals; (b) comparison between hierarchical robust
fragility curves and their confidence band (based on BMCS method) and fragility assessment based on MLE method; (c) the fragility curves
P
(
D ≥Dj

∣∣ IM,θ3,1000
)
, where 1≤ j ≤ 5 associated with the 1000th realisation of the model parameters, θ3,1000 (k = 3 associated to

model M3, l = 1000); and (d) RF associated with the damage threshold D5, together with all the sample fragilities and the equivalent
lognormal fragility parameters.

(i.e. the one that maximises log evidence) identified based on
the procedure described here.

3.8 The “basic” (MLE-Basic) method: fitting data to
one damage state at a time

In the basic method (see Sect. 2.2), the fragility
P(D ≥Dj

∣∣ IM) is obtained by using a generalised linear
regression model according to Eq. (5) with logit, probit or
cloglog link function fitted to the damage data (Mk where
k = 1 : 3). With reference to the MLE method described pre-
viously, the vector xj herein is the IM associated with all
damage data (and not partial, as in the hierarchical fragility
method described in Sect. 3.3), and yj is the column vector
of one-to-one probability assignment to the IM data in xj ,
with zero (= 0) assigned to those data with an observed dam-

age threshold D <Dj and one (= 1) to those with D ≥Dj .
Thus, for the empirical fragility associated with the dam-
age threshold Dj , and based on the model Mk , there are
two model parameters to be defined, namely θMLE-Basic =

{α0,α1}k . As noted previously, there might be conditions
(depending on the quantity of the observed damage data)
where a part of the fragility of damage threshold Dj lies be-
low the fragility of the higher damage level Dj+1, indicat-
ing that P(DSj

∣∣ IM) < 0. This is due to the fact that in the
traditional method there is no explicit requirement to satisfy
P(DSj

∣∣ IM) > 0 as compared to the proposed method. The
MLE of model parameters {α0,α1} for the damage levelsDj ,
j = index (2 :N) associated with the building classes in Ta-
ble 3 are presented in Table 7.
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Figure 3. Building class 2 (timber residential) of the South Pacific 2009 tsunami considering fragility model class M3 (a) hierarchical robust
fragility curves and their ±1 standard deviation confidence intervals; (b) comparison between hierarchical robust fragility curves and their
confidence band (based on BMCS method) and fragility assessment (based on MLE method); (c) the fragility curves P(D ≥Dj

∣∣ IM,θ3,800)
where 3≤ j ≤ 5 associated with the 800th realisation of the model parameters, θ3,800 (k = 3 associated to model M3, l = 800); and (d) robust
fragility associated with the damage threshold D5, together with all the sample fragilities and the equivalent lognormal fragility parameters.

Figure 7 compares the fragility assessment obtained based
on MLE-based hierarchical fragility modelling (see also the
MLE-based curves in Figs. 2b to 6b) with the result of the
fragility assessment by employing the MLE-Basic method
for the “best” model class Mk (k ∈ {1,2,3}) identified ac-
cording to the procedure outlined in the previous section. It
is noted that the fragility functional form is different between
the two methods. MLE-based fragility assessment given Mk

uses Eqs. (7) to (9) to construct a hierarchical fragility
curve given that the conditional fragility term πij = P(D ≥

Dj+1
∣∣D ≥Dj , IMi ), j = index (1 :N − 1) has one of the

functional forms in Eq. (5). However, the fragility assess-
ment using the MLE-Basic method employs directly one of
the expressions in Eq. (5) (corresponding to Mk , k = 1 : 3)
to derive the fragility curve πij = P(D ≥Dj |IMi ) (based

on the whole damage data) and j = index(2 :N). This dif-
ference manifests itself in Fig. 7a (for brick masonry resi-
dential, Class 1, South Pacific tsunami) as the deviation be-
tween the two fragility models for higher damage thresh-
olds D4 and D5. The deviations between the fragility curves
are particularly noticeable at higher IM values (with ex-
ceedance probability> 50 %); however, their medians are
quite similar. In Fig. 7b for (timber residential buildings,
Class 2, South Pacific tsunami) and 7e (light informal timber
buildings, Class 3, Sulawesi–Palu tsunami), we can observe
that fragility curves intersect in the case of the MLE-Basic
fragility assessment. However, they do not intersect for hier-
archical fragility curves. The intersection points of the con-
sequent damage states Dj+1 with Dj when using the MLE-
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Figure 4. Building class 1 (non-engineered masonry, unreinforced with clay brick, 1 storey) of the Sulawesi–Palu 2018 tsunami considering
fragility model class M1 (a) robust fragility curves (RF) and their ±1 standard deviation confidence intervals; (b) comparison between
hierarchical robust fragility and its confidence band (based on BMCS method) and fragility assessment based on MLE method; (c) the
fragility curves P(D ≥Dj

∣∣ IM,θ1,10), where 1≤ j ≤ 2 associated with the 10th realisation of the model parameters, θ1,10 (k = 1 associated
to model M1, l = 10); and (d) robust fragility curve associated with the damage thresholdD2, together with all the sample fragilities and the
equivalent lognormal fragility parameters.

Basic fragility estimation method are shown with colour stars
on each figure.

Table 8 reports the fragility assessment parameters of the
MLE and MLE-Basic methods for the damage thresholds
Dindex(2) to Dindex(N) with the equivalent lognormal param-
eters ηIMC

and βIMC
(explained in Sect. 2.5) for M1 to M3 for

all five classes considered. The medians are almost identical
among the four models while there are higher dispersion es-
timates for the MLE method derived by hierarchical fragility
modelling.

4 Discussion

The results outlined in this section show a fragility assess-
ment for two different data sets corresponding to observed
damaged in the aftermath of South Pacific and Sulawesi–
Palu tsunami events. We have demonstrated the versatility
of the proposed workflow and tool for hierarchical fragility
assessment both for cases in which a large number of data
points are available (e.g. Class 1, brick masonry residential,
South Pacific tsunami; Class 1, one-storey non-engineered
masonry, Sulawesi–Palu tsunami) and cases where very few
data points are available (e.g. Class 2, timber residential,
South Pacific tsunami; Class 3, non-engineered light timber,
Sulawesi–Palu tsunami). Moreover, we demonstrated how
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Figure 5. Building class 2 (non-engineered masonry, unreinforced with clay brick, 2 storey) of the Sulawesi–Palu 2018 tsunami considering
fragility model class M3 (a) hierarchical robust fragility curves and their±1 standard deviation confidence intervals; (b) comparison between
robust fragility and its confidence band (based on BMCS method) and fragility assessment based on MLE method; (c) the fragility curves
P(D ≥Dj

∣∣ IM,θ3,1850), where 1≤ j ≤ 2 associated with the 1850th realisation of the model parameters, θ3,1850 (k = 3 associated to
model M3, l = 1850); and (d) robust fragility curve associated with the damage thresholdD2, together with all the sample fragilities and the
equivalent lognormal fragility parameters.

the proposed workflow avoids crossing fragility curves (e.g.
Class 2, timber residential, South Pacific tsunami; Class 3,
non-engineered light timber, Sulawesi–Palu tsunami). The
results illustrated for the five building classes demonstrate
that the proposed workflow for hierarchical fragility assess-
ment can be applied in cases in which data points are not
available for all the damage levels within the damage scale.

5 Conclusion

An integrated procedure based on Bayesian model class se-
lection (BMCS) for empirical hierarchical fragility mod-
elling for a class of buildings or infrastructure is presented.

This procedure is applicable to fragility modelling for any
type of hazard as long as the damage scale consists of mu-
tually exclusive and collectively exhaustive (MECE) damage
states, and the observed damage data points are independent.
This simulation-based procedure can (1) perform hierarchi-
cal fragility modelling for MECE damage states, (2) estimate
the confidence interval for the resulting fragility curves, and
(3) select the simplest model that fits the data best (i.e. max-
imises log evidence) amongst a suite of candidate fragility
models (herein, alternative link functions for generalised lin-
ear regression are considered). The proposed procedure is
demonstrated for empirical fragility assessment based on ob-
served damage data to masonry residential (1 storey) and
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Figure 6. Building class 3 (non-engineered light timber) of the Sulawesi–Palu 2018 tsunami considering fragility model class M2 (a) hierar-
chical robust fragility curves and their±1 standard deviation confidence intervals; (b) comparison between robust fragility and its confidence
band (based on BMCS method) and fragility assessment based on MLE method; (c) the fragility curves P(D ≥Dj

∣∣ IM,θ2,120), where
2≤ j ≤ 3 associated with the 120th realisation of the model parameters, θ2,120 (k = 2 associated to model M2, l = 120); and (d) robust
fragility curve associated with the damage threshold D3, together with all the sample fragilities and the equivalent lognormal fragility pa-
rameters.

timber residential buildings due to the 2009 South Pacific
tsunami in American Samoa and the Samoan Islands and
non-engineered masonry buildings (1 and 2 storeys) and non-
engineered light timber buildings due to the 2018 Sulawesi–
Palu tsunami. It is observed that

– For each model class, the same set of simulation reali-
sations is used to estimate the fragility parameters, the
confidence band and the log evidence. The latter, which
consists of two terms depicting the goodness of fit and
the information gain between posterior distribution re-
sulting from the observed data and the prior distribu-

tion, is used to compare the candidate fragility models
to identify the model that maximises the evidence.

– Hierarchical fragility assessment can be done also based
the maximum likelihood estimation (MLE) and the
available statistical toolboxes (e.g. MATLAB’s gener-
alised linear model). For each damage level, the refer-
ence domain should be the subset of data that exceeds
the consecutive lower damage level, instead of taking
the entire set of data points as reference domain. Note
that the basic fragility estimation (“MLE-Basic”, non-
hierarchical fragility model) fits the damage data for
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Table 5. The equivalent lognormal parameters and the epistemic uncertainty in the RF assessment for all the building classes, damage
thresholds, and model classes M1 to M3.

Building class Damage level Model 1 (M1) Model 2 (M2) Model 3 (M3)

ηIMC
βIMC

βUF ηIMC
βIMC

βUF ηIMC
βIMC

βUF
(m) (m) (m)

So
ut

h
Pa

ci
fic

ts
un

am
i

20
09

1 D1 0.29 0.40 0.20 0.30 0.46 0.22 0.33 0.51 0.22
D2 0.43 0.35 0.15 0.46 0.37 0.15 0.50 0.40 0.15
D3 1.28 0.35 0.08 1.28 0.35 0.07 1.37 0.37 0.07
D4 1.80 0.45 0.07 1.81 0.42 0.07 1.89 0.37 0.06
D5 2.49 0.47 0.07 2.48 0.47 0.07 2.50 0.35 0.06

2 D3 0.64 1.08 0.58 0.63 1.20 0.64 0.63 1.26 0.53
D4 0.73 1.01 0.48 0.75 1.01 0.46 0.84 0.98 0.35
D5 1.52 0.25 0.08 1.54 0.26 0.08 1.61 0.23 0.07

Su
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es

i–
Pa
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ts
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am

i2
01

8 1 D1 0.25 0.39 0.15 0.26 0.43 0.15 0.27 0.56 0.18
D2 1.24 0.57 0.06 1.24 0.59 0.07 1.31 0.58 0.06

2 D1 0.39 0.44 0.20 0.38 0.45 0.19 0.43 0.43 0.17
D2 1.60 0.31 0.11 1.59 0.32 0.12 1.65 0.28 0.11

3 D2 0.74 1.01 0.34 0.71 1.03 0.38 0.81 0.85 0.29
D3 1.16 0.98 0.39 1.20 1.10 0.43 1.29 0.95 0.31

Table 6. Bayesian model class selection results for empirical fragility models. The best model for each building class is shown in bold.

Building Model Term 1: Average Term 2: Information Log-evidence Posterior probability
class class data fit gain of the model
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Pa
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00
9 1 M1 −124.4561 23.6853 −148.1414 0.055

M2 −123.4659 23.9566 −147.4224 0.113
M3 −120.6454 24.7810 −145.4264 0.832

2 M1 −20.4791 9.7549 −30.2340 0.315
M2 −19.9106 10.4660 −30.3766 0.273
M3 −19.7565 10.2117 −29.9682 0.411

Su
la

w
es

i–
Pa

lu
ts

un
am

i
20

18

1 M1 −161.9565 9.5690 −171.5255 0.445
M2 −161.2320 10.5660 −171.7979 0.339
M3 −161.8821 10.3673 −172.2494 0.216

2 M1 −23.3696 6.8292 −30.1987 0.213
M2 −22.7429 7.2697 −30.0126 0.257
M3 −22.4307 6.8551 −29.2858 0.531

3 M1 −15.8034 4.2741 −20.0775 0.210
M2 −15.1575 3.9226 −19.0802 0.570
M3 −14.6294 5.4015 −20.0309 0.220

each damage level at a time. In other words, the ref-
erence domain is set to all damage data.

– The procedure is also applicable to cases in which ob-
served data are available only for a subset of the damage
levels within the damage scale. The number of fragility
curves is going to be equal to the total number of dam-
age levels for which data are available minus one. This
means, in order to have at least one fragility curve, one

needs to have data available for at least two damage le-
vels.

– Although the resulting fragility curves are not lognor-
mal (strictly speaking), equivalent statistics work quite
well in showing the fragility curves (median and loga-
rithmic dispersion) and the corresponding epistemic un-
certainty (logarithmic dispersion).
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Table 7. The Model parameters θMLE-Basic.

Building class Model class D ≥D1 D ≥D2 D ≥D3 D ≥D4 D ≥D5

α0 α1 α0 α1 α0 α1 α0 α1 α0 α1

So
ut

h
Pa

ci
fic

ts
un

am
i2

00
9 1 M1 5.242 4.190 3.655 4.556 −1.221 4.884 −2.666 4.213 −4.271 4.652

M2 2.742 2.190 1.946 2.486 −0.695 2.846 −1.506 2.425 −2.293 2.515
M3 2.079 2.011 1.347 2.361 −1.319 3.139 −2.389 3.009 −3.919 3.806

2 M1 1.127 1.512 0.813 1.392 −2.931 6.055
M2 0.657 0.909 0.472 0.873 −1.747 3.597
M3 0.251 0.862 0.051 0.914 −2.416 3.922

So
ut

h
Pa

ci
fic

ts
un

am
i2

00
9 1 M1 6.059 4.355 −0.638 2.948

M2 3.264 2.340 −0.375 1.728
M3 2.498 2.088 −0.918 2.088

2 M1 3.556 3.672 −2.500 5.160
M2 2.077 2.144 −1.465 3.039
M3 1.664 2.239 −2.473 4.268

3 M1 0.466 1.375 −0.501 1.843
M2 0.295 0.847 −0.286 1.141
M3 −0.041 1.068 −0.787 1.565

Table 8. Comparison between fragility assessment based on MLE method (by hierarchical fragility modelling) and the MLE-Basic method
for damage thresholds Dindex(2) to Dindex(N).

Tsunami Class Damage Model 1 Model 2 Model 3
level (M1) (M2) (M3)

MLE MLE-Basic MLE MLE-Basic MLE MLE-Basic
method method method method method method

ηIMC
βIMC

ηIMC
βIMC

ηIMC
βIMC

ηIMC
βIMC

ηIMC
βIMC

ηIMC
βIMC

(m) (m) (m) (m) (m) (m)

So
ut

h
Pa

ci
fic

20
09

1 D1 0.29 0.40 0.29 0.40 0.29 0.46 0.29 0.46 0.30 0.59 0.30 0.59
D2 0.43 0.35 0.45 0.37 0.45 0.38 0.46 0.40 0.47 0.44 0.48 0.50
D3 1.28 0.34 1.28 0.34 1.27 0.35 1.28 0.35 1.34 0.38 1.35 0.38
D4 1.82 0.43 1.88 0.40 1.82 0.42 1.86 0.41 1.88 0.38 1.96 0.39
D5 2.50 0.46 2.50 0.36 2.47 0.44 2.49 0.40 2.49 0.34 2.54 0.31

2 D3 0.47 1.10 0.47 1.10 0.49 1.10 0.49 1.10 0.49 1.37 0.49 1.37
D4 0.56 1.12 0.56 1.20 0.59 1.11 0.58 1.15 0.62 1.25 0.63 1.29
D5 1.54 0.30 1.62 0.28 1.55 0.30 1.63 0.28 1.58 0.28 1.69 0.30

Su
la

w
es

i–
Pa

lu
20

18 1 D1 0.25 0.38 0.25 0.38 0.25 0.43 0.25 0.43 0.25 0.57 0.25 0.57
D2 1.24 0.57 1.24 0.57 1.24 0.58 1.24 0.58 1.30 0.57 1.30 0.57

2 D1 0.38 0.45 0.38 0.45 0.38 0.47 0.38 0.47 0.40 0.53 0.40 0.53
D2 1.63 0.32 1.62 0.32 1.62 0.33 1.62 0.33 1.64 0.28 1.64 0.28

3 D2 0.71 1.21 0.71 1.21 0.71 1.18 0.71 1.18 0.74 1.11 0.74 1.11
D3 1.38 1.10 1.31 0.91 1.36 1.02 1.29 0.88 1.32 0.84 1.31 0.76
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Figure 7. Comparison between the fragility assessment by MLE-based hierarchical fragility modelling and MLE-Basic fragility assessment
given (a) South Pacific 2009 tsunami, Class 1, M3; (b) South Pacific 2009 tsunami, Class 2, M3; (c) Sulawesi–Palu 2018 tsunami, Class 1,
M1; (d) Sulawesi–Palu 2018 tsunami Class 2, M3; and (e) Sulawesi–Palu 2018 tsunami Class 3, M2.

– The proposed BMCS method and the one based on
MLE lead to essentially the same set of parameter es-
timates for hierarchical fragility estimation. However,
the latter does not readily lead to the confidence band
and log evidence.

– Using the basic method for fragility estimation (MLE-
Basic) leads to results that are slightly different from the
hierarchical fragility curves. The difference grows for
higher damage levels. It is important to note that follow-
ing the basic method MLE-Basic led to ill-conditioned
results (i.e. fragility curves crossing) in some of the

Nat. Hazards Earth Syst. Sci., 23, 909–931, 2023 https://doi.org/10.5194/nhess-23-909-2023



F. Jalayer et al.: Empirical tsunami fragility modelling for hierarchical damage levels 925

cases (Class 2 for the South Pacific tsunami and Class 3
for the Sulawesi–Palu tsunami, both Timber construc-
tions) studied in this work.

The major improvement offered by this method is in pro-
viding a tool that can fit fragility curves to a set of hier-
archical levels of damage or loss in an ensemble manner.
This method, which starts from prescribed fragility models
and explicitly ensures the hierarchical relation between the
damage levels, is very robust in cases where few data points
are available and/or where data are missing for some of the
damage levels. This tool provides confidence bands for the
fragility curves and performs model selection among a set
of viable link functions for generalised regression. It is im-
portant to note that the proposed method is in general ap-
plicable to hierarchical vulnerability modelling for human
or economic loss levels and to different types of hazards if
(1) the defined levels are mutually exclusive and collectively
exhaustive, and (2) a suitable intensity measure (IM) can be
identified.

Appendix A: The derivation of Eq. (2)

The probability of being in damage state DSj for a given
intensity measure IM can be estimated as follows:

P
(
DSj | IM

)
= P

[
(D ≥Dj ) · (D <Dj+1) | IM

]
= 1−P

[
(D ≥Dj ) · (D <Dj+1) | IM

]
= 1−P

[
(D ≥Dj )+ (D <Dj+1) | IM

]
= 1−P

[
(D <Dj )+ (D ≥Dj+1) | IM

]︸ ︷︷ ︸
ME,P(D<Dj | IM)+P(D≥Dj+1 | IM)

= 1−P(D <Dj | IM)−P(D ≥Dj+1 | IM)

= P(D ≥Dj | IM)−P(D ≥Dj+1 | IM) , (A1)

where the upper-bar sign stands for the logical negation and
is read as “NOT”, and (+) defines the logical sum and is read
as “OR”. The above derivation is based on the rule of sum
in probability and considers the fact that the two statements
D <Dj and D ≥Dj+1 are mutually exclusive (ME); thus,
the probability of their logical sum is the sum of their proba-
bilities.

Appendix B: The derivation of Eq. (7)

The probability of being in damage state DSj (where j ≥1)
given the intensity measure evaluated at the location of build-
ing i, denoted as IMi , based on Eq. (6) can be expanded in a

recursive format as follows:

P(DSj | IMi)

=
[
1−P(D ≥Dj+1 |D ≥Dj , IMi)

]︸ ︷︷ ︸
1−πij

·
[
1−P(D <Dj | IMi)

]
=
(
1−πij

)
·

[
1−P

(
(D <Dj ) ·

(
D ≥Dj−1

)
+ ·· ·

+ (D <D1) · (D ≥D0) | IMi

)]
= (1−πij ) ·

[
1−

j−1∑
k=0

P((D <Dk+1) · (D ≥Dk) | IMi)

]

= (1−πij ) ·

[
1−

j−1∑
k=0

P(DSk | IM)

]
, (B1)

where (+) defines the logical sum and is read as “OR”. The
above derivation is based on the rule of sum in probability
and considers the fact that the recursive statements in the
second term expressed generally as (D <Dk+1) · (D ≥Dk),
where 0≤ k ≤ j − 1, are ME; hence, the probability of their
logical sum is the sum of their probabilities. It is important
to note that in case where j =0, the above equation can be
written as

P(DS0 | IMi)= (1−πi0), P(D <D1 | IMi). (B2)

Appendix C: The derivation of log-evidence in Eq. (13)

From an information-based point of view, the logarithm of
the evidence (log-evidence), denoted as ln

[
p(D|Mk)

]
, can

provide a quantitative measure of the amount of informa-
tion as evidence of model Mk . Moreover, the posterior PDF
p(θk|D,Mk) (see Eq. 14) over the domain of the model pa-
rameters �θ given the kth model is equal to unity. Thus,
ln
[
p(D|Mk)

]
can be written as follows:

ln
[
p(D |Mk)

]
= ln

[
p(D |Mk)

]
·

∫
�θk

p(θk |D,Mk)dθk

︸ ︷︷ ︸
=1.0

. (C1)

Since the log-evidence is independent of θ , we can bring it
inside the integral and do some simple manipulation (also
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using the relation in Eq. 11) as follows:

ln
[
p(D|Mk)

]
=

∫
�θk

ln
[
p(D|Mk)

]
·p(θk |D,Mk)dθk

=

∫
�θ

ln
[
p(D|θk,Mk)p (θk |Mk)

p (θk |D,Mk)

]
·p(θk |D,Mk)dθk

=

∫
�θ

ln

[
p(D|θk,Mk)

p (θk |D,Mk)
/
p(θk |Mk)

]
·p(θk |D,Mk)dθk

=

∫
�θ

ln
[
p(D|θk,Mk)

]
·p(θk|D,Mk)dθk

︸ ︷︷ ︸
Term 1

−

∫
�θ

ln
[
p(θk|D,Mk)

p (θk|Mk)

]
·p(θkD,Mk)dθk

︸ ︷︷ ︸
Term 2

. (C2)

Appendix D: Multivariate normal distribution and
generating dependent Gaussian variables

Let us assume that the vector of parameters for the kth model
is set to θ ; i.e. θ = θk . A multivariate normal PDF can be
expressed as follows:

p(θ)=
1

√
(2π)n |S|

exp
(
−

1
2

(
θ −µθ

)TS−1 (θ −µθ )), (D1)

where n is the number of components (uncertain parameters)
of vector θ = {θ i, i = 1 : n}; µθ is the vector of the mean
value of θ ; and S is the covariance matrix. The positive def-
inite matrix Sn×n can be factorised based on Cholesky de-
composition as S= LLT , where Ln×n is a lower triangular
matrix (i.e. for all j > i, Lij = 0 where Lij denotes the (i,
j )-entry of the matrix L). A Gaussian vector θn×1 with mean
µθ and covariance S can be generated as follows:

θ = µθ +LZ, (D2)

where Zn×1 is a vector of standard Gaussian i.i.d. random
variables with zero mean 0n×n and a covariance equal to the
identity matrix In×n. To verify the properties of θ , we know
that with reference to Eq. (D2), it should have a mean equal
to µθ and a covariance matrix equal to S. The expectation of
θ , denoted as E(θ), can be estimated as

E(θ)= E
(
µθ +LZ

)
= E(µθ )+LE(Z)︸︷︷︸

=0n×1

= µθ . (D3)

The covariance matrix of θ can be written as

E
[(
θ −µθ

)(
θ −µθ

)T ]
= E

(
LZZTLT

)
= LE

(
ZZT

)
︸ ︷︷ ︸
=In×n

LT = LLT = S . (D4)

Thus, the vector θ can be written according to Eq. (D2).

Appendix E: Adaptive MCMC scheme

E1 MCMC procedure

The MCMC simulation scheme has a Markovian nature
where the transition from the current state to a new state is
done by using a conditional transition function that is con-
ditioned on the current (last) state. Let us assume that the
vector of parameters for the kth model is set to θ ; i.e. θ = θk .
To generate (i+1)th sample θ i+1 from the current ith sample
θ i based on MH routine, the following procedure is adopted
herein

– Simulate a candidate sample θ∗ from a proposal dis-
tribution q(θ |θ i). It is important to note that there are
no specific restrictions about the choice of q(·) apart
from the fact that it should be possible to calculate both
q(θ i+1|θ i) and q(θ i |θ i+1).

– Calculate the acceptance probability min(1, r), where
r is defined as follows (it is to note that the following
Eq. (E1) is written in the general format for brevity com-
pared to Eq. (14) of the paper, and we have used θ in-
stead of θk and dropped the conditioning on Mk; hence,
when we write the ith sample θ i it is actually the ith
sample drawn from θk and “k” is dropped for brevity):

r =
p
(
θ∗|D

)
p(θ i |D)

·
q
(
θ i |θ

∗
)

q
(
θ∗|θ i

)
=

 p
(
D|θ∗

)
p(D|θ i)︸ ︷︷ ︸

likelihood ratio

·
p
(
θ∗
)

p(θ i)︸ ︷︷ ︸
prior ratio

 · q
(
θ i |θ

∗
)

q
(
θ∗|θ i

)︸ ︷︷ ︸
proposal ratio

. (E1)

– Generate u from a uniform distribution between (0,1),
u∼ uniform (0,1).

– If u≤min(1, r)→ set θ i+1 = θ
∗ (accept the candidate

state to be taken as the next state of the Markov chain);
else set θ i+1 = θ i (the current state is taken as the next
state).

Estimating the likelihood in the arithmetic scale based on
Eq. (E1) may encounter instability as p(D|θ) may be-
come very small; thus, the likelihood ratio becomes in-
determinate. To avoid this numerical instability, it is de-
sirable to substitute the likelihood ratio in Eq. (E1) with
exp

(
ln
(
p
(
D|θ∗

))
− ln(p (D|θ i))

)
if the ratio becomes in-

determinate or zero.
With reference to Eq. (E1), samples from the posterior can

be drawn based on MH algorithm without any need to define
the normalising C−1 coefficient according to Eq. (14). Equa-
tion (E1) always accepts a candidate if the new proposal is
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more likely under the target posterior distribution than the
old state. Therefore, the sampler will move towards the re-
gions of the state space where the target posterior function
has high density.

The choice of the proposal distribution q is very important.
The ratio q(θ i |θ∗)/q(θ∗|θ i) corrects for any asymmetries in
the proposal distribution. Intuitively, if q(θ∗|θ i)= p(θ∗|D),
the candidate state is always accepted (with r = 1); thus, the
closer q is to the target posterior PDF, the better the accep-
tance rate and the faster the convergence. This is not a trivial
task as information about the important region p(θ |D) is not
available. If the proposal distribution q is non-adaptive, it
means that the information of the current sample θ i is not
used to explore the important region of the target posterior
distribution p(θ |D); thus, we can say that q(θ∗|θ i)= q(θ∗).
Therefore, it is more desirable to choose an adaptive proposal
distribution which depends on the current sample (Beck and
Au, 2002). Having the proposal PDF q centred around the
current sample renders the MH algorithm like a local ran-
dom walk that adaptively leads to the generation of the target
PDF. However, if the Markov chain starts from a point that
is not close to the region of the significant probability den-
sity of p(θ |D), the chance of generating a candidate state θ∗

will become extremely small (and we will face high rejec-
tion of candidate samples). Therefore, most of the samples
will be repeated. To solve this problem, Beck and Au (2002)
introduce a sequence of PDFs that bridge the gap between
the prior PDF and the target posterior PDF. This issue will
be further explored hereafter under the adaptive MCMC. Fi-
nally, it can mathematically be shown that (see Beck and Au,
2002) if the current sample θ i is distributed as p(·|D), the
next sample θ i+1 is also distributed as p(·|D).

E2 Adaptive Metropolis–Hastings algorithm (adaptive
MCMC)

The adaptive MH algorithm (Beck and Au, 2002) intro-
duces a sequence of intermediate candidate evolutionary
PDF’s that resemble more and more the target PDF. Let{
p1,p2, . . .,pNchain

}
be the sequence (chain) of PDFs leading

to p(θ |D)= pNchain , where Nchain is the number of chains
and each chain contains Nd samples (as indicated subse-
quently). The following adaptive simulation-based procedure
is employed:

Step 1. Simulate Nd samples
{
θ1,θ2, . . .,θNd

}(1), where
the superscript (1) denotes the first simulation level or the
first chain (nc= 1, where nc denotes the chain number/sim-
ulation level), with the target PDF p1 as the first sequence of
samples. Instead of accepting or rejecting a proposal for θ in-
volving all its components simultaneously (called block-wise
updating scheme), it might be computationally simpler and
more efficient for the first chain to make proposals for indi-
vidual components of θ one at a time (called component-wise
updating approach). In the block-wise updating, the proposal
distribution has the same dimension as the target distribu-

tion. For instance, if the model parameters involve n uncer-
tain parameters (e.g. the vector of model parameters θn×1 in
this paper has n= 2(N − 1) variables for each of the three
models M1, M2, and M3), we design an n-dimensional pro-
posal distribution and either accept or reject the candidate
state (with all n variables) as a block. The block-wise up-
dating approach can be associated with high rejection rates.
This may cause problem when we want to generate the first
sequence of samples (first chain). Therefore, we have utilised
the more stable component-wise updating for the first chain.
We start from the first variable and generate a candidate state
based on a proposal distribution for this individual compo-
nent and finally accept or reject it based on MH algorithm.
Note that in this stage we have varied the current component
and kept the other variables in vector θ constant. Then, we
move to the next components one by one and do the same
procedure while taking into account the previous (updated)
components. Therefore, what happens in the current step is
conditional on the updated parameters in the previous steps.

Step 2. Construct a kernel density function κ(1) as the
weighted sum (average) of n-dimensional Gaussian PDFs
centred among the samples

{
θ1,θ2, . . .,θNd

}(1), with the co-
variance matrix S(1) of the samples θ (1)i and the weights as-
sociated to each sample as wi , where i = 1 :Nd as follows
(see Ang et al., 1992; Au and Beck, 1999):

κ(1)(θ)=
1

Nseed

Nseed∑
i=1

1

wni

√
(2π)n

∣∣S(1)∣∣
·exp

(
−

1

2w2
i

(
θ − θ

(1)
i

)T(
S(1)

)−1 (
θ − θ

(1)
i

))
. (E2)

The kernel density κ(1) constructed in Eq. (E2) approximates
p1. The kernel function κ can be viewed as a PDF consisting
of bumps at θ i , where width wi controls the common size
of the bumps. Therefore, a large value of wi tends to over-
smooth the kernel density, while a small value may cause
noise-shaped bumps. In view of this, wi can be assumed to
have a fixed width (= w), or alternatively the adaptive kernel
estimate can be employed (Ang et al., 1992; Au and Beck,
1999) that is defined for each sample θ i , i = 1 :Nd . The
adaptive kernel has better convergence and smoothing prop-
erties over the fixed-width kernel estimate. The fixed width
w is estimated as follows (Epanechnikov, 1969):

w =

(
4

(n+ 2)Ndist

) 1
n+4
, (E3)

where Ndist is the number of samples (Ndist ≤Nd). For one-
dimensional problems (n= 1), this leads to the well-known
fixed-width value of

[
(4/3)Nseed

]1/5. In the adaptive kernel
method, the idea is to vary the shape of each bump so that a
larger width (flatter bump) is used in regions of lower proba-
bility density. Following the general strategy used in the past
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(see Ang et al., 1992; Au and Beck, 1999), the adaptive band
width wi for the ith sample θ i can be written as wi = wλi ,
where the local bandwidth factor λi can be estimated as fol-
lows:

λi =

κ(θ i)/(
Nseed∏
j=1

κ(θ j )

) 1
Nseed

−ω , (E4)

where 0≤ ω ≤ 1.0 is the sensitivity factor, and κ(θ i) is cal-
culated based on Eq. (E2) where θ = θ i , with the choice
of fixed-width w in Eq. (E3). The denominator in Eq. (E4)
is a geometric mean of the kernel estimator at all Nd
points. The value of ω = 0.50 is employed herein as also
suggested by other research endeavours (Abramson, 1982;
Ang et al., 1992; Au and Beck, 1999). It is numerically
more stable to estimate the denominator in Eq. (E4) as∏Nseed
j=1

[
κ(θ j )

1/Nseed
]
.

Step 3. Simulate Nd Markov chain samples{
θ1,θ2, . . .,θNd

}(2) with the target PDF p2 as the sec-
ond simulation level (nc= 2). We use κ(1) as the proposal
distribution q(·) in Eq. (E1) in this stage to generate the
second chain of samples. To generally simulate sample θ
from the kernel κ(nc) (where nc= 1 :Nchain), we generate a
discrete random index from the vector [1,2, . . .,Nd ] with the
corresponding weights

[
w1,w2, · · ·,wNseed

]
using an inverse

transformation sampling; if index= j , then generate θ from
the Gaussian PDF κj , where

κj (θ)=
1

(wλj )n
√
(2π)n

∣∣S(nc)
∣∣

·exp
(
−

1
2(wλj )2

(θ − θ j )
T
(

S(nc)
)−1

(θ − θ j )

)
=

1√
(2π)n

∣∣∣S(nc)
j

∣∣∣
· exp

(
−

1
2
(θ − θ j )

T
(

S(nc)
j

)−1 (
θ − θ j

))
, (E5)

where S(nc)
j = w2

jS(nc), where S(nc) is the covariance matrix

of the samples
{
θ1,θ2, . . .,θNd

}(nc). Appendix D shows how
a sample θ can be drawn from the Gaussian PDF κi . From
this sequence on, the MCMC updating is done in a block-
wise manner as we generate a candidate θ and accept/reject it
as a block. The second chain of samples

{
θ1,θ2, . . .,θNd

}(2)
are then used to construct the kernel density κ(2) based on
Eq. (E2).

Step 4. In general, κ(nc) is used as the proposal distribu-
tion in order to move from the ncth simulation level (which
approximates pnc) into (nc+ 1)th chain (with target PDF
pnc+1). This will continue until the Nchainth simulation level
where Markov chain samples are simulated for the target up-
dated p(θ |D)= pNchain .

Appendix F: MCMC samples for each model

The adaptive MCMC procedure for drawing samples
from the model parameters from the joint posterior PDF
p(θk|DMk) is carried out by considering Nchain = 6 chains
(simulation levels) and Nd = 2000 samples per each chain
(see Appendix E). In the first simulation level (first chain,
nc= 1), for which a component-wise updating approach is
employed (see Appendix E, Step 1 for the description of
component-wise and block-wise updating), the first 20 sam-
ples are not considered in order to reduce the initial transient
effect of the Markov chain. The proposal distribution (see
Eq. E1) for each component is assumed to be a normal distri-
bution with a coefficient of variation COV= 0.30 herein. In
addition, the prior ratio according to Eq. (E1) will become the
ratio of two normal distributions for each component one at a
time. In the next simulation levels (i.e. nc= 2 : 6), the adap-
tive kernel estimate (Eq. E2) is employed; i.e. the MCMC up-
dating is performed in a block-wise manner. There will beNd
Markov chain samples generated within the each chain, de-
noted as

{
θk,1,θk,2, · · ·,θk,Nd

}(nc), where nc= 2 :Nchain(=

6). The Nd samples of the last chain (nc= 6) will be used
as the fragility model parameters, as discussed in Sect. 3.6.
It is important to note that the likelihood p(D|θk,Mk) (used
in calculating the acceptance probability within the MCMC
procedure in Eq. E1) is estimated according to Eq. (13).

Figure F1 illustrates the histograms representing the drawn
samples from the joint posterior PDFs corresponding to the
sampled model parameters

{
θk,1,θk,2, · · ·,θk,Nd

}(6) corre-
sponding to the brick masonry residential, Class 1 South
Pacific tsunami classes Mk (k ∈ {1,2,3}) shown in Fig. 2.
The marginal normal prior PDFs are also shown with dashed
orange-coloured lines. The statistics of the samples, mean
and confidence interval (CI) between 2nd and 98th per-
centiles for the posterior of model parameters θk are shown
on the figures associated to each parameter. It is expected to
have the mean values of the marginal posterior samples close
to and comparable with those obtained by the MLE in Ta-
ble 4.
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Figure F1. Distribution of the fragility model parameters θk =
[{
α0,j ,α1,j

}
k
,j = 0 : 4

]
based on model class Mk (where k = 1 : 3) for

Class 1, brick masonry residential, South Pacific tsunami, by employing an adaptive MCMC procedure including samples drawn from the
joint posterior PDF with their statistics (mean and COV) and the marginal normal priors (subfigures show the posterior statistics).
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