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Abstract. We present a transparent and validated climate-
conditioned catastrophe flood model for the UK, that simu-
lates pluvial, fluvial and coastal flood risks at 1 arcsec spa-
tial resolution (∼ 20–25 m). Hazard layers for 10 different
return periods are produced over the whole UK for historic,
2020, 2030, 2050 and 2070 conditions using the UK Cli-
mate Projections 2018 (UKCP18) climate simulations. From
these, monetary losses are computed for five specific global
warming levels above pre-industrial values (0.6, 1.1, 1.8,
2.5 and 3.3 ◦C). The analysis contains a greater level of de-
tail and nuance compared to previous work, and represents
our current best understanding of the UK’s changing flood
risk landscape. Validation against historical national return
period flood maps yielded critical success index values of
0.65 and 0.76 for England and Wales, respectively, and max-
imum water levels for the Carlisle 2005 flood were repli-
cated to a root mean square error (RMSE) of 0.41 m with-
out calibration. This level of skill is similar to local mod-
elling with site-specific data. Expected annual damage in
2020 was GBP 730 million, which compares favourably to
the observed value of GBP 714 million reported by the Asso-
ciation of British Insurers. Previous UK flood loss estimates
based on government data are ∼ 3× higher, and lie well out-
side our modelled loss distribution, which is plausibly cen-
tred on the observations. We estimate that UK 1 % annual
probability flood losses were ∼ 6 % greater for the average
climate conditions of 2020 (∼ 1.1 ◦C of warming) compared
to those of 1990 (∼ 0.6 ◦C of warming), and this increase can
be kept to around∼ 8 % if all countries’ COP26 2030 carbon
emission reduction pledges and “net zero” commitments are
implemented in full. Implementing only the COP26 pledges
increases UK 1 % annual probability flood losses by 23 %
above average 1990 values, and potentially 37 % in a “worst

case” scenario where carbon reduction targets are missed and
climate sensitivity is high.

1 Introduction

Flooding is the principal environmental hazard identified in
the UK’s National Risk Register (Cabinet Office, 2020), and
past major events have resulted in substantial economic dam-
age and loss of life. For example, the coastal floods of 1953
resulted in 307 deaths, whilst inland flooding during sum-
mer 2007 inundated around 55 000 homes and left more than
400 000 people temporarily without drinking water. Despite
significant investment in river and coastal defences over the
last 50 years, including a further GBP 5.2 billion to be in-
vested from 2021–2026 (Cabinet Office, 2020), floods con-
tinue to be a problem for the UK, with major events occur-
ring in winters 2013–2014, 2015–2016 and 2019–2020, and
in summer 2021. In England alone, the Environment Agency
has previously stated that over 5 million properties, or around
1 in 6 of the total building stock, have a greater than 0.1 %
annual probability of either fluvial or coastal flooding or
an unspecified probability of pluvial flooding (Environment
Agency, 2009). Flood risks in the UK will also very likely in-
crease in the future as a result of population growth, changes
in vulnerability and anthropogenic climate change (Merz et
al., 2021; Committee for Climate Change, 2021).

The reasons for this are not difficult to see. The UK lies
under the westerly track of mid-Atlantic storm systems (in-
cluding extratropical cyclones) that can cause storm surges
and extreme waves on exposed coasts (Haigh et al., 2017).
On making landfall, these storm systems encounter exten-

Published by Copernicus Publications on behalf of the European Geosciences Union.



892 P. D. Bates et al.: A climate-conditioned catastrophe risk model for UK flooding

sive upland areas to the west of the country, resulting in
orographic enhancement of precipitation. This subsequently
falls onto river catchments that are (in global terms at least)
relatively short and steep, and therefore prone to flooding
(Black and Law, 2004; Luca et al., 2017). Convective rain-
fall activity in summer can be intense (Chan et al., 2016) and
may lead to flash flooding in urban areas and small catch-
ments (Archer and Fowler, 2021), whilst atmospheric rivers
can cause major flood events during winter (Lavers et al.,
2011). Along the eastern seaboard lies the shallow marine
basin of the North Sea, which is effectively closed at its
southern end by the Straits of Dover and is therefore a set-
ting extremely conducive to the development of storm surge
flooding (Horsburgh and Wilson, 2007). Moreover, the UK
is densely populated (281 people km−2, 67.2 million total
population in 2020), with development often concentrated in
low-lying and flood-prone areas along the coasts and major
rivers.

Despite the threat posed by floods, the methods currently
used to map national-scale flood hazard and risk in the UK
are, at best, opaque. The approaches adopted by govern-
ment bodies and commercial organizations are largely un-
documented, either in the peer-reviewed literature or in ac-
cessible reports, and validation studies are rarely reported.
Indeed, considerable detective work is required to even un-
derstand what methods and data sets underpin existing flood
risk information in the UK, despite these being used to in-
form critical long-term planning appraisals such as the UK’s
Climate Change Risk Assessment (Committee for Climate
Change, 2021) or the national level of investment in flood
defences (Environment Agency, 2019b). This lack of trans-
parency is, from a scientific standpoint, unhelpful and un-
healthy, and likely to hinder robust decision making. In ad-
dition, data sets available for flood research either represent
only a limited range of return periods, do not consider the
spatial correlation in flood hazard (cf. Heffernan and Tawn,
2004; Keef et al., 2009, 2012) or do not account for climate
change impacts.

The purpose of this paper is therefore to address both
technical and transparency issues in the flood risk informa-
tion available in the UK. The UK is not unique in this re-
spect: official flood mapping approaches in many countries
lack scientific transparency and accountability (e.g. Pralle,
2019), and the methods are rarely subject to peer review.
Lessons learned through this work are therefore likely to be
more widely applicable, for example for the Federal Emer-
gency Management Agency flood mapping programme in
the US and for modelling conducted in support of the Euro-
pean Floods Directive in the European Union. Accordingly,
we describe the development and validation of a climate-
conditioned catastrophe risk model for UK pluvial, fluvial
and coastal flooding. Current UK flood hazard and risk data
sets are reviewed in Sect. 2. The methodology underpinning
the model is described in detail in Sect. 3. Validation results
and projections of current and future risk are presented in

Sect. 4, and conclusions drawn in Sect. 5. Details of how to
obtain the data for academic use are given at the end of the
paper.

2 Current UK flood hazard and risk data sets

UK flood hazard and risk information at national and sub-
national scales can be found in five broad classes of data
product. A brief description of each follows, with further in-
formation in Sect. S1 in the Supplement.

2.1 UK flood hazard maps

Floodplain zonation (i.e. hazard) maps for fluvial, coastal
and sometimes pluvial flooding are developed separately by
government bodies in the four countries of the UK (North-
ern Ireland, Wales, Scotland and England), and are predom-
inantly used to inform land use planning decisions. These
maps are typically constructed using a patchwork of local
modelling studies commissioned from commercial engineer-
ing consultants for individual river reaches. In England alone,
there are over 2000 local hydraulic models that have been
developed in this way to map the 1-in-100-year return pe-
riod fluvial floodplain, with inundation in unmodelled areas
likely to have been filled in from historic observations or lo-
cal knowledge. The process is therefore similar to that used
by the Federal Emergency Management Agency (FEMA) in
the US (see Wing et al., 2018) and other hazard management
organizations worldwide.

The individual reach scale modelling studies from which
the national map is derived typically use 1D, 1D/2D or 2D
hydraulic models with airborne lidar floodplain elevation
data, bathymetric survey information, and most commonly
represent undefended conditions. For England, a 1-in-1000-
year floodplain layer was also created by a 50 m spatial reso-
lution national-scale hydraulic model developed in the early
2000s (Bradbrook et al., 2005), and pluvial flooding has also
been mapped nationally. For coastal flooding, simple GIS-
based “bathtub” models, which can severely overestimate ar-
eas at risk (Vousdoukas et al., 2016), may be used instead of
true hydrodynamic simulations. Model boundary conditions
are usually derived from either extreme value frequency anal-
ysis of long duration river, tide or meteorological records, or
from a UK standard regionalized flood frequency approach
for discharge in ungauged basins in the case of river flows
(Robson and Reed, 1999). Where available, model outputs
may be calibrated to match observations of historic floods.
The resulting flood maps therefore represent average condi-
tions over the period of the instrumental record in the UK
(typically from the 1960s onwards at most sites). The true
present-day hazard will therefore differ from the recent his-
toric average because of natural climate variability, land use
change and already-observed (but modest) changes in ex-
treme rainfall resulting from anthropogenic climate change
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(Kendon et al., 2021). In combination, these effects have al-
ready led to observed changes in mean annual flood magni-
tudes in different regions of the UK of between −2.5 % and
+12 % over the period 1960–2010, with the majority of areas
showing a positive trend (Blöschl et al., 2019).

Beyond this broad overview, obtaining more detailed in-
formation to properly understand how UK flood hazard map-
ping is conducted is extremely difficult. Some small streams
are not covered, and it is clear from national water body data
sets that catchment headwater areas can be missed out. De-
spite this, no metadata exist showing the spatial limit of the
mapping, so we cannot tell the difference between areas with
no flood risk and those simply with no data because they have
not been modelled. No information is provided on the indi-
vidual local models, the specific data sets used, the model
simulation performance or when the modelling was com-
pleted. The latter metadata are important because the com-
plete national map required the commissioning of thousands
of individual local studies and therefore took a significant
amount of time to complete. As a result, some of the na-
tional map’s component models are likely to be outdated. The
strength of these flood hazard maps is that they are often cre-
ated using well established hydraulic modelling approaches
by trained engineers who may have access to local data that
are not included in national databases. For this reason, and
because of their official status, they are typically considered
the “gold standard” in flood modelling, however no system-
atic assessment of such hazard mapping has ever been pre-
sented.

2.2 UK flood risk maps

Flood risk maps or spatially aggregated risk data (i.e. the
product of flood probability, exposure and vulnerability) are
also produced in the UK, and are predominantly used to
inform flood defence investment policy and long-term risk
planning. Risk is quantified either in terms of the number
of properties exposed to flooding of a given probability or
the expected annual damage (EAD). More formally, the lat-
ter quantity is the integral of the loss-exceedance probability
curve for a particular hazard. Data are presented as economic
losses, and so represent the current value of assets that are
damaged by the flood event minus any taxation element.

Only limited information on how this is done is available
publicly, but it is apparent that the four countries of the UK
vary in terms of the approach adopted, the flood probabili-
ties which are reported, and which sources of flooding are
considered (see Table S1). Most information is available in
England, where flood risk maps are produced by the Envi-
ronment Agency as part of their National Flood Risk Assess-
ment (NaFRA) programme (Environment Agency, 2009). A
summary of what is known of the method is provided in
Sect. S1.2. In Scotland and Wales, only limited information
on the method used is made available, and only the total
number of properties exposed to flooding is openly reported.

In Northern Ireland, it appears that a simple GIS overlay of
flood hazard maps and exposure has been undertaken to cal-
culate risk, but no further details are in the public domain.
Spatial correlations in flood depths (cf. Heffernan and Tawn,
2004; Keef et al., 2009, 2012; Quinn et al., 2019) are not
taken into account by any of these methods, so only aver-
age annual losses can be computed and not the full loss-
exceedance curve.

No public validation of these risk outputs has been under-
taken by the government agencies responsible, but Penning-
Rowsell (2015, 2021) has shown how the methods and out-
put from the NaFRA analysis in England have changed
significantly over time. In particular, the raw output from
NaFRA 2008 indicated implausibly high flood losses (EAD
of > GBP 5 billion, see Table S1). This was determined to be
the result of excessive predicted floodplain water depths, and
Penning-Rowsell (2021) has documented the significant and
somewhat arbitrary adjustments that have been made since
2008 to try to combat this. These changes are described in
more detail in Sect. S1.3 and include switching to a simpler
loss calculation that does not use water depth as an input,
capping losses for low return period events, limiting flood-
plain water levels and manual adjustment of losses in areas
where the results are deemed implausible. By 2018, these
and other methodological changes had reduced the EAD in
NaFRA to GBP 0.66 billion, but even so this value was still
2–9× higher than comparable loss data from the Associa-
tion of British Insurers depending on the assumptions made
(Penning-Rowsell, 2021; see also Sect. 2.5 below and Ta-
ble S1).

2.3 Current and future flood risk estimates produced
as part of the UK’s Climate Change Risk
Assessment (CCRA) process

Changes in flood risk as a result of climate change are ob-
viously an important consideration for policymakers, and
this requires a consistent UK-wide analysis. Given the dif-
ferences in flood risk assessment methods and reporting
between the constituent countries of the UK, outlined in
Sect. 2.1 and 2.2, this is simply not possible using the data
sets described above. Instead, the Future Flood Explorer
methodology of Sayers et al. (2016) and Sayers (2017) is
used in the UK’s 5 yearly cycle of Climate Change Risk
Assessment (Committee for Climate Change, 2021) to ad-
dress this limitation. Future Flood Explorer is a statistical
emulation approach that attempts to fill the gaps in existing
hazard and risk information available from the responsible
authorities in the UK’s constituent countries (see Sect. S1.3
for further details). This spatially consistent information can
then be extrapolated into the future, allowing for different
climate, socio-economic and adaptation scenarios. However,
the method necessarily inherits any of the errors in the under-
lying hazard and risk data sets produced in each UK country,
and unsurprisingly produces similar results for EAD to these
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methods (see Table S1). Similar to NaFRA, the loss calcula-
tion in the method does not use depth–damage curves, and in-
stead substitutes a simpler approach based on inundated area
only. Spatial correlations in flooding between locations are
also not accounted for. As a result, only an expected annual
damage can be computed and not the full loss-exceedance
curve. Validation of the outputs has been undertaken for the
number of properties flooded during the 2007 summer floods
in England, which showed a 2.2× overestimation by the Fu-
ture Flood Explorer versus the best available post-event re-
construction (Sayers, 2017), consistent with the results for
NaFRA of Penning-Rowsell (2021).

2.4 Flood hazard and risk data produced by
commercial modelling firms

A number of catastrophe risk modelling firms produce
stochastic models of UK flooding on behalf of the insur-
ance industry and other sectors. However, the methods and
data from these schemes are typically regarded as commer-
cially sensitive, and few details are available in the public
domain. To date, there are no peer-reviewed journal publica-
tions or comprehensive public validation studies for the UK
instances of these approaches, and the data are not available
for academic use. Anecdotally we know that, unlike the pub-
licly available data above, these methods do take flood spatial
dependence into account, and so can provide the full loss-
exceedance curve. Underlying hazard data are available for
a range of return periods, and climate change scenarios may
also have been computed for some of the models.

2.5 Flood losses recorded by the Association of British
Insurers

Finally, the Association of British Insurers (ABI) collates
data on payouts by its members in respect of residen-
tial flooding claims. These data have been produced an-
nually since 1998 and are described in detail in Penning-
Rowsell (2015, 2021). Unlike the UK government risk data,
the figures represent total financial losses (i.e. the actual
money paid out) due to flooding from all sources for the
whole of the UK. The figure does not account for losses in-
curred by the ∼ 20 % of insurers who are not members of
the ABI or for underinsurance by householders. Further, as
Penning-Rowsell (2015) explains, insurance policies in the
UK are written on a “new-for-old” replacement basis such
that each payout includes an element of “betterment” (the
difference between the cost of a new item and the second-
hand value of the flood damaged one it replaces). To con-
vert financial to economic losses, this betterment element
and any taxation (e.g. sales tax) needs to be deducted (see
Sect. S2), and adjustments are required for ABI market share
and homeowner underinsurance. Despite these caveats, fol-
lowing correction for obvious biases, the ABI data provide
a set of realistic observed annual flood losses to compare to

modelled estimates. Whilst the ABI data are not “truth”, they
do represent our current best empirical data on recent UK
flood losses.

2.6 Summary

It is clear from the above review and further information in
Sect. S1 that important details of the methods and data used
to create current flood risk products for the UK are not avail-
able in the public domain. Despite this, a lack of alternatives
means that these data necessarily underpin nearly all current
academic studies of flood risk in the UK (e.g. Rözer and Sur-
minski, 2021; Sayers et al., 2018). Significant inconsistencies
occur in the methods adopted between the different countries
of the UK, and most approaches only represent historic aver-
age conditions rather than the present day or future. Valida-
tion is limited, and those data sets that are publicly available
cannot be used to answer important scientific questions about
extreme UK annual flood losses and the impacts of climate
change.

3 Methods

To address the challenge identified above, we here describe
a climate-conditioned catastrophe risk model for UK pluvial,
fluvial and coastal flooding for historic, current and future
conditions. A detailed description is provided in Sect. S3
and a summary in Fig. 1. The method can broadly be con-
ceptualized as: (i) the creation of hazard layers across the
UK for specified return period intervals and climate scenar-
ios; (ii) the characterization of spatial dependence in flood
discharge and synthetic event catalogue generation; (iii) the
creation of flood event footprints through sampling from the
existing hazard layers; and finally, (iv) the intersection of ex-
posure data with vulnerability functions and event depths to
estimate loss.

At the heart of the method (blue cells in Fig. 1) lies a stan-
dard 1D/2D hydraulic model. In our case, this is a variant of
the LISFLOOD-FP code (Almeida et al., 2012; Almeida and
Bates, 2013; Bates et al., 2010; blue, in bold in Fig. 1), how-
ever any comparable model would give similar results (cf.
Hunter et al., 2008). The 2D component of the model is run
over the whole of the UK at 1 arcsec spatial resolution (∼ 20–
25 m at this latitude). Floodplain elevation values are derived
from a composite digital terrain model (DTM) built using
∼ 10 cm vertical accuracy airborne laser lidar data and UK
Ordnance Survey terrain data where lidar does not exist. lidar
coverage in the UK is approximately 70 % by area and con-
centrated in lowland zones. River channels are treated as 1D
sub-grid scale features following Neal et al. (2012), so are not
constrained by the resolution of the 2D model and can be of
any width. Channel locations are defined using UK Ordnance
Survey channel location data, and widths are derived based
on empirical relationships with upstream catchment accumu-
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Figure 1. Method employed to compute climate-conditioned UK flood hazard and risk maps using a catastrophe model approach. See
Sect. S3.1 to S3.3 for further details. Green cells represent data sources, blue cells represent the hydraulic model and its inputs and outputs,
black and orange cells represent the same for the stochastic model, whilst purple cells designate the climate change analysis. Cells in bold
represent the four main modelling stages of the method.

lation area i.e. a hydraulic geometry approach. Rectangular
channels are assumed, and effective channel bed elevations
are estimated using the methods of Neal et al. (2021). This
is an optimization approach which ensures that the channels
are appropriately sized for the flows being simulated, miti-
gating the problem of gross mismatches between discharge
and channel conveyance and any approximations made when
estimating the channel width. We assume a bankfull return
period of 1 in 2 years for natural alluvial channels, and the
appropriate standard of protection along defended reaches.
Friction parameters in the model are applied as standard val-
ues across the UK, and flood defence information is taken
from a national database, known as AIMS, made available by
UK government agencies (Environment Agency, 2022). Un-
like “official” national flood risk assessments which use only
the AIMS data, we additionally use an algorithm to detect
levees in high-resolution terrain information in order to fill
in any gaps (Wing et al., 2019). The Wing et al. (2019) study
showed that this method could add important information to
official flood defence records, and for a test reach of the River
Po in Italy led to improved hydraulic model predictions. Im-
portantly, the method can identify structures which impact
flood propagation on floodplains, such as causewayed roads
and railway embankments, which are not officially classified
as flood defences.

Blue cells in Fig. 1 also denote the boundary conditions
for the hydraulic model and its main outputs, which are a se-

ries flood hazard maps for 10 different return periods from
1 in 5 to 1 in 1000 years for historical conditions. Boundary
conditions for fluvial, pluvial and coastal floods are obtained
from, respectively, a regionalized flood frequency analysis of
UK gauged flows from the National River Flow Archive, us-
ing an index flood method similar to the UK’s Flood Estima-
tion Handbook (FEH, see Robson and Reed, 1999), rainfall
intensity–duration–frequency curves derived from the CEH-
GEAR1h precipitation database (Lewis et al., 2018), and the
likelihood of coastal extreme water levels derived from the
UK tide gauge network (Environment Agency, 2019a). Data
inputs to this process are shown as green cells in Fig. 1.
The baseline data therefore represent the extreme value dis-
tribution calculated over the period of the historical record
(approximately 1960 to the present day for river flow and
sea level, and 1990–2014 for rainfall), with sea level de-
trended based on 2018 mean sea level values. The historic
extreme event magnitude–frequency curves therefore repre-
sent an average over the observation period, with a mid-point
around 1985–1995, which is when the planet reached 0.6 ◦C
of warming above pre-industrial conditions (Hausfather and
Moore, 2022).

These historic boundary conditions are then adjusted to
current (2020) and future (2030, 2050, 2070) conditions us-
ing future climate projections from the UKCP18 12 km re-
gional simulations under the Representative Concentration
Pathway (RCP) 8.5 carbon emissions scenario (consisting of
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12 ensemble members) and sea level rise projections from
Kopp et al. (2014). Because we consider near-future projec-
tions of flood risk, the impact of climate scenario choice is
somewhat limited because, at least until mid-century, the dif-
ferences over the UK amongst the different emissions path-
ways are relatively small. However, subsequent work should
extend this “proof of concept” to consider ensembles of cli-
mate models and a wider range of emission trajectories. The
UKCP18 projections shows no significant change in storm
surge, so we assume the UK storm surge climate (as cap-
tured in tide gauge data) persists into the future. Changes in
extreme precipitation and sea level are used directly in the
modelling, but for changes in extreme river discharge, the
future rainfall is used as input to a set of ∼ 1000 catchment
hydrology models that are used to compute river flow change
factors. Parameter uncertainty is accounted for in the hydro-
logical simulations using an ensemble approach, and the re-
sults are regionalized based on catchment physical charac-
teristics to give full national coverage. These change factors
(see Fig. S2) are then used to produce future flood hazard
maps, as denoted by the purple cells in Fig. 1.

Lastly, stochastic modelling is used to generate realistic
event footprints by characterizing the spatial dependence in
flooding (black cells in Fig. 1). The spatial dependence is
determined using a conditional exceedance statistical model
(Heffernan and Tawn, 2004; Keef et al., 2009, 2012), and
this information is then used to sample synthetic events from
the pre-computed hazard layers (cf. Quinn et al., 2019). By
combining these hazard event footprints with exposure data
and vulnerability functions, we are able to compute financial
losses and obtain the full loss-exceedance probability dis-
tribution. Without such a stochastic method which includes
spatial dependence, it is only possible to compute expected
annual damage from a set of return period hazard layers.

Whilst the hazard model is run over the whole of the UK,
suitable exposure data are not publicly available over the
whole of Northern Ireland, so, for now, loss computations
are restricted to Great Britain (Wales, Scotland and Eng-
land). To determine exposure, we use the Verisk UKBuild-
ings (formerly “Geomni”) data set, which gives information
on property type, age and use for each building in Great
Britain, and for vulnerability we use a modified set of stan-
dard UK depth–damage curves (the so called Multi-Coloured
Manual approach; see Penning-Rowsell et al., 2013). Finally,
loss results are presented in terms of specific global warm-
ing levels to decouple these from the carbon emission path-
way (RCP8.5) simulated by UKCP18 Regional. The differ-
ent warming levels therefore represent different future times,
but an advantage of this approach is that it gives a degree of
scenario-independence. Whilst the RCP8.5 trajectory is in-
creasingly considered unlikely, we only use this scenario to
extract results at specific warming levels, and so we are mak-
ing no judgements about its probability.

4 Results and discussion

4.1 Model validation

Outputs from the hazard model were first compared to equiv-
alent return period flood extent maps produced by the dif-
ferent national administrations in the UK (see Sects. 2.1 and
S1.1). Specifically, we compared the 1-in-100-year return pe-
riod fluvial and 1-in-200-year return period coastal hazard
layers produced by the historic run of the national model to
the complete set of equivalent flood hazard maps produced
by the Environment Agency for England and Natural Re-
sources Wales (see Sects. 2.2 and S1.1), using (mostly) a
patchwork of local models. Whilst this is a model-to-model
comparison where neither simulation represents truth, we as-
sume that the local models can potentially have higher skill
because they have been built manually, often using local data
to supplement national sources, and are typically calibrated
to match available flood observations. Important points to
note are that the national model in this paper simulates flood-
ing in all catchments down to just a few km2, whereas the
Environment Agency hazard layer may miss some of these.
In addition, the local modelling of fluvial flooding often uses
1D hydraulic models rather than the more realistic 1D/2D ap-
proach taken here (Bates, 2022). Finally, in coastal areas, the
local maps are often produced with “bathtub” GIS mapping
rather than true hydrodynamic approaches. Bathtub methods
assume that any land under the estimated extreme coastal wa-
ter level is inundated during an event, even if this is phys-
ically impossible in practice due to dynamical effects and
lack of hydraulic connectivity. In open coastal plains, bath-
tub methods may therefore be an extreme overestimate of the
true hazard area (Bates et al., 2005; Vousdoukas et al., 2016).
As a result, we should not expect an exact match in all loca-
tions, but instead are looking for broad consistency between
the two models when the data are examined at scale.

We compare the complete set of local maps to the national
layers using the following standard metrics:

i. Hit rate (HR). The proportion of benchmark data
replicated by model, penalizing only underprediction.
0= none of benchmark captured, 1= all benchmark
captured.

ii. False alarm ratio (FAR). The ratio of false positives
to true positives, penalizing only overprediction. 0= no
overprediction, 1= total overprediction.

iii. Critical success index (CSI). The overall skill score,
accounting for both under and over prediction. 0= no
skill, 1= perfect skill.

iv. Error bias (EB). The ratio of over and underprediction
errors. 0= complete underprediction, 0.5= unbiased,
1= complete overprediction.
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Table 1. Contingency matrix of possible cell descriptors in a binary classification scheme. The four possible states of the matrix are denoted
A, B, C and D to simplify their description in Eqs. (1)–(4).

Dry in benchmark data Wet in benchmark data

Dry in model A (i.e. model correct dry) B (i.e. model false negative)
Wet in model C (i.e. model false positive) D (i.e. model correct wet)

The relevant equations for these metrics are

HR=
D

B +D
(1)

FAR=
C

B +D
(2)

CSI=
D

B +C+D
(3)

EB=
C

B
, (4)

where A, B, C and D represent the four states of a standard
2× 2 contingency matrix, as given in Table 1.

For more details on each metric, see Wing et al. (2017).
In Table 2, we give the aggregate performance results for
England and then Wales as a whole (top two rows) and for
each English region separately, whilst in Fig. 2, we compare
national and local hazard maps for a variety of inland and
coastal locations across the UK. Performance scores for these
specific sites are also given in Table 2.

Table 2 and Fig. 2 show a coherent match between the
two modelled layers with an overall CSI of 0.65 for Eng-
land and 0.76 for Wales. CSI is a challenging metric as it
penalizes both over and underprediction and ignores large
areas of non-floodplain that are easy to predict. The metric
is also sensitive to the shoreline length to inundated area ra-
tio (Stephens et al., 2014), so that what constitutes a “good”
match varies between sites. CSI values are therefore invari-
ably less than 1, and this results from both model uncertain-
ties (Hocini et al., 2021) and errors in observed data (Hawker
et al., 2020; Horritt et al., 2001), both of which can be signif-
icant. To put the CSI scores achieved in this paper in context,
comparison of modelled flood inundation extent with obser-
vations from airborne or satellite sources for individual river
reaches typically results in CSI values in the range 0.65–0.9
(Aronica et al., 2002; Horritt and Bates, 2001a, 2002), with
the higher value only ever achieved for sites with very high
quality input and validation data (Bates et al., 2006; Neal et
al., 2009). CSI values in the range 0.7–0.8 have also been
obtained on the few occasions when separate remote sens-
ing systems have acquired simultaneous images of the same
flood (Bates et al., 2006; Biggin and Blyth, 1996; Schumann
et al., 2009), which indicates typical uncertainties in remote
observations of flood extent. Regional validation studies tend
to produce slightly lower aggregate CSI values, mostly be-
cause regional models, unlike local ones, are never calibrated
or optimized to fit the observed data. Example CSI values in

Table 2. Validation metrics when comparing the 1-in-100-year re-
turn period fluvial and 1-in-200-year coastal hazard layer from the
model developed in this paper to equivalent government flood maps
in England and Wales. The four validation metrics are hit rate (HR),
false alarm ratio (FAR), critical success index (CSI) and error bias
(EB). For further details on how these are computed, see Eqs. (1)–
(4) and Table 1.

Area HR FAR CSI EB

National

England 0.71 0.11 0.65 0.24
Wales 0.83 0.10 0.76 0.34

Regional

Northeast 0.75 0.25 0.60 0.50
Northwest 0.82 0.23 0.66 0.57
Yorkshire and the Humber 0.66 0.12 0.61 0.20
East Midlands 0.73 0.09 0.68 0.22
West Midlands 0.75 0.10 0.69 0.25
East of England 0.63 0.06 0.60 0.10
London 0.86 0.26 0.66 0.68
Southeast 0.73 0.11 0.68 0.24
Southwest 0.78 0.09 0.73 0.26

Specific sites in Fig. 2

Tewkesbury 0.94 0.11 0.84 0.66
The Wash 0.66 0.08 0.62 0.14
Somerset coast 0.87 0.1 0.79 0.42
Greater London 0.9 0.26 0.68 0.76

regional scale inundation modelling studies to date therefore
include 0.36–0.43 in Ward et al. (2017), 0.56–0.67 in Samp-
son et al. (2015), 0.76 in Wing et al. (2017) and 0.78 in Bates
et al. (2021), which also shows the general pattern of im-
provement over time as regional models have become more
sophisticated.

The national model developed in this paper and the local
ones developed by the UK’s national administrations there-
fore have differences similar to those between local models
and observations, or between simultaneous observations of
the same flood using different sensors. The performance of
the UK national model is also in line with that of recent re-
gional inundation models created for other territories (Bates
et al., 2021; Wing et al., 2017). We conclude that our model
is a plausible representation of the UK flooding system, with
errors in inundation extent likely similar to those in either
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Figure 2. Comparison of fluvial and coastal hazard layers pro-
duced by the national model developed in this paper (left-hand
panels, labelled 1, in blue) to equivalent government flood haz-
ard maps (right-hand panels, labelled 2, in red). Maps are shown
for: (a) fluvial flooding surrounding Tewkesbury in Central Eng-
land at the confluence of the Severn and Warwickshire Avon rivers;
(b) predominantly coastal flooding around the area of the Wash tidal
embayment in Eastern England; (c) coastal and river flooding in
the Somerset Levels, Southwest England; and (d) tidal and fluvial
flooding in London. Panels (e) and (f) show the location of the test
sites within the UK. Values of the critical success index (CSI) per-
formance metric (see Eq. 3 and Table 2) are given for each site. Base
map data are © OpenStreetMap contributors 2022. Distributed un-
der the Open Data Commons Open Database License (ODbL) v1.0.

observations or local models. At the four sites examined in
Fig. 2, the similarity to government hazard maps is good for
the fluvial flooding examples (panels a and d, CSI values of
0.84 and 0.68, respectively) and the coastal and river flooding
in Somerset (panel c, CSI= 0.79). However, larger and visu-
ally obvious discrepancies are shown for the predominantly
coastal flooding that occurs around the Wash tidal embay-

ment in eastern England (panel b, CSI= 0.62). The most ob-
vious explanation for the differences at this latter site is that
the UK government flood modelling in coastal areas is of-
ten undertaken with simple GIS-based bathtub approaches,
rather than the mass and momentum conserving 2D hydro-
dynamic methods which are deployed here. Metadata are not
available from the Environment Agency in England to show
what sort of modelling was conducted for the Wash, but the
use of a bathtub scheme is one likely explanation for the dif-
ferences we observe.

Next, we compared modelled historic water depths to high
quality observations of maximum water height for a ma-
jor flood that occurred in the UK city of Carlisle in 2005.
Flooding occurred in the city centre and extensively through
surrounding districts, with approximately 1900 homes inun-
dated. Subsequent to the event, survey teams from the Envi-
ronment Agency and the University of Bristol mapped wrack
and water marks using differential GPS systems (Neal et al.,
2009), with a precision of < 0.01 m in the horizontal and ver-
tical. Wrack marks are defined as trash lines that are assumed
to represent maximum flood extent, whereas water marks are
discolourations of vertical surfaces within the flooded area
that are thought to represent maximum water elevation. Com-
bining these surveys yielded a set of 263 measurement points
spread widely over the Carlisle urban area. These represent
one of the most comprehensive model validation data sets
for urban flooding currently available. Interpreting wrack and
water marks post-event can be difficult, however data quality
was evaluated by Fewtrell et al. (2011) who concluded that
the mean error across the whole data set was around ±0.1 m,
whilst likely maximum differences between individual wrack
or water mark measurements and true peak water levels were
in the range 0.3–0.5 m.

Parkes and Demeritt (2016) estimate the return period
of the 2005 Carlisle flood to have been ∼ 260 years, al-
beit with high uncertainty (95 % confidence interval of 70–
4060 years), as is typical for large floods. This observed re-
turn period is conveniently close to the 1-in-250-year return
period hazard layer simulated by the model, so we therefore
compare these predicted maximum water elevations to the
observations (see Fig. 3).

Simulating maximum water elevations in a dense ur-
ban area is not straightforward, and the Carlisle simulation
presents a difficult test for any hydrodynamic model. Nev-
ertheless, comparison of the national model to observations
yielded root mean square error of 0.41 m, mean error of
−0.04 m and mean absolute error of 0.29 m (see Fig. 3a
and b). For context, a 5 m spatial resolution LISFLOOD-
FP model (Bates et al., 2010) of the Carlisle 2005 event
built, following the work of Neal et al. (2009), with observed
bathymetry and gauged flows and using calibrated friction
parameters gave an RMSE of 0.36 m (see Fig. 3c). Both
the local and national model errors are greater than obser-
vational error, probably as a result of errors in the gauged
flow and regional flood frequency analysis procedure, respec-
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Figure 3. (a) Model predicted 1-in-250-year water depth and extent for Carlisle, showing location of observed maximum water elevations
colour-coded by error magnitude; (b) frequency histogram of errors for the model reported in this paper; and (c) frequency histogram of
errors for a 5 m simulation using the 1D/2D hydrodynamic model LISFLOOD-FP, built with local flow and bathymetric data and using
calibrated friction parameters.

tively. However, in terms of overall RMSE, they differ from
each other by less than the lidar terrain data error at this site
(∼ 10 cm). The error histograms in Fig. 3b and c show larger
outliers in the national model, which is expected given the
coarser spatial resolution of this simulation and the fact that
it does not represent in-channel structures, such as bridges,
that the local model includes. Indeed, Fig. 3a does seem to
show larger errors in the national model in the vicinity of
known structures, and future work may need to develop a na-
tional database of these obstructions similar to the recently

released Global River Obstruction Database product (Yang
et al., 2022).

Finally, the expected annual damage produced by the
catastrophe model was validated by comparison with the ob-
servations of annual insured losses compiled by the Associa-
tion of British Insurers (ABI) discussed in Sect. 2.5 and given
in Table S1. To convert the ABI’s residential-only losses
from 1998 to 2018 for the whole UK to combined residen-
tial and non-residential losses in 2020 values for GB only (as
produced by the catastrophe model), we broadly follow the
approach outlined in Penning-Rowsell (2021). We therefore
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Table 3. Estimated annual damage values for previous modelled analyses (England’s National Flood Risk Analysis, NaFRA, and the UK’s
Third Climate Change Risk Assessment, CCRA3), observed insured losses from the Association of British Insurers (ABI) and the new model
analysis conducted for this paper. These figures represent direct financial losses due to fluvial, pluvial and coastal flooding in 2020 values for
residential and non-residential properties in Great Britain.

Source NaFRA CCRA3 ABI This paper

Adjusted EAD value (billions) GBP 2.246 GBP 2.154 GBP 0.714 GBP 0.730

adjust the ABI data to make allowance for underinsurance,
the ABI’s incomplete market share and observations of the
ratio of residential to non-residential losses from past UK
flooding episodes. We can also compare these adjusted EAD
values to previous model analyses of flood loss undertaken
by government agencies in the UK and the third UK Cli-
mate Change Risk Assessment (CCRA3, see Sects. 2.3 and
S1.3). Of the four countries which comprise the UK, flood
losses are only publicly reported for England as part of their
NaFRA programme. Wales, Scotland and Northern Ireland
have their own flood risk mapping programmes with different
methodologies that only report number of properties exposed
and not financial losses (see Sects. 2.2 and S1.2). To create
a GB loss, we therefore scale the NaFRA result for England
using the ratios reported in Penning-Rowsell (2021). These
were taken from the emulation methodology used in the 2017
UK Climate Change Risk Assessment (Sayers, 2017), which
determined that England accounts for 79 % of flood losses,
Scotland 12 %, Wales 6 % and Northern Ireland 2 %. Next, to
convert the upscaled NaFRA and CCRA3 estimates of eco-
nomic loss to financial values, we need to allow for better-
ment and taxation and to adjust the NaFRA EAD so that it
also represents losses due to pluvial flooding. All data sets
are normalized for inflation and increasing gross domestic
product to 2020. Further details of the corrections made to
bring the data onto a consistent basis are given in Sect. S2
and the final EAD values are reported in Table 3.

Of the modelled EAD of GBP 730 million, GBP 382 mil-
lion of the losses come from fluvial flooding, GBP 150 mil-
lion from pluvial and GBP 198 million from coastal, al-
though the boundary between what constitutes fluvial and
pluvial flooding is somewhat arbitrary. The small deviation
between our modelled EAD and the ABI data is pleasing, and
likely within the range of observational error (resulting from
approximations during loss adjustment, errors in reporting,
etc.). However, the 20 years of ABI historical observations
represent just one realization of the insured losses that could
potentially occur during this period. The catastrophe model
developed here simulates a 10 000-year synthetic catalogue
of flooding, and therefore includes very low probability, high
loss events that may not be present in the ABI’s historical
record simply due to chance. To get a sense of likely uncer-
tainty in the ABI data as a result of the undersampling of
very extreme events, we randomly selected 10 000 periods of
20 years from the catastrophe model and calculated the EAD

Figure 4. Simulated expected annual damage from 10 000 random
samples of 20-year time periods for the model developed in this
paper, for 2020 conditions compared to adjusted values from pre-
vious model estimates from the Environment Agency’s National
Flood Risk Analysis (NaFRA), the UK’s Third Climate Change
Risk Assessment (CCRA3) and observations from the Association
of British Insurers (ABI). The grey shading denotes the interquartile
range of the ABI data.

for each of these. The frequency histogram for these random
20-year samples is reported in Fig. 4, along with vertical lines
representing the ABI, NaFRA and CCRA3 expected annual
damages.

Figure 4 makes clear the likely large impact on EAD of
random sampling of very extreme floods during any finite
period of historical data. Nevertheless, the observed ABI
data sit squarely within our bootstrapped loss distribution.
Expected annual damages from previous UK model analy-
ses (NaFRA, CCRA3) are 3 times larger than ABI observed
losses (as previously noted by Penning-Rowsell, 2021), and
lie well outside the distribution of 20-year samples of loss
from the catastrophe model reported here. Based on our dis-
tribution of losses, one would expect values equivalent to
NaFRA and CCRA3 expected annual damages to occur every
∼ 15 years and not annually. Whilst the catastrophe model
developed here is not truth, Fig. 4 does indicate that the dif-
ferences between NaFRA/CCRA3 EADs and the ABI obser-
vations are very unlikely to be the result of extreme losses
included in the NaFRA analysis and missing from the histor-
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Figure 5. Great Britain loss-exceedance curves due to flooding (in
GBP billion at 2020 values) for different specific global warming
levels since the pre-industrial (1850–1900).

ical record. Instead, it suggests that the NaFRA and CCRA
methods may have significant errors.

4.2 Risk projections and climate change

Based on the hazard and risk validation evidence presented
above, the catastrophe model developed here appears to be a
reasonable representation of UK flood patterns and losses. To
examine how climate change will impact flooding in Great
Britain, we calculate loss-exceedance curves in 2020 mon-
etary values from the catastrophe model for specific global
warming levels above pre-industrial (1850–1900). The loss-
exceedance curve shows the probability that a particular to-
tal annual loss will be exceeded in any given year. These are
shown in Fig. 5, with values for the average annual and 1 %
annual probability (1 in 100 year) loss given in Table 4.

A specific global warming level of 1.1 ◦C approximately
represents the present day (2020 in our case), whilst a thresh-
old of 0.6 ◦C was crossed sometime around 1990, and is
therefore equivalent to the baseline run of our model using
boundary conditions derived from the historic observational
record. A temperature of 1.8 ◦C represents the likely maxi-
mum warming under the Paris Agreement target if the 2030
emission reduction pledges made at COP26 are implemented
in full and, in addition, countries’ longer-term “net zero” am-
bitions are fully realized by the mid-21st century (Hausfa-
ther and Moore, 2022; Meinshausen et al., 2022). A specific
global warming level of 2.5 ◦C above pre-industrial is ap-
proximately what is projected if only the COP26 2030 emis-
sion reduction targets are achieved and then CO2 reductions
stall, whilst 3.3 ◦C gives an indication of what is likely to
happen if the Paris Agreement and net zero targets are missed
and climate sensitivity turns out to be towards the upper end
of the current plausible range. In all these calculations, we
assume 2020 population and assets: future work will look

at the balance between socio-economic changes and climate
change on future flooding. Where this balance has been ex-
amined in other territories (Swain et al., 2020; Wing et al.,
2018, 2022), population change is typically shown to be a
significantly larger driver of future risk than changes in pre-
cipitation and temperature.

Figure 5 shows that, according to our model, changes in
flood losses over Great Britain due to climate change alone
between recent historical average conditions and the present
day have so far been minor, with differences only really
emerging for annual loss return periods greater than 70 years.
The increase in EAD between these warming levels is only
1.5 %, whilst the 1 % annual probability (1-in-100-year re-
turn period) loss with 1.1 ◦C of warming is GBP 5.17 bil-
lion, compared to GBP 4.89 billion with 0.6 ◦C of warming, a
∼ 6 % increase. This is consistent with already observed (but
modest) changes in rainfall (Kendon et al., 2021) and mean
annual flood flows (Blöschl et al., 2019) resulting from both
natural variability and climate change. Specifically, Kendon
et al. (2021) show that the period 2011–2020 was, on aver-
age, 9 % wetter than 1961–1990, whilst Blöschl et al. (2019)
reported observed changes in mean annual flood magnitudes
in different regions of the UK of between−2.5 % and+12 %
over the period 1960–2010.

Figure 5 also shows that Great Britain will only be able to
avoid major increases in flood risk due to climate change if
all countries’ current COP26 and net zero emission reduction
pledges are met in full and warming above pre-industrial is
limited to 1.8 ◦C. In this policy scenario, the UK 1 % annual
probability flood loss of GBP 5.3 billion represents only an
∼ 8 % increase above recent historical values, whilst EAD
increases by only ∼ 4 %. However, if the net zero targets
are missed, then much larger increases in EAD are possi-
ble: ∼ 13 % for 2.5 ◦C of warming and ∼ 23 % for 3.3 ◦C.
One percent annual probability losses rise by even greater
amounts to GBP 6 billion for 2.5 ◦C and GBP 6.7 billion
for 3.3 ◦C. Respectively, these represent 23 % and 37 % in-
creases over recent historical (0.6 ◦C of warming) conditions,
and are significant in terms of both the required annual flood
defence spending to adapt to these risks and the capital pro-
vision against flood losses that financial markets will need to
make.

The curves in Fig. 5 represent UK aggregate losses, how-
ever this conceals important changes in the geography of risk
(Fig. 6). Figure 6 shows absolute expected annual damage
aggregated to 10 km hexagons across Great Britain for his-
torical average conditions (0.6 ◦C of warming, Fig. 6a, left-
hand panel) and the percentage change in EAD assuming that
the current COP26 2030 commitments and net zero pledges
are implemented by all countries on time and in full (1.8 ◦C
of warming, Fig. 6b, right-hand panel). Historical EADs are,
unsurprisingly, largest for 10 km spatial units containing ma-
jor population centres (London, South Wales, the cities of the
Liverpool–Manchester area, and the Glasgow–Edinburgh re-
gion of the Scottish central belt). Moreover, whilst changes
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Table 4. Great Britain expected annual and 1 % annual probability flood losses in GBP billion at 2020 values for different specific global
warming levels since the pre-industrial (1850–1900).

Warming Expected annual % change 1 % annual % change
level (◦C) damage (EAD, with warming probability loss with warming

GBP billion) above 0.6 ◦C (GBP billion) above 0.6 ◦C

0.6 0.73 – 4.89 –
1.1 0.74 1.5 5.17 5.7
1.8 0.76 3.7 5.30 8.4
2.5 0.83 13.2 6.01 22.9
3.3 0.90 23.0 6.70 37.0

Figure 6. Spatial distribution of expected annual damage (EAD) due to flooding for historical conditions (0.6 ◦C of warming) and percentage
change between this and a warming level of 1.8 ◦C, which approximately represents a world in which the Paris Agreement targets are met.

in national aggregate EAD above recent historical values for
Great Britain under 1.8 ◦C of warming are modest, Fig. 6
shows significant spatial patterns that include areas of sig-
nificant increase (> 25 %) as well as areas with small de-
creases. Significant increases occur over Southeast England,
South and West Wales, and Northwest England. More mod-
est increases occur over much of central and western Scot-
land, whilst small decreases in flood losses occur over South-
west, central, and Northeast England. These patterns result
from the complex interplay of changing flood drivers (see
Fig. S2) with asset exposure. Broadly, extreme rainfall and
sea level increase almost everywhere (albeit by a spatially
variable amount that varies over time), and these drive in-
creased pluvial and coastal flooding. However, warmer fu-
ture temperatures mean that increased rainfalls can, at times,
fall on drier soils and result in less catchment runoff. Flu-
vial flood hazards therefore decrease across large areas of
eastern, central and southwestern regions, and this can coun-
terbalance increases in other flood drivers, resulting in net
risk reductions at the 10 km scale. Resolving and analysing

more detail than this would likely represent overconfidence
in model skill, as the fine-scale spatial patterns would likely
change somewhat with different climate projections and hy-
drological modelling. Nevertheless, we expect the broad re-
gional patterns in our data to hold and be useful in devel-
oping policy. Lastly, this complex pattern of both increases
and decreases in rainfall and river flow is very different to
current UK climate change allowances for these quantities
(Kay et al., 2021), which are almost uniformly positive for
all future time periods (see Sect. S3.1.2 for further details).
A further observation from Fig. 6 is that many areas of rising
risk are locations where the risk is already high (e.g. London
and South Wales).

5 Conclusions

Current assessments of flood hazard and risk in the UK
lack transparency, are insufficiently validated and, with very
few exceptions, are not exposed to independent peer review.
Whilst the public availability of the data sets is impressive
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by international standards, the methods used in their cre-
ation are clouded in secrecy. Calls for proper peer review of
UK national flood risk assessments have been made before
(Penning-Rowsell, 2015), but have effectively been ignored.
The methods are therefore not repeatable by others.

This situation slows down and hampers model review
and improvement cycles whilst restricting the number of
researchers that can contribute to the effort, thereby creat-
ing significant barriers to progress. To give an example of
this in operation, the NaFRA methodology used in England
was developed by Hall et al. (2003) with a new major ver-
sion in 2008 and a further major release in 2018 (Penning-
Rowsell, 2021). A wholesale revision of the methodology
(NaFRA2) is currently underway and is scheduled to come
into operation in 2024 or 2025. Major model updates are thus
∼ decadal, and following the initial peer-reviewed work in
2003, no details of methodological revisions have appeared
in the public domain. By contrast, peer-reviewed large-scale
inundation modelling methods have seen rapid advances
from the first national-scale models in data-rich countries
in 2004 (Bradbrook et al., 2005), to simulation of globally
significant data-poor basins in 2007 (Wilson et al., 2007),
simple global methods in 2013 (Ward et al., 2013) and full
2D hydrodynamic global models at < 100 m resolution by
2015 (Sampson et al., 2015). This has required technolog-
ical developments in the use of high-performance comput-
ing, modelling methods, data sets and machine learning al-
gorithms that are contained in a now large body of literature
(e.g. Addor et al., 2020; Alfieri et al., 2016; Allen and Pavel-
sky, 2018; Hawker et al., 2022; Knox et al., 2022; Morales-
Hernández et al., 2020; Neal et al., 2021; Yamazaki et al.,
2017; Zhao et al., 2021, to cite just a few). Numerous sig-
nificant advances occur every year and the rate is accelerat-
ing. It is thus abundantly clear that peer review accelerates
the model development cycle, allows rapid diffusion of best
practice and enables contributions from an increasing pool of
new researchers who can bring novel ideas. Flood risk man-
agement in the UK does not currently take advantage of this
engine for progress.

This paper attempts to kick-start this process for the UK
by demonstrating a first climate-conditioned catastrophe risk
model for UK flooding, which shows skill at simulating both
hazard and risk. A model-to-model comparison with official
1-in-100-year return period fluvial and 1-in-200-year coastal
hazard maps across the whole of England and Wales gave an
overall critical success index (CSI) value of 0.65 for England
and 0.76 for Wales. CSI is a challenging metric to maximize,
as it penalizes both under and overprediction, and ignores
easy to predict dry areas, but this value is similar to that ob-
tained in comparisons of local hydrodynamic models to re-
mote sensing observations of flooding (Aronica et al., 2002;
Horritt and Bates, 2001b, 2002). CSI values over the UK are
slightly lower than those obtained in a similar study over the
US (Bates et al., 2021), in part because the US has more
big rivers which are, in general, easier to model. CSI val-

ues for the UK are also influenced by the different methods
employed in coastal areas by the local and national models
i.e. bathtub GIS models used in local studies and the hydro-
dynamic approach used here at national scale, which is likely
to be more accurate. In fluvial areas, the similarity between
the local and national models is generally better (see Fig. 2a
and d), and comparison of maximum water levels predicted
by the national model for the 2005 Carlisle flood gave an
RMSE of 0.41 m compared to 0.36 m for a high-resolution
local model that was built and calibrated with site-specific
data. Most importantly, the national model was, unlike exist-
ing schemes, able to provide a good match (i.e. one that is
within likely error) to observed annual flood losses from the
Association of British Insurers (ABI).

Our model analysis of course comes with a number of
caveats. Driving the analysis with different climate models
would change the detail of local predictions, however there
is agreement on the broad patterns of UK climate change,
and the 12 km regional climate model used in UKCP18 is
the current official estimate of UK future climate. Hydrolog-
ical modelling contains significant uncertainty arising from
the boundary forcing, input data, model parameters and cal-
ibration (Beven, 2006; Coxon et al., 2019), and hydrody-
namic models are predominantly sensitive to DEM (digital
elevation model) and forcing errors as well as the quality of
nationally available flood defence information. The latter is
likely a key limiting factor for any large-scale flood inun-
dation analysis, and whilst some workarounds are possible
(e.g. Wing et al., 2019), these are by no means perfect. We
also use a single change factor for all event return periods,
which may be an oversimplification (see for example Bertola
et al., 2020). More sophisticated work could use a multi-
model ensemble of climate model simulations (e.g. Cloke et
al., 2013), run multiple simulations to account for uncertainty
(e.g. Keef, et al., 2012), use higher model resolution over ur-
ban areas (Fewtrell et al., 2008) and take into account the
probability of defence failure (Shustikova et al., 2020). We
also need to find better ways to recover and assemble local
and ad hoc data (e.g. on river bathymetry, flood defences and
validation data) into consistent national databases and de-
velop algorithms to replicate the decision making of skilled
local modellers in automated ways. Our ultimate goal should
be to create national models which have equivalent perfor-
mance to local approaches. Nevertheless, the model simu-
lations shown here do have skill and represent a significant
advance on previous work, such that there can be confidence
in the broad conclusions that we draw.

Expected annual damage (EAD) due to flooding in official
UK data gives values that are ∼ 3× higher than the observed
ABI values, as Penning-Rowsell (2021) has previously ob-
served. Moreover, these government estimates are used more
or less directly in the UK’s Climate Change Risk Assessment
(CCRA) process, so this latter analysis also inherits these bi-
ases. Whilst the ABI data need careful handling and adjust-
ment because of the way they have been collected, these dif-
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ferences are stark. Nevertheless, the ABI data provide only a
20-year snapshot of possible UK flood losses, whilst official
model data include very large events (up to 1-in-1000-year
return period), which are physically possible but may not be
present in the historic record. Such events may be large con-
tributors to EAD despite their low probability. However, the
analysis developed in this paper shows that this is very un-
likely to account for the difference between observed flood
losses and official estimates, as the latter lie well outside our
modelled distribution of 20-year losses, which is plausibly
centred on the observations. This distribution (which is a sur-
rogate for natural climate variability) means that the 5–95 %
range for EAD is GBP 0.43–1.14 billion in our model, so the
official estimate of GBP 2.4 billion seems implausibly high.

Our modelling shows that, even with a more sensible
loss distribution than official UK government estimates, the
COP26 2030 pledges on decarbonization are not on their own
sufficient to restrict increases in UK flood risk to < 10 % for
either EAD and/or 1 % annual probability flood loss. Instead,
international net zero commitments will need to be imple-
mented in full, or else rises in 1 % annual probability loss
of 23 % or even 37 % are possible depending on the path-
way that society takes. Adaption to these greater increases is
still likely possible for the UK, but at much increased cost.
Whilst the most optimistic climate scenarios see only modest
increases in losses at national scales, this conceals a dramat-
ically changing geography of risk. These spatial variations
are significant and create both winners and losers, with some
places seeing ∼ 25 % increases in the 1 % annual probability
loss even if net zero pledges are implemented in full. It is
therefore strongly in the UK’s interest to exercise leadership
in global carbon emission reduction efforts, both by example
and as part of global diplomatic initiatives.

It is also clear that the UK is not well adapted to the flood
risks it currently faces, let alone any further increases in risk
due climate change. Current expected annual damages of
∼GBP 700 million are a drain on the economy, but more im-
portantly this represents a very considerable sum of misery
for those who are affected (e.g. French et al., 2019). Most
places in the UK that will be at risk of flooding in the fu-
ture are already at risk now. It follows that the best thing
we can do to prepare for the impact of climate change is
to strengthen flood management in currently at-risk areas,
and this will have immediate economic and social benefits
as well.

In summary, we have presented a plausible and sober as-
sessment of current and future UK flood risk. The analysis
contains a greater level of detail and nuance compared to pre-
vious work, and represents our current best understanding of
the UK’s changing flood risk landscape. Whilst we should
be cautious of over-interpreting the fine-scale spatial detail
of the predictions, we expect that the national-scale results
and broad regional patterns can be used in framing policy.
The complexity of the climate-driven change we find in UK
flood risk is likely to ring universally true in other parts of

the world and should cause us to question simplistic flood
risk projections and policy responses.
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