

Supplement of

Quantifying the potential benefits of risk-mitigation strategies on future flood losses in Kathmandu Valley, Nepal

Carlos Mesta et al.

Correspondence to: Carmine Galasso (c.galasso@ucl.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Material

Table S1.	List o	f acrony	yms used	in	this	work
-----------	--------	----------	----------	----	------	------

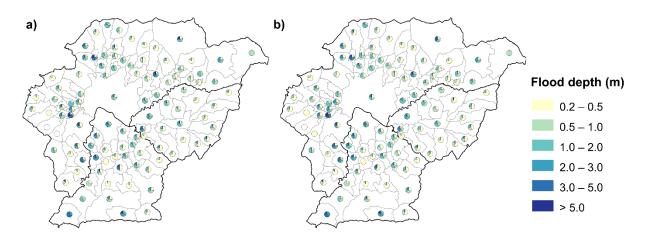

Acronym	Description
DRR	disaster risk reduction
А	adobe
BSM	brick/stone masonry with mud mortar
BSC	brick/stone masonry with cement mortar
W	wood-frame
RC-CCP	current-construction-practice reinforced concrete
RC-WDS	well-designed reinforced concrete
RM	reinforced masonry

Table S2. Mean loss metrics for Scenario A, and absolute changes to these metrics in Scenarios B, C, and D, disaggregated by district

Flooding Metric		District	Scenario A Scenario B		Scenario C	Scenario D	
occurrence							
100-year	Mean absolute	Bhaktapur	62,253,439	+8,617,871	-6,306,202	+9,605,264	
	financial losses (\mathbf{f})	Kathmandu	345,346,326	+57,348,232	-51,220,080	+32,270,581	
		Lalitpur	65,333,200	+8,687,941	-5,757,517	+10,815,200	
	Mean loss ratio	Bhaktapur	3.5%	-0.09%	-0.81%	-0.84%	
		Kathmandu	2.7%	-0.07%	-0.80%	-0.82%	
		Lalitpur	2.4%	-0.02%	-0.49%	-0.52%	
1000-year	Mean absolute	Bhaktapur	89,654,403	+12,377,766	-5,258,360	+18,393,467	
	financial losses (\in)	Kathmandu	576,162,142	+83,341,425	-56,444,738	+88,865,127	
		Lalitpur	108,976,618	+12,182,617	-4,690,669	+23,241,568	
	Mean loss ratio	Bhaktapur	5.0%	-0.13%	-1.0%	-1.0%	
		Kathmandu	4.6%	-0.20%	-1.1%	-1.2%	
		Lalitpur	4.0%	-0.11%	-0.66%	-0.74%	

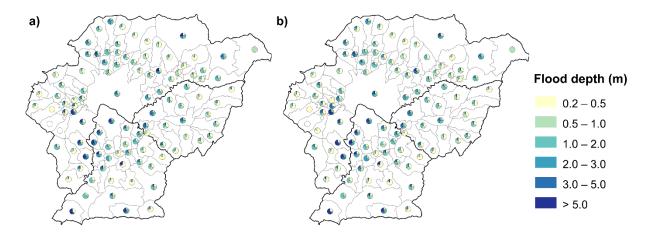

Flooding Metric		Income level	Scenario A	Scenario B	Scenario C	Scenario D	
occurrence							
100-year	Mean absolute	Low	38,592,710	+18,097,384	-6,774,800	+2,259,014	
	financial losses (\in)	Middle	103,189,196	+23,146,134	-11,400,874	+14,191,417	
		High	331,151,059	+33,410,526	-45,108,125	+36,240,614	
	Mean loss ratio	Low	2.1%	+0.10%	-0.88%	-0.90%	
		Middle	2.4%	-0.08%	-0.71%	-0.73%	
		High	3.0%	-0.04%	-0.69%	-0.72%	
1000-year	Mean absolute	Low	60,564,250	+25,800,358	-7,288,996	+7,639,070	
	financial losses (\in)	Middle	162,179,628	+35,446,740	-11,381,018	+29,947,118	
		High	552,049,285	+46,654,710	-47,723,753	+92,913,974	
	Mean loss ratio	Low	3.3%	+0.06%	-1.3%	-1.3%	
		Middle	3.7%	-0.14%	-1.0%	-1.0%	
		High	5.0%	-0.15%	-0.94%	-1.0%	

Table S3. Mean loss metrics for Scenario A, and absolute changes to these metrics in Scenarios B, C, and D, disaggregated by income level

Figure S1. Expected proportions of buildings within various depth ranges of the 100-year floodplain for a) Scenarios A, C, D, and b) Scenario B.

Scenarios A, C, and D yield identical results, since the flood-hazard-informed land-use planning imposed as part of Scenarios C and D means that the expected number of buildings within the floodplain in 2031 (Scenarios C, D) remains limited to 2021 levels (Scenario A).

Figure S2. Expected proportions of buildings within various depth ranges of the 1000-year floodplain for a) Scenarios A, C, D, and b) Scenario B.

Scenarios A, C, and D yield identical results, since the flood-hazard-informed land-use planning imposed as part of Scenarios C and D means that the expected number of buildings within the floodplain in 2031 (Scenarios C, D) remains limited to 2021 levels (Scenario A).