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Abstract. Changes in climate and socio-economic condi-
tions pose a major threat to water security, particularly in
the densely populated, agriculture-dependent and rapidly de-
veloping country of India. Therefore, for cogent mitigation
and adaptation planning, it is important to assess the future
evolution of drought hazard, vulnerability and risk. Earlier
studies have demonstrated projected drought risk over In-
dia on the basis of frequency analysis and/or hazard assess-
ment alone. This study investigates and evaluates the change
in projected drought risk under future climatic and socio-
economic conditions by combining drought hazard and vul-
nerability projections at a country-wide scale. A multivariate
standardized drought index (MSDI) accounting for concur-
rent deficits in precipitation and soil moisture is chosen to
quantify droughts. Drought vulnerability assessment is car-
ried out combining exposure, adaptive capacity and sensitiv-
ity indicators, using a robust multi-criteria decision-making
method called the Technique for Order Preference by Simi-
larity to an Ideal Solution (TOPSIS). In the worst-case sce-
nario for drought hazard (RCP2.6-Far future), there is a pro-
jected decrease in the area under high or very high drought
hazard classes in the country by approximately 7 %. Further,
the worst-case scenario for drought vulnerability (RCP6.0-
SSP2-Near future) shows a 33 % rise in the areal extent of
high or very high drought vulnerability classes. The western
Uttar Pradesh, Haryana and western Rajasthan regions are
found to be high risk under all scenarios. Bivariate choro-
pleth analysis shows that the projected drought risk is ma-
jorly driven by changes in drought vulnerability attributable
to societal developments rather than changes in drought haz-
ard resulting from climatic conditions. The present study can
aid policy makers, administrators and drought managers in

developing decision support systems for efficient drought
management.

1 Introduction

Droughts play a major role in water resource planning and
management, agronomy, and freshwater availability (Mishra
and Singh, 2010, 2011). Droughts may be exacerbated by
climate change or societal developments or through a com-
bination of the two. For building drought resilience, it is
important to assess the role of these changes on the evo-
lution of drought at regional scales, particularly for rapidly
growing heavily agriculture-dependent countries such as In-
dia. Though socio-economic development is reported to have
a greater impact on the water availability compared to the
climate-induced impacts in some regions across the globe,
the role of climate change cannot be entirely eliminated
(Koutroulis et al., 2019). Representative Concentration Path-
ways (RCPs; van Vuuren et al., 2011) that are radiative forc-
ing scenarios for different greenhouse gas emission levels are
commonly used for climate change impact studies. Shared
Socioeconomic Pathways (SSPs; O’Neill et al., 2017), on
the other hand, provide different narratives of future societal
development. Plausible combinations of different RCPs and
SSPs are useful to study the future projections of drought risk
(Kim et al., 2020).

According to the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5) (IPCC,
2014), the risk of an extreme event can be quantified as a
product of hazard, vulnerability and exposure. Drought haz-
ard is a function of magnitude and occurrence probability
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of drought events. On the other hand, drought vulnerabil-
ity is the degree to which a region is susceptible to drought
and is a function of sensitivity, adaptive capacity and ex-
posure components. These components in turn describe the
socio-economic, physical and infrastructural factors and are
illustrated through drought vulnerability indicators. A com-
prehensive drought risk assessment involves the proper se-
lection of drought indicators for hazard analysis and the
proper selection of drought vulnerability indicators and reli-
able aggregation technique for vulnerability analysis (Carrão
et al., 2016; Naumann et al., 2014; Sahana et al., 2021). By
virtue of taking into consideration both drought hazard and
vulnerability, a combination of RCP and SSP scenarios offer
a comprehensive approach for drought risk projection.

Several studies have carried out risk assessments of
drought and water availability across different regions of the
world under changing climate and socio-economic condi-
tions. Singh and Kumar (2019) quantified the water avail-
ability in the Indian region due to climate and demographic
changes. Ahmadalipour et al. (2019) carried out drought risk
assessment in the African region for different population
growth and climate change scenarios. Chen et al. (2021) eval-
uated the effect of changing climate, population and GDP
on the drought risk for China. Park et al. (2021) presented
drought risk projections under changing meteorological con-
ditions and socio-economic scenarios for South Korea. A
comprehensive drought risk assessment for Europe was car-
ried out by Koutroulis et al. (2018) under changing climate
and socio-economic scenarios by evaluating exposure, sensi-
tivity and adaptive capacity components for the projected pe-
riod. Along similar lines, Koutroulis et al. (2019) quantified
the global water availability under high-end climate change.
Water use vulnerability was assessed by Kim et al. (2020)
for a river basin in Korea for different climate and socio-
economic scenarios.

For the Indian region, projections of drought hazard and/or
risk and water availability have been developed in earlier
studies using climate scenarios alone (Aadhar and Mishra,
2020, 2021; Gupta et al., 2020; Gupta and Jain, 2018) with
the exception of Singh and Kumar (2019), who consider the
role of both climate and socio-economic scenarios for ob-
taining future projections of water availability (Singh and
Kumar, 2019). However, Singh and Kumar (2019) represent
future socio-economic changes using a simplistic approach
that considers changes in population alone. A combination
of RCP and SSP scenarios by integrating hazard and vulner-
ability information is required to assess drought risk in India
in the near and far future. Further, most studies that assess
drought hazard under climate change scenarios consider ei-
ther univariate or multivariate approaches based on precipi-
tation deficits and temperature effects (Aadhar and Mishra,
2020, 2021; Gupta et al., 2020; Gupta and Jain, 2018). How-
ever, droughts can often manifest as a complex interplay
of multiple influencing variables, necessitating a multivari-
ate approach for the characterization of drought hazard (Sa-

hana et al., 2020). For the agrarian country of India, agro-
meteorological drought hazard projections should consider
deficits in precipitation or soil moisture or both.

The present study aims at comprehensive drought risk pro-
jections for India by accomplishing the following objectives:
(a) multivariate drought hazard projection using a multivari-
ate standardized drought index (MSDI) that considers con-
current deficits in precipitation and soil moisture for future
warming scenarios, (b) drought vulnerability projection con-
sidering combinations of RCP and SSP scenarios, using a list
of drought vulnerability indicators that represent exposure,
sensitivity and adaptive capacity components, (c) drought
risk projection integrating hazard and drought vulnerability
information, (d) development of bivariate choropleth plots
under future scenarios to quantify the individual roles of
climate and societal changes in driving drought risk, and
(d) identification of regions and zones that are expected to
be under the worst drought risk conditions in the near and far
future.

2 Materials and methods

2.1 Data

2.1.1 Hydro-climatic variables

The multivariate drought risk assessment focusing on agri-
cultural drought requires a combined analysis of precipi-
tation and soil moisture data. The drought hazard assess-
ment for the baseline period (1980–2015) requires ob-
served hydro-climatic variables. Gridded daily precipitation
data (mm; precipitation: https://www.imdpune.gov.in/cmpg/
Griddata/Rainfall_25_NetCDF.html, last access: 20 Novem-
ber 2020) at 0.25◦ lat×0.25◦ long resolution are obtained
from the India Meteorological Department (IMD) (Pai
et al., 2014). This dataset has been employed in vari-
ous studies over the Indian region (Sahana et al., 2021).
Gridded monthly root-zone soil moisture data (m3 m−3)
over the Indian region at 1/2◦ lat×2/3◦ long resolution
are obtained from Modern-Era Retrospective Analysis for
Research and Application (MERRA-Land) (soil mois-
ture: https://disc.gsfc.nasa.gov/datasets/MST1NXMLD_5.2.
0/summary?keywords=MERRA-land, last access: 14 April
2018). This dataset has been employed for drought stud-
ies across the world (Farahmand and AghaKouchak, 2015;
AghaKouchak, 2015) and also for Indian regions (Sahana
et al., 2020, 2021). The above two datasets are regridded
to a common spatial resolution of 0.5◦ lat×0.5◦ long and
rescaled to monthly resolution for the historical drought
hazard assessment. Re-gridding of the observed datasets
to 0.5◦ lat×0.5◦ long resolution is carried out using the
triangulation-based linear interpolation method (Watson and
Philip, 1984). Further, monthly time series of spatial varia-
tion in terms of standard deviation of precipitation and soil
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moisture from their observed and rescaled datasets is shown
in Fig. S1 in the Supplement. It is observed that the rescaling
of datasets from their parent resolution to 0.5◦ lat×0.5◦ long
results in no additional variability.

In order to evaluate the projected drought hazard over In-
dia, the projected precipitation and soil moisture data at a
spatial resolution of 0.5◦ lat×0.5◦ long are obtained from
the Inter-Sectoral Impact Model Intercomparison Project
(ISIMIP) (Warszawski et al., 2014). The historical (1980–
2005) and projected (2006–2099) data from available gen-
eral circulation models (GCMs), namely GFDL-ESM2M,
HADGEM2-ES, IPSL-CM5A-LR and MIROC5, and for
two RCPs – RCP2.6 and RCP6.0 – are downloaded from
the ISIMIP data portal (https://esg.pik-potsdam.de/search/
isimip/, last access: 9 September 2020). The daily precipi-
tation data (kg m−2 s−1) are already downscaled and bias-
corrected with respect to global-level observed precipitation
from EWEMBI (EartH2Observe observations, WFDEI and
ERA-Interim data Merged and Bias-corrected for ISIMIP).
These data have been previously used to study the soil mois-
ture droughts for Europe (Grillakis, 2019) and terrestrial wa-
ter storage in mainland China (Jia et al., 2020). The country-
wide average annual precipitation for the projected period is
higher compared to the baseline periods as shown in Fig. S2.
As a part of ISIMIP2b experiments, the LPJmL impact model
(Sitch et al., 2003), a global vegetation model that is capa-
ble of representing fine-resolution physical processes using
carbon, water and energy balance equations (Schaphoff et
al., 2018) under a changed climate, is driven by the bias-
corrected GCM precipitation to simulate the root-zone soil
moisture (kg m−2). For our study, the soil moisture data up to
three layers accounting for 1 m depth are used. The country-
wide average annual soil moisture for the projected period
is slightly lower compared to the baseline periods as shown
in Fig. S3. The observed and simulated country-wide aver-
age of monthly precipitation and soil moisture for the pe-
riod 1980–2005 is presented in Fig. S4. The performance
of all the ISIMIP models are comparable with that of the
observed data except for the soil moisture during monsoon
months. The lowered soil moisture estimates from LPJmL
model (ISIMIP experiments) simulations compared to the
MERRA-Land soil moisture observations for the monsoon
months could be due to overestimation of LPJmL’s simulated
run-off (Zaherpour et al., 2018). Although the simulated soil
moisture data underestimate the monsoon months’ soil mois-
ture (June, July, August, September) during the historic pe-
riod (1980–2005) (Fig. S4), we did not perform the bias cor-
rection, since we intend to capture the variability in the soil
moisture rather than the magnitudes for drought index cal-
culation. The projected daily precipitation is cumulated over
each month to get the monthly precipitation values and its
units converted from kilograms per square metre per second
(kg m−2 s−1) to millimetres (mm). The projected monthly
soil moisture (average monthly soil moisture) from the model
is converted from kilograms per square metre (kg m−2) to cu-

bic metres per cubic metre (m3 m−3). The ensemble mean of
monthly precipitation and soil moisture from different GCMs
is computed. Further, these ensemble mean monthly precipi-
tation and soil moisture time series are used for drought haz-
ard assessment. Although climate variables from CMIP6 are
available, drought responses by CMIP5 models are similar
to those of CMIP6 (Cook et al., 2020). Hence we proceeded
with the CMIP5 data for drought hazard assessment.

2.1.2 Drought vulnerability indicators

The country-wide drought vulnerability indicators adopted
for drought vulnerability assessment are listed in Table 1,
along with their sources, spatial and temporal distribution,
units, method of data generation, relevance, and correlation
to drought vulnerability for both the observed (around the
year 2010) and projected datasets (2005–2100). The pre-
sented drought vulnerability indicators comprise sensitivity,
exposure and adaptive capacity indicators (Table 1). Drought
vulnerability indicators such as groundwater availability, irri-
gation index and waterbody fraction for the projected period
are not directly available. Hence, these indicators are prox-
ied by representative indicators (Table 1) through multiple
linear regression (MLR). An extensive vulnerability assess-
ment encompasses other social and economic vulnerability
indicators such as those used by Meza et al. (2020). However,
for a densely populated and rapidly developing nation such
as India, the acquisition of reliable datasets on these indica-
tors is often challenging. Most importantly, the unavailability
of projections of these indicators over the Indian region lim-
its their use in this study, since our primary goal is to com-
pare baseline drought risk with that under future projected
climate change. Further, the weightages for the categorical
vulnerability indicators for drought vulnerability assessment
are adopted from Ekrami et al. (2016), Sahana et al. (2021),
and Thomas et al. (2016) and are given in Table S1 in the
Supplement. Finally, drought vulnerability indicators are ex-
tracted for the RCP2.6-SSP2 and RCP6.0-SSP2 scenarios for
the periods 2060 and 2100 so as to represent different cli-
mate and socio-economic scenarios for the near-future and
far-future periods respectively. In general, socio-economic
development is a slow process that takes time to be reflected
in terms of significant changes in the socio-economic in-
dicators (Dellink et al., 2017). Further, the majority of the
drought vulnerability and/or risk studies across the globe
have adopted a static vulnerability assessment that represents
drought vulnerability as a snapshot in time (Hagenlocher et
al., 2019). Therefore, we used the static vulnerability indica-
tors for the years 2010, 2060 and 2099 to quantify drought
vulnerability for the baseline, far-future and near-future peri-
ods respectively.

Drought vulnerability indicators such as population den-
sity and GDP for the year 2010 from the SSP2 pathway
are comparable with their respective observed dataset, with
small/negligible difference between the observed and SSP-
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Table 1. Drought vulnerability indicators used for drought vulnerability assessment. The sources for indicators in the baseline period and the
projected period along with their relevance and correlation with drought vulnerability are presented. Representative indicators to arrive at the
drought vulnerability indicators for projected period are also listed.

Data Relevance Correlation Past studies Observed Projected
to drought with drought using these
vulnerability vulnerability data

Source Period Spatial Units Details Source Representative
resolution indicator

Population Demographic Positive Carrão et NASA 2010 1 km person – Population density Population
density attribute for al. (2016), Socioeconomic per km2 estimates are based (SSP2)

assessing social Rajsekhar et Data and on the national
vulnerability al. (2015) Applications censuses and
and exposure. Centre population registers.

(SEDAC)a – Given as population
count by area.

GDP Economic Negative Carrão et Ghosh et 2006 1 km millions – Defense GDP (SSP2)
welfare al. (2016), al. (2010) of Meteorological
for assessing Naumann et dollars Satellite Program’s
economic al. (2014), Operational Linescan
vulnerability, Wu et System (DMSP-OLS)
as well as al. (2017) nighttime imagery
adaptive by NOOA to calculate
capacity. total GDP

(Ghosh et al., 2010).

Irrigation Adaptive Negative Murthy et Web-based 2010 District – Data published by Irrigation water
index capacity al. (2015), land use Directorate of consumption,

component. Wu et statistics Economics and irrigation water
High irrigation al. (2017) information Statistics, Department withdrawal
ratio implies systemb Agriculture, (RCP2.6-SSP2
high adaptive Cooperation and and
capacity and Farmers Welfare. RCP6.0-SSP2)
lower drought – Land use statistics
vulnerability. information system Inter-Sectoral

is designed and Impact Model
developed by Intercomparison
Agriculture Project
Informatics Division, (ISIMIP2b
National Informatics experiments)
Centre, Ministry of data archive
Communication and IT,
Govt. of India,
New Delhi.
– Given as the ratio
of irrigated area
to cropped area.

Waterbody Water resources Negative Naumann et Bhuvan-Indian 2010 3′ – – Advanced Wide Surface run-off,
fraction (streams/rivers) al. (2014) Geo Platform Field Sensor total run-off,

and water (AWiFS) total water
infrastructure satellite imagery storage
(dams/reservoirs), is used by NRSC (RCP2.6-SSP2
the physical to extract the and
vulnerability, and waterbody RCP6.0-SSP2)
provides adaptive fraction.
capacity.

Groundwater Adaptive Negative Pandey et Dynamic Ground 2011 District ham – Groundwater resources Groundwater
capacity al. (2010) Water Resources assessment based on run-off,
component of India, the state and central total water
to cope Central Ground groundwater boards storage
with Water Board of India. (RCP2.6-SSP2
drought. Ministry of – Net groundwater and

Water Resources, availability estimates RCP6.0-SSP2)
report on are based on the
July 2011 annual replenishable
(CGWB, 2014) groundwater resources

and the natural
discharge during
non-monsoon season.
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Table 1. Continued.

Data Relevance Correlation Past studies Observed Projected
to drought with drought using these
vulnerability vulnerability data

Source Period Spatial Units Details Source Representative
resolution indicator

Land Use Accounts for Positive Pandey et The USGS 2001 0.5 km – – The Collection 5.1 NASA Fractional
Land social al. (2010), Land Cover to Moderate Resolution Earthdata land use
Cover vulnerability Thomas et Institute 2010 Imaging from ORNL land cover
(LULC) to drought due al. (2016) (LCI)c Spectroradiometer DAAC data (RCP2.6

to exposure. (MODIS) Land Cover (Chini et and RCP6.0)
Type (MCD12Q1) al., 2014)d

product for the
period 2001–2010
issued by Broxton
et al. (2014) to
develop global
land cover.

Digital Spare time for Positive Ekrami et SRTM 90 m 2007 90 m m – NASA Shuttle Radar
elevation water retention al. (2016), Digital Topography Mission
model bestows higher Pandey et Elevation elevation data
(DEM) adaptive capacity al. (2010) Database derived from
(slope) in flat slope parts. v4.1e interferometric

Accounts for techniques.
physical
vulnerability
to drought.

Soil Water-holding Positive Pandey et FAO 2003 1 km – – Major contributors
type capacity of al. (2010), Harmonized of the soil data Constant (same as observed)

soil based on Thomas et World Soil for the Indian
the textural al. (2016) Database regions are All
properties. (HWSD)f India Soil and
Accounts for Land use Survey
social (1965) and the
vulnerability international
to drought soil map of
due to vegetation by the Indian
exposure. Council of

Agricultural
Research
(FAO-UNESCO,
1977).
– Loamy soils are more
vulnerable to drought
compared to
clayey soils.

a http://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density (last access: 20 November 2020)
b https://aps.dac.gov.in/LUS/Index.htm (last access: 20 November 2020)
c https://lpdaac.usgs.gov/products/mcd12q1v006/ (last access: 28 January 2023)
d https://doi.org/10.3334/ORNLDAAC/1248
e http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1#download (last access: 20 November 2020)
f http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (last access: 20 November 2020)

simulated datasets (Fig. S5). Further, drought vulnerability
indicators such as groundwater availability, irrigation index
and waterbody fraction for the projected period are not di-
rectly available. Hence, these indicators are proxied by their
representative indicators (Table 1) using multiple linear re-
gression (MLR). Consequently, irrigation ratio, groundwa-
ter availability and waterbody fraction for the projected pe-
riod are derived based on relationships between them and the
representative variables in the baseline period, and therefore
consistency is ensured. The land use harmonization (LUH)
(Chini et al., 2014) dataset provides the fractional land use
classes for the time period 1500–2100. The historical maps of

crop and pasture data from HYDE 3.1 (Hurtt et al., 2011) and
estimates of historical national wood harvest and of shifting
cultivation are used as input for 1500–2005. Further, the pro-
jections of LULC for 2005–2100 are based on the integrated
assessment model (IAM) implementations of the RCPs. Each
IAM for different RCPs is used as input to the earth sys-
tem models (ESMs) for future carbon and climate projec-
tions. Therefore, LULC scenarios are based on RCPs. LUH
is a credible dataset for LULC projection and has been previ-
ously used for drought risk projection in the South Asian re-
gion (Chou et al., 2019). Further, LULC projections can also
be derived based on the land use models, using past LULC
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data and socio-economic factors to drive the land use change.
However, the development of such models at country scale is
beyond the scope of the present study.

2.2 Methods

The methodology adopted to study the evolution of drought
risk is given in Fig. 1.

2.2.1 Drought hazard assessment

Drought hazard forms an important component of drought
risk assessment. Here, we assess the country-wide drought
hazard based on the deficits in precipitation and soil mois-
ture. Therefore, the multivariate standardized drought in-
dex (MSDI) of the non-parametric form is computed using
the bivariate case of the Gringorten plotting position for-
mula (Gringorten, 1963). MSDI is equally capable of cap-
turing deficits individually in precipitation or soil moisture
or their joint deficit, considering dependence between these
two variables. This is a unique advantage of MSDI (Hao and
AghaKouchak, 2014) over other univariate indices. Further,
MSDI is capable of representing the onset, propagation and
termination of drought. In Fig. S6, considering −0.8 as the
threshold for drought trigger, it can be seen that whenever
either the standardized precipitation index (SPI) or the stan-
dardized streamflow index (SSI) falls below this threshold,
MSDI covers the critical trajectory and offers a conserva-
tive characterization of drought, thereby capturing attenua-
tion and lag effects. The steps involved in the calculation of
MSDI is presented below.

1. The joint probability distribution of the 1-month
timescale precipitation (R) and soil moisture (S) is
given by

P (R ≤ r,S ≤ s)= p , (1)

where r and s represent the value of the random vari-
ables R and S respectively, and p represents the joint
probability of the precipitation and soil moisture.

2. For the sample size n, the count of occurrence of the
pair (ri, si) for ri ≤ rk and si ≤ sk is denoted as mk . rk
and sk here denote the kth observation for precipitation
and soil moisture respectively. The number of joint oc-
currences (mk) of precipitation and soil moisture pair
below rk and sk from the whole set of observations is
used to calculate empirical joint probability for the kth
observation based on the bivariate Gringorten plotting
position (Gringorten, 1963) as

P (rk, sk)=
mk − 0.44
n+ 0.12

. (2)

3. The above empirical joint probability is then standard-
ized to obtain the multivariate index MSDI.

MSDI= ϕ−1(P ) , (3)

where ϕ is the standard normal distribution function.
Since the empirical distributions use ranks of data in-
stead of actual values, the sample size should be suffi-
ciently large.

The method of drought hazard assessment followed in the
present study is based on Kim et al. (2015). Hazard is mea-
sured as the product of magnitude and the associated fre-
quency of occurrence of an event. The MSDI time series at
each region is categorized into four groups similar to Mc-
kee et al. (1993). These categories are assigned weights ac-
cording to the magnitude of MSDI value. Higher weights
will be assigned to the worst (high negative) MSDI values,
and vice versa. Further, each weight category is divided into
different clusters based on the frequency of occurrence of
MSDI values. The total number of clusters for ratings in
each MSDI category is determined using the prominent k-
means data clustering algorithm. Higher ratings will be as-
signed to the cluster with high-frequency values, and vice
versa. The weightage and rating scheme are depicted graph-
ically in Fig. 1. In the k-means clustering technique, the dis-
tance between the data points is computed using the squared
Euclidean distance metric. To avoid the convergence to lo-
cal minima, the k-means algorithm is run with 100 random
initial seeds with 10 000 iterations. The Calinski–Harabasz
index (CHI) (Caliński and Harabasz, 1974) is used to deter-
mine the optimum number of clusters and is given by

CHI=
n−K

K − 1
×

BGSS
WGSS

, (4)

where n= number of data points, K = number of clus-
ters, BGSS=

∑K
k=1nk|

∣∣G{k}−G∣∣ |2 is the amount of scat-
ter between groups, G{k} = centroid of the kth clus-
ter, G= centroid of all the observations, WGSS=∑K
k=1WGSS{k} is within the group scatter, and WGSS{k} =∑
iεIk
|

∣∣∣M{k}i −G{k}∣∣∣ |2, where M
{k}
i are the observations.

The k-means clustering algorithm is driven for 1 to n clus-
ters. The number of clusters that gives highest value of CHI
is the optimum number of clusters. This optimum number of
clusters is used for assigning ratings. The categorized weigh-
tages and computed ratings are used to calculate the drought
hazard (DH) for every region as below.

DH=
∑t

i=1
weightsi × ratingsi , (5)

where t is the length of the MSDI time series. Although
the weightages and ratings are intrinsically linked, the above
scheme assures drought hazard quantification based on mag-
nitudes and frequencies. The DH values from Eq. (5) are
standardized as shown below to obtain the drought hazard
index (DHI) that varies between 0 and 1.

DHI=
DH−DHmin

DHmax−DHmin
(6)

The weighing and rating scheme to calculate DHI for a ran-
domly chosen grid are given in Table S2.

Nat. Hazards Earth Syst. Sci., 23, 623–641, 2023 https://doi.org/10.5194/nhess-23-623-2023



V. Sahana and A. Mondal: Drought risk projection for India 629

Figure 1. Framework to assess drought risk evolution. Monthly rainfall and monthly soil moisture are used to compute the multivariate
standardized drought index (MSDI). Weights and ratings system of MSDI is adopted to further compute drought hazard index (DHI). Multi-
criteria decision-making technique – TOPSIS – is used to calculate drought vulnerability index (DVI) considering eight drought vulnerability
indicators. The product of DHI and DVI is the drought risk index (DRI). Drought risk assessment is carried out for the baseline (1980–2015),
near-future (2021–2050) and far-future (2061–2100) periods for various climate and socio-economic scenarios.
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2.2.2 Drought vulnerability assessment

Drought vulnerability forms another important component
of drought risk assessment. Several aggregation techniques
have been employed in past studies to combine the drought
vulnerability indicators to assess drought vulnerability. How-
ever, we use the robust method TOPSIS (Technique for Or-
der Preference by Similarity to an Ideal Solution; Hwang and
Yoon, 1981) owing to its fewer rank reversal probabilities
(Sahana et al., 2021). The steps involved in drought vulnera-
bility assessment are outlined below.

1. The standardization of numerical drought vulnerability
indicators (irrigation index, waterbody fraction, ground-
water availability, population density and GDP) is car-
ried out such that their values vary between 0 and 1.

Std Indicator=
Indicator− Indicatormin

Indicatormax− Indicatormin
(7)

Suitable weights are assigned to categorical drought
vulnerability indicators (LULC, slope and soil texture),
following Thomas et al. (2016) and Sahana et al. (2021)
(Table S1). This gives the decision matrix nij , where
i = 1,2, . . .n represents the number of regions and j =
1,2, . . .,m represents the number of drought vulnerabil-
ity indicators.

2. The above decision matrix nij is associated with the in-
dicator weights wj obtained from the analytic hierarchy
process (AHP) method (Sahana et al., 2021). This gives
the weighted decision matrix vij :

vij = wjnij . (8)

3. Positive (A+) and negative (A−) ideal solutions are cal-
culated for each of the indicators.

A+ =
(
ν+1 ,ν

+

2 , . . .ν
+
m

)
=
[(

maxνij |jinI
)
,
(
minνij |j ∈ J

)]
, (9)

A− =
(
ν−1 ,ν

−

2 , . . .ν
−
m

)
=
[(

minνij |j ∈ I
)
,
(
maxνij |j ∈ J

)]
, (10)

where I and J are associated with the benefit and cost
criteria respectively. Here population density, LULC,
slope and soil texture that bear a positive correlation
with the drought vulnerability are considered as benefit
criteria. On the other hand, irrigation index, groundwa-
ter availability, waterbody fraction and GDP that bear a
negative correlation with drought vulnerability are con-
sidered as cost criteria.

4. Positive (d+i ) and negative (d−i ) separation measures for
each region i are computed based on A+ and A− (also

shown in Fig. 1).

d+i =

√∑m

j=1

(
νij − ν

+

j

)2
(11)

d−i =

√∑m

j=1

(
νij − ν

−

j

)2
(12)

5. The relative closeness (Ri) of each region to the positive
ideal solution is calculated as

Ri =
d−i

d−i + d
+

i

. (13)

Ri signifies vulnerability of region i to drought. R is
further standardized to vary between 0 and 1 to obtain
the drought vulnerability index (DVI).

DVI=
R−Rmin

Rmax−Rmin
(14)

2.2.3 Drought risk assessment

The hazard and vulnerability information computed in the
form of DHI and DVI, respectively, are combined to evalu-
ate the drought risk. Accordingly, the drought hazard captur-
ing the droughts in baseline (1980–2015), near-future (2021–
2060) and far-future (2061–2099) periods is combined with
drought vulnerability at 2010, 2060 and 2099 respectively.
The definition of risk as provided by the IPCC (AR5) (IPCC,
2014) is adopted. Though the AR5 delineates exposure as a
separate component of the risk, we have included exposure
to be an integral part of the vulnerability following Vittal et
al. (2020), since such a definition is unlikely to affect the
overall conclusions of risk assessment.

Risk= f (Hazard,Vulnerability)= DHI×DVI (15)

Drought risk values computed using Eq. (15) are further stan-
dardized spatially to obtain the drought risk index (DRI).
Standardization of drought risk at each grid is carried out
using the equation

DRI=
Risk−Riskmin

Riskmax−Riskmin
. (16)

Standardization is performed such that the values are dis-
tributed between 0 and 1 so as to classify different risk cate-
gories. Further, circumstances such as highly vulnerable pop-
ulation being exposed to mild droughts or no droughts at all
may arrive and are handled well due to the integrated assess-
ment of drought risk. For example, if the hazard is low in a
region, it is likely to be classified as “low to moderate” in
terms of drought risk despite having high vulnerability.

Apart from representing the risk as a product of hazard
and vulnerability, it can also be represented using a bivariate
choropleth (Mohanty et al., 2020). The colour scale of these
bivariate choropleths is characterized by all possible combi-
nations of DHI and DVI classes. Such maps clearly demar-
cate the hazard-driven and vulnerability-driven risk.
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3 Results and discussion

3.1 Drought hazard

3.1.1 Projection of hydro-climatic variables

The multi-model ensemble precipitation and soil moisture
data from the four GCMs are used for drought hazard assess-
ment. The country-wide accumulated data (summed over all
grids) of these hydro-climatic variables are shown in Fig. 2.
The projected precipitation, as well as soil moisture, for the
RCP6.0 scenario is high compared to the RCP2.6 scenario.
Further, it is noted that the variability in both the variables
increases with time. However, the variability in the hydro-
climatic variables in the baseline period is high compared to
the projected period.

3.1.2 Projection of drought hazard

The multi-model ensemble drought hazard for different RCP
scenarios and time slices along with the baseline period are
shown in Fig. 3. The indices representing drought hazard
are classified into five categories based on an equal clas-
sification scheme: 0–0.2 (very low), 0.2–0.4 (low), 0.4–0.6
(medium), 0.6–0.8 (high) and 0.8–1 (very high). The MSDI-
based drought hazard maps developed for the baseline period
match well with hazard maps developed from other multi-
variate indices such as SPEI (Gupta et al., 2020), compared to
those developed from the univariate SPI (Vittal et al., 2020).
It is observed that the projected hazard over many regions is
less severe compared to the baseline period. However, certain
parts of north-western India and eastern coastal regions are
in the high drought hazard class. The hazard transition from
the baseline to different scenarios is presented in Fig. 4. The
baseline and projected scenarios of drought hazard are repre-
sented using five different classes – very low, low, medium,
high and very high. Every region (grid) of the country may
transit from one class in the baseline scenario to another
class in the projected scenario or remain in the same class
for both baseline and projected scenarios. In the transition
matrix we compute the percent area of the country that tran-
sitioned from one hazard class to other to quantify the ef-
fect of climate change. The upper triangle in the figure repre-
sents the percent area transition from lower to higher hazard
classes, the lower triangle represents the percent area tran-
sition from higher to lower hazard classes, and the diagonal
elements represent the percent area with no transition.

In general, a transition from higher hazard classes to lower
hazard classes is observed under the projected scenarios, im-
plying that more regions in the country are expected to come
under the low hazard category in the future. From Figs. 2a,
S2 and S3, we see that precipitation and soil moisture for the
projected period show an increasing trend. Further, it is to be
noted that the hazard assessment using MSDI is based on the
long-term mean and variability in these drought indicators

under a probabilistic analysis framework and not necessar-
ily the magnitudes of precipitation and soil moisture. Here
we see that the projections of these indicators exhibit lower
variability compared to the baseline period (Fig. 2a). There-
fore, it is observed that many regions undergo the transition
from high hazard to low hazard. The future drought hazard
assessment using the projected hydro-climatic variables re-
vealed that more than 35 % area of the country is expected to
be in the low hazard class, compared to 8 % in the baseline
period (refer Figs. 4 and 10). It is also interesting that the
area in the high hazard class is greater in the far future com-
pared to the near future irrespective of the RCP scenarios.
This is ascribed to the higher variability in the hydro-climatic
variables in the far-future compared to the near-future period
that resulted in a higher magnitude of drought events. Of all
the future drought hazard scenarios considered, the RCP2.6-
Far scenario revealed the largest area (2.8 %) in the high and
very high hazard classes. This accounts for a 7 % reduction in
high and very high hazard classes compared to the baseline
scenario. It is observed that north-western India and parts of
Jammu, Kashmir, Andhra Pradesh and Marathwada come in
the high hazard classes.

It is interesting to note that the probabilistic Budyko
framework-based projected annual per capita water avail-
ability analysis (PCWA) for the Indian region by Singh
and Kumar (2019) shows a decrease in PCWA in a 2.0 ◦C
warmer world compared to a 1.5 ◦C warmer world under
CMIP5-based mitigation, medium stabilization and high-end
(RCP8.5) climate change scenarios, indicating high hazard
in the far future. Similarly, a higher drought hazard is ob-
served in the far future compared to the near future by
Gupta and Jain (2018) and Gupta et al. (2020), who per-
formed SPEI-based drought hazard analysis using CMIP5
GCMs under high-end climate change. Further, frequency-
based soil moisture drought analysis by Aadhar and Mishra
(2020, 2021) and SPEI-based drought frequency analysis by
Zhai et al. (2020) show an increased drought frequency in
the future period over South Asia compared to the base-
line period. This shows that the far-future period is more
prone to drought hazard than the near-future period. On the
other hand, a few studies such as Koutroulis et al. (2019)
and Cook et al. (2020), who used CMIP5 and CMIP6 sim-
ulations respectively, show that drought exposure and fre-
quency over the Indian region decrease with time. Such con-
tradicting observations are possibly due to the selection of
low-skill GCMs (Aadhar and Mishra, 2020) in Koutroulis et
al. (2019) and Cook et al. (2020). It is to be noted that the
four GCMs considered in the present study for precipitation
and soil moisture simulations are bias-corrected for precipi-
tation and cover more uncertainty in temperature and precipi-
tation changes compared to other GCM subsets (McSweeney
et al., 2015). However, the inclusion of other skilled GCMs
can account for the wide range of uncertainty in the drought
hazard assessment.
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Figure 2. Datasets used for drought risk assessment. (a) Projected hydro-climatic variables such as monthly precipitation and monthly soil
moisture are used for drought hazard assessment. (b) Projected drought vulnerability indicators such as irrigation index, waterbody fraction,
groundwater availability, population, GDP and land use land cover, along with static drought vulnerability indicators such as slope and soil
texture, are used for drought vulnerability assessment. Datasets for projected period are divided into near future (2021–2060) and far future
(2061–2100) to check the evolution of drought risk.

3.2 Drought vulnerability

3.2.1 Projection of drought vulnerability indicators

The varying drought vulnerability indicators for the drought
vulnerability assessment are shown in Fig. 2. It is observed
that GDP increases with time continuously, whereas pop-
ulation reaches its peak during the end of the near future
(2060) and decreases gradually by the end of the century.
The representative indicators obtained through human in-
fluences, varying land use and water abstractions according
to the RCP2.6-SSP2 and RCP6.0-SSP2 conditions are used
to derive the drought vulnerability indicators such as irriga-

tion index, waterbody fraction and groundwater availability
for the projected period. It is observed that the irrigation
index decreases with time for RCP2.6-SSP2 and RCP6.0-
SSP2 projections. The waterbody fraction remains constant
for the RCP2.6-SSP2 projection and increases with time for
the RCP6.0-SSP2 projection. Further, groundwater availabil-
ity remains constant for RCP2.6-SSP2 and RCP6.0-SSP2
projections. The biggest difference in land use land cover
changes is observed in the RCP6.0 condition compared to
RCP2.6. It is also seen that percent area under habitation in-
creases continuously with time in the case of RCP6.0. Slope
and soil texture data are assumed to be constant (Fig. S7).

Nat. Hazards Earth Syst. Sci., 23, 623–641, 2023 https://doi.org/10.5194/nhess-23-623-2023



V. Sahana and A. Mondal: Drought risk projection for India 633

Figure 3. Multi-model ensemble drought hazard maps for the scenarios (a) baseline, (b) RCP2.6-Near future, (c) RCP2.6-Far future,
(d) RCP6.0-Near future and (e) RCP6.0-Far future.

Figure 4. Transition of drought hazard from baseline period to projected period. The value in each cell represents the change in percent area
of the country from one hazard class to another. The red colour shows transition, and blue represents no transition.

3.2.2 Projection of drought vulnerability

The multi-model ensemble drought vulnerability projections
for different scenarios are presented in Fig. 5. It is observed
that many regions of the country are expected to be more vul-
nerable to drought compared to the baseline period. In gen-
eral, parts of north-western and eastern India and the south-
ern coast are observed to be in the high vulnerability class
in the future scenarios. The transition of drought vulnerabil-
ity from one class of vulnerability from baseline to another
class of vulnerability in the future is given in Fig. 6. It can be

observed that the drought vulnerability under RCP6.0-SSP2
scenario is worst compared to the RCP2.6-SSP2 scenario,
since a high transition from lower vulnerability classes to
higher vulnerability classes is observed in the former case.
As much as 42.9 % area transits from lower vulnerability
classes to higher vulnerability classes under RCP6.0-SSP2-
Near future. Also, a 33 % increase in the area in the high
and very high vulnerability classes is observed in this worst-
case scenario, with north-western India, the western coast,
and parts of Chhattisgarh, Odisha and Jharkhand in the very
high vulnerability class.
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Figure 5. Multi-model ensemble drought vulnerability maps for the scenarios (a) baseline, (b) RCP2.6-SSP2-Near future, (c) RCP2.6-SSP2-
Far future, (d) RCP6.0-SSP2-Near future and (e) RCP6.0-SSP2-Far future.

Figure 6. Transition of drought vulnerability from baseline period to projected period. The value in each cell represents the change in percent
area of the country from one vulnerability class to another. The red colour shows transition, and blue represents no transition.

In the global freshwater vulnerability analysis conducted
by Koutroulis et al. (2019), although they show that the
sensitivity component of the overall freshwater vulnerabil-
ity is increasing with time, an increasing adaptive capacity
and decreasing exposure are reducing India’s vulnerability
to drought. However, our study shows an increasing vulner-
ability to drought, considering sensitivity, adaptive capac-
ity and exposure factors. Such contradicting observations in

drought vulnerability are possibly due to the choice of low-
skill GCMs in Koutroulis et al. (2019). Further, the socio-
economic challenges for adaptation and mitigation in differ-
ent SSP narratives are led by different development pathways
(O’Neill et al., 2017). Therefore, the adoption of other SSPs
in drought vulnerability assessments may unveil other plau-
sible drought vulnerability projections.
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Next, we aggregate hazard and vulnerability information
on meteorological sub-division scale (Meteorological sub-
divisions are the meteorologically homogenous regions iden-
tified by India Meteorological Department; Kelkar and Sree-
jith, 2020) to identify the sub-divisions under critical drought
condition due to the interplay of hazard and vulnerability.
Scatter of drought hazard and drought vulnerability for 30
sub-divisions is shown in Fig. S8. It is seen that the western
Rajasthan, Haryana and western Uttar Pradesh sub-divisions
are expected to have high drought risk compared to the other
sub-divisions in all the scenarios. Further, the number of
sub-divisions falling under critical drought risk (DHI> 0.25,
DVI> 0.75) is high in the case of the RCP6.0-SSP2 scenario,
with 22 meteorological sub-divisions having high vulnerabil-
ity (DVI> 0.75), particularly in the RCP6.0-SSP2-Near fu-
ture scenario.

3.3 Drought risk

3.3.1 Projection of drought risk

The multi-model ensemble drought hazard and vulnerability
projections under different scenarios are combined according
to Eq. (15) to obtain drought risk projections (Fig. 7). It is to
be noted that the validation of the drought risk map for the
baseline period (1980–2015) has been carried out by Sahana
et al. (2021), based on the disaster data in terms of number
of people affected. It is noted that parts of Rajasthan, Mad-
hya Pradesh, Maharashtra, Orissa and Tamil Nadu, Kerala,
Chhattisgarh, Haryana, Himachal Pradesh, Chandigarh, As-
sam, and Nagaland that are in the moderate to severe drought
risk category have experienced moderate to worse drought
disaster. Further, the drought risk estimates for the baseline
period from the present study compares well with regional-
scale drought risk studies in India such as those for Andhra
Pradesh (Murthy et al., 2015), Bearma basin (Thomas et
al., 2016) and Maharashtra (Swami and Parthasarathy, 2021).
From the drought risk projections, it is noted that parts of
north-western India are expected to be more prone to drought
risk compared to the baseline period. On the other hand,
central Indian regions are expected to switch to lower risk
classes. The transition of drought risk from one class of vul-
nerability from baseline to another class of risk in the fu-
ture is given in Fig. 8. The highest transition (30 % area)
from lower risk to higher risk classes is observed in the
RCP6.0-SSP2-Far future scenario. Also, overall drought risk
reduces by 0.8 % in this scenario compared to the baseline.
It is interesting to note that the RCP6.0-SSP2-Far future sce-
nario is not the worst-case scenario in drought vulnerabil-
ity projection, yet it turned out to be the worst-case sce-
nario in drought risk projection due to high drought haz-
ard projection, revealing the importance of comprehensive
drought risk assessment. Risk is an outcome of the interac-
tion between hazard and vulnerability and is also a function
of time. The fact that worst-case scenarios are different for

drought hazard and drought vulnerability indicates dissimi-
lar behaviour of drought hazard and vulnerability indicators
in inducing drought risk. For example, population density is
high in the near-future period (2060) compared to the far-
future period (2100), while precipitation is continuously in-
creasing in the projected period. A combination of such dif-
ferent hazard and vulnerability behaviour in a given time pe-
riod is effectively captured through comprehensive risk anal-
ysis. Therefore, though the RCP6.0-SSP2-Far future scenario
is not the worst-case scenario for drought vulnerability com-
pared to RCP6.0-SSP2-Near future, the interaction of high
hazard with moderate to high vulnerability resulted in the
worst drought risk scenario in the case of RCP6.0-SSP2-Far
future. However, in general, when the changes in drought
risk for all the future scenarios are compared with the base-
line, it is observed that the area falling under drought risk
due to drought vulnerability is increased (Fig. 9). It is to
be noted that the water availability projections for India by
Koutroulis et al. (2019) show decreasing drought risk with
time, as opposed to the increasing drought risk from the
present study. The choice of climate change scenarios and
climate models by Koutroulis et al. (2019) could be a possi-
ble reason for such a difference. Further, projected bivariate
choropleth maps for unique combinations of DHI and DVI
are presented in Fig. 9. It is seen that most of the regions
are constituted by low hazard and high vulnerability, indi-
cating the high impact of societal developments rather than
climate-invoked changes. Hence it is important to take the
drought mitigation plans based on the socio-economic condi-
tions instead of just considering hydro-climatic conditions of
the region of interest. Consolidated results showing the per-
cent area of different classes of drought hazard, vulnerability
and risk under various climate and socio-economic scenarios
are given in Fig. 10. Of all the future drought hazard scenar-
ios considered, the RCP2.6-Far scenario revealed the largest
area (2.8 %) in the high and very high hazard classes. In the
case of drought vulnerability, as much as 42.9 % area tran-
sits from lower-vulnerability classes to higher-vulnerability
classes under RCP6.0-SSP2-Near future, with 93 % area of
the country in the high and very high drought vulnerabil-
ity classes. Further, in the worst-case drought risk scenario
(RCP6.0-SSP2-Far future), it is observed that 2.7 % area of
the country is in the high and very high drought risk classes.

3.3.2 Potential applications

The drought hazard, vulnerability and risk projection maps
from the present study, developed at 0.5◦ lat×0.5◦ long spa-
tial resolution, are comparable with blocks/district-level area.
Therefore, these maps can assist the block-level administra-
tors to know region-specific causative factors inducing se-
vere drought risk both in the baseline and projected peri-
ods, besides the natural components governing the drought
risk. Also, these maps can inform the state or federal dis-
aster management authorities concerning the climate action
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Figure 7. Multi-model ensemble drought risk maps for the scenarios (a) baseline, (b) RCP2.6-SSP2-Near future, (c) RCP2.6-SSP2-Far
future, (d) RCP6.0-SSP2-Near future and (e) RCP6.0-SSP2-Far future.

Figure 8. Transition of drought risk from baseline period to projected period. The value in each cell represents the change in percent area of
the country from one risk class to another. The red colour shows transition, and blue represents no transition.
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Figure 9. Bivariate choropleth drought risk maps showing hazard-driven and vulnerability-driven drought risk for the scenarios (a) baseline,
(b) RCP2.6-SSP2-Near future, (c) RCP2.6-SSP2-Far future, (d) RCP6.0-SSP2-Near future and (e) RCP6.0-SSP2-Far future.

Figure 10. Summary of drought risk evolution. Percent area of different classes of drought hazard, vulnerability and risk under various
climate and socio-economic scenarios.

plans. The change in drought risk at different projected pe-
riods can modulate adaptation and mitigation strategies and
can be included in decision support systems for drought man-
agement. Since drought risk is found to be mainly driven by
societal factors, action plans should be directed to improve
socio-economic conditions. Groundwater conservation, con-
junctive use of surface and groundwater, farmer participation
in crop insurance, and water-saving farm practices and tech-
nologies are some important measures that can be adopted
for raising the socio-economic standards. Further, the frame-

work of our study is applicable for state-wise drought risk
assessment with reliable hydro-climatic and socio-economic
indicators. Such an assessment can recommend measures for
watershed management, irrigation and agricultural practices
and reorganizing water demand and supply management at a
local scale.

https://doi.org/10.5194/nhess-23-623-2023 Nat. Hazards Earth Syst. Sci., 23, 623–641, 2023



638 V. Sahana and A. Mondal: Drought risk projection for India

4 Concluding remarks

This study presents future projections of drought risk over In-
dia under changing climate and socio-economic conditions.
This is achieved combining the drought hazard and drought
vulnerability projections. Drought hazard assessment is car-
ried out using a multivariate drought index known as MSDI,
an indicator of agro-meteorological drought. Drought vul-
nerability is assessed using a robust multi-criteria decision-
making technique called TOPSIS, considering changes in
relevant socio-economic indicators. Drought risk projection
studies undertaken over the Indian region are based on
drought hazard alone, and no consideration has been given
to the drought vulnerability component. The present study
quantifies the relative contribution of drought hazard and
drought vulnerability to the overall drought risk projections
in a comprehensive risk framework. Thus, our analysis can
aid different stakeholders involved in drought management
for adaptation and mitigation plans under changing climate
and socio-economic conditions. This marks the significant
improvement in our study over existing studies on drought
risk assessment in India under climate change. Further, we
present for the first time future projected bivariate choropleth
plots to identify the drivers of overall drought risk across
the country. The multi-model ensemble drought hazard and
drought vulnerability are computed for the two RCP–SSP
scenarios: RCP2.6-SSP2 and RCP6.0-SSP2 for the near- and
far-future timelines. The current study is limited by simula-
tions from a single global vegetation model rather than multi-
ple impact models including hydrologic or land surface sim-
ulations. Important conclusions of the study are outlined be-
low.

The MSDI-based drought hazard assessment reveals that
more than 35 % area in India is projected to be in the low
hazard class as opposed to 8 % in the baseline period possi-
bly due to rising precipitation in the region as projected by
climate models. The RCP2.6-Far scenario shows 2.8 % area
of the country in the high and very high hazard classes, ac-
counting for a 7 % reduction in those two drought hazard cat-
egories. In general, the spatial extent of high and very high
hazard classes is greater in the far future compared to the near
future.

Drought vulnerability is projected to increase for all sce-
narios, with 77 % area in the high or very high vulnerabil-
ity class compared to 66 % in the baseline period. A rise of
33 % area in the high or very high vulnerability class is ob-
served in the RCP6.0-SSP2-Near future scenario. Among the
two RCP–SSP scenarios considered, the RCP6.0-SSP2 sce-
nario exhibits the worst case of drought vulnerability due to
the high transition from lower to higher vulnerability classes
compared to the RCP2.0-SSP2 scenario.

The integration of drought hazard and vulnerability pro-
jections shows an overall decrease in drought risk projec-
tions, resulting primarily from a reduction in drought hazard.
However, a transition from lower to higher risk classes rang-

ing up to 30 % is observed in the RCP6.0-SSP2-Far future
scenario. Meteorological sub-divisions such as western Ra-
jasthan, Haryana and western Uttar Pradesh are expected to
be at high risk in the projected period under all the scenarios.

Bivariate choropleth analysis shows that future drought
risk is significantly driven by increased vulnerability result-
ing from societal developments rather than climate-induced
changes in hazard. Therefore, future efforts on building
drought resilience in the country must include strengthening
socio-economic conditions.
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