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Abstract. Climate change is increasing the frequency and in-
tensity of natural hazards, causing disastrous impacts on vul-
nerable communities. Pacific Small Island Developing States
(SIDS) are of particular concern, requiring resilient disaster
risk management consisting of two key elements: proactiv-
ity and suitability. Drought risk knowledge can inform re-
silient risk management, but it is currently underexplored in
Pacific SIDS, particularly in the highly vulnerable nation of
Papua New Guinea (PNG). A tailored, meaning highly spe-
cific to the area under investigation, drought risk assessment
methodology is key for expanding risk knowledge in vul-
nerable communities. A semi-dynamic and tailored drought
risk assessment methodology to be utilised in PNG was de-
veloped in this research. Representative hazard, vulnerabil-
ity, and exposure indicators were selected, and integrated
geographic information system (GIS) processes were used
to produce hazard, vulnerability, exposure, and risk indices
and maps. The validity of the risk assessment was investi-
gated with a retrospective risk assessment of drought in PNG
(from 2014–2020) paired with a literature assessment (as a
ground-truth source), and a sensitivity analysis. The prelim-
inary drought risk assessment methodology demonstrated in
this study was overall deemed valid and robust, with supple-
mentary improvements proposed for consideration in future
investigation. The developed methodology makes strides in
addressing methodological knowledge gaps in drought risk
assessment, for global assessments and those specific for
PNG, and demonstrates the potential for risk assessment to
inform resilient drought management practices in at-risk ar-

eas. Overall, the results of this study directly contribute to
enhancing provincial drought risk knowledge in PNG.

1 Introduction

1.1 Drought in Papua New Guinea

Increased intensity and frequency of natural hazards and dis-
aster events resultant of a changing global climate are al-
ready seen to have destructive impacts on the world’s most
vulnerable communities (Mercer, 2010). Small island de-
veloping states (SIDS) in the Pacific include some of the
most hazard-vulnerable communities in the world (Bang and
Crimp, 2019). Papua New Guinea (PNG) is one such country
that has experienced destructive impacts from hazard events.
In particular, drought has consistently devastated PNG com-
munities in the past and is predicted to increasingly affect
PNG in the future (Kuleshov et al., 2014).

Generally, drought can be described as an extended dry
period resulting from rainfall deficiency. However, drought
has many definitions for its various types: meteorological
(when climactic factors result in dry conditions within an
area), hydrological (when water shortages occur after a pe-
riod of meteorological drought), agricultural (when agricul-
tural productivity is inhibited by meteorological and hydro-
logical drought), and socioeconomic (when dry conditions
restrict the supply and demand of commodities) (Wilhite et
al., 2014). Drought events across PNG occur mainly as a re-
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Figure 1. Multi-Source Weighted-Ensemble Precipitation
(MSWEP) rainfall deciles in (a) La Niña events (La Niña
years being 1988, 1989, 1995, 1998, 1999, 2000, 2007, 2010, 2011
and 2020) and (b) El Niño events (El Niño years being 1982, 1987,
1991, 1992, 1994, 1997, 2002, 2006, and 2015) compared to a base
period of 1980–2020. Figure adapted from Bhardwaj et al. (2021b).

sult of two key climate drivers: El Niño–Southern Oscillation
(ENSO) and Indian Ocean Dipole (IOD) (Chua et al., 2020).

In PNG, ENSO alters the distribution of precipitation,
often causing precipitation extremes (Horton et al., 2021).
ENSO has two key phases: El Niño (warm phase) and La
Niña (cold phase). La Niña-associated prolonged rainfall has
commonly contributed to floods, whilst El Niño-associated
prolonged aridity has commonly contributed to droughts in
PNG (Smith et al., 2013). Historically, the 1997–1998 El
Niño contributed to severe drought in PNG causing immense
loss of life, destruction of crops, and forest fires subsequently
causing regional pollution problems (Nicholls, 2001). How-
ever, different regions of PNG experience varying climac-
tic effects from El Niño and La Niña (Fig. 1). For example,
a mild to moderate La Niña event which occurred in PNG
during 2011–2012 resulted in drought conditions in several
PNG provinces. Albeit in a La Niña phase, severe precipi-
tation deficits were observed in New Ireland and Milne Bay
Province throughout 2010 and the first half of 2011, resulting
in drought conditions which contributed to crop destruction,
food insecurity, and water shortages (Smith et al., 2013).

The effects of ENSO can be influenced by the IOD to
further weaken or strengthen trends in rainfall variability
(Bhardwaj et al., 2021b). Defined as consistent changes in
sea surface temperature variability across the tropical west-
ern and eastern Indian Ocean, the IOD can be negative, pos-

itive, or neutral. Each IOD phase interacts with ENSO im-
pacts differently (Bhardwaj et al., 2021b). The impacts of
interactive IOD and ENSO phases experienced in PNG are
shown in Fig. 2. Whilst drought conditions can occur in PNG
in any ENSO or IOD phase, extreme drought conditions are
most often a result of a positive IOD phase interacting with
an El Niño ENSO phase.

1.2 Disaster risk reduction and resilient risk
management of droughts in Papua New Guinea

PNG has a lack of coping capacity for managing the risks
posed by the drought events which occur across the country,
due to limited resource availability, including water and food
insecurity, and reactive management practices (Kuleshov et
al., 2020). Although drought historically has disastrous im-
pacts on PNG communities, the risk of drought has not been
extensively investigated compared to other hazards like trop-
ical cyclones and floods. Due to the lack of drought risk
knowledge, and the lack of coping capacity, future disaster
risk reduction (DRR) of drought, through resilient drought
risk management, is of priority in PNG (Bang and Crimp,
2019).

Globally, resilient drought risk management consists of
two key elements: proactivity and suitability. In this instance,
proactivity is characterised by controlling a drought risk sit-
uation prior to the occurrence of a drought event, rather than
responding to drought after it has reached a crisis level (Pul-
warty and Sivakumar, 2014). Suitability is seen as the level of
appropriateness that drought management strategies have for
application at localised levels in vulnerable places. A drought
management strategy is deemed suitable if it can be indepen-
dently implemented by local stakeholders and/or communi-
ties and if it addresses the specific impacts faced by local
decision-makers (Aitkenhead et al., 2021). Thus, when seek-
ing to increase drought resilience in PNG, the proactivity and
suitability of localised drought risk management is of critical
focus (Mercer, 2010).

1.3 Investigating drought risk knowledge in PNG:
drought risk assessments

Drought risk assessments are increasingly recognised as key
to informing proactive and suitable drought risk management
decisions, as they aid in increasing risk knowledge and can
identify priority management areas. Such assessments are
commonly used in global studies investigating drought risk
knowledge, and there is potential for application of these as-
sessments in SIDS like PNG (Chen et al., 2003; Rahmati et
al., 2020). Drought risk assessments analyse the risk of ad-
verse drought impacts in a particular area. Drought risk is de-
fined as the probability of harmful consequences, or expected
losses resulting from interactions between drought hazard
(the possible future occurrence of drought hazard events);
drought exposure (the total population, its livelihoods and as-
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Figure 2. Multi-Source Weighted-Ensemble Precipitation (MSWEP) rainfall deciles in response to various climate drivers: (a) negative IOD
phase (during 1981, 1989, 1992, 1996, 1998, 2010, 2014, and 2016 years), (b) positive IOD phase (during 1982, 1983, 1994, 1997, 2006,
2012, 2015, and 2019 years), (c) negative IOD phase and La Niña ENSO phase (during 1989, 1998, and 2010 years) and (d) positive IOD
phase and El Niño ENSO phase (during 1982, 1994, 1997, 2006, and 2015 years). Deciles are compared to a 1980–2020 base period. Figure
adapted from Bhardwaj et al. (2021b).

sets in an area in which drought hazard events may occur);
and drought vulnerability (the tendency of exposed factors to
suffer negative impacts when drought hazard events occur)
(Sharafi et al., 2020).

It is widely accepted that there are two types of risk assess-
ments: static and dynamic (Hagenlocher et al., 2020; Wil-
hite et al., 2014). Dynamic drought risk assessments consider
both the spatial and temporal aspects of droughts, using his-
toric, periodically updated, and simulated data. Additionally,
dynamic assessments incorporate not only hazard monitor-
ing indicators, but also vulnerability and exposure indicators
(Mosquera-Machado and Dilley, 2009). Most drought risk
assessments that have been previously conducted on both the
global scale, and specifically for PNG, have been static as-
sessments (Hagenlocher et al., 2020). Static assessments pro-
vide an estimate of risk factors for a discrete moment in time
and space, usually considering only one or two components
of risk (e.g. only hazard) (Aerts et al., 2018; Hagenlocher et
al., 2020). Dynamic assessments are recommended for use
over static assessments as they provide a more holistic as-
sessment of drought risk; drought risk is not static, but rather
dynamic in both space and time (Hagenlocher et al., 2020).

The vitality of such dynamic drought risk assessments is
demonstrated by Rahmati et al. (2020) in a study of drought
risk in a vulnerable area of south-east Queensland, Australia.
As a result of their study, Rahmati et al. (2020) provided rec-
ommendations detailing areas that are likely to experience
adverse drought impacts, within which drought resilience
should be improved. The drought risk assessment also had
implications for utilising integrated geographic information
system (GIS)-based mapping techniques to accurately map
and visualise drought risk levels in an area to better inform
drought preparedness. Integrated GIS-based mapping tech-
niques for risk assessment include three key components:

data integration into GIS, risk assessment tasks, and consid-
eration of risk decision-making (Chen et al., 2003).

The first component, data integration into GIS, consists
of data collection and assimilation onto a GIS platform and
data transformation and standardisation. Fuzzy logic is a
data transformation and standardisation technique increas-
ingly recognised as useful in drought risk mapping (Dayal et
al., 2018). As drought risk is dynamic, assessing and mitigat-
ing regional drought impacts is likely to involve some level
of subjectivity as there are no standard criteria on mapping
and quantifying drought risk. The application of fuzzy logic
in GIS minimises the subjectivity in drought risk assessment,
thus improving the efficiency of risk assessment as a tool for
spatial decision-making (Dayal et al., 2018). Risk assessment
tasks are then performed on the GIS platform, including indi-
vidual hazard, vulnerability, and exposure assessments with
accompanying mathematic calculations (Hagenlocher et al.,
2019). The consideration of risk decision-making is incorpo-
rated through efficient data visualisation on GIS risk maps
and appropriate dissemination of such products to decision-
makers (Blauhut, 2020).

1.4 Validating drought risk assessments to ensure
accuracy and usability of results

Drought risk assessments commonly lack adequate vali-
dation (Asare-Kyei et al., 2017; Blauhut, 2020). In a re-
view of past risk assessment methodology, Hagenlocher et
al. (2019) state that comprehensive validation “has proven
to provide relevant information on the reliability, validity,
and methodological robustness of risk assessments and their
outcomes. However, its application in the field of risk as-
sessment remains largely underdeveloped.”. Among the few
studies seeking to validate a risk assessment methodology,
including those seeking to validate an assessment solely fo-
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cused on one component of risk like vulnerability, various
validation techniques have emerged (González Tánago et al.,
2016).

Validation through result comparison with historical data
has been used in several studies (Wu and Wilhite, 2004);
however the preciseness of this method has been criticised
(Fekete, 2019). Molinari et al. (2019) state that there is “the
need of higher quality data to perform validation and of
benchmark solutions to be followed in different contexts,
along with a greater involvement of end-users”. An alter-
native technique, incorporating the views of end-users as a
“ground-truth” source, called participatory research is be-
coming increasingly utilised to validate drought monitoring
outcomes, including risk assessment results. A ground-truth
source provides information that is real or true, given by di-
rect observation or measurement in the real world. For exam-
ple, drought impact records for a particular event were pro-
vided by locals who experienced the event first-hand.

Participatory research is a technique which includes col-
laboration with stakeholders in a capacity building process
as well as consideration of local peoples and expert ob-
servations into knowledge systems (Mckenna and Yakam,
2021; Fragaszy et al., 2020). Although participatory research
is seen as a promising validation methodology, some past
investigations using this method have employed an addi-
tional “ground-truth” source to strengthen validation ade-
quacy (González Tánago et al., 2016). For example, Bi-
jaber (2018) verified risk assessment results with histori-
cal on-the-ground precipitation and crop data at the national
scale in Morocco, as well as the views of experts regarding
what conditions were experienced during the study period.

In addition to validating risk assessment results, a statisti-
cal sensitivity analysis is also recommended as best practice
for validating the selection of drought risk indicators inform-
ing the risk assessment (Hangelocher et al., 2019). Sensitiv-
ity analysis is used to determine how different values of an
independent variable affect a particular dependent variable
under a provided set of assumptions. Although recognised as
a critical verification tool, previous drought risk assessment
studies commonly exclude sensitivity analysis. In a review
of past drought risk assessments, Hangelocher et al. (2019)
determined that only 12 % of studies conducted a statistical
sensitivity analysis, with only four studies employing both
a validation of risk assessment outcomes against a ground-
truth source and a sensitivity analysis.

In Pacific SIDS like PNG, data availability is scarce.
Therefore, validation through comparison with historical in-
dependent data is unlikely to be credible. Overall, a strength-
ened validation methodology using multiple ground-truth
sources, and an additional sensitivity analysis, seems most
promising for future study of drought risk assessments in
PNG.

1.5 Addressing drought risk assessment knowledge
gaps in PNG

Generally, drought is insufficiently investigated on the global
scale (Blauhut, 2020). Out of the few drought risk assess-
ments previously conducted, most are lacking in effective
methodological components (González Tánago et al., 2016).
Blauhut (2020) recommends that future studies must “im-
prove the characterisation of drought risks and its compo-
nents” and “ascertain how this risk can be communicated. . .
to enhance resilience to drought”. Hagenlocher et al. (2019)
corroborate that there are major gaps in previous risk assess-
ment methodologies, like a lack of tailored indicator selec-
tion.

Tailored drought risk assessment is specific for measuring
drought risk in a particular area and produces information for
a certain set of stakeholders. This can be achieved by select-
ing hazard, vulnerability, and exposure indices that specifi-
cally consider the climatic, socio-economic, and geographic
characteristics of the area being assessed. Thus, generalised
indicators would be omitted from the assessment. In recog-
nising the importance of tailoring drought risk assessment
through appropriate selection of indicators, Le et al. (2021)
selected specific indicators for their agricultural drought risk
assessment in Vietnam, based on three criteria: (i) indicators
are relevant to agricultural sector; (ii) data for these indica-
tors are quantitative and publicly available, and (iii) indica-
tors are specific to Vietnam’s socio-economic conditions.

A scarce number of previous studies in PNG, assessing
the risk of negative drought impacts, are commonly lacking
in effective methodological aspects and do not address key
knowledge gaps in drought risk assessment investigation. An
analysis of previous drought assessment studies in PNG is
provided in Table 1, and the methodological knowledge gaps
are outlined. Overall, there is room for future investigation
to develop a drought risk assessment to be utilised in PNG
that incorporates the most effective methodological aspects,
specifically considering the following: tailored and specific
indicator selection; consistent drought risk definitions; dy-
namic rather than static assessment; sufficient validation of
indicators and results; and the provision of recommendations
for risk reduction.

Accordingly, this study will expand on previous research
(Bhardwaj et al., 2021b; Kuleshov et al., 2020) with an aim
to increase drought risk knowledge in PNG. Specifically, this
research seeks to do the following:

– demonstrate the potential for tailored drought risk as-
sessments to accurately inform on drought risk levels
before, during, and after a drought event and thus con-
tribute to more resilient drought risk management in lo-
cal areas, using drought in PNG as a case study.

– develop an effective, dynamic drought risk assessment
methodology utilising a GIS-integrated technique and
space-based weather and climate extremes observa-
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Table 1. An analysis of previous drought assessment studies in PNG outlining the methodological aspects lacking.

Study
source

Study description Effective methodological aspects
lacking

Korada et
al. (2018)

Performed in the Western Highlands province of PNG, which is a rain-fed
subsistence farming dominated province highly vulnerable to drought, Ko-
rada et al. (2018) adopted GIS and remote sensing technology to highlight
potential drought risk zones. General environmental indicators were used
to inform the risk assessment: soil type, NDVI, rainfall, terrain, population
demography, and surface temperature. Using multi-criteria evaluation tech-
niques in GIS, indicators were integrated, and risk areas were identified.
Risk areas were mapped and then classified to indicate levels of drought
risk from low, medium, and high.

Indicator selection is not specific and tai-
lored; risk assessment is static; insufficient
validation of indicators and results; lacks
the provision of recommendations for risk
reduction; lacks clear drought risk defini-
tions.

Chua et
al. (2020)

Used remotely sensed indicators to assess drought over PNG. The indica-
tors evaluated for this study included precipitation, vegetation health, and
soil moisture. Indicators were assessed on a monthly timescale from 2001
to 2018. A case study was then performed to determine the efficiency of
such indicators to characterise drought in PNG during the 2015–2016 El
Niño. This case study was used as a validation for indicator effectiveness
in assessing drought impacts in PNG. It was found that vegetation health
index (VHI) and the Standardized Precipitation Index (SPI) were able to
accurately indicate the spatial and temporal components of the 2015 to
2016 severe drought event in PNG caused by the El Niño phase. Overall,
these satellite-derived precipitation products were recommended as poten-
tially useful for operational use for drought detection and monitoring in
PNG.

Inconsistent drought risk definitions: this is
a hazard-centric assessment of drought im-
pacts across PNG; the role of ecosystems
and ecosystem services as a driver of risk is
not explored.

Allen and
Bourke
(2009)

An assessment of the risk of drought impacts was undertaken in response to
the severe 1997–1998 El Niño induced drought in PNG. The impacts of the
drought specifically on food supplies and water, on the national scale, were
examined. Assessment teams, consisting of experts, were sent out to report
on food supply conditions in rural communities, identify placed in severe
need, assess migration out of impacted areas, assess local drinking water
supply, assess health conditions, and report on the existence of emergency
services and communications. Local people were interviewed and observed
to obtain the information. Assessment teams each focused on specific areas,
provinces, or regions. The assessment was conducted over 4 weeks.

Inconsistent drought risk definitions: al-
though vulnerability, exposure, and hazard
aspects of drought risk were considered in
this study, no clear definitions were pro-
vided for drought risk; lacks the provision
of recommendations for risk reduction; no
drought risk mapping was conducted; risk
assessment is static; insufficient validation
of indicators and results; indicator selec-
tion is not specific and tailored: although
a specific focus on food and water supply
was employed, the assessment asked gen-
eral questions about food and water supply
and did not use specific indicators relevant
to PNG.

Bang et al.
(2003)

Agricultural drought risk in PNG was assessed in response to the 2002
drought in PNG, using software developed by the Queensland Centre for
Climate Applications. This software used correlations with the Southern
Oscillation Index (SOI) and the Pacific sea surface temperature (SST) to
assess droughts. Overall drought risk in this study was classified as very
low, low, moderate, high, and very high. Indicators considered for the agri-
cultural drought assessment included population density, slope of agricul-
tural land, drought tolerance of crops, staple crop prevalence, altitude, re-
liance on agriculture, diversity of cropping systems, and use of irrigation
systems, land use intensity, rainfall variability, precipitation deficiency, and
soil water deficiency. The assessment was carried out through surveys of lo-
cal farming families residing in severely affected highland and lowland re-
gions across PNG. The results of the study allowed for the following recom-
mendation: a consistent implementation program of long-term farm-specific
coping strategies is required in the vulnerable areas throughout PNG, par-
ticularly in the highland provinces.

Inconsistent drought risk definitions: al-
though hazard, vulnerability, and exposure
indicators are considered, these compo-
nents are not defined; indicator selection is
not specific and tailored: the selection pro-
cess is not described in detail, with more fo-
cus given to the selection of assessed sites;
insufficient validation of indicators and re-
sults: no sensitivity analysis was performed
to assess the robustness of indicators; no
drought risk mapping was conducted.
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tions, conduct a unique and tailored, dynamic drought
risk assessment for a retrospective period in PNG, and
perform a comprehensive validation of the risk assess-
ment results using literature records as a “ground-truth”
source.

The development of the drought risk assessment is intended
to aid the PNG National Weather Service (NWS) in inform-
ing local PNG stakeholders on which provinces are of highest
concern and guide-resilient drought risk management prac-
tices within priority communities.

2 Data and methodology

2.1 Study area: PNG

PNG has a population of approximately 8.8 million across
its mainland and 600 islands, which have a total land area
of 452 860 km2. The country consists of four major regions,
within which the 22 provinces of PNG are divided (Fig. 3).
The four major PNG regions and their provinces are as fol-
lows:

1. Highlands Region consists of Chimbu (Simbu), Eastern
Highlands, Enga, Hela, Jiwaka, Southern Highlands,
and Western Highlands.

2. New Guinea Islands Region consists of Bougainville,
East New Britain, Manus, New Ireland, and West New
Britain.

3. Momase Region consists of East Sepik, Madang, Mo-
robe, and Sandaun (West Sepik).

4. Southern Region consists of Central, Gulf, Milne Bay,
National Capital District, Oro (Northern), and Western.

PNG is largely mountainous, and much of it is covered with
tropical rainforest. The climate of PNG can be described
as tropical throughout; however each region of PNG ex-
periences differences in seasonal climactic factors (Fig. 2)
(Bhardwaj et al., 2021a). PNG society consists of tradi-
tional village-based life, dependent on subsistence and small
cash-crop agriculture, as well as modern urban life in the
main cities. Economic performance in PNG has historically
been based on international prices for exports, fiscal policies,
and construction activity. As of 2015, over 2 million Papua
New Guineans were poor and/or facing hardship, particularly
those based in rural areas (Pacific Islands Forum Secretariat,
2015). Agricultural occupation is consistently important for
local livelihoods, with approximately 80 %–85 % of the ru-
ral population directly deriving their livelihood from farming
(Pacific Islands Forum Secretariat, 2015).

2.2 Study design

The methodology proposed here addresses the gaps identi-
fied in previous studies (Hagenlocher et al., 2019) to achieve

a tailored and accurate risk assessment. Hazard, vulnerabil-
ity, and exposure components are equally considered, and
the spatial and temporal aspects of drought are investigated,
using retrospective and periodically updated data. The as-
sessment is deemed as semi-dynamic as it has a dynamic
hazard component, which can be updated monthly and in-
cludes monitoring indicators with data on 3-month cumu-
lative timescales, but also includes more semi-dynamic and
static components of vulnerability and exposure, which are
updated annually or in some cases (e.g. elevation) remain
fixed.

This research is conducted on the provincial level within a
2014–2020 study period. The methodology for this study has
four parts:

1. selection of tailored hazard, vulnerability, and exposure
indicators appropriate for monitoring drought risk in
PNG provinces;

2. calculation and GIS mapping of hazard, vulnerabil-
ity, exposure, and drought risk indices for retrospec-
tive1 years (2014–2020) to determine the occurrence of
drought events in PNG in the past;

3. validation of drought risk assessment accuracy through
a comparison of the drought risk index results with lit-
erature detailing the drought conditions and impacts ex-
perienced on the ground at the time of each past PNG
drought event;

4. implementation of a sensitivity analysis to enhance the
evaluation and validity of the risk assessment.

2.2.1 Methodology: part 1

The risk index produced incorporates equal indices of haz-
ard, vulnerability, and exposure; specific indicators were se-
lected to contribute to these three indices. With drought haz-
ard covering the possible occurrence of drought events in the
future, exposure considering the total population, its liveli-
hoods and assets in an area in which drought events occur,
and drought vulnerability reflecting the tendency of exposed
factors to suffer adverse impacts when a drought event oc-
curs (Sharafi et al., 2020). These definitions remained clear
throughout the assessment process, addressing the literature
recommendation to consistently characterise drought risk as
the risk of negative impacts as a function of three core com-
ponents: hazard, exposure, and vulnerability (Hagenlocher et
al., 2019).

Tailored risk indicators were selected for monitoring
drought risk in PNG on the provincial scale, based on the

1This methodology follows the process of historical risk assess-
ment validation, as in Wu and Wilhite (2004); however due to the
limited data range available for selected indices, it is inappropri-
ate to call this a historical risk assessment. It is therefore deemed a
retrospective risk assessment.
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Figure 3. PNG map indicating each of the 22 PNG provinces with shortened names for Eastern Highlands (EH), Southern Highlands (SH),
and Western Highlands (WH). Map was produced using ArcGIS Pro with an open-source base map.

following criteria adapted from Le et al. (2021): (i) indica-
tors are relevant to one or more of the three most drought
impacted sectors in PNG (economic sector, agricultural sec-
tor, and health sector), (ii) data for these indicators are quan-
titative and publicly available, and (iii) hazard indicators
are highly specific to PNG’s climactic conditions, and the
vulnerability and exposure indicators are highly specific to
PNG’s socioeconomic and geographic conditions. An anal-
ysis of indicator selection in earlier studies of characteris-
tically similar areas to the 22 provinces of PNG was used
to measure the suitability of potential indicators for this
study against the selection criteria described above. PNG
NWS advice was also sought to approve indicator selection
for this study. Additionally, hazard indicators were assessed
against recommendations made by WMO in their Hand-
book of Drought Indicators and Indices (Svoboda and Fuchs,
2016).

Table 2 displays the chosen hazard, vulnerability, and ex-
posure indicators, indicator data sources, data resolution for
each indicator, and the weight applied to each indicator. The
reasoning behind the selection of each of these indicators is

described in tables that are included in the Supplement. Other
potential indicators and the reasons why they were omitted
from this study are also described in tables in the Supple-
ment.

It is important to note the following:

– All types of droughts were considered when select-
ing indicators (Supplement), as well as all major sec-
tors across PNG provinces. This was done to pro-
vide a holistic risk index for PNG provinces, as each
type of drought is known to impact PNG communities
(Kuleshov et al., 2020), and each major sector experi-
encing the effects (Bhardwaj et al., 2021b). However, it
was particularly difficult to find indicators suitable for
the study context that inform on hydrological drought.
Thus, this drought type could not be examined in the
PNG drought risk assessment.

– Publicly accessible data were only available for certain
indicators as data availability is poor in PNG (all in-
dicators ultimately selected for use in the risk assess-
ment had publicly accessible data available); thus indi-
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Table 3. Indicator thresholds that signal different stages of drought risk. These thresholds have been decided upon based on use in past
studies (Rahmati et al., 2020; Nasrollahi et al., 2018; Aitkenhead et al., 2021), the advice of the PNG National Weather Service, as well as
past data trends in PNG (Chua et al., 2020).

Indicator No to mild drought risk Moderate drought risk Severe to extreme drought risk

SPI 0.4 to 2 and above 0.4 to −0.4 −0.4 to −2 and above

VHI 50 to 56 and above 42 to 50 30 and below to 42

Percentage of children weighed
at clinics less than 80 % weight
for age 0 to 4 years old

0 to 15 15 to 25 25 to 50 and over

Agricultural occupation 0 to 20 20 to 45 45 to 100

Key crop replacement cost 0 to 2000 2000 to 4000 4000 to 10 000

Staple crop tolerance scores 0 1 2

Land use 0 to 1 1 to 2.5 2.5 to 6

Elevation type 1 2 3

Population density 50 to 100 and above 20 to 50 0 to 20

Access to safe drinking water 60 to 100 40 to 60 0 to 40

cators which could have been more appropriate for use
in hindsight had to be omitted. For example, average
household consumption of staple food could have been
a useful vulnerability indicator, particularly informing
on food insecurity. However, data availability was too
scarce across PNG for it to be included in the risk as-
sessment (Supplement).

– Indicator data were only available at certain spatial res-
olutions. Because of this, a standard spatial resolution
was chosen for the recording of data; data were recorded
at the provincial level.

– Space-based monitoring products were used when gath-
ering data for hazard indicators to ensure accuracy.
There is a commonly recognised need to increase the
utilisation of monitoring of climate extremes from space
in disaster risk investigations (Kuleshov et al., 2019;
Blauhut, 2020).

Each of the selected hazard, vulnerability, and exposure indi-
cators has varying thresholds for signalling levels of drought
risk. Table 3 provides accepted thresholds, outlined by sev-
eral other studies (Rahmati et al., 2020; Nasrollahi et al.,
2018; Aitkenhead et al., 2021), the advice of the PNG Na-
tional Weather Service, as well as past data trends in PNG
(Chua et al., 2020), for each indicator in which “no to mild
drought risk”, “moderate drought risk”, or “severe to extreme
drought risk” is likely signalled. These thresholds have been
determined through an investigation of literature regarding
each indicator. For example, SPI and VHI thresholds were
decided upon using guidance from Chua et al. (2020). These
thresholds are provided as an insight into the general signals

given by ranges of values in the indicator data. They were not
used further in any calculations.

2.2.2 Methodology: part 2

Data for hazard, vulnerability, and exposure conditions, in
each of the 22 PNG provinces within the 2014–2020 study
period in PNG, were used to develop a yearly risk index for
each year investigated to determine whether it is suspected
that a drought event(s) occurred. In this research, we consider
a drought event as the occurrence of drought hazard condi-
tions with associated impacts. Integrated-GIS methodology
for mapping was used to display yearly risk levels for 2014–
2020, on the provincial scale across PNG. Monthly risk in-
dices were also produced for November and December in
2014, January to December of 2015, and November and De-
cember in 2016. The monthly results formed a case study
of PNG’s transition into and out of drought in the strong El
Niño year of 2015.

To calculate the hazard, vulnerability, and exposure in-
dices, indicator data were first reclassified by a linear func-
tion (using the rescale by function tool in ArcGIS Pro) on
a 1–10 scale and then standardised using fuzzy logic in Ar-
cGIS Pro (Environmental Systems Research Institute (Esri)
Inc., 2019). Fuzzy logic is processed in ArcGIS Pro through
the fuzzy function, which requires the assignment of fuzzy
membership classes to data (Eq. 1).

µA(x) :X −→ [0,1], (1)

where µA(x) refers to the grade of membership for element
x in a fuzzy set A, and the X is the universal set.
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Prior to the performance of the fuzzy function, fuzzy mem-
bership classes were assigned to each indicator, describing
the relationship between it and drought risk as recommended
in Rahmati et al. (2020) and Aitkenhead et al. (2021). Two
classes of fuzzy membership were assigned in this study:
fuzzy small2 and fuzzy large3. Fuzzy values scaled between
0–1 based on the possibility of the indicator data contribut-
ing to drought risk, where 0 was assigned to values unlikely
to contribute to drought risk, and 1 was assigned to values
most likely to contribute.

In fuzzy large, larger inputs have membership values closer
to 1. This function is defined by a midpoint value that can be
left as a default or manually adjusted to suit specific datasets,
which is assigned a membership of 0.5. Equation (2) gives
the mathematical expression for fuzzy large membership.

µ(x)=
1

1+
(
x
f 2

)−f 1 , (2)

where f 1 is the spread and f 2 is the assigned midpoint.
In fuzzy small, smaller inputs have membership values

closer to 1. Like fuzzy large, it is defined by a either a default
or manually assigned midpoint that is given a membership
value of 0.5. Equation (3) gives the mathematical expression
for fuzzy small membership.

µ(x)=
1

1+
(
x
f 2

)f 1 (3)

The default midpoint was not used when performing the
fuzzy function; the midpoint used for each indicator was
based on the mean value in the historical records for indicator
data (historical records meaning all available past data; this
differs for each indicator. For example, SPI data are avail-
able from 2001 onwards.). This ensured that the data were
standardised on both a spatial and temporal scale.

The indicator fuzzy values for each year were mapped on
the provincial scale as yearly raster layers in ArcGIS Pro4.
Thus, a 2014, 2015, 2016, 2017, 2018, 2019, and 2020 stan-
dardised raster layer was mapped on the provincial scale for
each of the 10 indicators. This was also done for the months
investigated as part of the 2015 case study. After standar-
dising indicator data, numerical weights were assigned by
researchers to each indicator based on an expert weighting
scheme informed by past studies and advice from the PNG
NWS. The weights assigned reflected the relative importance
and contribution of each indicator to the specific index it
informs. This weighting scheme was on a 0–1 scale, with

2Fuzzy small: a transformation function used when smaller input
values are most likely to influence drought risk.

3Fuzzy large: a transformation function used when larger input
values are most likely to influence drought risk.

4The base map used for all mapping in this study was gathered
from the open-sourced platform, GISMap.

0 indicating no probable contribution to the relative index
and 1 being total probable contribution to the relative index
(Frischen et al., 2020). The weights assigned to each hazard,
vulnerability, and exposure indicator are shown in Table 2.

By applying weights to indicators, the potential effect of
anomalies in individual indicator data is reduced. For exam-
ple, hazard data anomalies are expected as there is commonly
a lag between dry signals from SPI and VHI. The effects of
dry conditions recorded in SPI are commonly seen leading
up to and during a drought event, whereas the vegetative ef-
fects recorded by VHI can sometimes lag and can only be-
come evident once a drought event has commenced (Zhao et
al., 2022). Additionally, VHI primarily signals only agricul-
tural drought, whereas SPI is a meteorological drought haz-
ard indicator which can be linked to the impacts of multiple
drought types (not only meteorological but also hydrological
and agricultural). So, in a holistic drought risk assessment
aiming to encompass all forms of drought, as in this study,
SPI could be weighted more.

The vulnerability, hazard, and exposure indices were cal-
culated for each province, and spatial maps of the area cov-
ering the 22 provinces of PNG (representing vulnerability,
exposure, and hazard per unit area) were produced, through
the raster calculator in ArcGIS Pro using Eqs. (4), (5), and
(6) (Dayal et al., 2018). Vulnerability, hazard, and exposure
indices were calculated for each year and month under inves-
tigation.

HI=
n∑
i=1

(
wi × x

′

i

)
, (4)

VI=
n∑
i=1

(
wi × x

′

i

)
, (5)

EI=
n∑
i=1

(
wi × x

′

i

)
, (6)

where HI is the hazard index; VI is the vulnerability index;
EI is the exposure index; n is the number of hazards, vulner-
ability, or exposure indicators; x′i refers to the standardised
indicators; and wi refers to the respective indicator weight.

The final drought risk index value for each PNG province
was then determined and mapped through the integration of
the drought vulnerability, hazard, and exposure index maps
using the fuzzy gamma overlay function (using a gamma of
0.75) in ArcGIS Pro. The mathematical expression for this
function is given in Eq. (7) (Dayal et al., 2018).

µgamma = (µsum)
γ
×
(
µproduct

)1−γ
, (7)

where µgamma is the calculated fuzzy membership function,
γ is a parameter chosen between 0 and 1; µsum is the fuzzy
algebraic SUM and µproduct is the fuzzy algebraic PRODUCT
that is mathematically expressed in Eqs. (8) and (9) respec-
tively (Dayal et al., 2018).
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µsum = 1−
n∏
i=1
(1−µi), (8)

µproduct = 1−
n∏
i=1
(µi), (9)

where µi is the fuzzy membership for the map, and i equals
the number of maps to be combined. In the fuzzy gamma op-
eration, γ = 0 is equivalent to the fuzzy product and γ = 1 is
equivalent to fuzzy sum.

Once a final drought risk map was produced for each year
and month under investigation, the extent of drought risk
displayed was classified into five levels: very mild (0.01 to
0.20 index values), mild (0.21 to 0.40 index values), mod-
erate (0.41 to 0.60 index values), severe (0.61 to 0.80 index
values), and extreme (0.81 to 1.00 index values). These clas-
sifications are commonly used in drought risk assessments
(Dayal et al., 2018; Frischen et al., 2020).

Through observation of the produced drought risk maps,
the years in which a nationwide drought event was suspected
in PNG were determined. Since PNG is a highly variable na-
tion (in both climatic and geographic characteristics), it is
hard to stipulate that drought is occurring as a nationwide
event if a handful of scattered provinces are at high risk; it is
more suitable to consider drought risk across each of the four
regions of PNG. Table 4 outlines the decision rules for when
a regional drought event was suspected within the four re-
gions of PNG. Three severity levels were used to classify the
strength of the events indicated: mild, moderate, and severe
to extreme. The strength of each identified drought event was
determined based on the risk level pattern observed across
PNG overall. As recognised in the literature describing past
drought events across PNG (Bhardwaj et al., 2021b; Bang
and Crimp, 2019), if half of the regions in PNG (two out of
four) are deemed to be experiencing drought, then a mild to
moderate nationwide drought event is likely to be occurring
(mild or moderate depending on the severity of risk levels
observed in the drought-suspected regions). If the majority
or all the regions are suspected to be in drought, then a se-
vere to extreme nationwide drought event is likely to be oc-
curring (severe or extreme depending on the severity of risk
levels observed in the drought-suspected regions) (Kanua et
al., 2016).

2.2.3 Methodology: part 3

Risk level accuracy was validated through comparison with
documented records of observed impacts during the study pe-
riod as a ground-truth source. Literature sources on this topic
were analysed for the period of 2014–2020 to determine
when drought events were recorded. The events recorded in
the literature were compared to those identified by the risk as-
sessment. The events identified by both the literature and risk
assessment were further analysed by comparing the severity

of each event indicated by the risk assessment and the sever-
ity described in the literature. As in the events identified by
the risk assessment, three severity levels were used to clas-
sify the strength of the events indicated in the literature: mild,
moderate, and severe to extreme. Table 5 displays the infor-
mation used to formalise the link between impacts reported
by literature sources and the three severity classes.

A literature search was undertaken to gather appropriate
sources for analysis. Criteria for the inclusion and exclusion
of sources were developed, guided by similar past studies
(González Tánago et al., 2016) and the requirements of this
study. Table 6 displays the criteria used to select sources for
this study. The search parameters used to gather the sources
are listed in Table 7. Overall a total of 13 sources (An-
namalai et al., 2015; Whitfield et al., 2019; Bonnafous et
al., 2017; Broughton, 2017; Allan et al., 2019; De Deckker,
2016; Schmidt et al., 2021; Burivalova et al., 2017; Bhard-
waj et al., 2021b; Johnson et al., 2019; Bang and Crimp,
2019; World Food Programme, 2019; Mckenna and Yakam,
2021) were included in the literature investigation (Table 8).
Each of the 13 sources was analysed, and the following in-
formation was recorded: the time of drought mentioned, the
severity of drought mentioned, and the types of drought im-
pacts mentioned. The specific provinces mentioned, and the
severity of impacts described for such provinces, were also
recorded.

To determine if there were significant differences between
the severity level for each identified drought event, indicated
by the risk assessment compared to literature, two types of
statistical test were performed: F test and t test5. These tests
were conducted for each drought event identified by the as-
sessment and literature. The F test was firstly conducted to
determine whether there were equal variances between the
provincial risk levels displayed in the risk assessment, and
the impact levels noted for provinces in the literature, for
each drought event identified (Table 9). The F value (test
statistic), degrees of freedom and the two-tailed p value indi-
cating the level of marginal significance within the test were
recorded. Student’s t test (assuming equal or unequal vari-
ances depending on F -test results) was then conducted to
determine the significance of difference between the drought
risk levels indicated by the assessment and the impact levels
indicated in the literature (Table 9). The t value (test statis-
tic), degrees of freedom, and the two-tailed p value were
recorded. The main factor being tested for was if a differ-
ence existed between the risk-assessment-given risk levels
and the literature-given risk levels. As this is non-specific,
a two-tailed p value is deemed appropriate for use (Peskun,
2020). Test assumptions were checked by plotting the data
distribution on boxplots. All assumptions were met; thus the
tests proceeded. All statistical tests used α= 0.05.

5Statistical tests were performed in Microsoft Excel.
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Table 4. Risk level pattern observed to determine whether a drought event was suspected as occurring throughout each PNG region. n/a –
not applicable.

Risk level pattern observed Drought Corresponding Justification
across PNG region event strength assigned

suspected? to the event

Very mild risk levels are
present within the region.

No n/a Very mild conditions consistent throughout the country likely indicate
that socio-economic conditions within PNG are stable, and no drought
hazard conditions are being experienced within PNG (Kanua et al.,
2016). These are characteristics of a stable, non-drought period (Bhard-
waj et al., 2021b).

Mild risk is detected within
the region.

No n/a The indication of mild risk within a PNG region could be attributed to
expected dry conditions resultant of the regular PNG dry season (oc-
curring from June to September across PNG) (Chua et al., 2020). The
detection of only mild drought risk in a region is not reason enough to
assume that a drought event is occurring.

No mild or very mild levels
present, with majority of or
all provinces within the
region at a moderate risk
level.

Yes Mild Moderate risk levels suggest that socio-economic conditions are be-
coming unstable across PNG, and drought hazard conditions are likely
being experienced. However, consistent moderate risk levels, without
the distinct presence of any higher levels, are characteristic of only a
mild drought event. It has been seen in past drought events across PNG,
which have been classified as mild, that only a few provinces were af-
fected severely, with the majority of other provinces experiencing only
moderate or mild impacts (Iese et al., 2021).

No mild or very mild levels
present, and there is an ap-
proximately equal distribution
between severe and moderate
risk, with no extreme levels
present.

Yes Moderate Moderate droughts in PNG are generally associated with dry conditions
beyond what are commonly experienced during the regular dry season,
as well as unstable social, economic, and agricultural aspects (Bang et
al., 2003). In the past, moderate drought has seen severe and moder-
ate impacts consistently distributed across all PNG provinces, but more
extreme impacts are not experienced (Iese et al., 2021).

Most provinces or all within
the region are at severe/
extreme levels.

Yes Severe to
extreme

In past severe or extreme drought events, all regions across PNG were
known to be highly adversely affected. This occurred even when only
certain provinces in the different regions experienced extreme drought
conditions and direct impacts, as other provinces encountered indirect
impacts which were also severe. For example, during the 1997–1998
nationwide drought event in PNG, dire social, health, and economic ef-
fects were felt across the entire country (Kanua et al., 2016). Resources
of provinces in non-dry conditions were pressured with PNG villagers
from drought-affected provinces travelling to areas in non-drought con-
ditions or to relatives living in urban areas seeking familial help and
support (Allen and Bourke, 2009).

2.2.4 Methodology: part 4

Sensitivity analysis provides insight into how uncertainty in
a model’s output (in this case the hazard, vulnerability, or
exposure index) can be attributed to different sources of un-
certainty in the model input (in this case the individual indi-
cators) (González Tánago et al., 2016). A sensitivity analysis
was conducted for the risk assessment to determine how sen-
sitive the indices were to changes in indicator values. The
analysis results were used to identify priority needs for revis-
ing the weighting of indicators, to ensure that the most robust
indicators are given the most merit in index calculations. The
2015 year was used as a case study for the sensitivity analy-

sis, as it was the most critical drought year indicated by the
risk assessment and identified in the literature. It was deemed
that this year would be representative of how the risk assess-
ment would perform in a drought event.

The sensitivity analysis performed was a one-way anal-
ysis. As such, one input parameter (indicator) used in the
calculation of an output (hazard, vulnerability, or exposure
index) was varied individually to assess the impact that it
would enact upon the output. For example, the sensitivity
of the hazard index to changes in SPI was analysed sepa-
rately to the sensitivity of the hazard index to changes in VHI.
Conducting the sensitivity analysis, the value of each indica-
tor in question was changed in a stepwise manner from 0.1
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Table 5. Information on the types of impacts associated with the three severity classes used to classify drought severity in the literature.
Adapted from Allen and Bourke (2009).

Severity class Types of impacts associated

Mild Unusually dry, but no major food supply, or drinking water or health problems OR some inconvenience
with shortages in staple food but other food available, and/or must travel further to collect drinking water.
Health satisfactory.

Moderate Conditions are difficult, with food reduced and some famine food being eaten, and/or water available only
at a distance, and/or some babies and elderly people unwell. No lives at risk and no related deaths reported.
Effects may begin to be felt in industry and/or markets.

Severe to extreme No food in gardens, famine food only being eaten, and/or water in short supply and possibly polluted,
and/or increasing disease, and/or the lives of small children and elderly people at risk OR extreme situation
with only famine food available, and/or water very short, and/or many people ill, and/or small children and
elderly people seriously at risk and/or related deaths reported OR workplaces/industry closures.

Table 6. Inclusion and exclusion criteria for the selection of literature sources to be used in the risk assessment validation.

Criteria for inclusion Criteria for exclusion

Literature in English Literature in other languages

Mention of a specific time period in Papua New Guinea within
which drought was present and/or drought impacts were experi-
enced.

Vague mention of drought events overall in the history of Papua
New Guinea, with specific years not mentioned and/or mention
of drought in years prior to the study period.

Impacts of drought are mentioned in a detailed manner, with the
specific type of impacts described. Mention of specific impacts
in particular PNG provinces.

Drought conditions are briefly mentioned, with no reference
to specific drought impacts experienced in PNG, or in specific
provinces.

Drought impacts described are not only meteorological/haz-
ard impacts; socio-economic/vulnerability/exposure impacts are
also mentioned.

Only meteorological/hazard impacts are described (e.g. temper-
ature anomalies).

Publicly available government/relevant organisation documents,
open-access journal articles, review articles, and book chapters.

Restricted-access books/book chapters, journal/review articles,
and grey literature other than relevant organisation documents
(meteorological organisation documents), for example newspa-
per articles.

to 1 with 0.1 increment and outputs for the relevant index
(hazard, vulnerability, or exposure) were tabulated; data ta-
bles were produced using Microsoft Excel with the “What-If
Analysis” function. An example data table is included in Ap-
pendix A. The output values were then used to calculate the
sensitivity index (SI), indicating the sensitivity of the index
in question to the individual indicator in question, following
Eq. (10) (adapted from Farok and Homayouni, 2018).

SI= (Dmax−Dmin)/Dmax, (10)

where Dmax is the output result (hazard, vulnerability, or ex-
posure value) when the indicator value in question is set at its
maximum value andDmin is the result for the minimum indi-
cator value. A high SI means high sensitivity, vice versa, with
“sensitivity” meaning the magnitude of the index reaction to
changes in indicator data.

This process was repeated for all provinces, meaning an
SI was produced for each of the 10 indicators used in this

study, for each of the 22 provinces investigated. Provincial
SIs were averaged to determine an overall SI for each indi-
cator. The higher the indicator SI is, the more sensitive the
relative index is to that indicator. The average SI value was
used to rank each indicator in terms of sensitivity (first being
the most sensitive) in each of the three indices. As it is known
that indices comprising of indicators with a high sensitivity
index (SI) have a likely reduced robustness, a credibility rank
was able to be given to each indicator, based on the sensitiv-
ity results (first being the most credible for inclusion in the
index) (Anand et al., 2019).
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Table 7. Search parameters used to gather literature sources for the risk assessment validation.

Database Search parameters Result

Google
Scholar

First search:
“Papua New Guinea” AND “drought impacts”
Filtered date from 2014–2020 (study period)
Second search:
“Papua New Guinea” AND “drought impacts” AND “La Niña”
AND “El Niño”
Filtered date from 2020–2021

First search:
101 items found, 7 included, 94 excluded
second search:
16 items found, 2 included, 10 excluded, 4 repeated

ScienceDirect First search:
drought AND Papua New Guinea
Filtered date from 2014–2020 (study period)
Second search:
Papua New Guinea AND drought impacts AND La Niña AND
El Niño
Filtered date from 2020–2021

First search:
502 items found, 0 included, 500, excluded, 2 repeated
Second search:
2 items found, 0 included, 2 excluded, 0 repeated

Springer Link First search:
drought event AND Papua New Guinea AND impacts
Filtered date from 2014–2020 (study period)
second search:
Papua New Guinea AND drought impacts AND La Niña AND
El Niño
Filtered date from 2020–2021

First search:
48 items found, 2 included, 45 excluded, 1 repeated
Second search:
3 items found, 0 included, 2 excluded, 1 repeated

Wiley Online
Library

First search:
drought AND Papua New Guinea AND impact AND province
Filtered date from 2014–2020 (study period)
second search:
drought AND Papua New Guinea AND impact AND province
Filtered date from 2020–2021

first search:
134 items found, 3 included, 129 excluded, 2 repeated
Second search:
27 items found, 0 included, 14 excluded, 13 repeated

3 Results

3.1 Comparison of drought risk assessment results and
literature findings

Through observing the risk assessment results it was deter-
mined that, in 2014, the Highlands Region and New Guinea
Islands Region was not suspected of experiencing a drought
event. The Momase and Southern regions were both sus-
pected as experiencing drought (severe to extreme drought
and moderate drought respectively). As two out of four re-
gions in PNG were indicated as experiencing drought in
2014, it was concluded that a drought event was suspected
to be occurring during this time. The strength of the event
was determined to be moderate, based off the risk level pat-
tern observed across PNG (Fig. 4). The risk level pattern dis-
played across PNG was a result of the hazard, vulnerability,
and exposure levels. In 2014, high hazard and vulnerability
levels were evident across the Momase Region and Southern
Region. Exposure levels were high throughout all regions,
except for the New Guinea Islands Region (Figs. 4 and 5). In
the literature investigation, only 15 % of sources mentioned
2014 as a drought year in PNG (Table 8). The sources that
did mention drought impacts throughout 2014 (Allan et al.,

2019; Burivalova et al., 2017) deemed such impacts to be se-
vere to extreme. As less than a quarter of sources mentioned
2014 as a drought year, there is insufficient evidence to cor-
roborate the drought risk assessment results to deem 2014 a
drought year.

The risk assessment results displayed a suspected severe
to extreme drought in the Highlands Region, Momase Re-
gion, and Southern Region in 2015. The New Guinea Islands
Region was suspected of experiencing a moderate drought.
Due to all regions suspected of drought, and the consistently
elevated risk levels displayed across PNG (Fig. 4), 2015 was
concluded as a severe to extreme drought year. These high-
risk levels were a result of high hazard levels consistent
throughout all PNG provinces, high exposure levels consis-
tently throughout PNG regions, with New Guinea Islands an
exception with more moderate levels, and high vulnerability
levels in Southern Region and Momase Region (Figs. 4 and
6); 76 % of literature sources mentioned 2015 as a year in
which a drought event occurred across PNG. All sources that
mentioned drought impacts in 2015 (Annamalai et al., 2015;
Whitfield et al., 2019; Bonnafous et al., 2017; Broughton,
2017; Allan et al., 2019; De Deckker, 2016; Schmidt et al.,
2021; Burivalova et al., 2017; Bhardwaj et al., 2021b; Bang

Nat. Hazards Earth Syst. Sci., 23, 553–586, 2023 https://doi.org/10.5194/nhess-23-553-2023



I. Aitkenhead et al.: Validating a tailored drought risk assessment methodology 567

Table 8. Literature sources used as a ground truth. The source is listed and described with the types of impacts listed in the sources recorded.

Source Drought
period
mentioned

Severity of drought
mentioned

Types of impacts described for PNG

Annamalai
et al.
(2015)

2015–2016 severe to extreme – famine
– compromised freshwater supplies and food security
– impacts on public health, economies, and food distribution

Whitfield et
al. (2019)

2015–2016 severe to extreme – climatological effect, which varied with elevation
– extreme high temperatures were recorded at lower elevations, coinciding with bush fires and
severe drought impacts
– at mid-elevation, there were reductions in dry season rainfall and the increases in temperature
were less severe, due to the mediation of cloud effects
– intermittent frosts occurred at particularly high elevations
– impacted crops both directly through drought and frost, and indirectly, through changes in
ecosystem services and disservices, including pest pressure and predation of pests

Bonnafous
et al.
(2017)

2015–2016 severe to extreme – the Ok Tedi mine experienced several months of shutdown after a drought induced by the
2015 El Niño event

Broughton
(2017)

2015–2016 severe to extreme – reduced rainfall in many areas of PNG from April 2015
– reduced cloud cover in high altitude locations in July–August led to damaging frosts.
– the rural population experienced reduced access to clean drinking water and staple foods,
which resulted in health problems
– there was an increase in mortality

Allan et al.
(2019)

2014–2016 severe to extreme – the drought event had very severe societal, agricultural, environmental, and ecological im-
pacts
– severe drought and associated food shortages impacted Papua New Guinea

De Deckker
(2016)

2015 severe to extreme – El Niño conditions in mid-2015 led to almost a third of the PNG population experiencing
famine due to crop failure

Schmidt et
al. (2021)

2015–2016 severe to extreme – the severe 2015–2016 El Niño event decimated a critical share of PNG’s local crop production,
leaving 10 % of the population with significant food shortages

Burivalova
et al.
(2017)

2014–2015 severe to extreme – the 2014–2015 El Niño event, which caused unusual precipitation patterns in Papua New
Guinea, had severe drought impacts

Bhardwaj
et al.
(2021b)

2015–2016
and
2019–2020

severe to extreme
for 2015–2016
mild for 2019–2021

– there was a strong El Niño-induced drought event in 2015
– there was a weaker La Niña-induced dry period in 2020
– the 2015–2016 event led to devastating negative rainfall anomalies, particularly in the southern
mainland
– the weak dry event in 2019–2020 was evidently detected over the entire country of PNG, with
the first provinces to experience dry conditions being New Ireland, East and West New Britain,
Bougainville, and Manus in the north-east of the nation Impacts experienced in such provinces
were likely mild

Johnson et
al. (2019)

2019 mild – mild drought impacts were detected in PNG during a weak 2019 drought episode

Bang and
Crimp
(2019)

2015–2016 severe to extreme – widespread hunger
– malnutrition and in some cases even death due to starvation
– recovery crops like sweet potato were crushed by unseasonal frosts

World
Food
Programme
(2019)

2019 moderate – below average vegetation across most of the country
– Western and Gulf Province experienced moderate to severe dry conditions and subsequent
impacts
– prolonged drought conditions and moderate drought impacts were recorded in southeast areas
of the country
– soil moisture was impacted in the coastal areas and southern part of the country, affecting
water storage, irrigation and raising the risk of bushfire

Mckenna
and Yakam
(2021)

2019–2020 moderate – negative impacts were experienced by market sellers
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Figure 4. Risk index levels for each PNG province calculated from the drought risk assessment conducted for 2014, 2015, 2016, 2017, 2018,
2019, and 2020. Risk index levels are classified on a deepening orange colour scale from very mild (index values from 0.01–0.20) to extreme
(index values from 0.81–1.00).
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Table 9. Individual PNG province mentions in the literature for each drought event as well as the severity level indicated for each province
in the literature. Note that not all 22 provinces were mentioned.

Drought Province No. of sources Level of impact Quantified drought Yearly drought risk level
event that mentioned mentioned in impact level given by the risk assessment
identified province the literature indicated in the (for the 2015–2016 event the

literature 2015 yearly risk and 2016
yearly risk were averaged)

2015–2016 Central 5 Severe 0.61–0.8 0.82
Chimbu (Simbu) 7 Severe 0.61–0.8 0.63
East New Britain 3 Extreme 0.81–1 0.70
East Sepik 1 Extreme 0.81–1 0.71
Eastern Highlands 8 Severe 0.61–0.8 0.62
Enga 6 Severe 0.61–0.8 0.66
Gulf Province 2 Severe 0.61–0.8 0.75
Hela 2 Severe 0.61–0.8 0.67
Madang 2 Extreme 0.81–1 0.68
Manus 2 Severe 0.61–0.8 0.49
Milne Bay Province 2 Severe 0.61–0.8 0.65
Morobe 6 Severe 0.61–0.8 0.60
New Ireland 2 Extreme 0.81–1 0.51
Northern (Oro) 1 Extreme 0.81–1 0.76
Southern Highlands 7 Severe 0.61–0.8 0.72
West New Britain 2 Extreme 0.81–1 0.74
West Sepik (Sandaun) 1 Extreme 0.81–1 0.81
Western 4 Severe 0.61–0.8 0.67
Western Highlands 8 Severe 0.61–0.8 0.54

2019 Bougainville 1 Moderate 0.41–0.6 0.38
Central 3 Severe 0.61–0.8 0.81
Chimbu 1 Moderate 0.41–0.6 0.67
East Sepik 2 Moderate 0.41–0.6 0.51
Eastern Highlands 2 Moderate 0.41–0.6 0.45
Gulf Province 1 Severe 0.61–0.8 0.83
Hela 3 Severe 0.61–0.8 0.65
Jiwaka 1 Moderate 0.41–0.6 0.51
Madang 1 Moderate 0.41–0.6 0.53
Manus 2 Moderate 0.41–0.6 0.38
Milne Bay Province 3 Severe 0.61–0.8 0.63
Morobe 1 Moderate 0.41–0.6 0.41
New Ireland 2 Mild 0.21–0.4 0.38
Northern (Oro) 1 Severe 0.61–0.8 0.80
Southern Highlands 3 Severe 0.61–0.8 0.78
West New Britain 1 Moderate 0.41–0.6 0.55
Western 3 Severe 0.61–0.8 0.70
Western Highlands 3 Moderate 0.41–0.6 0.37

and Crimp, 2019) stated that impacts were severe to extreme.
Impacts commonly recorded by sources for the 2015 drought
event included compromised food security and famine (An-
namalai et al., 2015; Broughton, 2017; Allan et al., 2019;
De Deckker, 2016; Schmidt et al., 2021; Bang and Crimp,
2019), compromised freshwater supply (Annamalai et al.,
2015; Broughton, 2017), affected public health and mor-
tality (Annamalai et al., 2015; Broughton, 2017; Bang and
Crimp, 2019), and negative effects on crops (Whitfield et
al., 2019; De Deckker, 2016; Schmidt et al., 2021; Bang

and Crimp, 2019). Food security impacts were mentioned the
most among sources (Table 8).

For 2016, the risk assessment displayed a suspected severe
to extreme drought in the Southern Region of PNG, a mild
drought in the Highlands Region, and a moderate drought
event in both the New Guinea Islands Region and Momase
Region (Figs. 4 and 7). All regions were suspected as ex-
periencing drought; thus, a nationwide drought event was
suspected as occurring in 2016. The risk levels displayed
across PNG for 2016 expressed that this was likely a mod-
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Figure 5. Overall drought risk maps of PNG provinces for 2014 including a drought hazard, drought vulnerability, drought exposure, and
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from very mild
(index values from 0.01–0.20) to extreme (index values from 0.81–1.00).

erate drought event. Such risk levels were resultant of high
hazard levels that were consistent throughout the Southern
Region and scattered throughout various provinces in other
regions (e.g. West New Britain in the New Guinea Islands
Region), high exposure levels throughout all PNG regions
except for New Guinea Islands, and high vulnerability levels
primarily across both the Southern Region and Momase Re-
gion (Fig. 7). Many literature sources (61 %) also mentioned
2016 as a year in which PNG suffered severe to extreme
drought impacts (Table 8) (Annamalai et al., 2015; Whitfield
et al., 2019; Bonnafous et al., 2017; Broughton, 2017; Al-
lan et al., 2019; Schmidt et al., 2021; Bhardwaj et al., 2021b;
Bang and Crimp, 2019). The impacts were the same as those
conveyed for the 2015 period, and most sources constituted
the drought impacts seen in 2015 and 2016 as resulting from
a singular drought event which lasted for a 2-year period.

No drought was suspected in 2017, with most provinces
displaying mild drought risk in the risk assessment (Fig. 4).

This was corroborated by the literature analysis, with no
sources mentioning drought conditions or impacts in 2017
(Table 8). No nationwide drought was suspected in 2018,
with the risk assessment indicating only one region (Southern
Region) suspected of experiencing drought impacts (Fig. 4).
The provinces throughout the other regions of PNG dis-
played mostly mild or moderate risk. The literature made no
indication of 2018 being a drought year (Table 8).

In 2019 two out of four of the PNG regions were suspected
as experiencing drought. The Momase Region was suspected
as experiencing mild drought, and the Southern Region was
likely experiencing severe to extreme drought (Fig. 4). As
half of the regions in PNG were likely experiencing drought
impacts, it was concluded that a nationwide drought event
was occurring throughout 2019. The risk level pattern across
PNG illustrated that this was likely a moderate drought event
(Fig. 8). This is attributed to high hazard levels in the South-
ern Region and across the Highlands Region, with all other
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Figure 6. Overall drought risk maps of PNG provinces for 2015 including a drought hazard, drought vulnerability, drought exposure, and
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from very mild
(index values from 0.01–0.20) to extreme (index values from 0.81–1.00).

regions displaying much milder levels; high exposure lev-
els throughout all PNG regions except for New Guinea Is-
lands, which displayed more moderate levels; and high vul-
nerability levels in the Southern Region and Momase Region,
with more moderate levels evident in the other two PNG re-
gions (Fig. 8); 30 % of the literature sources mentioned 2019
as a drought year, with half of those sources describing the
drought event as mild (Bhardwaj et al., 2021b; Johnson et
al., 2019) and the other half discussing it as moderate (World
Food Programme, 2019; Mckenna and Yakam, 2021) (Ta-
ble 8). Impacts recorded included negatively affected vegeta-
tion (World Food Programme, 2019), decreases in water stor-
age (World Food Programme, 2019), and negative impacts on
market sellers (Mckenna and Yakam, 2021).

Two regions were suspected as experiencing drought in
2020, as indicated by the risk assessment: Southern Region
and New Guinea Islands Region displayed as likely having
mild drought. Since two out of four regions were likely in

drought, 2020 was determined to be a nationwide drought
year for PNG. The strength of the event was determined to
be only mild, based off risk levels displayed across PNG
provinces (Fig. 4). Such patterns were a result of the varying
hazard, vulnerability, and exposure levels indicated across
PNG. High hazard levels were indicated throughout the New
Guinea Islands, with high levels also indicated in provinces
scattered throughout the other regions of PNG. Like the vul-
nerability and exposure levels indicated in 2019, the 2020
vulnerability map shows high levels in the Southern and Mo-
mase region, and the 2020 exposure map displays moderate
levels in the New Guinea Islands Region, and higher levels
in all other regions (Fig. 9). In the literature investigation,
only 15 % of sources mentioned 2020 as a drought year in
PNG. Half of the sources that did mention drought impacts
throughout 2020 described such impacts to be mild (Bhard-
waj et al., 2021b), and the other half described them as mod-
erate (Mckenna and Yakam, 2021). As less than a quarter

https://doi.org/10.5194/nhess-23-553-2023 Nat. Hazards Earth Syst. Sci., 23, 553–586, 2023



572 I. Aitkenhead et al.: Validating a tailored drought risk assessment methodology

Figure 7. Overall drought risk maps of PNG provinces for 2016 including a drought hazard, drought vulnerability, drought exposure, and
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from very mild
(index values from 0.01–0.20) to extreme (index values from 0.81–1.00).

of sources mentioned 2020 as a drought year, there is insuf-
ficient evidence to corroborate the drought risk assessment
results and deem 2020 as a drought year.

Overall, the comparison of risk assessment and literature
investigation results suggests a drought event occurred in
2015–2016 with severe to extreme impacts, and in 2019 with
moderate impacts. There was insufficient evidence in the lit-
erature to indicate 2014 and 2020 as years included in these
drought events, even though they were indicated as likely
drought years in the risk assessment. Accordingly, only the
risk assessment results for 2015–2016 and 2019 were in-
cluded to be statistically validated by the literature analysis
results.

3.2 Statistical validation of risk assessment with
literature analysis results

The different severity levels for each province, indicated
by the risk assessment compared to the literature, in each
drought event (2015–2016 and 2019) are listed in Table 9.
The risk assessment reported the three most at-risk provinces
during the 2015–2016 drought period as Central (average
risk index value of 0.82), West Sepik (average risk index
value of 0.81), and Northern (Oro) (average risk index value
of 0.76) (Table 9). Similarly, during the 2019 drought pe-
riod, Gulf Province (risk index value of 0.83), Central (risk
index value of 0.81), and Northern (Oro) (risk index value of
0.80) were the three most at-risk provinces (Table 9). North-
ern (Oro) and West Sepik were mentioned in the literature
among the most affected provinces during the 2015–2016
drought period; however, Central was not included among
the most affected (Table 9). For the 2019 drought period,
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Figure 8. Overall drought risk maps of PNG provinces for 2019 including a drought hazard, drought vulnerability, drought exposure, and
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from very mild
(index values from 0.01–0.20) to extreme (index values from 0.81–1.00).

Gulf Province, Central, and Northern (Oro) were mentioned
among the most affected provinces in the literature (Table 9).

No statistically significant variation was displayed be-
tween the severity levels described for each province in the
risk assessment versus the literature for the 2015–2016 event
(F18= 0.86, p= 0.37) (Appendix B); thus a t test assum-
ing equal variances could be conducted. For the 2019 event,
a statically significant variation was detected (F17= 2.67,
p= 0.02) (Appendix C); thus a t test assuming unequal vari-
ances was performed on the data. T -test results found that
there was no significant difference between the severity lev-
els recorded for the 22 PNG provinces given by the risk
assessment compared to the literature for both the 2015–
2016 drought event (t36=−1.70, p= 0.10) (Appendix D)
and the 2019 drought event (t28= 2.07× 10−15, p= 0.50)
(Appendix E), therefore suggesting a valid identification of
a severe to extreme drought event in 2015–2016 and mod-

erate drought event in 2019, as well as a valid indication of
provincial drought risk levels, by the risk assessment.

3.3 Sensitivity analysis results

The validity of the risk assessment is further confirmed by
sensitivity analysis results examining the robustness of the
individual indices (hazard, vulnerability, and exposure) used
in the assessment. All indicator SIs were below or just over
0.5, the highest being SPI with 0.56. SI values 0.5 or below
are considered low, with SPIs with a 0.56 value still deemed
relatively low, meaning that the hazard, vulnerability, and
exposure indices are essentially robust rather than sensitive
(Anand et al., 2019).

The results of the 2015 case study sensitivity analysis
show that the hazard index is more sensitive to SPI com-
pared to VHI, meaning that changes in SPI affect the haz-
ard index more greatly than changes in VHI. Thus, SPI is the
indicator ranked as first in hazard sensitivity and second in

https://doi.org/10.5194/nhess-23-553-2023 Nat. Hazards Earth Syst. Sci., 23, 553–586, 2023



574 I. Aitkenhead et al.: Validating a tailored drought risk assessment methodology

Figure 9. Overall drought risk maps of PNG provinces for 2020 including a drought hazard, drought vulnerability, drought exposure, and
drought risk map detailing the index level of each province. The index level is classified on a deepening orange colour scale from mild (index
values from 0.01–0.25) to extreme (index values from 0.76–1.00).

likely credibility (Table 10). The vulnerability index is seen
to be most sensitive to the staple crop tolerance score indica-
tor; thus it is ranked as first in vulnerability sensitivity and is
likely the least credible vulnerability index. Agricultural oc-
cupation is ranked second with a slightly lower SI value than
staple crop tolerance score. Percentage of children weighed
at clinics less than 80 % weight for age 0 to 4 years old and
key crop replacement cost have similar SI values, with the SI
given for percentage of children weighed at clinics less than
80 % weight for age 0 to 4 years old being slightly greater
than that for key crop replacement cost; therefore, they are
ranked third and fourth respectively in terms of vulnerability
sensitivity (Table 10). The exposure index sensitivity analy-
sis results show that the exposure index is most sensitive to
land use; thus land use is ranked first in exposure sensitivity
with the greatest SI value and fourth in likely credibility. The
SI values for the remaining three exposure indicators are sim-
ilar, with elevation type giving an SI of 0.34, population den-

sity 0.32, and access to safe drinking water 0.31, resulting in
a second, third, and fourth ranking respectively for exposure
sensitivity (Table 10). Overall, the SI values of each indica-
tor within each of the three indices did not greatly differ, the
greatest being a 0.1 difference between key crop replacement
cost (SI of 0.31) and staple crop tolerance score (SI of 0.41).
Thus, credibility was similar for all indicators within each of
the hazard, vulnerability, and exposure indices.

3.4 Demonstrating the usability of risk assessment
results: 2015 monthly case study

The strong event which occurred in 2015–2016 is further
detailed by monthly risk index maps indicating the tran-
sition of most provinces into extreme drought risk levels
in July 2015. Figure 10 shows the heightening of drought
risk from November 2014 to July 2015 for most provinces,
with drought risk levels peaking in October–December 2015
and then slightly reducing at the commencement of 2016.
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Table 10. Average sensitivity index values across PNG provinces for each indicator and the index which they inform using 2015 data as a
case study. Rankings are shown for SI with highest sensitivity ranked first and lowest sensitivity ranked last. The likely credibility is also
ranked amongst indicators, with first being the most credible for inclusion in the index and last being the least credible.

Index Indicator Sensitivity index Sensitivity rank Likely
(Avg. across (highest to Credibility

provinces) lowest SI) Rank

Hazard SPI 0.56 first second

VHI 0.47 second first

Vulnerability Staple crop tolerance score 0.41 first fourth

Agricultural occupation 0.36 second third

Percentage of children weighed 0.33 third second
at clinics less than 80 % weight
for age 0 to 4 years old

Key crop replacement cost 0.31 fourth first

Exposure Land use 0.39 first fourth

Elevation type 0.34 second third

Population density 0.32 third second

Access to safe drinking water 0.31 fourth first

When the drought risk levels peaked, all PNG regions except
for the Highlands Region had provinces reaching extreme
drought risk levels. In the Highlands Region, all provinces
were at a severe risk level when the drought event reached its
peak. The provinces reaching extreme levels throughout the
2015 year included Southern Highlands, West New Britain,
East Sepik, Madang, West Sepik (Sandaun), Central, Gulf
Province, and Northern (Oro). The transition into and out of
extreme levels was different for each of these provinces.

Drought impacts in Southern Highlands seemed to peak in
July, with extreme risk levels indicated for both July and Au-
gust of 2015. Afterwards, levels dropped down to severe for
the remainder of 2015 and the beginning of 2016 (Fig. 10).
In West New Britain, risk levels peaked in December at an
extreme level; for the 9 months leading up to this, levels
were severe. In January 2016 risk dropped back down to se-
vere for West New Britain (Fig. 10). East Sepik was found
to have extreme risk from June to December 2015; in the six
months prior, levels were severe (Fig. 10). Following Decem-
ber 2015, levels returned to severe for East Sepik. Similarly,
Madang displayed extreme levels from August to Decem-
ber 2015, with severe levels noted for the five months lead-
ing up to this peak, and severe levels recorded following the
peak (Fig. 10). In West Sepik (Sandaun), levels were severe
until March 2015, in which extreme risk was recorded and
remained for the rest of the months investigated (Fig. 10).
Northern (Oro) displayed severe risk until August 2015, in
which extreme risk arose and continued occurring until De-
cember 2015 (Fig. 10). Both Central and Gulf Province were

indicated to have extreme levels consistently from the end of
2014 to the beginning of 2016 (Fig. 10).

4 Discussion

4.1 PNG drought events indicated by risk assessment
and confirmed in the literature

The risk assessment results indicated a suspected severe to
extreme drought event in 2015–2016 and a moderate event
in 2019. When compared to literature findings, these results
were corroborated. It is widely reported that a strong drought
event commenced in PNG at the beginning of 2015 and
reached its peak during 2016 (Kuleshov et al., 2020; Chua et
al., 2020; Gwatirisa et al., 2017; Jacka, 2020; Varotsos et al.,
2018; RIMES and Papua New Guinea National Weather Ser-
vice, 2017). Kuleshov et al. (2020) attributed the drought of
2015–2016 to a strong El Niño which occurred during these
years. This strong El Niño phase was paired with a positive
IOD phase; the interacting impacts of both climate drivers
resulted in devastating negative rainfall anomalies across the
entirety of PNG (Bhardwaj et al., 2021b). It is explained in
the literature that the 2015–2016 drought event affected ap-
proximately 40 % of PNG’s population, with drought-caused
food shortages impacting half a million people throughout
PNG’s provinces (Annamalai et al., 2015; Whitfield et al.,
2019; Broughton, 2017; Schmidt et al., 2021; De Deckker,
2016; Bhardwaj et al., 2021b; Bang and Crimp, 2019). In
their poverty analysis of the lowlands of PNG, Schmidt et
al. (2021) further detail that the drought decimated a criti-
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Figure 10. Drought risk levels calculated from monthly risk assessments for each province during the transition into the strong 2015–2016
drought conditions. Drought risk levels are given for November and December 2014, January to December 2015, and January and February
2016. The drought risk level is classified on a deepening orange colour scale from mild (index values from 0.01–0.25) to extreme (index
values from 0.76–1.00).
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cal amount of PNG’s local crop production, which left PNG
communities in a food crisis. Such a climate shock had crit-
ical consequences for household welfare, contributing to a
rise in households below the poverty line, particularly in ru-
ral and lowland areas (Schmidt et al., 2021).

A recent drought event occurring in PNG throughout
2019 has been reported by various sources (Bhardwaj et al.,
2021b; Johnson et al., 2019; World Food Programme, 2019;
Mckenna and Yakam, 2021). Unlike the 2015–2016 drought
event, drought conditions in PNG during 2019 were due to a
La Niña event. A neutral IOD phase was also evident; thus La
Niña impacts were not exacerbated by the IOD. The impacts
of La Niña on rainfall patterns vary across PNG. In the past,
La Niña has resulted in wetter conditions over most of the
country, except in the eastern islands of Milne Bay region
(Food and Agriculture Organisation of the United Nations,
2021). The 2019 La Niña caused below-average rainfall in
PNG, particularly in the northern parts of PNG (Food Secu-
rity Cluster et al., 2021). With La Niña alone influencing the
2019 event, it was expected to be weaker than the previous
drought in 2015–2016. In the literature, the impacts of the
2019 drought event are primarily discussed as mild or mod-
erate rather than severe to extreme. However, the effects of
the 2019 drought event have not been widely discussed in
peer-reviewed literature as it is such a recent event. Drought
investigations usually occur after the fact, sometimes years
after an event occurs. This is most likely because the drought
research and response space is still largely reactive, despite
efforts towards proactivity (Wilhite et al., 2014). The few
sources that have reported on this event described the neg-
ative effect of dry conditions on agricultural production and
food security (World Food Programme, 2019; Johnson et al.,
2019).

4.2 PNG non-drought years

Years 2014, 2017, 2018, and 2020 were deemed to be non-
drought years due to the comparison of risk assessment re-
sults and literature analysis results. Even though 2014 and
2020 displayed high enough drought risk levels across PNG’s
regions to signal that a drought event may have occurred in
these years, there was insufficient evidence in the literature
to corroborate this. Only a small number of sources reported
these years as drought years (Allan et al., 2019; Burivalova
et al., 2017; Mckenna and Yakam, 2021; Bhardwaj et al.,
2021b). The risk assessment may have identified high risk
levels throughout these years as they lead up to (in the case
of 2014) or followed (in the case of 2020) confirmed drought.
Further investigation on these years is recommended to con-
firm the validity of the risk assessment. Year 2017 displayed
mostly mild risk throughout all PNG regions, as corroborated
in the literature, signalling an end to the 2015–2016 drought
event.

Although 2018 was indicated as a non-drought year with
most provinces displaying mild or moderate risk, there were

some provinces with severe or extreme risk. These higher
levels were particularly present throughout the Southern Re-
gion. This is not an entirely unexpected result, as PNG is
a highly vulnerable and exposed country to drought. There-
fore, the vulnerability and exposure indices are likely to be
consistently high for most years across PNG provinces. With
two out of the three indices likely being at higher levels, it is
not radical to suggest that the final drought risk index would
be higher than mild for most years. It is important to note
that in this study, it is recognised that drought risk does not
directly translate to the occurrence of a drought; rather it cor-
responds with the severity of impacts likely to be experienced
by the area of investigation when a drought occurs. For ex-
ample, mild drought risk levels seen in certain provinces on
the drought risk maps in this study do not necessarily mean
that a mild drought is occurring; instead it suggests that mild
drought impacts are likely to occur in those provinces. Such
mild impacts could occur because of a drought event or could
occur because of the regular dry season of PNG (Bhardwaj
et al., 2021b). Comparatively, moderate to extreme risk lev-
els are most likely the result of a drought event (Kanua et al.,
2016).

In non-drought years, where hazard is low but vulnera-
bility and/or exposure remain high across PNG provinces,
it is the time to be proactive and improve adaptive capac-
ity. If management practices are put in place during non-
drought years to reduce the levels of vulnerability and ex-
posure, when a drought hazard event commences the risk
of destructive impacts can be reduced (Pulwarty and Sivaku-
mar, 2014). Management actions that could be taken in non-
drought years to foster resilience in PNG include strengthen-
ing of health services, cultivating/planting drought resilient
crops, and increasing water storages in highly vulnerable
and exposed areas (Hagenlocher et al., 2019). The impor-
tance of risk assessment-informed resilient management is
highlighted further in the monthly case study of the extreme
drought year of 2015.

4.3 2015 monthly case study: transition of drought

The 2015 monthly risk assessment (including the conclusion
of 2014 and commencement of 2016) accurately displayed
high drought risk levels leading up to the peak of the 2015–
2016 drought event in mid-2015 until November/December
2015 (Chua et al., 2020). The case study highlighted priority
areas: Southern Highlands, East Sepik, Madang, West Sepik
(Sandaun), Northern (Oro), Central, and Gulf Province were
provinces exhibiting extreme risk for more than 1 month
throughout 2015. Records of the event confirmed that these
provinces experienced severe to extreme impacts during the
2015–2016 drought in PNG (Annamalai et al., 2015; Whit-
field et al., 2019; Broughton, 2017; Schmidt et al., 2021; De
Deckker, 2016; Bhardwaj et al., 2021b; Bang and Crimp,
2019). All priority provinces were indicated by the risk as-
sessment to be at high risk levels (severe or extreme) for at
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least 3 months prior to the peak of the drought event. This
suggests that if performed prior to the drought event, the risk
assessment would have likely aided in notifying provincial
and state decision-makers of priority areas requiring focused
management and higher allocation of resources. Small-scale
proactive and suitable management actions could have been
implemented, including the allocation of resources to emer-
gency and health services, implementation of water restric-
tions, and initiation of negotiations for food aid from sur-
rounding countries like Australia (Broughton, 2017). As a
result, local communities in PNG provinces could have been
better prepared for the impacts of the drought event before it
peaked, potentially saving lives (Kanua et al., 2016).

4.4 Sensitivity analysis

Sensitivity analyses are neglected in the few drought assess-
ments performed for PNG. Without sensitivity analysis, the
indicators used in past PNG drought assessment studies can-
not be definitively concluded as credible. For example, SPI
and VHI were investigated by Chua et al. (2020) for assess-
ing drought in PNG, but they were only validated through
a 2015–2016 case study of drought impacts. No sensitivity
analysis was performed. Like Chua et al. (2020), SPI and
VHI are considered in this study. A sensitivity analysis can
confirm the credibility of these indicators for use in assessing
drought across PNG.

In this study, it was found that no single indicator dis-
played a seriously high SI value, so each indicator selected
for use in the risk assessment is likely credible. This sug-
gests that the hazard, exposure, and vulnerability indices cal-
culated in this study are robust and able of representing the
complex processes that lead to drought risk (Anand et al.,
2019). However, based on the different SI values expressed
and differences in likely credibility of individual indicators,
a review of the weighting applied to each indicator may be
appropriate.

The expert weighting scheme applied to the hazard indica-
tors gave SPI a weighting of 0.75 and VHI of 0.25. The sen-
sitivity analysis ranked SPI as first, with an SI value greater
than VHI, meaning that the hazard component is more sensi-
tive to changes in SPI rather than VHI. Results suggest that
VHI is a more credible indicator compared to SPI; therefore
more weight could be distributed to VHI than what is cur-
rently. Previous drought risk assessment studies, conducted
in other countries, that have employed SPI and VHI as haz-
ard indicators commonly weight SPI highly in the hazard in-
dex calculations, and VHI usually has a mid-range weighting
(Nagarajan and Ganapuram, 2015). Here, a similar approach
is taken; however in PNG specifically, it may be pertinent to
weight VHI slightly higher (as indicated by the sensitivity
analysis).

Generally, global drought risk assessment studies adopt a
range of vulnerability indicators that focus on agricultural,
economic, and/or health-related vulnerability. In an assess-

ment including economic, health, and agricultural vulnera-
bility indicators to detect drought vulnerability in Zimbabwe,
Frischen et al. (2020) used an expert weighting scheme to
assign indicator weights. Agricultural indicators were com-
monly assigned the highest weighting, with economic indi-
cators weighted second, and health indicators weighted third
(Frischen et al., 2020). Here, the expert weighting scheme
followed this trend, with staple crop tolerance score and
key crop replacement cost weighted the highest, agricul-
tural occupation weighted third, and percentage of children
weighed at clinics less than 80 % weight for age 0 to 4 years
old weighted the least. The sensitive analysis results reveal
that a revision is needed. The vulnerability index was ev-
idently most sensitive to changes in the staple crop toler-
ance score indicator; it is likely incorrect that it is weighted
highest. Key crop average replacement cost was identified
as the most credible indicator; it is logical that it should be
weighted the highest among vulnerability indicators. Simi-
larly, more weight should be applied to the percentage of
children weighed at clinics less than 80 % weight for age
0 to 4 years old indicator as it was identified as the second
most credible vulnerability indicator. The weighting of agri-
cultural occupation is likely valid as it was found to be the
second lowest indicator in terms of credibility.

In many past risk assessments, access to safe drinking wa-
ter and population density are weighted highly among expo-
sure indicators (Nagarajan and Ganapuram, 2015; Dayal et
al., 2018), whereas land use is generally weighted with mid-
range values and slope weighted with lower values (Dayal et
al., 2018). The sensitivity analysis results of this study sug-
gest that such weightings should be revised in the case of
assessing drought exposure in PNG. Results show land use
to be ranked last among exposure indicators in terms of cred-
ibility. Currently, land use is weighted the greatest among ex-
posure indicators. This suggests that the weighting assigned
to land use should be reduced. Elevation type, population
density and access to safe drinking water were found to likely
have similarly high credibility. However, the exposure index
was seen to be slightly more sensitive to changes in elevation
type over population density, and population density over ac-
cess to safe drinking water. As the most credible exposure
indicator, Access to safe drinking water should be weighted
the greatest; it is currently weighted as the second greatest.

Whilst refinements to the weightings applied to hazard,
vulnerability, and exposure indicators are recommended in
the future, they would be minimal as the differences in SI
values between indicators within each index were not im-
mense. Overall, the sensitivity analysis results do not retract
from the value of the risk assessment results produced in this
preliminary study.

4.5 Reasonability of validation methods

The validation method adopted in this study used literature
sources discussing past drought events in PNG as the ground
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truth for what occurred during previous droughts. A more
reliable ground truth would have been the perspectives of
local PNG people who personally experienced the drought
conditions and ensuing impacts (Fragaszy et al., 2020). In-
terviews could have been conducted like those executed by
Mckenna and Yakam (2021) and Fragaszy et al. (2020).
However, due to the COVID-19 situation in both PNG and
Australia at the time of this study, interviews were not viable.
González Tánago et al. (2016) recommend the use of mul-
tiple ground-truth sources, to strengthen validation method-
ology. Bijaber (2018) adhered to this recommendation and
used historical on-the-ground data as well as expert knowl-
edge of what occurred, to validate the results of their drought
risk monitoring in Morocco. Due to the data scarcity in PNG,
and the additional limitation of not being present in the coun-
try to conduct this research, the assessment here could only
include one kind of ground-truth source. Future research
should consider interviewing local communities in each PNG
province to add another, more robust ground-truth for the im-
pacts of each drought event investigated.

Using statistical sensitivity analysis as a second form of
validation is recommended as best practice for validating
drought risk assessment methodology (Hangelocher et al.,
2019). Rahmati et al. (2020) conducted a sensitivity anal-
ysis to validate the use of specific indicators for assessing
drought risk in south-eastern Queensland. The sensitivity
analysis outlined which indicators were highly suitable for
use in the risk assessment, highlighting that plant-available
water capacity, the percentage of soil comprised of sand, and
mean annual precipitation were the most important predic-
tors of drought for the study (Rahmati et al., 2020). Such best
practice was adhered to in this study, with the use of sensi-
tivity analysis as a second form of risk assessment verifica-
tion. Overall, the use of both a comparison to a ground-truth
source and a sensitivity analysis for validation of this study
is a reasonable approach.

4.6 Study limitations and recommendations for further
research

4.6.1 Indicator selection process

In the literature, it is indicated that current practice for in-
dicator selection is to select indicators based on a review of
literature (Frischen et al., 2020) and use of current expert
knowledge (Dayal et al., 2018). Indicators are commonly ar-
bitrarily selected for the country they are to be used to as-
sess. It is common for data restrictions to be a limiting fac-
tor of indicator selection (Dayal et al., 2018). As this study
seeks to select specifically suitable indicators for assessment
of drought risk on a more localised scale in PNG, to achieve a
tailored drought risk assessment, it would have been ideal to
select indicators not only based on a literature review or cur-
rent expert knowledge, but also established with local knowl-
edge as recommended by Benzie et al. (2016). In this study it

was not feasible to formally gauge the perspectives of users,
but advice on relevant indicators was sought by PNG NWS.
In future investigations, surveys and interviews will be con-
ducted to formally gain the perspective of locals regarding
what vulnerability and exposure indicators are most appro-
priate for use. This feedback will inform further refinements
of the risk index for drought in PNG, given data are accurate
and available.

4.6.2 Static indicators

Vulnerability and exposure indicators were semi-dynamic or
static, using annually updated observed data or fixed data.
Fixed data for indicators like land use and elevation type are
expected; these indicators are naturally static (Safavi et al.,
2014). However, the data for indicators like staple crop tol-
erance score, agricultural occupation, percentage of children
weighed at clinics less than 80 % weight for age 0 to 4 years
old, and key crop replacement cost (for vulnerability), along
with population density and access to safe drinking water (for
exposure), were semi-dynamic due to limited data availabil-
ity. Ideally, more dynamic data (e.g. updated monthly rather
than annually) would be used for these indicators, but this
can only happen if consistent socio-economic statistics be-
come available for PNG. Although regularly updated data are
not available for all vulnerability and exposure indicators, a
holistic drought risk index still requires these two compo-
nents in addition to the hazard component. The hazard indi-
cators used were dynamic, incorporating regularly updated
monitoring data. The hazard variables used were 3-month
cumulated values (3-month SPI and VHI), which potentially
reduces the informative value of the hazard and risk index
to give a warning of high risk early enough in advance to
act proactively. However, this risk assessment is not intended
to predict drought events before they happen; it is intended
to be used to determine the risk of a drought event occur-
ring and the relative impact that might be faced by specific
PNG provinces during a drought. Overall, the semi-dynamic
nature of this assessment is not likely a limitation that will
reduce the value of this preliminary risk assessment method-
ology.

4.6.3 Data availability

Limited data availability constrained several aspects of the
methodological process:

– The validation method was constrained by the fact that
there were limited numbers of scientifically robust liter-
ature sources reporting on the 2019 drought event, as it
was a recent event. The PNG National Weather Service
was consulted to ensure that the results from the 2019
literature sources were true and accurate.

– Space-based VHI data are only available from 2014
onwards, whereas the SPI data record dates to 2001.
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To have a complete hazard index in the retrospective
risk assessment, the retrospective period investigated
had to begin from 2014; 2014–2020 is a shorter pe-
riod of analysis, which limits the number of drought
events and non-drought periods occurring within, re-
sulting in lower confidence in results. A longer analy-
sis would provide greater confidence in the risk assess-
ment methodology. It is possible that the risk assess-
ment could be performed for years prior to 2014 by us-
ing only SPI to inform the hazard index, or by replacing
VHI with a different hazard indicator with data available
for a longer period. However, it is deemed that for the
risk assessment to be holistic and tailored, the hazard
index should not rely only on one indicator. Addition-
ally, different hazard indicators that could potentially
replace VHI, like the Normalized Difference Vegetation
Index (NDVI) (which has raw data from the 1980s on-
wards) are not as accurate as VHI; VHI has been proven
to be efficient and accurate, specifically for across PNG
(Chua et al., 2020).
Data availability was also limited for the exposure and
vulnerability indicators; thus, the data available clos-
est to the time investigated were used. This meant that
the vulnerability and exposure indices were the same
for both 2014 and 2015 as the data were not updated
throughout those two years. However, as half the indi-
cators in both the vulnerability and exposure are more
static rather than dynamic (excluding agricultural occu-
pation, key crop replacement cost, population density,
and access to safe drinking water), it is not expected that
values would largely change on a yearly basis regard-
less; rather it would be more likely for values to change
every 2 or 3 years (Aitkenhead et al., 2021). Therefore,
the limited data availability for vulnerability and expo-
sure indicators in 2014–2015 will not likely have a large
effect on the credibility of the results. Data availability
is constrained throughout many SIDS like PNG; future
investment in open-sourced and cloud-based data plat-
forms would allow for collaboration between separate
entities that have collected data so that all relevant data
can be combined, stored, and accessed from the same
place (Sun et al., 2020).
When working in such countries as Pacific SIDS and
other developing nations, data availability is commonly
scarce (Chua et al., 2020). Several previous studies
have come across this limitation and have addressed
it in similar ways. In their drought risk assessment in
China, Zhao et al. (2020) faced data limitations for
the more local level. They chose to use provincial data
where county level data were missing. As in this study,
Frischen et al. (2020) were faced with limited data avail-
ability for drought vulnerability indicators, so it was de-
cided that static indicators would be used rather than
temporally dynamic indicators. Although not dynamic,
Frischen et al. (2020) deemed that there was merit in

their drought vulnerability assessment, as results of-
fered to expand the underexplored topic of drought risk
in Zimbabwe.

– This research presented an effective solution to test the
validation of a tailored risk assessment methodology
which is conceptually applicable to the local level – with
tailored explicitly meaning that indicators were selected
based on rigorous criteria outlining suitability to this
study’s context. The developed risk assessment method-
ology was intended to be tailored to a highly localised
level; however, due to data restraints, the provincial
level was the most localised level able to be assessed
in PNG. Data are severely limited at heightened local
scales, e.g. for individual villages/cities. In the future, it
would be useful to further validate the applicability of
such a risk assessment methodology at a more localised
scale through conducting a drought risk assessment for
a specific local PNG village. Currently, such an investi-
gation is beyond the scope of the research presented in
the paper.

4.6.4 Weighting scheme

Although used in many similar past studies, like Frischen et
al. (2020), the expert weighting scheme approach has been
described by some as unreliable for the delivery of robust re-
sults, due to the presence of subjective judgements (Dayal et
al., 2018). Furthermore, the sensitivity analysis results sug-
gest that the weighting scheme applied to indicators may
not have been optimal. In the future, a revised set of indi-
cator weights should be employed, based off the sensitiv-
ity analysis results. As this study was a preliminary assess-
ment, initially attempting to address drought risk assessment
knowledge gaps in PNG, the limitations of the weighting
scheme do not take away the value of results. So, it was de-
termined that improvements were not required at this stage
of the research but are set to be made in future work. Be-
fore the drought risk assessment methodology can be adopted
for operational use and/or applied to additional Pacific SIDS,
weighting refinements will be completed.

4.7 Research significance and conclusions

This study aimed to expand drought risk knowledge, explore
effective methodological aspects of drought risk assessment,
and develop a preliminary drought risk assessment method-
ology intended for use in PNG. Such research is minimal
across Pacific SIDS and particularly underexplored in the
context of PNG (Hagenlocher et al., 2019). This study made
significant strides in addressing key knowledge gaps com-
monly missed in drought risk assessment studies in general,
and drought assessment in PNG specifically, by considering
specific and tailored indicator selection, consistent drought
risk definitions, dynamic assessment, sufficient validation of
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indicators and results, and the provision of recommenda-
tions.

In this study, an unprecedented attempt at developing a tai-
lored drought risk assessment for the provincial scale across
PNG was made. The development of a tailored, meaning
highly specific to the area under investigation, drought risk
assessment methodology has been recognised as vital to
improving risk knowledge for the development of resilient
drought risk management strategies in vulnerable communi-
ties (Wilhelmi and Wilhite, 2002). Out of the disaster risk
assessments that have been conducted in PNG, they have
used arbitrary risk indicators (Bang et al., 2003; Allen and
Bourke, 2009; Korada et al., 2018) and have been conducted
on a broader (national/regional) level rather than local area
(provinces) or community level (Hagenlocher et al., 2019).
This research presents a methodology emphasising tailored
risk assessment, with distinct criteria used to select suitable
drought risk indicators. This assessment is conducted at the
most local level possible at this time, the provincial level.
In the future, it would be beneficial to investigate risk at the
town/village level and include local user consultation in the
indicator selection process; however, this is beyond the scope
of the current research because of travel/resource limitations,
and the remoteness of local PNG communities.

This study adopted the drought risk definitions consistent
with those recommended by Hagenlocher et al. (2019). No
such study has been conducted previously in PNG, where
clearly defined hazard, vulnerability, and exposure compo-
nents are included to assess risk for all provinces. The assess-
ment was intended to be dynamic, but limitations saw that it
was only semi-dynamic. Due to data restrictions, the vulner-
ability component of the risk assessment consisted of annu-
ally updated, semi-dynamic indicators. The exposure com-
ponent was also semi-dynamic, with fixed data for naturally
static indicators, and annually updated data for the indica-
tors that would ideally be more dynamic, whereas the hazard
component included solely dynamic factors. Thus, the over-
all approach is deemed a semi-dynamic drought risk assess-
ment. For the assessment to become wholly dynamic, socio-
economic data need to become more readily available. The
constrained availability of relevant, reliable, and updated data
is recognised as majorly detrimental to drought risk assess-
ments across the world (González Tánago et al., 2016). The
semi-dynamic assessment can still provide important results,
more static assessment is useful for identifying where the ori-
gins and drivers of drought risk exist and the areas that are of
priority for long-term adaptation plans (Blauhut, 2020; Ha-
genlocher et al., 2019; González Tánago et al., 2016).

Indicators used and results produced underwent prelimi-
nary validation; however, a more comprehensive validation
method is recommended for future research. The risk as-
sessment methodology developed in this research was over-
all deemed valid. It provides the foundation for conducting
drought risk assessments in PNG, to increase risk knowledge
and inform local drought risk management. To consolidate

this methodology as reliable in an operational sense, results
must undergo validation against further ground-truth sources
(e.g. local accounts of past drought events). Results allowed
for recommendation on disaster risk reduction in PNG, in-
cluding the identification of priority areas that were detri-
mentally affected in previous drought, as well as recommen-
dations for improved efficacy of the risk assessment method-
ology. This is a critical step commonly omitted from the risk
assessment process (Blauhut, 2020; Hagenlocher et al., 2019;
González Tánago et al., 2016).

Overall, this research establishes an essential foundation
for tailored and valid drought risk assessments in Pacific
SIDS, using drought in PNG as a case study. However, im-
provements to the validation methods and the indicator se-
lection process are vital to the efficiency of the risk assess-
ment methodology. Once refinements are made, the risk as-
sessment methodology may be adopted on a more opera-
tional basis in PNG. The PNG NWS could conduct drought
risk assessment across PNG to inform stakeholders and local
users of provincial risk levels and guide preparedness plan-
s/risk management (Pulwarty and Sivakumar, 2014). Such a
methodology has the potential to not only be applied across
PNG but could be tested for implementation in other vul-
nerable Pacific SIDS (Finucane, 2009). With the occurrence
of droughts expected to be exacerbated under anthropogenic
climate change, and the impacts predicted to critically af-
fect agricultural productivity, food security, and general eco-
nomic productivity, severely reducing the financial and social
health of local communities in Pacific SIDS, the effective im-
plementation of valid drought risk assessment is needed now
more than ever (Pulwarty and Sivakumar, 2014).
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Appendix A

Table A1. An example of the data tables used in the sensitivity anal-
ysis. This example is for Bougainville province, analysing the sen-
sitivity of the 2015 hazard index to 0.1 incremental changes in the
SPI value. Original data tables were formatted in Excel.

Bougainville

SPI Hazard index

Original 0.561564
0.1 0.339167
0.2 0.389167
0.3 0.439167
0.4 0.489167
0.5 0.539167
0.6 0.589167
0.7 0.639167
0.8 0.689167
0.9 0.739167
1.0 0.789167

Appendix B

Table B1. Table displaying F -test results for the 2015–2016
drought period risk assessment versus literature results.

Statistic df (degrees F statistic P value
of freedom)

Value 18 0.86 0.37

Appendix C

Table C1. Table displaying F -test results for the 2019 drought pe-
riod risk assessment versus literature results.

Statistic df (degrees F statistic P value
of freedom)

Value 17 2.67 0.02

Appendix D

Table D1. Table displaying t-test results for the 2015–2016 drought
period risk assessment versus literature results.

Statistic df (degrees t statistic P value
of freedom)

Value 36 −1.70 0.10

Appendix E

Table E1. Table displaying t-test results for the 2019 drought period
risk assessment versus literature results.

Statistic df (degrees t statistic P value
of freedom)

Value 28 2.07× 10−15 0.50

Code and data availability. The data used in this research were
open-sourced data gathered from public databases. Most vulnera-
bility and exposure indicator data were sourced from the PNG Na-
tional Statistical Office (https://dhsprogram.com/pubs/pdf/FR364/
FR364.pdf, last access: 14 March 2020; National Statistical Of-
fice [Papua New Guinea] and ICF, 2019) and the United Na-
tions Development Program (UNDP; United Nations Develop-
ment Programme, 2017a, b, c), with elevation data gathered as
open-sourced GIS Digital Elevation Model (DEM) data (https:
//png-data.sprep.org/resource/dem-2000, last access: 10 March
2020; Natera, 2016). Data for SPI and VHI data was sourced
from the World Meteorological Organisation’s (WMO’s) Space-
based Weather and Climate Extreme Monitoring (SWCEM) prod-
ucts (Kuleshov et al. 2019). WMO SWCEM provides access
to satellite precipitation estimates and derived products from
the USA National Oceanic and Atmospheric Administration’s
(NOAA’s) Climate Prediction Center (CPC) (https://www.cpc.ncep.
noaa.gov/, last access: 3 May 2021; National Aeronautics and
Space Administration, 2021) and the Japan Aerospace Explo-
ration Agency (JAXA) (SPI – https://sharaku.eorc.jaxa.jp/GSMaP_
CLM/index.htm, last access: 3 May 2021; Japan Aerospace Ex-
ploration Agency and Earth Observation Research Center, 2021;
VHI – https://earth.jaxa.jp/en/data/products/vegetation/index.html,
last access: 3 May 2021; Japan Aerospace Exploration Agency,
2021). Additional data for SPI was gathered from the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) dataset (http:
//www.gloh2o.org/mswep/, last access: 3 May 2021; European
Centre for Medium-Range Weather Forecasts et al., 2021; Beck
et al. 2019). The publicly available SPI and VHI spaced-based
observation data underwent transformation to suit the needs of
this study. The fuzzy logic functions used in this study are
explained by Environmental Systems Research Institute (Esri)
Inc. (2019a, b), with example code provided (fuzzy membership
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function – https://pro.arcgis.com/en/pro-app/latest/tool-reference/
spatial-analyst/fuzzy-membership.htm, ESRI, 2019a; fuzzy overlay
function – https://pro.arcgis.com/en/pro-app/latest/tool-reference/
spatial-analyst/fuzzy-overlay.htm, ESRI, 2019b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-23-553-2023-supplement.
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